1 // SPDX-License-Identifier: GPL-2.0-only 2 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $ 3 * linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128 4 * 5 * Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com> 6 * Copyright (C) 1999, Anthony Tong <atong@uiuc.edu> 7 * 8 * Ani Joshi / Jeff Garzik 9 * - Code cleanup 10 * 11 * Michel Danzer <michdaen@iiic.ethz.ch> 12 * - 15/16 bit cleanup 13 * - fix panning 14 * 15 * Benjamin Herrenschmidt 16 * - pmac-specific PM stuff 17 * - various fixes & cleanups 18 * 19 * Andreas Hundt <andi@convergence.de> 20 * - FB_ACTIVATE fixes 21 * 22 * Paul Mackerras <paulus@samba.org> 23 * - Convert to new framebuffer API, 24 * fix colormap setting at 16 bits/pixel (565) 25 * 26 * Paul Mundt 27 * - PCI hotplug 28 * 29 * Jon Smirl <jonsmirl@yahoo.com> 30 * - PCI ID update 31 * - replace ROM BIOS search 32 * 33 * Based off of Geert's atyfb.c and vfb.c. 34 * 35 * TODO: 36 * - monitor sensing (DDC) 37 * - virtual display 38 * - other platform support (only ppc/x86 supported) 39 * - hardware cursor support 40 * 41 * Please cc: your patches to brad@neruo.com. 42 */ 43 44 /* 45 * A special note of gratitude to ATI's devrel for providing documentation, 46 * example code and hardware. Thanks Nitya. -atong and brad 47 */ 48 49 50 #include <linux/module.h> 51 #include <linux/moduleparam.h> 52 #include <linux/kernel.h> 53 #include <linux/errno.h> 54 #include <linux/string.h> 55 #include <linux/mm.h> 56 #include <linux/vmalloc.h> 57 #include <linux/delay.h> 58 #include <linux/interrupt.h> 59 #include <linux/uaccess.h> 60 #include <linux/fb.h> 61 #include <linux/init.h> 62 #include <linux/pci.h> 63 #include <linux/ioport.h> 64 #include <linux/console.h> 65 #include <linux/backlight.h> 66 #include <asm/io.h> 67 68 #ifdef CONFIG_PPC_PMAC 69 #include <asm/machdep.h> 70 #include <asm/pmac_feature.h> 71 #include <asm/prom.h> 72 #include "../macmodes.h" 73 #endif 74 75 #ifdef CONFIG_PMAC_BACKLIGHT 76 #include <asm/backlight.h> 77 #endif 78 79 #ifdef CONFIG_BOOTX_TEXT 80 #include <asm/btext.h> 81 #endif /* CONFIG_BOOTX_TEXT */ 82 83 #include <video/aty128.h> 84 85 /* Debug flag */ 86 #undef DEBUG 87 88 #ifdef DEBUG 89 #define DBG(fmt, args...) \ 90 printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args); 91 #else 92 #define DBG(fmt, args...) 93 #endif 94 95 #ifndef CONFIG_PPC_PMAC 96 /* default mode */ 97 static const struct fb_var_screeninfo default_var = { 98 /* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */ 99 640, 480, 640, 480, 0, 0, 8, 0, 100 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0}, 101 0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2, 102 0, FB_VMODE_NONINTERLACED 103 }; 104 105 #else /* CONFIG_PPC_PMAC */ 106 /* default to 1024x768 at 75Hz on PPC - this will work 107 * on the iMac, the usual 640x480 @ 60Hz doesn't. */ 108 static const struct fb_var_screeninfo default_var = { 109 /* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */ 110 1024, 768, 1024, 768, 0, 0, 8, 0, 111 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0}, 112 0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3, 113 FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, 114 FB_VMODE_NONINTERLACED 115 }; 116 #endif /* CONFIG_PPC_PMAC */ 117 118 /* default modedb mode */ 119 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */ 120 static const struct fb_videomode defaultmode = { 121 .refresh = 60, 122 .xres = 640, 123 .yres = 480, 124 .pixclock = 39722, 125 .left_margin = 48, 126 .right_margin = 16, 127 .upper_margin = 33, 128 .lower_margin = 10, 129 .hsync_len = 96, 130 .vsync_len = 2, 131 .sync = 0, 132 .vmode = FB_VMODE_NONINTERLACED 133 }; 134 135 /* Chip generations */ 136 enum { 137 rage_128, 138 rage_128_pci, 139 rage_128_pro, 140 rage_128_pro_pci, 141 rage_M3, 142 rage_M3_pci, 143 rage_M4, 144 rage_128_ultra, 145 }; 146 147 /* Must match above enum */ 148 static char * const r128_family[] = { 149 "AGP", 150 "PCI", 151 "PRO AGP", 152 "PRO PCI", 153 "M3 AGP", 154 "M3 PCI", 155 "M4 AGP", 156 "Ultra AGP", 157 }; 158 159 /* 160 * PCI driver prototypes 161 */ 162 static int aty128_probe(struct pci_dev *pdev, 163 const struct pci_device_id *ent); 164 static void aty128_remove(struct pci_dev *pdev); 165 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state); 166 static int aty128_pci_resume(struct pci_dev *pdev); 167 static int aty128_do_resume(struct pci_dev *pdev); 168 169 /* supported Rage128 chipsets */ 170 static const struct pci_device_id aty128_pci_tbl[] = { 171 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE, 172 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci }, 173 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF, 174 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 }, 175 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF, 176 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 }, 177 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML, 178 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 }, 179 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA, 180 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 181 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB, 182 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 183 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC, 184 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 185 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD, 186 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci }, 187 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE, 188 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 189 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF, 190 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 191 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG, 192 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 193 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH, 194 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 195 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI, 196 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 197 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ, 198 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 199 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK, 200 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 201 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL, 202 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 203 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM, 204 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 205 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN, 206 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 207 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO, 208 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 209 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP, 210 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci }, 211 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ, 212 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 213 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR, 214 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci }, 215 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS, 216 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 217 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT, 218 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 219 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU, 220 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 221 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV, 222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 223 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW, 224 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 225 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX, 226 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro }, 227 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE, 228 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci }, 229 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF, 230 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 231 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG, 232 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 233 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK, 234 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci }, 235 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL, 236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 237 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE, 238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 239 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF, 240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci }, 241 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG, 242 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 243 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH, 244 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 245 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK, 246 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 247 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL, 248 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 