xref: /openbmc/linux/drivers/video/fbdev/aty/aty128fb.c (revision 979ac5ef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
3  *  linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
4  *
5  *  Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
6  *  Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
7  *
8  *                Ani Joshi / Jeff Garzik
9  *                      - Code cleanup
10  *
11  *                Michel Danzer <michdaen@iiic.ethz.ch>
12  *                      - 15/16 bit cleanup
13  *                      - fix panning
14  *
15  *                Benjamin Herrenschmidt
16  *                      - pmac-specific PM stuff
17  *			- various fixes & cleanups
18  *
19  *                Andreas Hundt <andi@convergence.de>
20  *                      - FB_ACTIVATE fixes
21  *
22  *		  Paul Mackerras <paulus@samba.org>
23  *			- Convert to new framebuffer API,
24  *			  fix colormap setting at 16 bits/pixel (565)
25  *
26  *		  Paul Mundt
27  *		  	- PCI hotplug
28  *
29  *		  Jon Smirl <jonsmirl@yahoo.com>
30  * 			- PCI ID update
31  * 			- replace ROM BIOS search
32  *
33  *  Based off of Geert's atyfb.c and vfb.c.
34  *
35  *  TODO:
36  *		- monitor sensing (DDC)
37  *              - virtual display
38  *		- other platform support (only ppc/x86 supported)
39  *		- hardware cursor support
40  *
41  *    Please cc: your patches to brad@neruo.com.
42  */
43 
44 /*
45  * A special note of gratitude to ATI's devrel for providing documentation,
46  * example code and hardware. Thanks Nitya.	-atong and brad
47  */
48 
49 
50 #include <linux/aperture.h>
51 #include <linux/module.h>
52 #include <linux/moduleparam.h>
53 #include <linux/kernel.h>
54 #include <linux/errno.h>
55 #include <linux/string.h>
56 #include <linux/mm.h>
57 #include <linux/vmalloc.h>
58 #include <linux/delay.h>
59 #include <linux/interrupt.h>
60 #include <linux/uaccess.h>
61 #include <linux/fb.h>
62 #include <linux/init.h>
63 #include <linux/pci.h>
64 #include <linux/ioport.h>
65 #include <linux/console.h>
66 #include <linux/backlight.h>
67 #include <asm/io.h>
68 
69 #ifdef CONFIG_PPC_PMAC
70 #include <asm/machdep.h>
71 #include <asm/pmac_feature.h>
72 #include "../macmodes.h"
73 #endif
74 
75 #ifdef CONFIG_PMAC_BACKLIGHT
76 #include <asm/backlight.h>
77 #endif
78 
79 #ifdef CONFIG_BOOTX_TEXT
80 #include <asm/btext.h>
81 #endif /* CONFIG_BOOTX_TEXT */
82 
83 #include <video/aty128.h>
84 
85 /* Debug flag */
86 #undef DEBUG
87 
88 #ifdef DEBUG
89 #define DBG(fmt, args...) \
90 	printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
91 #else
92 #define DBG(fmt, args...)
93 #endif
94 
95 #ifndef CONFIG_PPC_PMAC
96 /* default mode */
97 static const struct fb_var_screeninfo default_var = {
98 	/* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
99 	640, 480, 640, 480, 0, 0, 8, 0,
100 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
101 	0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
102 	0, FB_VMODE_NONINTERLACED
103 };
104 
105 #else /* CONFIG_PPC_PMAC */
106 /* default to 1024x768 at 75Hz on PPC - this will work
107  * on the iMac, the usual 640x480 @ 60Hz doesn't. */
108 static const struct fb_var_screeninfo default_var = {
109 	/* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
110 	1024, 768, 1024, 768, 0, 0, 8, 0,
111 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
112 	0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
113 	FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
114 	FB_VMODE_NONINTERLACED
115 };
116 #endif /* CONFIG_PPC_PMAC */
117 
118 /* default modedb mode */
119 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
120 static const struct fb_videomode defaultmode = {
121 	.refresh =	60,
122 	.xres =		640,
123 	.yres =		480,
124 	.pixclock =	39722,
125 	.left_margin =	48,
126 	.right_margin =	16,
127 	.upper_margin =	33,
128 	.lower_margin =	10,
129 	.hsync_len =	96,
130 	.vsync_len =	2,
131 	.sync =		0,
132 	.vmode =	FB_VMODE_NONINTERLACED
133 };
134 
135 /* Chip generations */
136 enum {
137 	rage_128,
138 	rage_128_pci,
139 	rage_128_pro,
140 	rage_128_pro_pci,
141 	rage_M3,
142 	rage_M3_pci,
143 	rage_M4,
144 	rage_128_ultra,
145 };
146 
147 /* Must match above enum */
148 static char * const r128_family[] = {
149 	"AGP",
150 	"PCI",
151 	"PRO AGP",
152 	"PRO PCI",
153 	"M3 AGP",
154 	"M3 PCI",
155 	"M4 AGP",
156 	"Ultra AGP",
157 };
158 
159 /*
160  * PCI driver prototypes
161  */
162 static int aty128_probe(struct pci_dev *pdev,
163                                const struct pci_device_id *ent);
164 static void aty128_remove(struct pci_dev *pdev);
165 static int aty128_pci_suspend_late(struct device *dev, pm_message_t state);
166 static int __maybe_unused aty128_pci_suspend(struct device *dev);
167 static int __maybe_unused aty128_pci_hibernate(struct device *dev);
168 static int __maybe_unused aty128_pci_freeze(struct device *dev);
169 static int __maybe_unused aty128_pci_resume(struct device *dev);
170 static int aty128_do_resume(struct pci_dev *pdev);
171 
172 static const struct dev_pm_ops aty128_pci_pm_ops = {
173 	.suspend	= aty128_pci_suspend,
174 	.resume		= aty128_pci_resume,
175 	.freeze		= aty128_pci_freeze,
176 	.thaw		= aty128_pci_resume,
177 	.poweroff	= aty128_pci_hibernate,
178 	.restore	= aty128_pci_resume,
179 };
180 
181 /* supported Rage128 chipsets */
182 static const struct pci_device_id aty128_pci_tbl[] = {
183 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
184 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
185 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
186 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
187 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
188 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
189 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
190 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
191 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
192 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
193 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
194 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
195 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
196 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
197 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
198 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
199 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
200 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
201 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
202 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
203 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
204 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
205 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
206 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
207 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
208 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
209 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
210 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
211 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
212 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
213 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
214 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
215 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
216 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
217 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
218 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
219 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
220 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
221 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
222 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
223 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
224 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
225 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
226 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
227 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
228 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
229 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
230 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
231 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
232 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
233 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
234 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
235 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
236 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
237 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
238 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
239 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
240 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
241 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
242 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
243 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
244 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
245 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
246 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
247 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
248 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
249 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
250 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
251 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
252 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
253 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
254 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
255 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
256 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
257 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
258 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
259 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
260 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
261 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