249 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM, 250 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 251 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN, 252 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 }, 253 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF, 254 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra }, 255 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL, 256 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra }, 257 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR, 258 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra }, 259 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS, 260 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra }, 261 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT, 262 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra }, 263 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU, 264 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra }, 265 { 0, } 266 }; 267 268 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl); 269 270 static struct pci_driver aty128fb_driver = { 271 .name = "aty128fb", 272 .id_table = aty128_pci_tbl, 273 .probe = aty128_probe, 274 .remove = aty128_remove, 275 .suspend = aty128_pci_suspend, 276 .resume = aty128_pci_resume, 277 }; 278 279 /* packed BIOS settings */ 280 #ifndef CONFIG_PPC 281 typedef struct { 282 u8 clock_chip_type; 283 u8 struct_size; 284 u8 accelerator_entry; 285 u8 VGA_entry; 286 u16 VGA_table_offset; 287 u16 POST_table_offset; 288 u16 XCLK; 289 u16 MCLK; 290 u8 num_PLL_blocks; 291 u8 size_PLL_blocks; 292 u16 PCLK_ref_freq; 293 u16 PCLK_ref_divider; 294 u32 PCLK_min_freq; 295 u32 PCLK_max_freq; 296 u16 MCLK_ref_freq; 297 u16 MCLK_ref_divider; 298 u32 MCLK_min_freq; 299 u32 MCLK_max_freq; 300 u16 XCLK_ref_freq; 301 u16 XCLK_ref_divider; 302 u32 XCLK_min_freq; 303 u32 XCLK_max_freq; 304 } __attribute__ ((packed)) PLL_BLOCK; 305 #endif /* !CONFIG_PPC */ 306 307 /* onboard memory information */ 308 struct aty128_meminfo { 309 u8 ML; 310 u8 MB; 311 u8 Trcd; 312 u8 Trp; 313 u8 Twr; 314 u8 CL; 315 u8 Tr2w; 316 u8 LoopLatency; 317 u8 DspOn; 318 u8 Rloop; 319 const char *name; 320 }; 321 322 /* various memory configurations */ 323 static const struct aty128_meminfo sdr_128 = { 324 .ML = 4, 325 .MB = 4, 326 .Trcd = 3, 327 .Trp = 3, 328 .Twr = 1, 329 .CL = 3, 330 .Tr2w = 1, 331 .LoopLatency = 16, 332 .DspOn = 30, 333 .Rloop = 16, 334 .name = "128-bit SDR SGRAM (1:1)", 335 }; 336 337 static const struct aty128_meminfo sdr_64 = { 338 .ML = 4, 339 .MB = 8, 340 .Trcd = 3, 341 .Trp = 3, 342 .Twr = 1, 343 .CL = 3, 344 .Tr2w = 1, 345 .LoopLatency = 17, 346 .DspOn = 46, 347 .Rloop = 17, 348 .name = "64-bit SDR SGRAM (1:1)", 349 }; 350 351 static const struct aty128_meminfo sdr_sgram = { 352 .ML = 4, 353 .MB = 4, 354 .Trcd = 1, 355 .Trp = 2, 356 .Twr = 1, 357 .CL = 2, 358 .Tr2w = 1, 359 .LoopLatency = 16, 360 .DspOn = 24, 361 .Rloop = 16, 362 .name = "64-bit SDR SGRAM (2:1)", 363 }; 364 365 static const struct aty128_meminfo ddr_sgram = { 366 .ML = 4, 367 .MB = 4, 368 .Trcd = 3, 369 .Trp = 3, 370 .Twr = 2, 371 .CL = 3, 372 .Tr2w = 1, 373 .LoopLatency = 16, 374 .DspOn = 31, 375 .Rloop = 16, 376 .name = "64-bit DDR SGRAM", 377 }; 378 379 static const struct fb_fix_screeninfo aty128fb_fix = { 380 .id = "ATY Rage128", 381 .type = FB_TYPE_PACKED_PIXELS, 382 .visual = FB_VISUAL_PSEUDOCOLOR, 383 .xpanstep = 8, 384 .ypanstep = 1, 385 .mmio_len = 0x2000, 386 .accel = FB_ACCEL_ATI_RAGE128, 387 }; 388 389 static char *mode_option = NULL; 390 391 #ifdef CONFIG_PPC_PMAC 392 static int default_vmode = VMODE_1024_768_60; 393 static int default_cmode = CMODE_8; 394 #endif 395 396 static int default_crt_on = 0; 397 static int default_lcd_on = 1; 398 static bool mtrr = true; 399 400 #ifdef CONFIG_FB_ATY128_BACKLIGHT 401 #ifdef CONFIG_PMAC_BACKLIGHT 402 static int backlight = 1; 403 #else 404 static int backlight = 0; 405 #endif 406 #endif 407 408 /* PLL constants */ 409 struct aty128_constants { 410 u32 ref_clk; 411 u32 ppll_min; 412 u32 ppll_max; 413 u32 ref_divider; 414 u32 xclk; 415 u32 fifo_width; 416 u32 fifo_depth; 417 }; 418 419 struct aty128_crtc { 420 u32 gen_cntl; 421 u32 h_total, h_sync_strt_wid; 422 u32 v_total, v_sync_strt_wid; 423 u32 pitch; 424 u32 offset, offset_cntl; 425 u32 xoffset, yoffset; 426 u32 vxres, vyres; 427 u32 depth, bpp; 428 }; 429 430 struct aty128_pll { 431 u32 post_divider; 432 u32 feedback_divider; 433 u32 vclk; 434 }; 435 436 struct aty128_ddafifo { 437 u32 dda_config; 438 u32 dda_on_off; 439 }; 440 441 /* register values for a specific mode */ 442 struct aty128fb_par { 443 struct aty128_crtc crtc; 444 struct aty128_pll pll; 445 struct aty128_ddafifo fifo_reg; 446 u32 accel_flags; 447 struct aty128_constants constants; /* PLL and others */ 448 void __iomem *regbase; /* remapped mmio */ 449 u32 vram_size; /* onboard video ram */ 450 int chip_gen; 451 const struct aty128_meminfo *mem; /* onboard mem info */ 452 int wc_cookie; 453 int blitter_may_be_busy; 454 int fifo_slots; /* free slots in FIFO (64 max) */ 455 456 int crt_on, lcd_on; 457 struct pci_dev *pdev; 458 struct fb_info *next; 459 int asleep; 460 int lock_blank; 461 462 u8 red[32]; /* see aty128fb_setcolreg */ 463 u8 green[64]; 464 u8 blue[32]; 465 u32 pseudo_palette[16]; /* used for TRUECOLOR */ 466 }; 467 468 469 #define round_div(n, d) ((n+(d/2))/d) 470 471 static int aty128fb_check_var(struct fb_var_screeninfo *var, 472 struct fb_info *info); 473 static int aty128fb_set_par(struct fb_info *info); 474 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, 475 u_int transp, struct fb_info *info); 476 static int aty128fb_pan_display(struct fb_var_screeninfo *var, 477 struct fb_info *fb); 478 static int aty128fb_blank(int blank, struct fb_info *fb); 479 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg); 480 static int aty128fb_sync(struct fb_info *info); 481 482 /* 483 * Internal routines 484 */ 485 486 static int aty128_encode_var(struct fb_var_screeninfo *var, 487 const struct aty128fb_par *par); 488 static int aty128_decode_var(struct fb_var_screeninfo *var, 489 struct aty128fb_par *par); 490 static void aty128_timings(struct aty128fb_par *par); 491 static void aty128_init_engine(struct aty128fb_par *par); 492 static void aty128_reset_engine(const struct aty128fb_par *par); 493 static void aty128_flush_pixel_cache(const struct aty128fb_par *par); 494 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par); 495 static void wait_for_fifo(u16 entries, struct aty128fb_par *par); 496 static void wait_for_idle(struct aty128fb_par *par); 497 static u32 depth_to_dst(u32 depth); 498 499 #ifdef CONFIG_FB_ATY128_BACKLIGHT 500 static void aty128_bl_set_power(struct fb_info *info, int power); 501 #endif 502 503 #define BIOS_IN8(v) (readb(bios + (v))) 504 #define BIOS_IN16(v) (readb(bios + (v)) | \ 505 (readb(bios + (v) + 1) << 8)) 506 #define BIOS_IN32(v) (readb(bios + (v)) | \ 507 (readb(bios + (v) + 1) << 8) | \ 508 (readb(bios + (v) + 2) << 16) | \ 509 (readb(bios + (v) + 3) << 24)) 510 511 512 static struct fb_ops aty128fb_ops = { 513 .owner = THIS_MODULE, 514 .fb_check_var = aty128fb_check_var, 515 .fb_set_par = aty128fb_set_par, 516 .fb_setcolreg = aty128fb_setcolreg, 517 .fb_pan_display = aty128fb_pan_display, 518 .fb_blank = aty128fb_blank, 519 .fb_ioctl = aty128fb_ioctl, 520 .fb_sync = aty128fb_sync, 521 .fb_fillrect = cfb_fillrect, 522 .fb_copyarea = cfb_copyarea, 523 .fb_imageblit = cfb_imageblit, 524 }; 525 526 /* 527 * Functions to read from/write to the mmio registers 528 * - endian conversions may possibly be avoided by 529 * using the other register aperture. TODO. 530 */ 531 static inline u32 _aty_ld_le32(volatile unsigned int regindex, 532 const struct aty128fb_par *par) 533 { 534 return readl (par->regbase + regindex); 535 } 536 537 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val, 538 const struct aty128fb_par *par) 539 { 540 writel (val, par->regbase + regindex); 541 } 542 543 static inline u8 _aty_ld_8(unsigned int regindex, 544 const struct aty128fb_par *par) 545 { 546 return readb (par->regbase + regindex); 547 } 548 549 static inline void _aty_st_8(unsigned int regindex, u8 val, 550 const struct aty128fb_par *par) 551 { 552 writeb (val, par->regbase + regindex); 553 } 554 555 #define aty_ld_le32(regindex) _aty_ld_le32(regindex, par) 556 #define aty_st_le32(regindex, val) _aty_st_le32(regindex, val, par) 557 #define aty_ld_8(regindex) _aty_ld_8(regindex, par) 558 #define aty_st_8(regindex, val) _aty_st_8(regindex, val, par) 559 560 /* 561 * Functions to read from/write to the pll registers 562 */ 563 564 #define aty_ld_pll(pll_index) _aty_ld_pll(pll_index, par) 565 #define aty_st_pll(pll_index, val) _aty_st_pll(pll_index, val, par) 566 567 568 static u32 _aty_ld_pll(unsigned int pll_index, 569 const struct aty128fb_par *par) 570 { 571 aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F); 572 return aty_ld_le32(CLOCK_CNTL_DATA); 573 } 574 575 576 static void _aty_st_pll(unsigned int pll_index, u32 val, 577 const struct aty128fb_par *par) 578 { 579 aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN); 580 aty_st_le32(CLOCK_CNTL_DATA, val); 581 } 582 583 584 /* return true when the PLL has completed an atomic update */ 585 static int aty_pll_readupdate(const struct aty128fb_par *par) 586 { 587 return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R); 588 } 589 590 591 static void aty_pll_wait_readupdate(const struct aty128fb_par *par) 592 { 593 unsigned long timeout = jiffies + HZ/100; // should be more than enough 594 int reset = 1; 595 596 while (time_before(jiffies, timeout)) 597 if (aty_pll_readupdate(par)) { 598 reset = 0; 599 break; 600 } 601 602 if (reset) /* reset engine?? */ 603 printk(KERN_DEBUG "aty128fb: PLL write timeout!\n"); 604 } 605 606 607 /* tell PLL to update */ 608 static void aty_pll_writeupdate(const struct aty128fb_par *par) 609 { 610 aty_pll_wait_readupdate(par); 611 612 aty_st_pll(PPLL_REF_DIV, 613 aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W); 614 } 615 616 617 /* write to the scratch register to test r/w functionality */ 618 static int register_test(const struct aty128fb_par *par) 619 { 620 u32 val; 621 int flag = 0; 622 623 val = aty_ld_le32(BIOS_0_SCRATCH); 624 625 aty_st_le32(BIOS_0_SCRATCH, 0x55555555); 626 if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) { 627 aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA); 628 629 if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA) 630 flag = 1; 631 } 632 633 aty_st_le32(BIOS_0_SCRATCH, val); // restore value 634 return flag; 635 } 636 637 638 /* 639 * Accelerator engine functions 640 */ 641 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par) 642 { 643 int i; 644 645 for (;;) { 646 for (i = 0; i < 2000000; i++) { 647 par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff; 648 if (par->fifo_slots >= entries) 649 return; 650 } 651 aty128_reset_engine(par); 652 } 653 } 654 655 656 static void wait_for_idle(struct aty128fb_par *par) 657 { 658 int i; 659 660 do_wait_for_fifo(64, par); 661 662 for (;;) { 663 for (i = 0; i < 2000000; i++) { 664 if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) { 665 aty128_flush_pixel_cache(par); 666 par->blitter_may_be_busy = 0; 667 return; 668 } 669 } 670 aty128_reset_engine(par); 671 } 672 } 673 674 675 static void wait_for_fifo(u16 entries, struct aty128fb_par *par) 676 { 677 if (par->fifo_slots < entries) 678 do_wait_for_fifo(64, par); 679 par->fifo_slots -= entries; 680 } 681 682 683 static void aty128_flush_pixel_cache(const struct aty128fb_par *par) 684 { 685 int i; 686 u32 tmp; 687 688 tmp = aty_ld_le32(PC_NGUI_CTLSTAT); 689 tmp &= ~(0x00ff); 690 tmp |= 0x00ff; 691 aty_st_le32(PC_NGUI_CTLSTAT, tmp); 692 693 for (i = 0; i < 2000000; i++) 694 if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY)) 695 break; 696 } 697 698 699 static void aty128_reset_engine(const struct aty128fb_par *par) 700 { 701 u32 gen_reset_cntl, clock_cntl_index, mclk_cntl; 702 703 aty128_flush_pixel_cache(par); 704 705 clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX); 706 mclk_cntl = aty_ld_pll(MCLK_CNTL); 707 708 aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000); 709 710 gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL); 711 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI); 712 aty_ld_le32(GEN_RESET_CNTL); 713 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI)); 714 aty_ld_le32(GEN_RESET_CNTL); 715 716 aty_st_pll(MCLK_CNTL, mclk_cntl); 717 aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index); 718 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl); 719 720 /* use old pio mode */ 721 aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4); 722 723 DBG("engine reset"); 724 } 725 726 727 static void aty128_init_engine(struct aty128fb_par *par) 728 { 729 u32 pitch_value; 730 731 wait_for_idle(par); 732 733 /* 3D scaler not spoken here */ 734 wait_for_fifo(1, par); 735 aty_st_le32(SCALE_3D_CNTL, 0x00000000); 736 737 aty128_reset_engine(par); 738 739 pitch_value = par->crtc.pitch; 740 if (par->crtc.bpp == 24) { 741 pitch_value = pitch_value * 3; 742 } 743 744 wait_for_fifo(4, par); 745 /* setup engine offset registers */ 746 aty_st_le32(DEFAULT_OFFSET, 0x00000000); 747 748 /* setup engine pitch registers */ 749 aty_st_le32(DEFAULT_PITCH, pitch_value); 750 751 /* set the default scissor register to max dimensions */ 752 aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF); 753 754 /* set the drawing controls registers */ 755 aty_st_le32(DP_GUI_MASTER_CNTL, 756 GMC_SRC_PITCH_OFFSET_DEFAULT | 757 GMC_DST_PITCH_OFFSET_DEFAULT | 758 GMC_SRC_CLIP_DEFAULT | 759 GMC_DST_CLIP_DEFAULT | 760 GMC_BRUSH_SOLIDCOLOR | 761 (depth_to_dst(par->crtc.depth) << 8) | 762 GMC_SRC_DSTCOLOR | 763 GMC_BYTE_ORDER_MSB_TO_LSB | 764 GMC_DP_CONVERSION_TEMP_6500 | 765 ROP3_PATCOPY | 766 GMC_DP_SRC_RECT | 767 GMC_3D_FCN_EN_CLR | 768 GMC_DST_CLR_CMP_FCN_CLEAR | 769 GMC_AUX_CLIP_CLEAR | 770 GMC_WRITE_MASK_SET); 771 772 wait_for_fifo(8, par); 773 /* clear the line drawing registers */ 774 aty_st_le32(DST_BRES_ERR, 0); 775 aty_st_le32(DST_BRES_INC, 0); 776 aty_st_le32(DST_BRES_DEC, 0); 777 778 /* set brush color registers */ 779 aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */ 780 aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */ 781 782 /* set source color registers */ 783 aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF); /* white */ 784 aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000); /* black */ 785 786 /* default write mask */ 787 aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF); 788 789 /* Wait for all the writes to be completed before returning */ 790 wait_for_idle(par); 791 } 792 793 794 /* convert depth values to their register representation */ 795 static u32 depth_to_dst(u32 depth) 796 { 797 if (depth <= 8) 798 return DST_8BPP; 799 else if (depth <= 15) 800 return DST_15BPP; 801 else if (depth == 16) 802 return DST_16BPP; 803 else if (depth <= 24) 804 return DST_24BPP; 805 else if (depth <= 32) 806 return DST_32BPP; 807 808 return -EINVAL; 809 } 810 811 /* 812 * PLL informations retreival 813 */ 814 815 816 #ifndef __sparc__ 817 static void __iomem *aty128_map_ROM(const struct aty128fb_par *par, 818 struct pci_dev *dev) 819 { 820 u16 dptr; 821 u8 rom_type; 822 void __iomem *bios; 823 size_t rom_size; 824 825 /* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */ 826 unsigned int temp; 827 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG); 828 temp &= 0x00ffffffu; 829 temp |= 0x04 << 24; 830 aty_st_le32(RAGE128_MPP_TB_CONFIG, temp); 831 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG); 832 833 bios = pci_map_rom(dev, &rom_size); 834 835 if (!bios) { 836 printk(KERN_ERR "aty128fb: ROM failed to map\n"); 837 return NULL; 838 } 839 840 /* Very simple test to make sure it appeared */ 841 if (BIOS_IN16(0) != 0xaa55) { 842 printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should " 843 " be 0xaa55\n", BIOS_IN16(0)); 844 goto failed; 845 } 846 847 /* Look for the PCI data to check the ROM type */ 848 dptr = BIOS_IN16(0x18); 849 850 /* Check the PCI data signature. If it's wrong, we still assume a normal 851 * x86 ROM for now, until I've verified this works everywhere. 852 * The goal here is more to phase out Open Firmware images. 853 * 854 * Currently, we only look at the first PCI data, we could iteratre and 855 * deal with them all, and we should use fb_bios_start relative to start 856 * of image and not relative start of ROM, but so far, I never found a 857 * dual-image ATI card. 858 * 859 * typedef struct { 860 * u32 signature; + 0x00 861 * u16 vendor; + 0x04 862 * u16 device; + 0x06 863 * u16 reserved_1; + 0x08 864 * u16 dlen; + 0x0a 865 * u8 drevision; + 0x0c 866 * u8 class_hi; + 0x0d 867 * u16 class_lo; + 0x0e 868 * u16 ilen; + 0x10 869 * u16 irevision; + 0x12 870 * u8 type; + 0x14 871 * u8 indicator; + 0x15 872 * u16 reserved_2; + 0x16 873 * } pci_data_t; 874 */ 875 if (BIOS_IN32(dptr) != (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) { 876 printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n", 877 BIOS_IN32(dptr)); 878 goto anyway; 879 } 880 rom_type = BIOS_IN8(dptr + 0x14); 881 switch(rom_type) { 882 case 0: 883 printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n"); 884 break; 885 case 1: 886 printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n"); 887 goto failed; 888 case 2: 889 printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n"); 890 goto failed; 891 default: 892 printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n", 893 rom_type); 894 goto failed; 895 } 896 anyway: 897 return bios; 898 899 failed: 900 pci_unmap_rom(dev, bios); 901 return NULL; 902 } 903 904 static void aty128_get_pllinfo(struct aty128fb_par *par, 905 unsigned char __iomem *bios) 906 { 907 unsigned int bios_hdr; 908 unsigned int bios_pll; 909 910 bios_hdr = BIOS_IN16(0x48); 911 bios_pll = BIOS_IN16(bios_hdr + 0x30); 912 913 par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16); 914 par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12); 915 par->constants.xclk = BIOS_IN16(bios_pll + 0x08); 916 par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10); 917 