262 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
263 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
264 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
265 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
266 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
267 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
268 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
269 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
270 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
271 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
272 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
273 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
274 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
275 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
276 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
277 	{ 0, }
278 };
279 
280 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
281 
282 static struct pci_driver aty128fb_driver = {
283 	.name		= "aty128fb",
284 	.id_table	= aty128_pci_tbl,
285 	.probe		= aty128_probe,
286 	.remove		= aty128_remove,
287 	.driver.pm	= &aty128_pci_pm_ops,
288 };
289 
290 /* packed BIOS settings */
291 #ifndef CONFIG_PPC
292 typedef struct {
293 	u8 clock_chip_type;
294 	u8 struct_size;
295 	u8 accelerator_entry;
296 	u8 VGA_entry;
297 	u16 VGA_table_offset;
298 	u16 POST_table_offset;
299 	u16 XCLK;
300 	u16 MCLK;
301 	u8 num_PLL_blocks;
302 	u8 size_PLL_blocks;
303 	u16 PCLK_ref_freq;
304 	u16 PCLK_ref_divider;
305 	u32 PCLK_min_freq;
306 	u32 PCLK_max_freq;
307 	u16 MCLK_ref_freq;
308 	u16 MCLK_ref_divider;
309 	u32 MCLK_min_freq;
310 	u32 MCLK_max_freq;
311 	u16 XCLK_ref_freq;
312 	u16 XCLK_ref_divider;
313 	u32 XCLK_min_freq;
314 	u32 XCLK_max_freq;
315 } __attribute__ ((packed)) PLL_BLOCK;
316 #endif /* !CONFIG_PPC */
317 
318 /* onboard memory information */
319 struct aty128_meminfo {
320 	u8 ML;
321 	u8 MB;
322 	u8 Trcd;
323 	u8 Trp;
324 	u8 Twr;
325 	u8 CL;
326 	u8 Tr2w;
327 	u8 LoopLatency;
328 	u8 DspOn;
329 	u8 Rloop;
330 	const char *name;
331 };
332 
333 /* various memory configurations */
334 static const struct aty128_meminfo sdr_128 = {
335 	.ML = 4,
336 	.MB = 4,
337 	.Trcd = 3,
338 	.Trp = 3,
339 	.Twr = 1,
340 	.CL = 3,
341 	.Tr2w = 1,
342 	.LoopLatency = 16,
343 	.DspOn = 30,
344 	.Rloop = 16,
345 	.name = "128-bit SDR SGRAM (1:1)",
346 };
347 
348 static const struct aty128_meminfo sdr_sgram = {
349 	.ML = 4,
350 	.MB = 4,
351 	.Trcd = 1,
352 	.Trp = 2,
353 	.Twr = 1,
354 	.CL = 2,
355 	.Tr2w = 1,
356 	.LoopLatency = 16,
357 	.DspOn = 24,
358 	.Rloop = 16,
359 	.name = "64-bit SDR SGRAM (2:1)",
360 };
361 
362 static const struct aty128_meminfo ddr_sgram = {
363 	.ML = 4,
364 	.MB = 4,
365 	.Trcd = 3,
366 	.Trp = 3,
367 	.Twr = 2,
368 	.CL = 3,
369 	.Tr2w = 1,
370 	.LoopLatency = 16,
371 	.DspOn = 31,
372 	.Rloop = 16,
373 	.name = "64-bit DDR SGRAM",
374 };
375 
376 static const struct fb_fix_screeninfo aty128fb_fix = {
377 	.id		= "ATY Rage128",
378 	.type		= FB_TYPE_PACKED_PIXELS,
379 	.visual		= FB_VISUAL_PSEUDOCOLOR,
380 	.xpanstep	= 8,
381 	.ypanstep	= 1,
382 	.mmio_len	= 0x2000,
383 	.accel		= FB_ACCEL_ATI_RAGE128,
384 };
385 
386 static char *mode_option = NULL;
387 
388 #ifdef CONFIG_PPC_PMAC
389 static int default_vmode = VMODE_1024_768_60;
390 static int default_cmode = CMODE_8;
391 #endif
392 
393 static int default_crt_on = 0;
394 static int default_lcd_on = 1;
395 static bool mtrr = true;
396 
397 #ifdef CONFIG_FB_ATY128_BACKLIGHT
398 static int backlight = IS_BUILTIN(CONFIG_PMAC_BACKLIGHT);
399 #endif
400 
401 /* PLL constants */
402 struct aty128_constants {
403 	u32 ref_clk;
404 	u32 ppll_min;
405 	u32 ppll_max;
406 	u32 ref_divider;
407 	u32 xclk;
408 	u32 fifo_width;
409 	u32 fifo_depth;
410 };
411 
412 struct aty128_crtc {
413 	u32 gen_cntl;
414 	u32 h_total, h_sync_strt_wid;
415 	u32 v_total, v_sync_strt_wid;
416 	u32 pitch;
417 	u32 offset, offset_cntl;
418 	u32 xoffset, yoffset;
419 	u32 vxres, vyres;
420 	u32 depth, bpp;
421 };
422 
423 struct aty128_pll {
424 	u32 post_divider;
425 	u32 feedback_divider;
426 	u32 vclk;
427 };
428 
429 struct aty128_ddafifo {
430 	u32 dda_config;
431 	u32 dda_on_off;
432 };
433 
434 /* register values for a specific mode */
435 struct aty128fb_par {
436 	struct aty128_crtc crtc;
437 	struct aty128_pll pll;
438 	struct aty128_ddafifo fifo_reg;
439 	u32 accel_flags;
440 	struct aty128_constants constants;  /* PLL and others      */
441 	void __iomem *regbase;              /* remapped mmio       */
442 	u32 vram_size;                      /* onboard video ram   */
443 	int chip_gen;
444 	const struct aty128_meminfo *mem;   /* onboard mem info    */
445 	int wc_cookie;
446 	int blitter_may_be_busy;
447 	int fifo_slots;                 /* free slots in FIFO (64 max) */
448 
449 	int crt_on, lcd_on;
450 	struct pci_dev *pdev;
451 	struct fb_info *next;
452 	int	asleep;
453 	int	lock_blank;
454 
455 	u8	red[32];		/* see aty128fb_setcolreg */
456 	u8	green[64];
457 	u8	blue[32];
458 	u32	pseudo_palette[16];	/* used for TRUECOLOR */
459 };
460 
461 
462 #define round_div(n, d) ((n+(d/2))/d)
463 
464 static int aty128fb_check_var(struct fb_var_screeninfo *var,
465 			      struct fb_info *info);
466 static int aty128fb_set_par(struct fb_info *info);
467 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
468 			      u_int transp, struct fb_info *info);
469 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
470 			   struct fb_info *fb);
471 static int aty128fb_blank(int blank, struct fb_info *fb);
472 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
473 static int aty128fb_sync(struct fb_info *info);
474 
475     /*
476      *  Internal routines
477      */
478 
479 static int aty128_encode_var(struct fb_var_screeninfo *var,
480                              const struct aty128fb_par *par);
481 static int aty128_decode_var(struct fb_var_screeninfo *var,
482                              struct aty128fb_par *par);
483 static void aty128_timings(struct aty128fb_par *par);
484 static void aty128_init_engine(struct aty128fb_par *par);
485 static void aty128_reset_engine(const struct aty128fb_par *par);
486 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
487 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
488 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
489 static void wait_for_idle(struct aty128fb_par *par);
490 static u32 depth_to_dst(u32 depth);
491 
492 #ifdef CONFIG_FB_ATY128_BACKLIGHT
493 static void aty128_bl_set_power(struct fb_info *info, int power);
494 #endif
495 
496 #define BIOS_IN8(v)  	(readb(bios + (v)))
497 #define BIOS_IN16(v) 	(readb(bios + (v)) | \
498 			  (readb(bios + (v) + 1) << 8))
499 #define BIOS_IN32(v) 	(readb(bios + (v)) | \
500 			  (readb(bios + (v) + 1) << 8) | \
501 			  (readb(bios + (v) + 2) << 16) | \
502 			  (readb(bios + (v) + 3) << 24))
503 
504 
505 static const struct fb_ops aty128fb_ops = {
506 	.owner		= THIS_MODULE,
507 	.fb_check_var	= aty128fb_check_var,
508 	.fb_set_par	= aty128fb_set_par,
509 	.fb_setcolreg	= aty128fb_setcolreg,
510 	.fb_pan_display = aty128fb_pan_display,
511 	.fb_blank	= aty128fb_blank,
512 	.fb_ioctl	= aty128fb_ioctl,
513 	.fb_sync	= aty128fb_sync,
514 	.fb_fillrect	= cfb_fillrect,
515 	.fb_copyarea	= cfb_copyarea,
516 	.fb_imageblit	= cfb_imageblit,
517 };
518 
519     /*
520      * Functions to read from/write to the mmio registers
521      *	- endian conversions may possibly be avoided by
522      *    using the other register aperture. TODO.
523      */
524 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
525 			       const struct aty128fb_par *par)
526 {
527 	return readl (par->regbase + regindex);
528 }
529 
530 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
531 				const struct aty128fb_par *par)
532 {
533 	writel (val, par->regbase + regindex);
534 }
535 
536 static inline u8 _aty_ld_8(unsigned int regindex,
537 			   const struct aty128fb_par *par)
538 {
539 	return readb (par->regbase + regindex);
540 }
541 
542 static inline void _aty_st_8(unsigned int regindex, u8 val,
543 			     const struct aty128fb_par *par)
544 {
545 	writeb (val, par->regbase + regindex);
546 }
547 
548 #define aty_ld_le32(regindex)		_aty_ld_le32(regindex, par)
549 #define aty_st_le32(regindex, val)	_aty_st_le32(regindex, val, par)
550 #define aty_ld_8(regindex)		_aty_ld_8(regindex, par)
551 #define aty_st_8(regindex, val)		_aty_st_8(regindex, val, par)
552 
553     /*
554      * Functions to read from/write to the pll registers
555      */
556 
557 #define aty_ld_pll(pll_index)		_aty_ld_pll(pll_index, par)
558 #define aty_st_pll(pll_index, val)	_aty_st_pll(pll_index, val, par)
559 
560 
561 static u32 _aty_ld_pll(unsigned int pll_index,
562 		       const struct aty128fb_par *par)
563 {
564 	aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
565 	return aty_ld_le32(CLOCK_CNTL_DATA);
566 }
567 
568 
569 static void _aty_st_pll(unsigned int pll_index, u32 val,
570 			const struct aty128fb_par *par)
571 {
572 	aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
573 	aty_st_le32(CLOCK_CNTL_DATA, val);
574 }
575 
576 
577 /* return true when the PLL has completed an atomic update */
578 static int aty_pll_readupdate(const struct aty128fb_par *par)
579 {
580 	return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
581 }
582 
583 
584 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
585 {
586 	unsigned long timeout = jiffies + HZ/100; // should be more than enough
587 	int reset = 1;
588 
589 	while (time_before(jiffies, timeout))
590 		if (aty_pll_readupdate(par)) {
591 			reset = 0;
592 			break;
593 		}
594 
595 	if (reset)	/* reset engine?? */
596 		printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
597 }
598 
599 
600 /* tell PLL to update */
601 static void aty_pll_writeupdate(const struct aty128fb_par *par)
602 {
603 	aty_pll_wait_readupdate(par);
604 
605 	aty_st_pll(PPLL_REF_DIV,
606 		   aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
607 }
608 
609 
610 /* write to the scratch register to test r/w functionality */
611 static int register_test(const struct aty128fb_par *par)
612 {
613 	u32 val;
614 	int flag = 0;
615 
616 	val = aty_ld_le32(BIOS_0_SCRATCH);
617 
618 	aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
619 	if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
620 		aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
621 
622 		if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
623 			flag = 1;
624 	}
625 
626 	aty_st_le32(BIOS_0_SCRATCH, val);	// restore value
627 	return flag;
628 }
629 
630 
631 /*
632  * Accelerator engine functions
633  */
634 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
635 {
636 	int i;
637 
638 	for (;;) {
639 		for (i = 0; i < 2000000; i++) {
640 			par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
641 			if (par->fifo_slots >= entries)
642 				return;
643 		}
644 		aty128_reset_engine(par);
645 	}
646 }
647 
648 
649 static void wait_for_idle(struct aty128fb_par *par)
650 {
651 	int i;
652 
653 	do_wait_for_fifo(64, par);
654 
655 	for (;;) {
656 		for (i = 0; i < 2000000; i++) {
657 			if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
658 				aty128_flush_pixel_cache(par);
659 				par->blitter_may_be_busy = 0;
660 				return;
661 			}
662 		}
663 		aty128_reset_engine(par);
664 	}
665 }
666 
667 
668 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
669 {
670 	if (par->fifo_slots < entries)
671 		do_wait_for_fifo(64, par);
672 	par->fifo_slots -= entries;
673 }
674 
675 
676 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
677 {
678 	int i;
679 	u32 tmp;
680 
681 	tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
682 	tmp &= ~(0x00ff);
683 	tmp |= 0x00ff;
684 	aty_st_le32(PC_NGUI_CTLSTAT, tmp);
685 
686 	for (i = 0; i < 2000000; i++)
687 		if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
688 			break;
689 }
690 
691 
692 static void aty128_reset_engine(const struct aty128fb_par *par)
693 {
694 	u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
695 
696 	aty128_flush_pixel_cache(par);
697 
698 	clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
699 	mclk_cntl = aty_ld_pll(MCLK_CNTL);
700 
701 	aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
702 
703 	gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
704 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
705 	aty_ld_le32(GEN_RESET_CNTL);
706 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
707 	aty_ld_le32(GEN_RESET_CNTL);
708 
709 	aty_st_pll(MCLK_CNTL, mclk_cntl);
710 	aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
711 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
712 
713 	/* use old pio mode */
714 	aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
715 
716 	DBG("engine reset");
717 }
718 
719 
720 static void aty128_init_engine(struct aty128fb_par *par)
721 {
722 	u32 pitch_value;
723 
724 	wait_for_idle(par);
725 
726 	/* 3D scaler not spoken here */
727 	wait_for_fifo(1, par);
728 	aty_st_le32(SCALE_3D_CNTL, 0x00000000);
729 
730 	aty128_reset_engine(par);
731 
732 	pitch_value = par->crtc.pitch;
733 	if (par->crtc.bpp == 24) {
734 		pitch_value = pitch_value * 3;
735 	}
736 
737 	wait_for_fifo(4, par);
738 	/* setup engine offset registers */
739 	aty_st_le32(DEFAULT_OFFSET, 0x00000000);
740 
741 	/* setup engine pitch registers */
742 	aty_st_le32(DEFAULT_PITCH, pitch_value);
743 
744 	/* set the default scissor register to max dimensions */
745 	aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
746 
747 	/* set the drawing controls registers */
748 	aty_st_le32(DP_GUI_MASTER_CNTL,
749 		    GMC_SRC_PITCH_OFFSET_DEFAULT		|
750 		    GMC_DST_PITCH_OFFSET_DEFAULT		|
751 		    GMC_SRC_CLIP_DEFAULT			|
752 		    GMC_DST_CLIP_DEFAULT			|
753 		    GMC_BRUSH_SOLIDCOLOR			|
754 		    (depth_to_dst(par->crtc.depth) << 8)	|
755 		    GMC_SRC_DSTCOLOR			|
756 		    GMC_BYTE_ORDER_MSB_TO_LSB		|
757 		    GMC_DP_CONVERSION_TEMP_6500		|
758 		    ROP3_PATCOPY				|
759 		    GMC_DP_SRC_RECT				|
760 		    GMC_3D_FCN_EN_CLR			|
761 		    GMC_DST_CLR_CMP_FCN_CLEAR		|
762 		    GMC_AUX_CLIP_CLEAR			|
763 		    GMC_WRITE_MASK_SET);
764 
765 	wait_for_fifo(8, par);
766 	/* clear the line drawing registers */
767 	aty_st_le32(DST_BRES_ERR, 0);
768 	aty_st_le32(DST_BRES_INC, 0);
769 	aty_st_le32(DST_BRES_DEC, 0);
770 
771 	/* set brush color registers */
772 	aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
773 	aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
774 
775 	/* set source color registers */
776 	aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF);   /* white */
777 	aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000);   /* black */
778 
779 	/* default write mask */
780 	aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
781 
782 	/* Wait for all the writes to be completed before returning */
783 	wait_for_idle(par);
784 }
785 
786 
787 /* convert depth values to their register representation */
788 static u32 depth_to_dst(u32 depth)
789 {
790 	if (depth <= 8)
791 		return DST_8BPP;
792 	else if (depth <= 15)
793 		return DST_15BPP;
794 	else if (depth == 16)
795 		return DST_16BPP;
796 	else if (depth <= 24)
797 		return DST_24BPP;
798 	else if (depth <= 32)
799 		return DST_32BPP;
800 
801 	return -EINVAL;
802 }
803 
804 /*
805  * PLL informations retreival
806  */
807 
808 
809 #ifndef __sparc__
810 static void __iomem *aty128_map_ROM(const struct aty128fb_par *par,
811 				    struct pci_dev *dev)
812 {
813 	u16 dptr;
814 	u8 rom_type;
815 	void __iomem *bios;
816 	size_t rom_size;
817 
818     	/* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
819     	unsigned int temp;
820 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
821 	temp &= 0x00ffffffu;
822 	temp |= 0x04 << 24;
823 	aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
824 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
825 
826 	bios = pci_map_rom(dev, &rom_size);
827 
828 	if (!bios) {
829 		printk(KERN_ERR "aty128fb: ROM failed to map\n");
830 		return NULL;
831 	}
832 
833 	/* Very simple test to make sure it appeared */
834 	if (BIOS_IN16(0) != 0xaa55) {
835 		printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
836 			" be 0xaa55\n", BIOS_IN16(0));
837 		goto failed;
838 	}
839 
840 	/* Look for the PCI data to check the ROM type */
841 	dptr = BIOS_IN16(0x18);
842 
843 	/* Check the PCI data signature. If it's wrong, we still assume a normal
844 	 * x86 ROM for now, until I've verified this works everywhere.
845 	 * The goal here is more to phase out Open Firmware images.
846 	 *
847 	 * Currently, we only look at the first PCI data, we could iteratre and
848 	 * deal with them all, and we should use fb_bios_start relative to start
849 	 * of image and not relative start of ROM, but so far, I never found a
850 	 * dual-image ATI card.
851 	 *
852 	 * typedef struct {
853 	 * 	u32	signature;	+ 0x00
854 	 * 	u16	vendor;		+ 0x04
855 	 * 	u16	device;		+ 0x06
856 	 * 	u16	reserved_1;	+ 0x08
857 	 * 	u16	dlen;		+ 0x0a
858 	 * 	u8	drevision;	+ 0x0c
859 	 * 	u8	class_hi;	+ 0x0d
860 	 * 	u16	class_lo;	+ 0x0e
861 	 * 	u16	ilen;		+ 0x10
862 	 * 	u16	irevision;	+ 0x12
863 	 * 	u8	type;		+ 0x14
864 	 * 	u8	indicator;	+ 0x15
865 	 * 	u16	reserved_2;	+ 0x16
866 	 * } pci_data_t;
867 	 */
868 	if (BIOS_IN32(dptr) !=  (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
869 		printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
870 		       BIOS_IN32(dptr));
871 		goto anyway;
872 	}
873 	rom_type = BIOS_IN8(dptr + 0x14);
874 	switch(rom_type) {
875 	case 0:
876 		printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
877 		break;
878 	case 1:
879 		printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
880 		goto failed;
881 	case 2:
882 		printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
883 		goto failed;
884 	default:
885 		printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n",
886 		       rom_type);
887 		goto failed;
888 	}
889  anyway:
890 	return bios;
891 
892  failed:
893 	pci_unmap_rom(dev, bios);
894 	return NULL;
895 }
896 
897 static void aty128_get_pllinfo(struct aty128fb_par *par,
898 			       unsigned char __iomem *bios)
899 {
900 	unsigned int bios_hdr;
901 	unsigned int bios_pll;
902 
903 	bios_hdr = BIOS_IN16(0x48);
904 	bios_pll = BIOS_IN16(bios_hdr + 0x30);
905 
906 	par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
907 	par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
908 	par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
909 	par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
910 	par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
911 
912 	DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
913 			par->constants.ppll_max, par->constants.ppll_min,
914 			par->constants.xclk, par->constants.ref_divider,
915 			par->constants.ref_clk);
916 
917 }
918 
919 #ifdef CONFIG_X86
920 static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par)
921 {
922 	/* I simplified this code as we used to miss the signatures in
923 	 * a lot of case. It's now closer to XFree, we just don't check
924 	 * for signatures at all... Something better will have to be done
925 	 * if we end up having conflicts
926 	 */
927         u32  segstart;
928         unsigned char __iomem *rom_base = NULL;
929 
930         for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
931                 rom_base = ioremap(segstart, 0x10000);
932 		if (rom_base == NULL)
933 			return NULL;
934 		if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
935 	                break;
936                 iounmap(rom_base);
937 		rom_base = NULL;
938         }
939 	return rom_base;
940 }
941 #endif
942 #endif /* ndef(__sparc__) */
943 
944 /* fill in known card constants if pll_block is not available */
945 static void aty128_timings(struct aty128fb_par *par)
946 {
947 #ifdef CONFIG_PPC
948 	/* instead of a table lookup, assume OF has properly