par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e); 918 919 DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n", 920 par->constants.ppll_max, par->constants.ppll_min, 921 par->constants.xclk, par->constants.ref_divider, 922 par->constants.ref_clk); 923 924 } 925 926 #ifdef CONFIG_X86 927 static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par) 928 { 929 /* I simplified this code as we used to miss the signatures in 930 * a lot of case. It's now closer to XFree, we just don't check 931 * for signatures at all... Something better will have to be done 932 * if we end up having conflicts 933 */ 934 u32 segstart; 935 unsigned char __iomem *rom_base = NULL; 936 937 for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) { 938 rom_base = ioremap(segstart, 0x10000); 939 if (rom_base == NULL) 940 return NULL; 941 if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa) 942 break; 943 iounmap(rom_base); 944 rom_base = NULL; 945 } 946 return rom_base; 947 } 948 #endif 949 #endif /* ndef(__sparc__) */ 950 951 /* fill in known card constants if pll_block is not available */ 952 static void aty128_timings(struct aty128fb_par *par) 953 { 954 #ifdef CONFIG_PPC 955 /* instead of a table lookup, assume OF has properly 956 * setup the PLL registers and use their values 957 * to set the XCLK values and reference divider values */ 958 959 u32 x_mpll_ref_fb_div; 960 u32 xclk_cntl; 961 u32 Nx, M; 962 unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 }; 963 #endif 964 965 if (!par->constants.ref_clk) 966 par->constants.ref_clk = 2950; 967 968 #ifdef CONFIG_PPC 969 x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV); 970 xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7; 971 Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8; 972 M = x_mpll_ref_fb_div & 0x0000ff; 973 974 par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk), 975 (M * PostDivSet[xclk_cntl])); 976 977 par->constants.ref_divider = 978 aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK; 979 #endif 980 981 if (!par->constants.ref_divider) { 982 par->constants.ref_divider = 0x3b; 983 984 aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e); 985 aty_pll_writeupdate(par); 986 } 987 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider); 988 aty_pll_writeupdate(par); 989 990 /* from documentation */ 991 if (!par->constants.ppll_min) 992 par->constants.ppll_min = 12500; 993 if (!par->constants.ppll_max) 994 par->constants.ppll_max = 25000; /* 23000 on some cards? */ 995 if (!par->constants.xclk) 996 par->constants.xclk = 0x1d4d; /* same as mclk */ 997 998 par->constants.fifo_width = 128; 999 par->constants.fifo_depth = 32; 1000 1001 switch (aty_ld_le32(MEM_CNTL) & 0x3) { 1002 case 0: 1003 par->mem = &sdr_128; 1004 break; 1005 case 1: 1006 par->mem = &sdr_sgram; 1007 break; 1008 case 2: 1009 par->mem = &ddr_sgram; 1010 break; 1011 default: 1012 par->mem = &sdr_sgram; 1013 } 1014 } 1015 1016 1017 1018 /* 1019 * CRTC programming 1020 */ 1021 1022 /* Program the CRTC registers */ 1023 static void aty128_set_crtc(const struct aty128_crtc *crtc, 1024 const struct aty128fb_par *par) 1025 { 1026 aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl); 1027 aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total); 1028 aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid); 1029 aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total); 1030 aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid); 1031 aty_st_le32(CRTC_PITCH, crtc->pitch); 1032 aty_st_le32(CRTC_OFFSET, crtc->offset); 1033 aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl); 1034 /* Disable ATOMIC updating. Is this the right place? */ 1035 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000)); 1036 } 1037 1038 1039 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var, 1040 struct aty128_crtc *crtc, 1041 const struct aty128fb_par *par) 1042 { 1043 u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst; 1044 u32 left, right, upper, lower, hslen, vslen, sync, vmode; 1045 u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol; 1046 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync; 1047 u32 depth, bytpp; 1048 u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 }; 1049 1050 /* input */ 1051 xres = var->xres; 1052 yres = var->yres; 1053 vxres = var->xres_virtual; 1054 vyres = var->yres_virtual; 1055 xoffset = var->xoffset; 1056 yoffset = var->yoffset; 1057 bpp = var->bits_per_pixel; 1058 left = var->left_margin; 1059 right = var->right_margin; 1060 upper = var->upper_margin; 1061 lower = var->lower_margin; 1062 hslen = var->hsync_len; 1063 vslen = var->vsync_len; 1064 sync = var->sync; 1065 vmode = var->vmode; 1066 1067 if (bpp != 16) 1068 depth = bpp; 1069 else 1070 depth = (var->green.length == 6) ? 16 : 15; 1071 1072 /* check for mode eligibility 1073 * accept only non interlaced modes */ 1074 if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED) 1075 return -EINVAL; 1076 1077 /* convert (and round up) and validate */ 1078 xres = (xres + 7) & ~7; 1079 xoffset = (xoffset + 7) & ~7; 1080 1081 if (vxres < xres + xoffset) 1082 vxres = xres + xoffset; 1083 1084 if (vyres < yres + yoffset) 1085 vyres = yres + yoffset; 1086 1087 /* convert depth into ATI register depth */ 1088 dst = depth_to_dst(depth); 1089 1090 if (dst == -EINVAL) { 1091 printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n"); 1092 return -EINVAL; 1093 } 1094 1095 /* convert register depth to bytes per pixel */ 1096 bytpp = mode_bytpp[dst]; 1097 1098 /* make sure there is enough video ram for the mode */ 1099 if ((u32)(vxres * vyres * bytpp) > par->vram_size) { 1100 printk(KERN_ERR "aty128fb: Not enough memory for mode\n"); 1101 return -EINVAL; 1102 } 1103 1104 h_disp = (xres >> 3) - 1; 1105 h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL; 1106 1107 v_disp = yres - 1; 1108 v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL; 1109 1110 /* check to make sure h_total and v_total are in range */ 1111 if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) { 1112 printk(KERN_ERR "aty128fb: invalid width ranges\n"); 1113 return -EINVAL; 1114 } 1115 1116 h_sync_wid = (hslen + 7) >> 3; 1117 if (h_sync_wid == 0) 1118 h_sync_wid = 1; 1119 else if (h_sync_wid > 0x3f) /* 0x3f = max hwidth */ 1120 h_sync_wid = 0x3f; 1121 1122 h_sync_strt = (h_disp << 3) + right; 1123 1124 v_sync_wid = vslen; 1125 if (v_sync_wid == 0) 1126 v_sync_wid = 1; 1127 else if (v_sync_wid > 0x1f) /* 0x1f = max vwidth */ 1128 v_sync_wid = 0x1f; 1129 1130 v_sync_strt = v_disp + lower; 1131 1132 h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1; 1133 v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1; 1134 1135 c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0; 1136 1137 crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8); 1138 1139 crtc->h_total = h_total | (h_disp << 16); 1140 crtc->v_total = v_total | (v_disp << 16); 1141 1142 crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) | 1143 (h_sync_pol << 23); 1144 crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) | 1145 (v_sync_pol << 23); 1146 1147 crtc->pitch = vxres >> 3; 1148 1149 crtc->offset = 0; 1150 1151 if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW) 1152 crtc->offset_cntl = 0x00010000; 1153 else 1154 crtc->offset_cntl = 0; 1155 1156 crtc->vxres = vxres; 1157 crtc->vyres = vyres; 1158 crtc->xoffset = xoffset; 1159 crtc->yoffset = yoffset; 1160 crtc->depth = depth; 1161 crtc->bpp = bpp; 1162 1163 return 0; 1164 } 1165 1166 1167 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var) 1168 { 1169 1170 /* fill in pixel info */ 1171 var->red.msb_right = 0; 1172 var->green.msb_right = 0; 1173 var->blue.offset = 0; 1174 var->blue.msb_right = 0; 1175 var->transp.offset = 0; 1176 var->transp.length = 0; 1177 var->transp.msb_right = 0; 1178 switch (pix_width) { 1179 case CRTC_PIX_WIDTH_8BPP: 1180 var->bits_per_pixel = 8; 1181 var->red.offset = 0; 1182 var->red.length = 8; 1183 var->green.offset = 0; 1184 var->green.length = 8; 1185 var->blue.length = 8; 1186 break; 1187 case CRTC_PIX_WIDTH_15BPP: 1188 var->bits_per_pixel = 16; 1189 var->red.offset = 10; 1190 var->red.length = 5; 1191 var->green.offset = 5; 1192 var->green.length = 5; 1193 var->blue.length = 5; 1194 break; 1195 case CRTC_PIX_WIDTH_16BPP: 1196 var->bits_per_pixel = 16; 1197 var->red.offset = 11; 1198 var->red.length = 5; 1199 var->green.offset = 5; 1200 var->green.length = 6; 1201 var->blue.length = 5; 1202 break; 1203 case CRTC_PIX_WIDTH_24BPP: 1204 var->bits_per_pixel = 24; 1205 var->red.offset = 16; 1206 var->red.length = 8; 1207 var->green.offset = 8; 1208 var->green.length = 8; 1209 var->blue.length = 8; 1210 break; 1211 case CRTC_PIX_WIDTH_32BPP: 1212 var->bits_per_pixel = 32; 1213 var->red.offset = 16; 1214 var->red.length = 8; 1215 var->green.offset = 8; 1216 var->green.length = 8; 1217 var->blue.length = 8; 1218 var->transp.offset = 24; 1219 var->transp.length = 8; 1220 break; 1221 default: 1222 printk(KERN_ERR "aty128fb: Invalid pixel width\n"); 1223 return -EINVAL; 1224 } 1225 1226 return 0; 1227 } 1228 1229 1230 static int aty128_crtc_to_var(const struct aty128_crtc *crtc, 1231 struct fb_var_screeninfo *var) 1232 { 1233 u32 xres, yres, left, right, upper, lower, hslen, vslen, sync; 1234 u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol; 1235 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync; 1236 u32 pix_width; 1237 1238 /* fun with masking */ 1239 h_total = crtc->h_total & 0x1ff; 1240 h_disp = (crtc->h_total >> 16) & 0xff; 1241 h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff; 1242 h_sync_dly = crtc->h_sync_strt_wid & 0x7; 1243 h_sync_wid = (crtc->h_sync_strt_wid >> 16) & 0x3f; 1244 h_sync_pol = (crtc->h_sync_strt_wid >> 23) & 0x1; 1245 v_total = crtc->v_total & 0x7ff; 1246 v_disp = (crtc->v_total >> 16) & 0x7ff; 1247 v_sync_strt = crtc->v_sync_strt_wid & 0x7ff; 1248 v_sync_wid = (crtc->v_sync_strt_wid >> 16) & 0x1f; 1249 v_sync_pol = (crtc->v_sync_strt_wid >> 23) & 0x1; 1250 c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0; 1251 pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK; 1252 1253 /* do conversions */ 1254 xres = (h_disp + 1) << 3; 1255 yres = v_disp + 1; 1256 left = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly; 1257 right = ((h_sync_strt - h_disp) << 3) + h_sync_dly; 1258 hslen = h_sync_wid << 3; 1259 upper = v_total - v_sync_strt - v_sync_wid; 1260 lower = v_sync_strt - v_disp; 1261 vslen = v_sync_wid; 1262 sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) | 1263 (v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) | 1264 (c_sync ? FB_SYNC_COMP_HIGH_ACT : 0); 1265 1266 aty128_pix_width_to_var(pix_width, var); 1267 1268 var->xres = xres; 1269 var->yres = yres; 1270 var->xres_virtual = crtc->vxres; 1271 var->yres_virtual = crtc->vyres; 1272 var->xoffset = crtc->xoffset; 1273 var->yoffset = crtc->yoffset; 1274 var->left_margin = left; 1275 var->right_margin = right; 1276 var->upper_margin = upper; 1277 var->lower_margin = lower; 1278 var->hsync_len = hslen; 1279 var->vsync_len = vslen; 1280 var->sync = sync; 1281 var->vmode = FB_VMODE_NONINTERLACED; 1282 1283 return 0; 1284 } 1285 1286 static void aty128_set_crt_enable(struct aty128fb_par *par, int on) 1287 { 1288 if (on) { 1289 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) | 1290 CRT_CRTC_ON); 1291 aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) | 1292 DAC_PALETTE2_SNOOP_EN)); 1293 } else 1294 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) & 1295 ~CRT_CRTC_ON); 1296 } 1297 1298 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on) 1299 { 1300 u32 reg; 1301 #ifdef CONFIG_FB_ATY128_BACKLIGHT 1302 struct fb_info *info = pci_get_drvdata(par->pdev); 1303 #endif 1304 1305 if (on) { 1306 reg = aty_ld_le32(LVDS_GEN_CNTL); 1307 reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION; 1308 reg &= ~LVDS_DISPLAY_DIS; 1309 aty_st_le32(LVDS_GEN_CNTL, reg); 1310 #ifdef CONFIG_FB_ATY128_BACKLIGHT 1311 aty128_bl_set_power(info, FB_BLANK_UNBLANK); 1312 #endif 1313 } else { 1314 #ifdef CONFIG_FB_ATY128_BACKLIGHT 1315 aty128_bl_set_power(info, FB_BLANK_POWERDOWN); 1316 #endif 1317 reg = aty_ld_le32(LVDS_GEN_CNTL); 1318 reg |= LVDS_DISPLAY_DIS; 1319 aty_st_le32(LVDS_GEN_CNTL, reg); 1320 mdelay(100); 1321 reg &= ~(LVDS_ON /*| LVDS_EN*/); 1322 aty_st_le32(LVDS_GEN_CNTL, reg); 1323 } 1324 } 1325 1326 static void aty128_set_pll(struct aty128_pll *pll, 1327 const struct aty128fb_par *par) 1328 { 1329 u32 div3; 1330 1331 unsigned char post_conv[] = /* register values for post dividers */ 1332 { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 }; 1333 1334 /* select PPLL_DIV_3 */ 1335 aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8)); 1336 1337 /* reset PLL */ 1338 aty_st_pll(PPLL_CNTL, 1339 aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN); 1340 1341 /* write the reference divider */ 1342 aty_pll_wait_readupdate(par); 1343 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff); 1344 aty_pll_writeupdate(par); 1345 1346 div3 = aty_ld_pll(PPLL_DIV_3); 1347 div3 &= ~PPLL_FB3_DIV_MASK; 1348 div3 |= pll->feedback_divider; 1349 div3 &= ~PPLL_POST3_DIV_MASK; 1350 div3 |= post_conv[pll->post_divider] << 16; 1351 1352 /* write feedback and post dividers */ 1353 aty_pll_wait_readupdate(par); 1354 aty_st_pll(PPLL_DIV_3, div3); 1355 aty_pll_writeupdate(par); 1356 1357 aty_pll_wait_readupdate(par); 1358 aty_st_pll(HTOTAL_CNTL, 0); /* no horiz crtc adjustment */ 1359 aty_pll_writeupdate(par); 1360 1361 /* clear the reset, just in case */ 1362 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET); 1363 } 1364 1365 1366 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll, 1367 const struct aty128fb_par *par) 1368 { 1369 const struct aty128_constants c = par->constants; 1370 unsigned char post_dividers[] = {1,2,4,8,3,6,12}; 1371 u32 output_freq; 1372 u32 vclk; /* in .01 MHz */ 1373 int i = 0; 1374 u32 n, d; 1375 1376 vclk = 100000000 / period_in_ps; /* convert units to 10 kHz */ 1377 1378 /* adjust pixel clock if necessary */ 1379 if (vclk > c.ppll_max) 1380 vclk = c.ppll_max; 1381 if (vclk * 12 < c.ppll_min) 1382 vclk = c.ppll_min/12; 1383 1384 /* now, find an acceptable divider */ 1385 for (i = 0; i < ARRAY_SIZE(post_dividers); i++) { 1386 output_freq = post_dividers[i] * vclk; 1387 if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) { 1388 pll->post_divider = post_dividers[i]; 1389 break; 1390 } 1391 } 1392 1393 if (i == ARRAY_SIZE(post_dividers)) 1394 return -EINVAL; 1395 1396 /* calculate feedback divider */ 1397 n = c.ref_divider * output_freq; 1398 d = c.ref_clk; 1399 1400 pll->feedback_divider = round_div(n, d); 1401 pll->vclk = vclk; 1402 1403 DBG("post %d feedback %d vlck %d output %d ref_divider %d " 1404 "vclk_per: %d\n", pll->post_divider, 1405 pll->feedback_divider, vclk, output_freq, 1406 c.ref_divider, period_in_ps); 1407 1408 return 0; 1409 } 1410 1411 1412 static int aty128_pll_to_var(const struct aty128_pll *pll, 1413 struct fb_var_screeninfo *var) 1414 { 1415 var->pixclock = 100000000 / pll->vclk; 1416 1417 return 0; 1418 } 1419 1420 1421 static void aty128_set_fifo(const struct aty128_ddafifo *dsp, 1422 const struct aty128fb_par *par) 1423 { 1424 aty_st_le32(DDA_CONFIG, dsp->dda_config); 1425 aty_st_le32(DDA_ON_OFF, dsp->dda_on_off); 1426 } 1427 1428 1429 static int aty128_ddafifo(struct aty128_ddafifo *dsp, 1430 const struct aty128_pll *pll, 1431 u32 depth, 1432 const struct aty128fb_par *par) 1433 { 1434 const struct aty128_meminfo *m = par->mem; 1435 u32 xclk = par->constants.xclk; 1436 u32 fifo_width = par->constants.fifo_width; 1437 u32 fifo_depth = par->constants.fifo_depth; 1438 s32 x, b, p, ron, roff; 1439 u32 n, d, bpp; 1440 1441 /* round up to multiple of 8 */ 1442 bpp = (depth+7) & ~7; 1443 1444 n = xclk * fifo_width; 1445 d = pll->vclk * bpp; 1446 x = round_div(n, d); 1447 1448 ron = 4 * m->MB + 1449 3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) + 1450 2 * m->Trp + 1451 m->Twr + 1452 m->CL + 1453 m->Tr2w + 1454 x; 1455 1456 DBG("x %x\n", x); 1457 1458 b = 0; 1459 while (x) { 1460 x >>= 1; 1461 b++; 1462 } 1463 p = b + 1; 1464 1465 ron <<= (11 - p); 1466 1467 n <<= (11 - p); 1468 x = round_div(n, d); 1469 roff = x * (fifo_depth - 4); 1470 1471 if ((ron + m->Rloop) >= roff) { 1472 printk(KERN_ERR "aty128fb: Mode out of range!\n"); 1473 return -EINVAL; 1474 } 1475 1476 DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n", 1477 p, m->Rloop, x, ron, roff); 1478 1479 dsp->dda_config = p << 16 | m->Rloop << 20 | x; 1480 dsp->dda_on_off = ron << 16 | roff; 1481 1482 return 0; 1483 } 1484 1485 1486 /* 1487 * This actually sets the video mode. 1488 */ 1489 static int aty128fb_set_par(struct fb_info *info) 1490 { 1491 struct aty128fb_par *par = info->par; 1492 u32 config; 1493 int err; 1494 1495 if ((err = aty128_decode_var(&info->var, par)) != 0) 1496 return err; 1497 1498 if (par->blitter_may_be_busy) 1499 wait_for_idle(par); 1500 1501 /* clear all registers that may interfere with mode setting */ 1502 aty_st_le32(OVR_CLR, 0); 1503 aty_st_le32(OVR_WID_LEFT_RIGHT, 0); 1504 aty_st_le32(OVR_WID_TOP_BOTTOM, 0); 1505 aty_st_le32(OV0_SCALE_CNTL, 0); 1506 aty_st_le32(MPP_TB_CONFIG, 0); 1507 aty_st_le32(MPP_GP_CONFIG, 0); 1508 aty_st_le32(SUBPIC_CNTL, 0); 1509 aty_st_le32(VIPH_CONTROL, 0); 1510 aty_st_le32(I2C_CNTL_1, 0); /* turn off i2c */ 1511 aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */ 1512 aty_st_le32(CAP0_TRIG_CNTL, 0); 1513 aty_st_le32(CAP1_TRIG_CNTL, 0); 1514 1515 aty_st_8(CRTC_EXT_CNTL + 1, 4); /* turn video off */ 1516 1517 aty128_set_crtc(&par->crtc, par); 1518 aty128_set_pll(&par->pll, par); 1519 aty128_set_fifo(&par->fifo_reg, par); 1520 1521 config = aty_ld_le32(CNFG_CNTL) & ~3; 1522 1523 #if defined(__BIG_ENDIAN) 1524 if (par->crtc.bpp == 32) 1525 config |= 2; /* make aperture do 32 bit swapping */ 1526 else if (par->crtc.bpp == 16) 1527 config |= 1; /* make aperture do 16 bit swapping */ 1528 #endif 1529 1530 aty_st_le32(CNFG_CNTL, config); 1531 aty_st_8(CRTC_EXT_CNTL + 1, 0); /* turn the video back on */ 1532 1533 info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3; 1534 info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR 1535 : FB_VISUAL_DIRECTCOLOR; 1536 1537 if (par->chip_gen == rage_M3) { 1538 