949 	 * setup the PLL registers and use their values
950 	 * to set the XCLK values and reference divider values */
951 
952 	u32 x_mpll_ref_fb_div;
953 	u32 xclk_cntl;
954 	u32 Nx, M;
955 	static const unsigned int PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
956 #endif
957 
958 	if (!par->constants.ref_clk)
959 		par->constants.ref_clk = 2950;
960 
961 #ifdef CONFIG_PPC
962 	x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
963 	xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
964 	Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
965 	M  = x_mpll_ref_fb_div & 0x0000ff;
966 
967 	par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
968 					(M * PostDivSet[xclk_cntl]));
969 
970 	par->constants.ref_divider =
971 		aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
972 #endif
973 
974 	if (!par->constants.ref_divider) {
975 		par->constants.ref_divider = 0x3b;
976 
977 		aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
978 		aty_pll_writeupdate(par);
979 	}
980 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
981 	aty_pll_writeupdate(par);
982 
983 	/* from documentation */
984 	if (!par->constants.ppll_min)
985 		par->constants.ppll_min = 12500;
986 	if (!par->constants.ppll_max)
987 		par->constants.ppll_max = 25000;    /* 23000 on some cards? */
988 	if (!par->constants.xclk)
989 		par->constants.xclk = 0x1d4d;	     /* same as mclk */
990 
991 	par->constants.fifo_width = 128;
992 	par->constants.fifo_depth = 32;
993 
994 	switch (aty_ld_le32(MEM_CNTL) & 0x3) {
995 	case 0:
996 		par->mem = &sdr_128;
997 		break;
998 	case 1:
999 		par->mem = &sdr_sgram;
1000 		break;
1001 	case 2:
1002 		par->mem = &ddr_sgram;
1003 		break;
1004 	default:
1005 		par->mem = &sdr_sgram;
1006 	}
1007 }
1008 
1009 
1010 
1011 /*
1012  * CRTC programming
1013  */
1014 
1015 /* Program the CRTC registers */
1016 static void aty128_set_crtc(const struct aty128_crtc *crtc,
1017 			    const struct aty128fb_par *par)
1018 {
1019 	aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
1020 	aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
1021 	aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
1022 	aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
1023 	aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
1024 	aty_st_le32(CRTC_PITCH, crtc->pitch);
1025 	aty_st_le32(CRTC_OFFSET, crtc->offset);
1026 	aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
1027 	/* Disable ATOMIC updating.  Is this the right place? */
1028 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1029 }
1030 
1031 
1032 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1033 			      struct aty128_crtc *crtc,
1034 			      const struct aty128fb_par *par)
1035 {
1036 	u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1037 	u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1038 	u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1039 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1040 	u32 depth, bytpp;
1041 	u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1042 
1043 	/* input */
1044 	xres = var->xres;
1045 	yres = var->yres;
1046 	vxres   = var->xres_virtual;
1047 	vyres   = var->yres_virtual;
1048 	xoffset = var->xoffset;
1049 	yoffset = var->yoffset;
1050 	bpp   = var->bits_per_pixel;
1051 	left  = var->left_margin;
1052 	right = var->right_margin;
1053 	upper = var->upper_margin;
1054 	lower = var->lower_margin;
1055 	hslen = var->hsync_len;
1056 	vslen = var->vsync_len;
1057 	sync  = var->sync;
1058 	vmode = var->vmode;
1059 
1060 	if (bpp != 16)
1061 		depth = bpp;
1062 	else
1063 		depth = (var->green.length == 6) ? 16 : 15;
1064 
1065 	/* check for mode eligibility
1066 	 * accept only non interlaced modes */
1067 	if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1068 		return -EINVAL;
1069 
1070 	/* convert (and round up) and validate */
1071 	xres = (xres + 7) & ~7;
1072 	xoffset = (xoffset + 7) & ~7;
1073 
1074 	if (vxres < xres + xoffset)
1075 		vxres = xres + xoffset;
1076 
1077 	if (vyres < yres + yoffset)
1078 		vyres = yres + yoffset;
1079 
1080 	/* convert depth into ATI register depth */
1081 	dst = depth_to_dst(depth);
1082 
1083 	if (dst == -EINVAL) {
1084 		printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1085 		return -EINVAL;
1086 	}
1087 
1088 	/* convert register depth to bytes per pixel */
1089 	bytpp = mode_bytpp[dst];
1090 
1091 	/* make sure there is enough video ram for the mode */
1092 	if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1093 		printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1094 		return -EINVAL;
1095 	}
1096 
1097 	h_disp = (xres >> 3) - 1;
1098 	h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1099 
1100 	v_disp = yres - 1;
1101 	v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1102 
1103 	/* check to make sure h_total and v_total are in range */
1104 	if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1105 		printk(KERN_ERR "aty128fb: invalid width ranges\n");
1106 		return -EINVAL;
1107 	}
1108 
1109 	h_sync_wid = (hslen + 7) >> 3;
1110 	if (h_sync_wid == 0)
1111 		h_sync_wid = 1;
1112 	else if (h_sync_wid > 0x3f)        /* 0x3f = max hwidth */
1113 		h_sync_wid = 0x3f;
1114 
1115 	h_sync_strt = (h_disp << 3) + right;
1116 
1117 	v_sync_wid = vslen;
1118 	if (v_sync_wid == 0)
1119 		v_sync_wid = 1;
1120 	else if (v_sync_wid > 0x1f)        /* 0x1f = max vwidth */
1121 		v_sync_wid = 0x1f;
1122 
1123 	v_sync_strt = v_disp + lower;
1124 
1125 	h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1126 	v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1127 
1128 	c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1129 
1130 	crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1131 
1132 	crtc->h_total = h_total | (h_disp << 16);
1133 	crtc->v_total = v_total | (v_disp << 16);
1134 
1135 	crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1136 	        (h_sync_pol << 23);
1137 	crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1138                 (v_sync_pol << 23);
1139 
1140 	crtc->pitch = vxres >> 3;
1141 
1142 	crtc->offset = 0;
1143 
1144 	if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1145 		crtc->offset_cntl = 0x00010000;
1146 	else
1147 		crtc->offset_cntl = 0;
1148 
1149 	crtc->vxres = vxres;
1150 	crtc->vyres = vyres;
1151 	crtc->xoffset = xoffset;
1152 	crtc->yoffset = yoffset;
1153 	crtc->depth = depth;
1154 	crtc->bpp = bpp;
1155 
1156 	return 0;
1157 }
1158 
1159 
1160 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1161 {
1162 
1163 	/* fill in pixel info */
1164 	var->red.msb_right = 0;
1165 	var->green.msb_right = 0;
1166 	var->blue.offset = 0;
1167 	var->blue.msb_right = 0;
1168 	var->transp.offset = 0;
1169 	var->transp.length = 0;
1170 	var->transp.msb_right = 0;
1171 	switch (pix_width) {
1172 	case CRTC_PIX_WIDTH_8BPP:
1173 		var->bits_per_pixel = 8;
1174 		var->red.offset = 0;
1175 		var->red.length = 8;
1176 		var->green.offset = 0;
1177 		var->green.length = 8;
1178 		var->blue.length = 8;
1179 		break;
1180 	case CRTC_PIX_WIDTH_15BPP:
1181 		var->bits_per_pixel = 16;
1182 		var->red.offset = 10;
1183 		var->red.length = 5;
1184 		var->green.offset = 5;
1185 		var->green.length = 5;
1186 		var->blue.length = 5;
1187 		break;
1188 	case CRTC_PIX_WIDTH_16BPP:
1189 		var->bits_per_pixel = 16;
1190 		var->red.offset = 11;
1191 		var->red.length = 5;
1192 		var->green.offset = 5;
1193 		var->green.length = 6;
1194 		var->blue.length = 5;
1195 		break;
1196 	case CRTC_PIX_WIDTH_24BPP:
1197 		var->bits_per_pixel = 24;
1198 		var->red.offset = 16;
1199 		var->red.length = 8;
1200 		var->green.offset = 8;
1201 		var->green.length = 8;
1202 		var->blue.length = 8;
1203 		break;
1204 	case CRTC_PIX_WIDTH_32BPP:
1205 		var->bits_per_pixel = 32;
1206 		var->red.offset = 16;
1207 		var->red.length = 8;
1208 		var->green.offset = 8;
1209 		var->green.length = 8;
1210 		var->blue.length = 8;
1211 		var->transp.offset = 24;
1212 		var->transp.length = 8;
1213 		break;
1214 	default:
1215 		printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1216 		return -EINVAL;
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 
1223 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1224 			      struct fb_var_screeninfo *var)
1225 {
1226 	u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1227 	u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1228 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1229 	u32 pix_width;
1230 
1231 	/* fun with masking */
1232 	h_total     = crtc->h_total & 0x1ff;
1233 	h_disp      = (crtc->h_total >> 16) & 0xff;
1234 	h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1235 	h_sync_dly  = crtc->h_sync_strt_wid & 0x7;
1236 	h_sync_wid  = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1237 	h_sync_pol  = (crtc->h_sync_strt_wid >> 23) & 0x1;
1238 	v_total     = crtc->v_total & 0x7ff;
1239 	v_disp      = (crtc->v_total >> 16) & 0x7ff;
1240 	v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1241 	v_sync_wid  = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1242 	v_sync_pol  = (crtc->v_sync_strt_wid >> 23) & 0x1;
1243 	c_sync      = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1244 	pix_width   = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1245 
1246 	/* do conversions */
1247 	xres  = (h_disp + 1) << 3;
1248 	yres  = v_disp + 1;
1249 	left  = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1250 	right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1251 	hslen = h_sync_wid << 3;
1252 	upper = v_total - v_sync_strt - v_sync_wid;
1253 	lower = v_sync_strt - v_disp;
1254 	vslen = v_sync_wid;
1255 	sync  = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1256 		(v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1257 		(c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1258 
1259 	aty128_pix_width_to_var(pix_width, var);
1260 
1261 	var->xres = xres;
1262 	var->yres = yres;
1263 	var->xres_virtual = crtc->vxres;
1264 	var->yres_virtual = crtc->vyres;
1265 	var->xoffset = crtc->xoffset;
1266 	var->yoffset = crtc->yoffset;
1267 	var->left_margin  = left;
1268 	var->right_margin = right;
1269 	var->upper_margin = upper;
1270 	var->lower_margin = lower;
1271 	var->hsync_len = hslen;
1272 	var->vsync_len = vslen;
1273 	var->sync  = sync;
1274 	var->vmode = FB_VMODE_NONINTERLACED;
1275 
1276 	return 0;
1277 }
1278 
1279 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1280 {
1281 	if (on) {
1282 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) |
1283 			    CRT_CRTC_ON);
1284 		aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) |
1285 			    DAC_PALETTE2_SNOOP_EN));
1286 	} else
1287 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) &
1288 			    ~CRT_CRTC_ON);
1289 }
1290 
1291 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1292 {
1293 	u32 reg;
1294 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1295 	struct fb_info *info = pci_get_drvdata(par->pdev);
1296 #endif
1297 
1298 	if (on) {
1299 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1300 		reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1301 		reg &= ~LVDS_DISPLAY_DIS;
1302 		aty_st_le32(LVDS_GEN_CNTL, reg);
1303 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1304 		aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1305 #endif
1306 	} else {
1307 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1308 		aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1309 #endif
1310 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1311 		reg |= LVDS_DISPLAY_DIS;
1312 		aty_st_le32(LVDS_GEN_CNTL, reg);
1313 		mdelay(100);
1314 		reg &= ~(LVDS_ON /*| LVDS_EN*/);
1315 		aty_st_le32(LVDS_GEN_CNTL, reg);
1316 	}
1317 }
1318 
1319 static void aty128_set_pll(struct aty128_pll *pll,
1320 			   const struct aty128fb_par *par)
1321 {
1322 	u32 div3;
1323 
1324 	/* register values for post dividers */
1325 	static const unsigned char post_conv[] = {
1326 		2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7
1327 	};
1328 
1329 	/* select PPLL_DIV_3 */
1330 	aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1331 
1332 	/* reset PLL */
1333 	aty_st_pll(PPLL_CNTL,
1334 		   aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1335 
1336 	/* write the reference divider */
1337 	aty_pll_wait_readupdate(par);
1338 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1339 	aty_pll_writeupdate(par);
1340 
1341 	div3 = aty_ld_pll(PPLL_DIV_3);
1342 	div3 &= ~PPLL_FB3_DIV_MASK;
1343 	div3 |= pll->feedback_divider;
1344 	div3 &= ~PPLL_POST3_DIV_MASK;
1345 	div3 |= post_conv[pll->post_divider] << 16;
1346 
1347 	/* write feedback and post dividers */
1348 	aty_pll_wait_readupdate(par);
1349 	aty_st_pll(PPLL_DIV_3, div3);
1350 	aty_pll_writeupdate(par);
1351 
1352 	aty_pll_wait_readupdate(par);
1353 	aty_st_pll(HTOTAL_CNTL, 0);	/* no horiz crtc adjustment */
1354 	aty_pll_writeupdate(par);
1355 
1356 	/* clear the reset, just in case */
1357 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1358 }
1359 
1360 
1361 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1362 			     const struct aty128fb_par *par)
1363 {
1364 	const struct aty128_constants c = par->constants;
1365 	static const unsigned char post_dividers[] = { 1, 2, 4, 8, 3, 6, 12 };
1366 	u32 output_freq;
1367 	u32 vclk;        /* in .01 MHz */
1368 	int i = 0;
1369 	u32 n, d;
1370 
1371 	vclk = 100000000 / period_in_ps;	/* convert units to 10 kHz */
1372 
1373 	/* adjust pixel clock if necessary */
1374 	if (vclk > c.ppll_max)
1375 		vclk = c.ppll_max;
1376 	if (vclk * 12 < c.ppll_min)
1377 		vclk = c.ppll_min/12;
1378 
1379 	/* now, find an acceptable divider */
1380 	for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1381 		output_freq = post_dividers[i] * vclk;
1382 		if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1383 			pll->post_divider = post_dividers[i];
1384 			break;
1385 		}
1386 	}
1387 
1388 	if (i == ARRAY_SIZE(post_dividers))
1389 		return -EINVAL;
1390 
1391 	/* calculate feedback divider */
1392 	n = c.ref_divider * output_freq;
1393 	d = c.ref_clk;
1394 
1395 	pll->feedback_divider = round_div(n, d);
1396 	pll->vclk = vclk;
1397 
1398 	DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1399 	    "vclk_per: %d\n", pll->post_divider,
1400 	    pll->feedback_divider, vclk, output_freq,
1401 	    c.ref_divider, period_in_ps);
1402 
1403 	return 0;
1404 }
1405 
1406 
1407 static int aty128_pll_to_var(const struct aty128_pll *pll,
1408 			     struct fb_var_screeninfo *var)
1409 {
1410 	var->pixclock = 100000000 / pll->vclk;
1411 
1412 	return 0;
1413 }
1414 
1415 
1416 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1417 			    const struct aty128fb_par *par)
1418 {
1419 	aty_st_le32(DDA_CONFIG, dsp->dda_config);
1420 	aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1421 }
1422 
1423 
1424 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1425 			  const struct aty128_pll *pll,
1426 			  u32 depth,
1427 			  const struct aty128fb_par *par)
1428 {
1429 	const struct aty128_meminfo *m = par->mem;
1430 	u32 xclk = par->constants.xclk;
1431 	u32 fifo_width = par->constants.fifo_width;
1432 	u32 fifo_depth = par->constants.fifo_depth;
1433 	s32 x, b, p, ron, roff;
1434 	u32 n, d, bpp;
1435 
1436 	/* round up to multiple of 8 */
1437 	bpp = (depth+7) & ~7;
1438 
1439 	n = xclk * fifo_width;
1440 	d = pll->vclk * bpp;
1441 	x = round_div(n, d);
1442 
1443 	ron = 4 * m->MB +
1444 		3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1445 		2 * m->Trp +
1446 		m->Twr +
1447 		m->CL +
1448 		m->Tr2w +
1449 		x;
1450 
1451 	DBG("x %x\n", x);
1452 
1453 	b = 0;
1454 	while (x) {
1455 		x >>= 1;
1456 		b++;
1457 	}
1458 	p = b + 1;
1459 
1460 	ron <<= (11 - p);
1461 
1462 	n <<= (11 - p);
1463 	x = round_div(n, d);
1464 	roff = x * (fifo_depth - 4);
1465 
1466 	if ((ron + m->Rloop) >= roff) {
1467 		printk(KERN_ERR "aty128fb: Mode out of range!\n");
1468 		return -EINVAL;
1469 	}
1470 
1471 	DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1472 	    p, m->Rloop, x, ron, roff);
1473 
1474 	dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1475 	dsp->dda_on_off = ron << 16 | roff;
1476 
1477 	return 0;
1478 }
1479 
1480 
1481 /*
1482  * This actually sets the video mode.
1483  */
1484 static int aty128fb_set_par(struct fb_info *info)
1485 {
1486 	struct aty128fb_par *par = info->par;
1487 	u32 config;
1488 	int err;
1489 
1490 	if ((err = aty128_decode_var(&info->var, par)) != 0)
1491 		return err;
1492 
1493 	if (par->blitter_may_be_busy)
1494 		wait_for_idle(par);
1495 
1496 	/* clear all registers that may interfere with mode setting */
1497 	aty_st_le32(OVR_CLR, 0);
1498 	aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1499 	aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1500 	aty_st_le32(OV0_SCALE_CNTL, 0);
1501 	aty_st_le32(MPP_TB_CONFIG, 0);
1502 	aty_st_le32(MPP_GP_CONFIG, 0);
1503 	aty_st_le32(SUBPIC_CNTL, 0);
1504 	aty_st_le32(VIPH_CONTROL, 0);
1505 	aty_st_le32(I2C_CNTL_1, 0);         /* turn off i2c */
1506 	aty_st_le32(GEN_INT_CNTL, 0);	/* turn off interrupts */
1507 	aty_st_le32(CAP0_TRIG_CNTL, 0);
1508 	aty_st_le32(CAP1_TRIG_CNTL, 0);
1509 
1510 	aty_st_8(CRTC_EXT_CNTL + 1, 4);	/* turn video off */
1511 
1512 	aty128_set_crtc(&par->crtc, par);
1513 	aty128_set_pll(&par->pll, par);
1514 	aty128_set_fifo(&par->fifo_reg, par);
1515 
1516 	config = aty_ld_le32(CNFG_CNTL) & ~3;
1517 
1518 #if defined(__BIG_ENDIAN)
1519 	if (par->crtc.bpp == 32)
1520 		config |= 2;	/* make aperture do 32 bit swapping */
1521 	else if (par->crtc.bpp == 16)
1522 		config |= 1;	/* make aperture do 16 bit swapping */
1523 #endif
1524 
1525 	aty_st_le32(CNFG_CNTL, config);
1526 	aty_st_8(CRTC_EXT_CNTL + 1, 0);	/* turn the video back on */
1527 
1528 	info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1529 	info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1530 		: FB_VISUAL_DIRECTCOLOR;
1531 
1532 	if (par->chip_gen == rage_M3) {
1533 		aty128_set_crt_enable(par, par->crt_on);
1534 		aty128_set_lcd_enable(par, par->lcd_on);
1535 	}
1536 	if (par->accel_flags & FB_ACCELF_TEXT)
1537 		aty128_init_engine(par);
1538 
1539 #ifdef CONFIG_BOOTX_TEXT
1540 	btext_update_display(info->fix.smem_start,
1541 			     (((par->crtc.h_total>>16) & 0xff)+1)*8,
1542 			     ((par->crtc.v_total>>16) & 0x7ff)+1,
1543 			     par->crtc.bpp,
1544 			     par->crtc.vxres*par->crtc.bpp/8);
1545 #endif /* CONFIG_BOOTX_TEXT */
1546 
1547 	return 0;
1548 }
1549 
1550 /*
1551  *  encode/decode the User Defined Part of the Display
1552  */
1553 
1554 static int aty128_decode_var(struct fb_var_screeninfo *var,
1555 			     struct aty128fb_par *par)
1556 {
1557 	int err;
1558 	struct aty128_crtc crtc;
1559 	struct aty128_pll pll;
1560 	struct aty128_ddafifo fifo_reg;
1561 
1562 	if ((err = aty128_var_to_crtc(var, &crtc, par)))
1563 		return err;
1564 
1565 	if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1566 		return err;
1567 
1568 	if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1569 		return err;
1570 
1571 	par->crtc = crtc;
1572 	par->pll = pll;
1573 	par->fifo_reg = fifo_reg;
1574 	par->accel_flags = var->accel_flags;
1575 
1576 	return 0;
1577 }
1578 
1579 
1580 static int aty128_encode_var(struct fb_var_screeninfo *var,
1581 			     const struct aty128fb_par *par)
1582 {
1583 	int err;
1584 
1585 	if ((err = aty128_crtc_to_var(&par->crtc, var)))
1586 		return err;
1587 
1588 	if ((err = aty128_pll_to_var(&par->pll, var)))
1589 		return err;
1590 
1591 	var->nonstd = 0;
1592 	var->activate = 0;
1593 
1594 	var->height = -1;
1595 	var->width = -1;
1596 	var->accel_flags = par->accel_flags;
1597 
1598 	return 0;
1599 }
1600 
1601 
1602 static int aty128fb_check_var(struct fb_var_screeninfo *var,
1603 			      struct fb_info *info)
1604 {
1605 	struct aty128fb_par par;
1606 	int err;
1607 
1608 	par = *(struct aty128fb_par *)info->par;
1609 	if ((err = aty128_decode_var(var, &par)) != 0)
1610 		return err;