aty128_set_crt_enable(par, par->crt_on); 1539 aty128_set_lcd_enable(par, par->lcd_on); 1540 } 1541 if (par->accel_flags & FB_ACCELF_TEXT) 1542 aty128_init_engine(par); 1543 1544 #ifdef CONFIG_BOOTX_TEXT 1545 btext_update_display(info->fix.smem_start, 1546 (((par->crtc.h_total>>16) & 0xff)+1)*8, 1547 ((par->crtc.v_total>>16) & 0x7ff)+1, 1548 par->crtc.bpp, 1549 par->crtc.vxres*par->crtc.bpp/8); 1550 #endif /* CONFIG_BOOTX_TEXT */ 1551 1552 return 0; 1553 } 1554 1555 /* 1556 * encode/decode the User Defined Part of the Display 1557 */ 1558 1559 static int aty128_decode_var(struct fb_var_screeninfo *var, 1560 struct aty128fb_par *par) 1561 { 1562 int err; 1563 struct aty128_crtc crtc; 1564 struct aty128_pll pll; 1565 struct aty128_ddafifo fifo_reg; 1566 1567 if ((err = aty128_var_to_crtc(var, &crtc, par))) 1568 return err; 1569 1570 if ((err = aty128_var_to_pll(var->pixclock, &pll, par))) 1571 return err; 1572 1573 if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par))) 1574 return err; 1575 1576 par->crtc = crtc; 1577 par->pll = pll; 1578 par->fifo_reg = fifo_reg; 1579 par->accel_flags = var->accel_flags; 1580 1581 return 0; 1582 } 1583 1584 1585 static int aty128_encode_var(struct fb_var_screeninfo *var, 1586 const struct aty128fb_par *par) 1587 { 1588 int err; 1589 1590 if ((err = aty128_crtc_to_var(&par->crtc, var))) 1591 return err; 1592 1593 if ((err = aty128_pll_to_var(&par->pll, var))) 1594 return err; 1595 1596 var->nonstd = 0; 1597 var->activate = 0; 1598 1599 var->height = -1; 1600 var->width = -1; 1601 var->accel_flags = par->accel_flags; 1602 1603 return 0; 1604 } 1605 1606 1607 static int aty128fb_check_var(struct fb_var_screeninfo *var, 1608 struct fb_info *info) 1609 { 1610 struct aty128fb_par par; 1611 int err; 1612 1613 par = *(struct aty128fb_par *)info->par; 1614 if ((err = aty128_decode_var(var, &par)) != 0) 1615 return err; 1616 aty128_encode_var(var, &par); 1617 return 0; 1618 } 1619 1620 1621 /* 1622 * Pan or Wrap the Display 1623 */ 1624 static int aty128fb_pan_display(struct fb_var_screeninfo *var, 1625 struct fb_info *fb) 1626 { 1627 struct aty128fb_par *par = fb->par; 1628 u32 xoffset, yoffset; 1629 u32 offset; 1630 u32 xres, yres; 1631 1632 xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3; 1633 yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1; 1634 1635 xoffset = (var->xoffset +7) & ~7; 1636 yoffset = var->yoffset; 1637 1638 if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres) 1639 return -EINVAL; 1640 1641 par->crtc.xoffset = xoffset; 1642 par->crtc.yoffset = yoffset; 1643 1644 offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3)) 1645 & ~7; 1646 1647 if (par->crtc.bpp == 24) 1648 offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */ 1649 1650 aty_st_le32(CRTC_OFFSET, offset); 1651 1652 return 0; 1653 } 1654 1655 1656 /* 1657 * Helper function to store a single palette register 1658 */ 1659 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue, 1660 struct aty128fb_par *par) 1661 { 1662 if (par->chip_gen == rage_M3) { 1663 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & 1664 ~DAC_PALETTE_ACCESS_CNTL); 1665 } 1666 1667 aty_st_8(PALETTE_INDEX, regno); 1668 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue); 1669 } 1670 1671 static int aty128fb_sync(struct fb_info *info) 1672 { 1673 struct aty128fb_par *par = info->par; 1674 1675 if (par->blitter_may_be_busy) 1676 wait_for_idle(par); 1677 return 0; 1678 } 1679 1680 #ifndef MODULE 1681 static int aty128fb_setup(char *options) 1682 { 1683 char *this_opt; 1684 1685 if (!options || !*options) 1686 return 0; 1687 1688 while ((this_opt = strsep(&options, ",")) != NULL) { 1689 if (!strncmp(this_opt, "lcd:", 4)) { 1690 default_lcd_on = simple_strtoul(this_opt+4, NULL, 0); 1691 continue; 1692 } else if (!strncmp(this_opt, "crt:", 4)) { 1693 default_crt_on = simple_strtoul(this_opt+4, NULL, 0); 1694 continue; 1695 } else if (!strncmp(this_opt, "backlight:", 10)) { 1696 #ifdef CONFIG_FB_ATY128_BACKLIGHT 1697 backlight = simple_strtoul(this_opt+10, NULL, 0); 1698 #endif 1699 continue; 1700 } 1701 if(!strncmp(this_opt, "nomtrr", 6)) { 1702 mtrr = false; 1703 continue; 1704 } 1705 #ifdef CONFIG_PPC_PMAC 1706 /* vmode and cmode deprecated */ 1707 if (!strncmp(this_opt, "vmode:", 6)) { 1708 unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0); 1709 if (vmode > 0 && vmode <= VMODE_MAX) 1710 default_vmode = vmode; 1711 continue; 1712 } else if (!strncmp(this_opt, "cmode:", 6)) { 1713 unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0); 1714 switch (cmode) { 1715 case 0: 1716 case 8: 1717 default_cmode = CMODE_8; 1718 break; 1719 case 15: 1720 case 16: 1721 default_cmode = CMODE_16; 1722 break; 1723 case 24: 1724 case 32: 1725 default_cmode = CMODE_32; 1726 break; 1727 } 1728 continue; 1729 } 1730 #endif /* CONFIG_PPC_PMAC */ 1731 mode_option = this_opt; 1732 } 1733 return 0; 1734 } 1735 #endif /* MODULE */ 1736 1737 /* Backlight */ 1738 #ifdef CONFIG_FB_ATY128_BACKLIGHT 1739 #define MAX_LEVEL 0xFF 1740 1741 static int aty128_bl_get_level_brightness(struct aty128fb_par *par, 1742 int level) 1743 { 1744 struct fb_info *info = pci_get_drvdata(par->pdev); 1745 int atylevel; 1746 1747 /* Get and convert the value */ 1748 /* No locking of bl_curve since we read a single value */ 1749 atylevel = MAX_LEVEL - 1750 (info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL); 1751 1752 if (atylevel < 0) 1753 atylevel = 0; 1754 else if (atylevel > MAX_LEVEL) 1755 atylevel = MAX_LEVEL; 1756 1757 return atylevel; 1758 } 1759 1760 /* We turn off the LCD completely instead of just dimming the backlight. 1761 * This provides greater power saving and the display is useless without 1762 * backlight anyway 1763 */ 1764 #define BACKLIGHT_LVDS_OFF 1765 /* That one prevents proper CRT output with LCD off */ 1766 #undef BACKLIGHT_DAC_OFF 1767 1768 static int aty128_bl_update_status(struct backlight_device *bd) 1769 { 1770 struct aty128fb_par *par = bl_get_data(bd); 1771 unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL); 1772 int level; 1773 1774 if (bd->props.power != FB_BLANK_UNBLANK || 1775 bd->props.fb_blank != FB_BLANK_UNBLANK || 1776 !par->lcd_on) 1777 level = 0; 1778 else 1779 level = bd->props.brightness; 1780 1781 reg |= LVDS_BL_MOD_EN | LVDS_BLON; 1782 if (level > 0) { 1783 reg |= LVDS_DIGION; 1784 if (!(reg & LVDS_ON)) { 1785 reg &= ~LVDS_BLON; 1786 aty_st_le32(LVDS_GEN_CNTL, reg); 1787 aty_ld_le32(LVDS_GEN_CNTL); 1788 mdelay(10); 1789 reg |= LVDS_BLON; 1790 aty_st_le32(LVDS_GEN_CNTL, reg); 1791 } 1792 reg &= ~LVDS_BL_MOD_LEVEL_MASK; 1793 reg |= (aty128_bl_get_level_brightness(par, level) << 1794 LVDS_BL_MOD_LEVEL_SHIFT); 1795 #ifdef BACKLIGHT_LVDS_OFF 1796 reg |= LVDS_ON | LVDS_EN; 1797 reg &= ~LVDS_DISPLAY_DIS; 1798 #endif 1799 aty_st_le32(LVDS_GEN_CNTL, reg); 1800 #ifdef BACKLIGHT_DAC_OFF 1801 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN)); 1802 #endif 1803 } else { 1804 reg &= ~LVDS_BL_MOD_LEVEL_MASK; 1805 reg |= (aty128_bl_get_level_brightness(par, 0) << 1806 LVDS_BL_MOD_LEVEL_SHIFT); 1807 #ifdef BACKLIGHT_LVDS_OFF 1808 reg |= LVDS_DISPLAY_DIS; 1809 aty_st_le32(LVDS_GEN_CNTL, reg); 1810 aty_ld_le32(LVDS_GEN_CNTL); 1811 udelay(10); 1812 reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION); 1813 #endif 1814 aty_st_le32(LVDS_GEN_CNTL, reg); 1815 #ifdef BACKLIGHT_DAC_OFF 1816 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN); 1817 #endif 1818 } 1819 1820 return 0; 1821 } 1822 1823 static const struct backlight_ops aty128_bl_data = { 1824 .update_status = aty128_bl_update_status, 1825 }; 1826 1827 static void aty128_bl_set_power(struct fb_info *info, int power) 1828 { 1829 if (info->bl_dev) { 1830 info->bl_dev->props.power = power; 1831 backlight_update_status(info->bl_dev); 1832 } 1833 } 1834 1835 static void aty128_bl_init(struct aty128fb_par *par) 1836 { 1837 struct backlight_properties props; 1838 struct fb_info *info = pci_get_drvdata(par->pdev); 1839 struct backlight_device *bd; 1840 char name[12]; 1841 1842 /* Could be extended to Rage128Pro LVDS output too */ 1843 if (par->chip_gen != rage_M3) 1844 return; 1845 1846 #ifdef CONFIG_PMAC_BACKLIGHT 1847 if (!pmac_has_backlight_type("ati")) 1848 return; 1849 #endif 1850 1851 snprintf(name, sizeof(name), "aty128bl%d", info->node); 1852 1853 memset(&props, 0, sizeof(struct backlight_properties)); 1854 props.type = BACKLIGHT_RAW; 1855 props.max_brightness = FB_BACKLIGHT_LEVELS - 1; 1856 bd = backlight_device_register(name, info->dev, par, &aty128_bl_data, 1857 &props); 1858 if (IS_ERR(bd)) { 1859 info->bl_dev = NULL; 1860 printk(KERN_WARNING "aty128: Backlight registration failed\n"); 1861 goto error; 1862 } 1863 1864 info->bl_dev = bd; 1865 fb_bl_default_curve(info, 0, 1866 63 * FB_BACKLIGHT_MAX / MAX_LEVEL, 1867 219 * FB_BACKLIGHT_MAX / MAX_LEVEL); 1868 1869 bd->props.brightness = bd->props.max_brightness; 1870 bd->props.power = FB_BLANK_UNBLANK; 1871 backlight_update_status(bd); 1872 1873 printk("aty128: Backlight initialized (%s)\n", name); 1874 1875 return; 1876 1877 error: 1878 return; 1879 } 1880 1881 static void aty128_bl_exit(struct backlight_device *bd) 1882 { 1883 