1611 	aty128_encode_var(var, &par);
1612 	return 0;
1613 }
1614 
1615 
1616 /*
1617  *  Pan or Wrap the Display
1618  */
1619 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
1620 				struct fb_info *fb)
1621 {
1622 	struct aty128fb_par *par = fb->par;
1623 	u32 xoffset, yoffset;
1624 	u32 offset;
1625 	u32 xres, yres;
1626 
1627 	xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1628 	yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1629 
1630 	xoffset = (var->xoffset +7) & ~7;
1631 	yoffset = var->yoffset;
1632 
1633 	if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1634 		return -EINVAL;
1635 
1636 	par->crtc.xoffset = xoffset;
1637 	par->crtc.yoffset = yoffset;
1638 
1639 	offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3))
1640 									  & ~7;
1641 
1642 	if (par->crtc.bpp == 24)
1643 		offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1644 
1645 	aty_st_le32(CRTC_OFFSET, offset);
1646 
1647 	return 0;
1648 }
1649 
1650 
1651 /*
1652  *  Helper function to store a single palette register
1653  */
1654 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1655 			  struct aty128fb_par *par)
1656 {
1657 	if (par->chip_gen == rage_M3) {
1658 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) &
1659 			    ~DAC_PALETTE_ACCESS_CNTL);
1660 	}
1661 
1662 	aty_st_8(PALETTE_INDEX, regno);
1663 	aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1664 }
1665 
1666 static int aty128fb_sync(struct fb_info *info)
1667 {
1668 	struct aty128fb_par *par = info->par;
1669 
1670 	if (par->blitter_may_be_busy)
1671 		wait_for_idle(par);
1672 	return 0;
1673 }
1674 
1675 #ifndef MODULE
1676 static int aty128fb_setup(char *options)
1677 {
1678 	char *this_opt;
1679 
1680 	if (!options || !*options)
1681 		return 0;
1682 
1683 	while ((this_opt = strsep(&options, ",")) != NULL) {
1684 		if (!strncmp(this_opt, "lcd:", 4)) {
1685 			default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1686 			continue;
1687 		} else if (!strncmp(this_opt, "crt:", 4)) {
1688 			default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1689 			continue;
1690 		} else if (!strncmp(this_opt, "backlight:", 10)) {
1691 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1692 			backlight = simple_strtoul(this_opt+10, NULL, 0);
1693 #endif
1694 			continue;
1695 		}
1696 		if(!strncmp(this_opt, "nomtrr", 6)) {
1697 			mtrr = false;
1698 			continue;
1699 		}
1700 #ifdef CONFIG_PPC_PMAC
1701 		/* vmode and cmode deprecated */
1702 		if (!strncmp(this_opt, "vmode:", 6)) {
1703 			unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1704 			if (vmode > 0 && vmode <= VMODE_MAX)
1705 				default_vmode = vmode;
1706 			continue;
1707 		} else if (!strncmp(this_opt, "cmode:", 6)) {
1708 			unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1709 			switch (cmode) {
1710 			case 0:
1711 			case 8:
1712 				default_cmode = CMODE_8;
1713 				break;
1714 			case 15:
1715 			case 16:
1716 				default_cmode = CMODE_16;
1717 				break;
1718 			case 24:
1719 			case 32:
1720 				default_cmode = CMODE_32;
1721 				break;
1722 			}
1723 			continue;
1724 		}
1725 #endif /* CONFIG_PPC_PMAC */
1726 		mode_option = this_opt;
1727 	}
1728 	return 0;
1729 }
1730 #endif  /*  MODULE  */
1731 
1732 /* Backlight */
1733 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1734 #define MAX_LEVEL 0xFF
1735 
1736 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1737 		int level)
1738 {
1739 	struct fb_info *info = pci_get_drvdata(par->pdev);
1740 	int atylevel;
1741 
1742 	/* Get and convert the value */
1743 	/* No locking of bl_curve since we read a single value */
1744 	atylevel = MAX_LEVEL -
1745 		(info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1746 
1747 	if (atylevel < 0)
1748 		atylevel = 0;
1749 	else if (atylevel > MAX_LEVEL)
1750 		atylevel = MAX_LEVEL;
1751 
1752 	return atylevel;
1753 }
1754 
1755 /* We turn off the LCD completely instead of just dimming the backlight.
1756  * This provides greater power saving and the display is useless without
1757  * backlight anyway
1758  */
1759 #define BACKLIGHT_LVDS_OFF
1760 /* That one prevents proper CRT output with LCD off */
1761 #undef BACKLIGHT_DAC_OFF
1762 
1763 static int aty128_bl_update_status(struct backlight_device *bd)
1764 {
1765 	struct aty128fb_par *par = bl_get_data(bd);
1766 	unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1767 	int level;
1768 
1769 	if (bd->props.power != FB_BLANK_UNBLANK ||
1770 	    bd->props.fb_blank != FB_BLANK_UNBLANK ||
1771 	    !par->lcd_on)
1772 		level = 0;
1773 	else
1774 		level = bd->props.brightness;
1775 
1776 	reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1777 	if (level > 0) {
1778 		reg |= LVDS_DIGION;
1779 		if (!(reg & LVDS_ON)) {
1780 			reg &= ~LVDS_BLON;
1781 			aty_st_le32(LVDS_GEN_CNTL, reg);
1782 			aty_ld_le32(LVDS_GEN_CNTL);
1783 			mdelay(10);
1784 			reg |= LVDS_BLON;
1785 			aty_st_le32(LVDS_GEN_CNTL, reg);
1786 		}
1787 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1788 		reg |= (aty128_bl_get_level_brightness(par, level) <<
1789 			LVDS_BL_MOD_LEVEL_SHIFT);
1790 #ifdef BACKLIGHT_LVDS_OFF
1791 		reg |= LVDS_ON | LVDS_EN;
1792 		reg &= ~LVDS_DISPLAY_DIS;
1793 #endif
1794 		aty_st_le32(LVDS_GEN_CNTL, reg);
1795 #ifdef BACKLIGHT_DAC_OFF
1796 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1797 #endif
1798 	} else {
1799 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1800 		reg |= (aty128_bl_get_level_brightness(par, 0) <<
1801 			LVDS_BL_MOD_LEVEL_SHIFT);
1802 #ifdef BACKLIGHT_LVDS_OFF
1803 		reg |= LVDS_DISPLAY_DIS;
1804 		aty_st_le32(LVDS_GEN_CNTL, reg);
1805 		aty_ld_le32(LVDS_GEN_CNTL);
1806 		udelay(10);
1807 		reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1808 #endif
1809 		aty_st_le32(LVDS_GEN_CNTL, reg);
1810 #ifdef BACKLIGHT_DAC_OFF
1811 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1812 #endif
1813 	}
1814 
1815 	return 0;
1816 }
1817 
1818 static const struct backlight_ops aty128_bl_data = {
1819 	.update_status	= aty128_bl_update_status,
1820 };
1821 
1822 static void aty128_bl_set_power(struct fb_info *info, int power)
1823 {
1824 	if (info->bl_dev) {
1825 		info->bl_dev->props.power = power;
1826 		backlight_update_status(info->bl_dev);
1827 	}
1828 }
1829 
1830 static void aty128_bl_init(struct aty128fb_par *par)
1831 {
1832 	struct backlight_properties props;
1833 	struct fb_info *info = pci_get_drvdata(par->pdev);
1834 	struct backlight_device *bd;
1835 	char name[12];
1836 
1837 	/* Could be extended to Rage128Pro LVDS output too */
1838 	if (par->chip_gen != rage_M3)
1839 		return;
1840 
1841 #ifdef CONFIG_PMAC_BACKLIGHT
1842 	if (!pmac_has_backlight_type("ati"))
1843 		return;
1844 #endif
1845 
1846 	snprintf(name, sizeof(name), "aty128bl%d", info->node);
1847 
1848 	memset(&props, 0, sizeof(struct backlight_properties));
1849 	props.type = BACKLIGHT_RAW;
1850 	props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1851 	bd = backlight_device_register(name, info->dev, par, &aty128_bl_data,
1852 				       &props);
1853 	if (IS_ERR(bd)) {
1854 		info->bl_dev = NULL;
1855 		printk(KERN_WARNING "aty128: Backlight registration failed\n");
1856 		goto error;
1857 	}
1858 
1859 	info->bl_dev = bd;
1860 	fb_bl_default_curve(info, 0,
1861 		 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1862 		219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1863 
1864 	bd->props.brightness = bd->props.max_brightness;
1865 	bd->props.power = FB_BLANK_UNBLANK;
1866 	backlight_update_status(bd);
1867 
1868 	printk("aty128: Backlight initialized (%s)\n", name);
1869 
1870 	return;
1871 
1872 error:
1873 	return;
1874 }
1875 
1876 static void aty128_bl_exit(struct backlight_device *bd)
1877 {
1878 	backlight_device_unregister(bd);
1879 	printk("aty128: Backlight unloaded\n");
1880 }
1881 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1882 
1883 /*
1884  *  Initialisation
1885  */
1886 
1887 #ifdef CONFIG_PPC_PMAC__disabled
1888 static void aty128_early_resume(void *data)
1889 {
1890         struct aty128fb_par *par = data;
1891 
1892 	if (!console_trylock())
1893 		return;
1894 	pci_restore_state(par->pdev);
1895 	aty128_do_resume(par->pdev);
1896 	console_unlock();
1897 }
1898 #endif /* CONFIG_PPC_PMAC */
1899 
1900 static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1901 {
1902 	struct fb_info *info = pci_get_drvdata(pdev);
1903 	struct aty128fb_par *par = info->par;
1904 	struct fb_var_screeninfo var;
1905 	char video_card[50];
1906 	u8 chip_rev;
1907 	u32 dac;
1908 
1909 	/* Get the chip revision */
1910 	chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1911 
1912 	strcpy(video_card, "Rage128 XX ");
1913 	video_card[8] = ent->device >> 8;
1914 	video_card[9] = ent->device & 0xFF;
1915 
1916 	/* range check to make sure */
1917 	if (ent->driver_data < ARRAY_SIZE(r128_family))
1918 		strlcat(video_card, r128_family[ent->driver_data],
1919 			sizeof(video_card));
1920 
1921 	printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1922 
1923 	if (par->vram_size % (1024 * 1024) == 0)
1924 		printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1925 	else
1926 		printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1927 
1928 	par->chip_gen = ent->driver_data;
1929 
1930 	/* fill in info */
1931 	info->fbops = &aty128fb_ops;
1932 	info->flags = FBINFO_FLAG_DEFAULT;
1933 
1934 	par->lcd_on = default_lcd_on;
1935 	par->crt_on = default_crt_on;
1936 
1937 	var = default_var;
1938 #ifdef CONFIG_PPC_PMAC
1939 	if (machine_is(powermac)) {
1940 		/* Indicate sleep capability */
1941 		if (par->chip_gen == rage_M3) {
1942 			pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1943 #if 0 /* Disable the early video resume hack for now as it's causing problems,
1944        * among others we now rely on the PCI core restoring the config space
1945        * for us, which isn't the case with that hack, and that code path causes
1946        * various things to be called with interrupts off while they shouldn't.