backlight_device_unregister(bd); 1884 printk("aty128: Backlight unloaded\n"); 1885 } 1886 #endif /* CONFIG_FB_ATY128_BACKLIGHT */ 1887 1888 /* 1889 * Initialisation 1890 */ 1891 1892 #ifdef CONFIG_PPC_PMAC__disabled 1893 static void aty128_early_resume(void *data) 1894 { 1895 struct aty128fb_par *par = data; 1896 1897 if (!console_trylock()) 1898 return; 1899 pci_restore_state(par->pdev); 1900 aty128_do_resume(par->pdev); 1901 console_unlock(); 1902 } 1903 #endif /* CONFIG_PPC_PMAC */ 1904 1905 static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent) 1906 { 1907 struct fb_info *info = pci_get_drvdata(pdev); 1908 struct aty128fb_par *par = info->par; 1909 struct fb_var_screeninfo var; 1910 char video_card[50]; 1911 u8 chip_rev; 1912 u32 dac; 1913 1914 /* Get the chip revision */ 1915 chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F; 1916 1917 strcpy(video_card, "Rage128 XX "); 1918 video_card[8] = ent->device >> 8; 1919 video_card[9] = ent->device & 0xFF; 1920 1921 /* range check to make sure */ 1922 if (ent->driver_data < ARRAY_SIZE(r128_family)) 1923 strlcat(video_card, r128_family[ent->driver_data], 1924 sizeof(video_card)); 1925 1926 printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev); 1927 1928 if (par->vram_size % (1024 * 1024) == 0) 1929 printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name); 1930 else 1931 printk("%dk %s\n", par->vram_size / 1024, par->mem->name); 1932 1933 par->chip_gen = ent->driver_data; 1934 1935 /* fill in info */ 1936 info->fbops = &aty128fb_ops; 1937 info->flags = FBINFO_FLAG_DEFAULT; 1938 1939 par->lcd_on = default_lcd_on; 1940 par->crt_on = default_crt_on; 1941 1942 var = default_var; 1943 #ifdef CONFIG_PPC_PMAC 1944 if (machine_is(powermac)) { 1945 /* Indicate sleep capability */ 1946 if (par->chip_gen == rage_M3) { 1947 pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1); 1948 #if 0 /* Disable the early video resume hack for now as it's causing problems, 1949 * among others we now rely on the PCI core restoring the config space 1950 * for us, which isn't the case with that hack, and that code path causes 1951 * various things to be called with interrupts off while they shouldn't. 1952 * I'm leaving the code in as it can be useful for debugging purposes 1953 */ 1954 pmac_set_early_video_resume(aty128_early_resume, par); 1955 #endif 1956 } 1957 1958 /* Find default mode */ 1959 if (mode_option) { 1960 if (!mac_find_mode(&var, info, mode_option, 8)) 1961 var = default_var; 1962 } else { 1963 if (default_vmode <= 0 || default_vmode > VMODE_MAX) 1964 default_vmode = VMODE_1024_768_60; 1965 1966 /* iMacs need that resolution 1967 * PowerMac2,1 first r128 iMacs 1968 * PowerMac2,2 summer 2000 iMacs 1969 * PowerMac4,1 january 2001 iMacs "flower power" 1970 */ 1971 if (of_machine_is_compatible("PowerMac2,1") || 1972 of_machine_is_compatible("PowerMac2,2") || 1973 of_machine_is_compatible("PowerMac4,1")) 1974 default_vmode = VMODE_1024_768_75; 1975 1976 /* iBook SE */ 1977 if (of_machine_is_compatible("PowerBook2,2")) 1978 default_vmode = VMODE_800_600_60; 1979 1980 /* PowerBook Firewire (Pismo), iBook Dual USB */ 1981 if (of_machine_is_compatible("PowerBook3,1") || 1982 of_machine_is_compatible("PowerBook4,1")) 1983 default_vmode = VMODE_1024_768_60; 1984 1985 /* PowerBook Titanium */ 1986 if (of_machine_is_compatible("PowerBook3,2")) 1987 default_vmode = VMODE_1152_768_60; 1988 1989 if (default_cmode > 16) 1990 default_cmode = CMODE_32; 1991 else if (default_cmode > 8) 1992 default_cmode = CMODE_16; 1993 else 1994 default_cmode = CMODE_8; 1995 1996 if (mac_vmode_to_var(default_vmode, default_cmode, &var)) 1997 var = default_var; 1998 } 1999 } else 2000 #endif /* CONFIG_PPC_PMAC */ 2001 { 2002 if (mode_option) 2003 if (fb_find_mode(&var, info, mode_option, NULL, 2004 0, &defaultmode, 8) == 0) 2005 var = default_var; 2006 } 2007 2008 var.accel_flags &= ~FB_ACCELF_TEXT; 2009 // var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */ 2010 2011 if (aty128fb_check_var(&var, info)) { 2012 printk(KERN_ERR "aty128fb: Cannot set default mode.\n"); 2013 return 0; 2014 } 2015 2016 /* setup the DAC the way we like it */ 2017 dac = aty_ld_le32(DAC_CNTL); 2018 dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL); 2019 dac |= DAC_MASK; 2020 if (par->chip_gen == rage_M3) 2021 dac |= DAC_PALETTE2_SNOOP_EN; 2022 aty_st_le32(DAC_CNTL, dac); 2023 2024 /* turn off bus mastering, just in case */ 2025 aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS); 2026 2027 info->var = var; 2028 fb_alloc_cmap(&info->cmap, 256, 0); 2029 2030 var.activate = FB_ACTIVATE_NOW; 2031 2032 aty128_init_engine(par); 2033 2034 par->pdev = pdev; 2035 par->asleep = 0; 2036 par->lock_blank = 0; 2037 2038 #ifdef CONFIG_FB_ATY128_BACKLIGHT 2039 if (backlight) 2040 aty128_bl_init(par); 2041 #endif 2042 2043 if (register_framebuffer(info) < 0) 2044 return 0; 2045 2046 fb_info(info, "%s frame buffer device on %s\n", 2047 info->fix.id, video_card); 2048 2049 return 1; /* success! */ 2050 } 2051 2052 #ifdef CONFIG_PCI 2053 /* register a card ++ajoshi */ 2054 static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2055 { 2056 unsigned long fb_addr, reg_addr; 2057 struct aty128fb_par *par; 2058 struct fb_info *info; 2059 int err; 2060 #ifndef __sparc__ 2061 void __iomem *bios = NULL; 2062 #endif 2063 2064 /* Enable device in PCI config */ 2065 if ((err = pci_enable_device(pdev))) { 2066 printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n", 2067 err); 2068 return -ENODEV; 2069 } 2070 2071 fb_addr = pci_resource_start(pdev, 0); 2072 if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0), 2073 "aty128fb FB")) { 2074 printk(KERN_ERR "aty128fb: cannot reserve frame " 2075 "buffer memory\n"); 2076 return -ENODEV; 2077 } 2078 2079 reg_addr = pci_resource_start(pdev, 2); 2080 if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2), 2081 "aty128fb MMIO")) { 2082 printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n"); 2083 goto err_free_fb; 2084 } 2085 2086 /* We have the resources. Now virtualize them */ 2087 info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev); 2088 if (!info) 2089 goto err_free_mmio; 2090 2091 par = info->par; 2092 2093 info->pseudo_palette = par->pseudo_palette; 2094 2095 /* Virtualize mmio region */ 2096 info->fix.mmio_start = reg_addr; 2097 par->regbase = pci_ioremap_bar(pdev, 2); 2098 if (!par->regbase) 2099 goto err_free_info; 2100 2101 /* Grab memory size from the card */ 2102 // How does this relate to the resource length from the PCI hardware? 2103 par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF; 2104 2105 /* Virtualize the framebuffer */ 2106 info->screen_base = ioremap_wc(fb_addr, par->vram_size); 2107 if (!info->screen_base) 2108 goto err_unmap_out; 2109 2110 /* Set up info->fix */ 2111 info->fix = aty128fb_fix; 2112 info->fix.smem_start = fb_addr; 2113 info->fix.smem_len = par->vram_size; 2114 info->fix.mmio_start = reg_addr; 2115 2116 /* If we can't test scratch registers, something is seriously wrong */ 2117 if (!register_test(par)) { 2118 printk(KERN_ERR "aty128fb: Can't write to video register!\n"); 2119 goto err_out; 2120 } 2121 2122 #ifndef __sparc__ 2123 bios = aty128_map_ROM(par, pdev); 2124 #ifdef CONFIG_X86 2125 if (bios == NULL) 2126 bios = aty128_find_mem_vbios(par); 2127 #endif 2128 if (bios == NULL) 2129 printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n"); 2130 else { 2131 printk(KERN_INFO "aty128fb: Rage128 BIOS located\n"); 2132 aty128_get_pllinfo(par, bios); 2133 pci_unmap_rom(pdev, bios); 2134 } 2135 #endif /* __sparc__ */ 2136 2137 aty128_timings(par); 2138 pci_set_drvdata(pdev, info); 2139 2140 if (!aty128_init(pdev, ent)) 2141 goto err_out; 2142 2143 if (mtrr) 2144 par->wc_cookie = arch_phys_wc_add(info->fix.smem_start, 2145 par->vram_size); 2146 return 0; 2147 2148 err_out: 2149 iounmap(info->screen_base); 2150 err_unmap_out: 2151 iounmap(par->regbase); 2152 err_free_info: 2153 framebuffer_release(info); 2154 err_free_mmio: 2155 release_mem_region(pci_resource_start(pdev, 2), 2156 pci_resource_len(pdev, 2)); 2157 err_free_fb: 2158 release_mem_region(pci_resource_start(pdev, 0), 2159 pci_resource_len(pdev, 0)); 2160 return -ENODEV; 2161 } 2162 2163 static void aty128_remove(struct pci_dev *pdev) 2164 { 2165 struct fb_info *info = pci_get_drvdata(pdev); 2166 struct aty128fb_par *par; 2167 2168 if (!info) 2169 return; 2170 2171 par = info->par; 2172 2173 unregister_framebuffer(info); 2174 2175 #ifdef CONFIG_FB_ATY128_BACKLIGHT 2176 aty128_bl_exit(info->bl_dev); 2177 #endif 2178 2179 arch_phys_wc_del(par->wc_cookie); 2180 iounmap(par->regbase); 2181 iounmap(info->screen_base); 2182 2183 release_mem_region(pci_resource_start(pdev, 0), 2184 pci_resource_len(pdev, 0)); 2185 release_mem_region(pci_resource_start(pdev, 2), 2186 pci_resource_len(pdev, 2)); 2187 framebuffer_release(info); 2188 } 2189 #endif /* CONFIG_PCI */ 2190 2191 2192 2193 /* 2194 * Blank the display. 