1947        * I'm leaving the code in as it can be useful for debugging purposes
1948        */
1949 			pmac_set_early_video_resume(aty128_early_resume, par);
1950 #endif
1951 		}
1952 
1953 		/* Find default mode */
1954 		if (mode_option) {
1955 			if (!mac_find_mode(&var, info, mode_option, 8))
1956 				var = default_var;
1957 		} else {
1958 			if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1959 				default_vmode = VMODE_1024_768_60;
1960 
1961 			/* iMacs need that resolution
1962 			 * PowerMac2,1 first r128 iMacs
1963 			 * PowerMac2,2 summer 2000 iMacs
1964 			 * PowerMac4,1 january 2001 iMacs "flower power"
1965 			 */
1966 			if (of_machine_is_compatible("PowerMac2,1") ||
1967 			    of_machine_is_compatible("PowerMac2,2") ||
1968 			    of_machine_is_compatible("PowerMac4,1"))
1969 				default_vmode = VMODE_1024_768_75;
1970 
1971 			/* iBook SE */
1972 			if (of_machine_is_compatible("PowerBook2,2"))
1973 				default_vmode = VMODE_800_600_60;
1974 
1975 			/* PowerBook Firewire (Pismo), iBook Dual USB */
1976 			if (of_machine_is_compatible("PowerBook3,1") ||
1977 			    of_machine_is_compatible("PowerBook4,1"))
1978 				default_vmode = VMODE_1024_768_60;
1979 
1980 			/* PowerBook Titanium */
1981 			if (of_machine_is_compatible("PowerBook3,2"))
1982 				default_vmode = VMODE_1152_768_60;
1983 
1984 			if (default_cmode > 16)
1985 				default_cmode = CMODE_32;
1986 			else if (default_cmode > 8)
1987 				default_cmode = CMODE_16;
1988 			else
1989 				default_cmode = CMODE_8;
1990 
1991 			if (mac_vmode_to_var(default_vmode, default_cmode, &var))
1992 				var = default_var;
1993 		}
1994 	} else
1995 #endif /* CONFIG_PPC_PMAC */
1996 	{
1997 		if (mode_option)
1998 			if (fb_find_mode(&var, info, mode_option, NULL,
1999 					 0, &defaultmode, 8) == 0)
2000 				var = default_var;
2001 	}
2002 
2003 	var.accel_flags &= ~FB_ACCELF_TEXT;
2004 //	var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
2005 
2006 	if (aty128fb_check_var(&var, info)) {
2007 		printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
2008 		return 0;
2009 	}
2010 
2011 	/* setup the DAC the way we like it */
2012 	dac = aty_ld_le32(DAC_CNTL);
2013 	dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2014 	dac |= DAC_MASK;
2015 	if (par->chip_gen == rage_M3)
2016 		dac |= DAC_PALETTE2_SNOOP_EN;
2017 	aty_st_le32(DAC_CNTL, dac);
2018 
2019 	/* turn off bus mastering, just in case */
2020 	aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2021 
2022 	info->var = var;
2023 	fb_alloc_cmap(&info->cmap, 256, 0);
2024 
2025 	var.activate = FB_ACTIVATE_NOW;
2026 
2027 	aty128_init_engine(par);
2028 
2029 	par->pdev = pdev;
2030 	par->asleep = 0;
2031 	par->lock_blank = 0;
2032 
2033 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2034 	if (backlight)
2035 		aty128_bl_init(par);
2036 #endif
2037 
2038 	if (register_framebuffer(info) < 0)
2039 		return 0;
2040 
2041 	fb_info(info, "%s frame buffer device on %s\n",
2042 		info->fix.id, video_card);
2043 
2044 	return 1;	/* success! */
2045 }
2046 
2047 #ifdef CONFIG_PCI
2048 /* register a card    ++ajoshi */
2049 static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2050 {
2051 	unsigned long fb_addr, reg_addr;
2052 	struct aty128fb_par *par;
2053 	struct fb_info *info;
2054 	int err;
2055 #ifndef __sparc__
2056 	void __iomem *bios = NULL;
2057 #endif
2058 
2059 	err = aperture_remove_conflicting_pci_devices(pdev, "aty128fb");
2060 	if (err)
2061 		return err;
2062 
2063 	/* Enable device in PCI config */
2064 	if ((err = pci_enable_device(pdev))) {
2065 		printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2066 				err);
2067 		return -ENODEV;
2068 	}
2069 
2070 	fb_addr = pci_resource_start(pdev, 0);
2071 	if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2072 				"aty128fb FB")) {
2073 		printk(KERN_ERR "aty128fb: cannot reserve frame "
2074 				"buffer memory\n");
2075 		return -ENODEV;
2076 	}
2077 
2078 	reg_addr = pci_resource_start(pdev, 2);
2079 	if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2080 				"aty128fb MMIO")) {
2081 		printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2082 		goto err_free_fb;
2083 	}
2084 
2085 	/* We have the resources. Now virtualize them */
2086 	info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2087 	if (!info)
2088 		goto err_free_mmio;
2089 
2090 	par = info->par;
2091 
2092 	info->pseudo_palette = par->pseudo_palette;
2093 
2094 	/* Virtualize mmio region */
2095 	info->fix.mmio_start = reg_addr;
2096 	par->regbase = pci_ioremap_bar(pdev, 2);
2097 	if (!par->regbase)
2098 		goto err_free_info;
2099 
2100 	/* Grab memory size from the card */
2101 	// How does this relate to the resource length from the PCI hardware?
2102 	par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2103 
2104 	/* Virtualize the framebuffer */
2105 	info->screen_base = ioremap_wc(fb_addr, par->vram_size);
2106 	if (!info->screen_base)
2107 		goto err_unmap_out;
2108 
2109 	/* Set up info->fix */
2110 	info->fix = aty128fb_fix;
2111 	info->fix.smem_start = fb_addr;
2112 	info->fix.smem_len = par->vram_size;
2113 	info->fix.mmio_start = reg_addr;
2114 
2115 	/* If we can't test scratch registers, something is seriously wrong */
2116 	if (!register_test(par)) {
2117 		printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2118 		goto err_out;
2119 	}
2120 
2121 #ifndef __sparc__
2122 	bios = aty128_map_ROM(par, pdev);
2123 #ifdef CONFIG_X86
2124 	if (bios == NULL)
2125 		bios = aty128_find_mem_vbios(par);
2126 #endif
2127 	if (bios == NULL)
2128 		printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2129 	else {
2130 		printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2131 		aty128_get_pllinfo(par, bios);
2132 		pci_unmap_rom(pdev, bios);
2133 	}
2134 #endif /* __sparc__ */
2135 
2136 	aty128_timings(par);
2137 	pci_set_drvdata(pdev, info);
2138 
2139 	if (!aty128_init(pdev, ent))
2140 		goto err_out;
2141 
2142 	if (mtrr)
2143 		par->wc_cookie = arch_phys_wc_add(info->fix.smem_start,
2144 						  par->vram_size);
2145 	return 0;
2146 
2147 err_out:
2148 	iounmap(info->screen_base);
2149 err_unmap_out:
2150 	iounmap(par->regbase);
2151 err_free_info:
2152 	framebuffer_release(info);
2153 err_free_mmio:
2154 	release_mem_region(pci_resource_start(pdev, 2),
2155 			pci_resource_len(pdev, 2));
2156 err_free_fb:
2157 	release_mem_region(pci_resource_start(pdev, 0),
2158 			pci_resource_len(pdev, 0));
2159 	return -ENODEV;
2160 }
2161 
2162 static void aty128_remove(struct pci_dev *pdev)
2163 {
2164 	struct fb_info *info = pci_get_drvdata(pdev);
2165 	struct aty128fb_par *par;
2166 
2167 	if (!info)
2168 		return;
2169 
2170 	par = info->par;
2171 
2172 	unregister_framebuffer(info);
2173 
2174 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2175 	aty128_bl_exit(info->bl_dev);
2176 #endif
2177 
2178 	arch_phys_wc_del(par->wc_cookie);
2179 	iounmap(par->regbase);
2180 	iounmap(info->screen_base);
2181 
2182 	release_mem_region(pci_resource_start(pdev, 0),
2183 			   pci_resource_len(pdev, 0));
2184 	release_mem_region(pci_resource_start(pdev, 2),
2185 			   pci_resource_len(pdev, 2));
2186 	framebuffer_release(info);
2187 }
2188 #endif /* CONFIG_PCI */
2189 
2190 
2191 
2192     /*
2193      *  Blank the display.
2194      */
2195 static int aty128fb_blank(int blank, struct fb_info *fb)
2196 {
2197 	struct aty128fb_par *par = fb->par;
2198 	u8 state;
2199 
2200 	if (par->lock_blank || par->asleep)
2201 		return 0;
2202 
2203 	switch (blank) {
2204 	case FB_BLANK_NORMAL:
2205 		state = 4;
2206 		break;
2207 	case FB_BLANK_VSYNC_SUSPEND:
2208 		state = 6;
2209 		break;
2210 	case FB_BLANK_HSYNC_SUSPEND:
2211 		state = 5;
2212 		break;
2213 	case FB_BLANK_POWERDOWN:
2214 		state = 7;
2215 		break;
2216 	case FB_BLANK_UNBLANK:
2217 	default:
2218 		state = 0;
2219 		break;
2220 	}
2221 	aty_st_8(CRTC_EXT_CNTL+1, state);
2222 
2223 	if (par->chip_gen == rage_M3) {
2224 		aty128_set_crt_enable(par, par->crt_on && !blank);
2225 		aty128_set_lcd_enable(par, par->lcd_on && !blank);
2226 	}
2227 
2228 	return 0;
2229 }
2230 
2231 /*
2232  *  Set a single color register. The values supplied are already
2233  *  rounded down to the hardware's capabilities (according to the
2234  *  entries in the var structure). Return != 0 for invalid regno.