2195 */ 2196 static int aty128fb_blank(int blank, struct fb_info *fb) 2197 { 2198 struct aty128fb_par *par = fb->par; 2199 u8 state; 2200 2201 if (par->lock_blank || par->asleep) 2202 return 0; 2203 2204 switch (blank) { 2205 case FB_BLANK_NORMAL: 2206 state = 4; 2207 break; 2208 case FB_BLANK_VSYNC_SUSPEND: 2209 state = 6; 2210 break; 2211 case FB_BLANK_HSYNC_SUSPEND: 2212 state = 5; 2213 break; 2214 case FB_BLANK_POWERDOWN: 2215 state = 7; 2216 break; 2217 case FB_BLANK_UNBLANK: 2218 default: 2219 state = 0; 2220 break; 2221 } 2222 aty_st_8(CRTC_EXT_CNTL+1, state); 2223 2224 if (par->chip_gen == rage_M3) { 2225 aty128_set_crt_enable(par, par->crt_on && !blank); 2226 aty128_set_lcd_enable(par, par->lcd_on && !blank); 2227 } 2228 2229 return 0; 2230 } 2231 2232 /* 2233 * Set a single color register. The values supplied are already 2234 * rounded down to the hardware's capabilities (according to the 2235 * entries in the var structure). Return != 0 for invalid regno. 2236 */ 2237 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, 2238 u_int transp, struct fb_info *info) 2239 { 2240 struct aty128fb_par *par = info->par; 2241 2242 if (regno > 255 2243 || (par->crtc.depth == 16 && regno > 63) 2244 || (par->crtc.depth == 15 && regno > 31)) 2245 return 1; 2246 2247 red >>= 8; 2248 green >>= 8; 2249 blue >>= 8; 2250 2251 if (regno < 16) { 2252 int i; 2253 u32 *pal = info->pseudo_palette; 2254 2255 switch (par->crtc.depth) { 2256 case 15: 2257 pal[regno] = (regno << 10) | (regno << 5) | regno; 2258 break; 2259 case 16: 2260 pal[regno] = (regno << 11) | (regno << 6) | regno; 2261 break; 2262 case 24: 2263 pal[regno] = (regno << 16) | (regno << 8) | regno; 2264 break; 2265 case 32: 2266 i = (regno << 8) | regno; 2267 pal[regno] = (i << 16) | i; 2268 break; 2269 } 2270 } 2271 2272 if (par->crtc.depth == 16 && regno > 0) { 2273 /* 2274 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we 2275 * have 32 slots for R and B values but 64 slots for G values. 2276 * Thus the R and B values go in one slot but the G value 2277 * goes in a different slot, and we have to avoid disturbing 2278 * the other fields in the slots we touch. 2279 */ 2280 par->green[regno] = green; 2281 if (regno < 32) { 2282 par->red[regno] = red; 2283 par->blue[regno] = blue; 2284 aty128_st_pal(regno * 8, red, par->green[regno*2], 2285 blue, par); 2286 } 2287 red = par->red[regno/2]; 2288 blue = par->blue[regno/2]; 2289 regno <<= 2; 2290 } else if (par->crtc.bpp == 16) 2291 regno <<= 3; 2292 aty128_st_pal(regno, red, green, blue, par); 2293 2294 return 0; 2295 } 2296 2297 #define ATY_MIRROR_LCD_ON 0x00000001 2298 #define ATY_MIRROR_CRT_ON 0x00000002 2299 2300 /* out param: u32* backlight value: 0 to 15 */ 2301 #define FBIO_ATY128_GET_MIRROR _IOR('@', 1, __u32) 2302 /* in param: u32* backlight value: 0 to 15 */ 2303 #define FBIO_ATY128_SET_MIRROR _IOW('@', 2, __u32) 2304 2305 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg) 2306 { 2307 struct aty128fb_par *par = info->par; 2308 u32 value; 2309 int rc; 2310 2311 switch (cmd) { 2312 case FBIO_ATY128_SET_MIRROR: 2313 if (par->chip_gen != rage_M3) 2314 return -EINVAL; 2315 rc = get_user(value, (__u32 __user *)arg); 2316 if (rc) 2317 return rc; 2318 par->lcd_on = (value & 0x01) != 0; 2319 par->crt_on = (value & 0x02) != 0; 2320 if (!par->crt_on && !par->lcd_on) 2321 par->lcd_on = 1; 2322 aty128_set_crt_enable(par, par->crt_on); 2323 aty128_set_lcd_enable(par, par->lcd_on); 2324 return 0; 2325 case FBIO_ATY128_GET_MIRROR: 2326 if (par->chip_gen != rage_M3) 2327 return -EINVAL; 2328 value = (par->crt_on << 1) | par->lcd_on; 2329 return put_user(value, (__u32 __user *)arg); 2330 } 2331 return -EINVAL; 2332 } 2333 2334 static void aty128_set_suspend(struct aty128fb_par *par, int suspend) 2335 { 2336 u32 pmgt; 2337 struct pci_dev *pdev = par->pdev; 2338 2339 if (!par->pdev->pm_cap) 2340 return; 2341 2342 /* Set the chip into the appropriate suspend mode (we use D2, 2343 * D3 would require a complete re-initialisation of the chip, 2344 * including PCI config registers, clocks, AGP configuration, ...) 2345 * 2346 * For resume, the core will have already brought us back to D0 2347 */ 2348 if (suspend) { 2349 /* Make sure CRTC2 is reset. Remove that the day we decide to 2350 * actually use CRTC2 and replace it with real code for disabling 2351 * the CRTC2 output during sleep 2352 */ 2353 aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) & 2354 ~(CRTC2_EN)); 2355 2356 /* Set the power management mode to be PCI based */ 2357 /* Use this magic value for now */ 2358 pmgt = 0x0c005407; 2359 aty_st_pll(POWER_MANAGEMENT, pmgt); 2360 (void)aty_ld_pll(POWER_MANAGEMENT); 2361 aty_st_le32(BUS_CNTL1, 0x00000010); 2362 aty_st_le32(MEM_POWER_MISC, 0x0c830000); 2363 msleep(100); 2364 2365 /* Switch PCI power management to D2 */ 2366 pci_set_power_state(pdev, PCI_D2); 2367 } 2368 } 2369 2370 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state) 2371 { 2372 struct fb_info *info = pci_get_drvdata(pdev); 2373 struct aty128fb_par *par = info->par; 2374 2375 /* Because we may change PCI D state ourselves, we need to 2376 * first save the config space content so the core can 2377 * restore it properly on resume. 2378 */ 2379 pci_save_state(pdev); 2380 2381 /* We don't do anything but D2, for now we return 0, but 2382 * we may want to change that. How do we know if the BIOS 2383 * can properly take care of D3 ? Also, with swsusp, we 2384 * know we'll be rebooted, ... 2385 */ 2386 #ifndef CONFIG_PPC_PMAC 2387 /* HACK ALERT ! Once I find a proper way to say to each driver 2388 * individually what will happen with it's PCI slot, I'll change 2389 * that. On laptops, the AGP slot is just unclocked, so D2 is 2390 * expected, while on desktops, the card is powered off 2391 */ 2392 return 0; 2393 #endif /* CONFIG_PPC_PMAC */ 2394 2395 if (state.event == pdev->dev.power.power_state.event) 2396 return 0; 2397 2398 printk(KERN_DEBUG "aty128fb: suspending...\n"); 2399 2400 console_lock(); 2401 2402 fb_set_suspend(info, 1); 2403 2404 /* Make sure engine is reset */ 2405 wait_for_idle(par); 2406 aty128_reset_engine(par); 2407 wait_for_idle(par); 2408 2409 /* Blank display and LCD */ 2410 aty128fb_blank(FB_BLANK_POWERDOWN, info); 2411 2412 /* Sleep */ 2413 par->asleep = 1; 2414 par->lock_blank = 1; 2415 2416 #ifdef CONFIG_PPC_PMAC 2417 /* On powermac, we have hooks to properly suspend/resume AGP now, 2418 * use them here. We'll ultimately need some generic support here, 2419 * but the generic code isn't quite ready for that yet 2420 */ 2421 pmac_suspend_agp_for_card(pdev); 2422 #endif /* CONFIG_PPC_PMAC */ 2423 2424 /* We need a way to make sure the fbdev layer will _not_ touch the 2425 * framebuffer before we put the chip to suspend state. On 2.4, I 2426 * used dummy fb ops, 2.5 need proper support for this at the 2427 * fbdev level 2428 */ 2429 if (state.event != PM_EVENT_ON) 2430 aty128_set_suspend(par, 1); 2431 2432 console_unlock(); 2433 2434 pdev->dev.power.power_state = state; 2435 2436 return 0; 2437 } 2438 2439 static int aty128_do_resume(struct pci_dev *pdev) 2440 { 2441 struct fb_info *info = pci_get_drvdata(pdev); 2442 struct aty128fb_par *par = info->par; 2443 2444 if (pdev->dev.power.power_state.event == PM_EVENT_ON) 2445 return 0; 2446 2447 /* PCI state will have been restored by the core, so 2448 * we should be in D0 now with our config space fully 2449 * restored 2450 */ 2451 2452 /* Wakeup chip */ 2453 aty128_set_suspend(par, 0); 2454 par->asleep = 0; 2455 2456 /* Restore display & engine */ 2457 aty128_reset_engine(par); 2458 wait_for_idle(par); 2459 aty128fb_set_par(info); 2460 fb_pan_display(info, &info->var); 2461 fb_set_cmap(&info->cmap, info); 2462 2463 /* Refresh */ 2464 fb_set_suspend(info, 0); 2465 2466 /* Unblank */ 2467 par->lock_blank = 0; 2468 aty128fb_blank(0, info); 2469 2470 #ifdef CONFIG_PPC_PMAC 2471 /* On powermac, we have hooks to properly suspend/resume AGP now, 2472 * use them here. We'll ultimately need some generic support here, 2473 * but the generic code isn't quite ready for that yet 2474 */ 2475 pmac_resume_agp_for_card(pdev); 2476 #endif /* CONFIG_PPC_PMAC */ 2477 2478 pdev->dev.power.power_state = PMSG_ON; 2479 2480 printk(KERN_DEBUG "aty128fb: resumed !\n"); 2481 2482 return 0; 2483 } 2484 2485 static int aty128_pci_resume(struct pci_dev *pdev) 2486 { 2487 int rc; 2488 2489 console_lock(); 2490 rc = aty128_do_resume(pdev); 2491 console_unlock(); 2492 2493 return rc; 2494 } 2495 2496 2497 static int aty128fb_init(void) 2498 { 2499 #ifndef MODULE 2500 char *option = NULL; 2501 2502 if (fb_get_options("aty128fb", &option)) 2503 return -ENODEV; 2504 aty128fb_setup(option); 2505 #endif 2506 2507 return pci_register_driver(&aty128fb_driver); 2508 } 2509 2510 static void __exit aty128fb_exit(void) 2511 { 2512 pci_unregister_driver(&aty128fb_driver); 2513 } 2514 2515 module_init(aty128fb_init); 2516 2517 module_exit(aty128fb_exit); 2518 2519 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>"); 2520 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards"); 2521 MODULE_LICENSE("GPL"); 2522 module_param(mode_option, charp, 0); 2523 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" "); 2524 module_param_named(nomtrr, mtrr, invbool, 0); 2525 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)"); 2526