2235  */
2236 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2237 			      u_int transp, struct fb_info *info)
2238 {
2239 	struct aty128fb_par *par = info->par;
2240 
2241 	if (regno > 255
2242 	    || (par->crtc.depth == 16 && regno > 63)
2243 	    || (par->crtc.depth == 15 && regno > 31))
2244 		return 1;
2245 
2246 	red >>= 8;
2247 	green >>= 8;
2248 	blue >>= 8;
2249 
2250 	if (regno < 16) {
2251 		int i;
2252 		u32 *pal = info->pseudo_palette;
2253 
2254 		switch (par->crtc.depth) {
2255 		case 15:
2256 			pal[regno] = (regno << 10) | (regno << 5) | regno;
2257 			break;
2258 		case 16:
2259 			pal[regno] = (regno << 11) | (regno << 6) | regno;
2260 			break;
2261 		case 24:
2262 			pal[regno] = (regno << 16) | (regno << 8) | regno;
2263 			break;
2264 		case 32:
2265 			i = (regno << 8) | regno;
2266 			pal[regno] = (i << 16) | i;
2267 			break;
2268 		}
2269 	}
2270 
2271 	if (par->crtc.depth == 16 && regno > 0) {
2272 		/*
2273 		 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2274 		 * have 32 slots for R and B values but 64 slots for G values.
2275 		 * Thus the R and B values go in one slot but the G value
2276 		 * goes in a different slot, and we have to avoid disturbing
2277 		 * the other fields in the slots we touch.
2278 		 */
2279 		par->green[regno] = green;
2280 		if (regno < 32) {
2281 			par->red[regno] = red;
2282 			par->blue[regno] = blue;
2283 			aty128_st_pal(regno * 8, red, par->green[regno*2],
2284 				      blue, par);
2285 		}
2286 		red = par->red[regno/2];
2287 		blue = par->blue[regno/2];
2288 		regno <<= 2;
2289 	} else if (par->crtc.bpp == 16)
2290 		regno <<= 3;
2291 	aty128_st_pal(regno, red, green, blue, par);
2292 
2293 	return 0;
2294 }
2295 
2296 #define ATY_MIRROR_LCD_ON	0x00000001
2297 #define ATY_MIRROR_CRT_ON	0x00000002
2298 
2299 /* out param: u32*	backlight value: 0 to 15 */
2300 #define FBIO_ATY128_GET_MIRROR	_IOR('@', 1, __u32)
2301 /* in param: u32*	backlight value: 0 to 15 */
2302 #define FBIO_ATY128_SET_MIRROR	_IOW('@', 2, __u32)
2303 
2304 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2305 {
2306 	struct aty128fb_par *par = info->par;
2307 	u32 value;
2308 	int rc;
2309 
2310 	switch (cmd) {
2311 	case FBIO_ATY128_SET_MIRROR:
2312 		if (par->chip_gen != rage_M3)
2313 			return -EINVAL;
2314 		rc = get_user(value, (__u32 __user *)arg);
2315 		if (rc)
2316 			return rc;
2317 		par->lcd_on = (value & 0x01) != 0;
2318 		par->crt_on = (value & 0x02) != 0;
2319 		if (!par->crt_on && !par->lcd_on)
2320 			par->lcd_on = 1;
2321 		aty128_set_crt_enable(par, par->crt_on);
2322 		aty128_set_lcd_enable(par, par->lcd_on);
2323 		return 0;
2324 	case FBIO_ATY128_GET_MIRROR:
2325 		if (par->chip_gen != rage_M3)
2326 			return -EINVAL;
2327 		value = (par->crt_on << 1) | par->lcd_on;
2328 		return put_user(value, (__u32 __user *)arg);
2329 	}
2330 	return -EINVAL;
2331 }
2332 
2333 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2334 {
2335 	u32	pmgt;
2336 
2337 	if (!par->pdev->pm_cap)
2338 		return;
2339 
2340 	/* Set the chip into the appropriate suspend mode (we use D2,
2341 	 * D3 would require a complete re-initialisation of the chip,
2342 	 * including PCI config registers, clocks, AGP configuration, ...)
2343 	 *
2344 	 * For resume, the core will have already brought us back to D0
2345 	 */
2346 	if (suspend) {
2347 		/* Make sure CRTC2 is reset. Remove that the day we decide to
2348 		 * actually use CRTC2 and replace it with real code for disabling
2349 		 * the CRTC2 output during sleep
2350 		 */
2351 		aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2352 			~(CRTC2_EN));
2353 
2354 		/* Set the power management mode to be PCI based */
2355 		/* Use this magic value for now */
2356 		pmgt = 0x0c005407;
2357 		aty_st_pll(POWER_MANAGEMENT, pmgt);
2358 		(void)aty_ld_pll(POWER_MANAGEMENT);
2359 		aty_st_le32(BUS_CNTL1, 0x00000010);
2360 		aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2361 		msleep(100);
2362 	}
2363 }
2364 
2365 static int aty128_pci_suspend_late(struct device *dev, pm_message_t state)
2366 {
2367 	struct pci_dev *pdev = to_pci_dev(dev);
2368 	struct fb_info *info = pci_get_drvdata(pdev);
2369 	struct aty128fb_par *par = info->par;
2370 
2371 	/* We don't do anything but D2, for now we return 0, but
2372 	 * we may want to change that. How do we know if the BIOS
2373 	 * can properly take care of D3 ? Also, with swsusp, we
2374 	 * know we'll be rebooted, ...
2375 	 */
2376 #ifndef CONFIG_PPC_PMAC
2377 	/* HACK ALERT ! Once I find a proper way to say to each driver
2378 	 * individually what will happen with it's PCI slot, I'll change
2379 	 * that. On laptops, the AGP slot is just unclocked, so D2 is
2380 	 * expected, while on desktops, the card is powered off
2381 	 */
2382 	return 0;
2383 #endif /* CONFIG_PPC_PMAC */
2384 
2385 	if (state.event == pdev->dev.power.power_state.event)
2386 		return 0;
2387 
2388 	printk(KERN_DEBUG "aty128fb: suspending...\n");
2389 
2390 	console_lock();
2391 
2392 	fb_set_suspend(info, 1);
2393 
2394 	/* Make sure engine is reset */
2395 	wait_for_idle(par);
2396 	aty128_reset_engine(par);
2397 	wait_for_idle(par);
2398 
2399 	/* Blank display and LCD */
2400 	aty128fb_blank(FB_BLANK_POWERDOWN, info);
2401 
2402 	/* Sleep */
2403 	par->asleep = 1;
2404 	par->lock_blank = 1;
2405 
2406 #ifdef CONFIG_PPC_PMAC
2407 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2408 	 * use them here. We'll ultimately need some generic support here,
2409 	 * but the generic code isn't quite ready for that yet
2410 	 */
2411 	pmac_suspend_agp_for_card(pdev);
2412 #endif /* CONFIG_PPC_PMAC */
2413 
2414 	/* We need a way to make sure the fbdev layer will _not_ touch the
2415 	 * framebuffer before we put the chip to suspend state. On 2.4, I
2416 	 * used dummy fb ops, 2.5 need proper support for this at the
2417 	 * fbdev level
2418 	 */
2419 	if (state.event != PM_EVENT_ON)
2420 		aty128_set_suspend(par, 1);
2421 
2422 	console_unlock();
2423 
2424 	pdev->dev.power.power_state = state;
2425 
2426 	return 0;
2427 }
2428 
2429 static int __maybe_unused aty128_pci_suspend(struct device *dev)
2430 {
2431 	return aty128_pci_suspend_late(dev, PMSG_SUSPEND);
2432 }
2433 
2434 static int __maybe_unused aty128_pci_hibernate(struct device *dev)
2435 {
2436 	return aty128_pci_suspend_late(dev, PMSG_HIBERNATE);
2437 }
2438 
2439 static int __maybe_unused aty128_pci_freeze(struct device *dev)
2440 {
2441 	return aty128_pci_suspend_late(dev, PMSG_FREEZE);
2442 }
2443 
2444 static int aty128_do_resume(struct pci_dev *pdev)
2445 {
2446 	struct fb_info *info = pci_get_drvdata(pdev);
2447 	struct aty128fb_par *par = info->par;
2448 
2449 	if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2450 		return 0;
2451 
2452 	/* PCI state will have been restored by the core, so
2453 	 * we should be in D0 now with our config space fully
2454 	 * restored
2455 	 */
2456 
2457 	/* Wakeup chip */
2458 	aty128_set_suspend(par, 0);
2459 	par->asleep = 0;
2460 
2461 	/* Restore display & engine */
2462 	aty128_reset_engine(par);
2463 	wait_for_idle(par);
2464 	aty128fb_set_par(info);
2465 	fb_pan_display(info, &info->var);
2466 	fb_set_cmap(&info->cmap, info);
2467 
2468 	/* Refresh */
2469 	fb_set_suspend(info, 0);
2470 
2471 	/* Unblank */
2472 	par->lock_blank = 0;
2473 	aty128fb_blank(0, info);
2474 
2475 #ifdef CONFIG_PPC_PMAC
2476 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2477 	 * use them here. We'll ultimately need some generic support here,
2478 	 * but the generic code isn't quite ready for that yet
2479 	 */
2480 	pmac_resume_agp_for_card(pdev);
2481 #endif /* CONFIG_PPC_PMAC */
2482 
2483 	pdev->dev.power.power_state = PMSG_ON;
2484 
2485 	printk(KERN_DEBUG "aty128fb: resumed !\n");
2486 
2487 	return 0;
2488 }
2489 
2490 static int __maybe_unused aty128_pci_resume(struct device *dev)
2491 {
2492 	int rc;
2493 
2494 	console_lock();
2495 	rc = aty128_do_resume(to_pci_dev(dev));
2496 	console_unlock();
2497 
2498 	return rc;
2499 }
2500 
2501 
2502 static int aty128fb_init(void)
2503 {
2504 #ifndef MODULE
2505 	char *option = NULL;
2506 #endif
2507 
2508 	if (fb_modesetting_disabled("aty128fb"))
2509 		return -ENODEV;
2510 
2511 #ifndef MODULE
2512 	if (fb_get_options("aty128fb", &option))
2513 		return -ENODEV;
2514 	aty128fb_setup(option);
2515 #endif
2516 
2517 	return pci_register_driver(&aty128fb_driver);
2518 }
2519 
2520 static void __exit aty128fb_exit(void)
2521 {
2522 	pci_unregister_driver(&aty128fb_driver);
2523 }
2524 
2525 module_init(aty128fb_init);
2526 
2527 module_exit(aty128fb_exit);
2528 
2529 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2530 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2531 MODULE_LICENSE("GPL");
2532 module_param(mode_option, charp, 0);
2533 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2534 module_param_named(nomtrr, mtrr, invbool, 0);
2535 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2536