xref: /openbmc/linux/drivers/video/fbdev/aty/aty128fb.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
3  *  linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
4  *
5  *  Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
6  *  Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
7  *
8  *                Ani Joshi / Jeff Garzik
9  *                      - Code cleanup
10  *
11  *                Michel Danzer <michdaen@iiic.ethz.ch>
12  *                      - 15/16 bit cleanup
13  *                      - fix panning
14  *
15  *                Benjamin Herrenschmidt
16  *                      - pmac-specific PM stuff
17  *			- various fixes & cleanups
18  *
19  *                Andreas Hundt <andi@convergence.de>
20  *                      - FB_ACTIVATE fixes
21  *
22  *		  Paul Mackerras <paulus@samba.org>
23  *			- Convert to new framebuffer API,
24  *			  fix colormap setting at 16 bits/pixel (565)
25  *
26  *		  Paul Mundt
27  *		  	- PCI hotplug
28  *
29  *		  Jon Smirl <jonsmirl@yahoo.com>
30  * 			- PCI ID update
31  * 			- replace ROM BIOS search
32  *
33  *  Based off of Geert's atyfb.c and vfb.c.
34  *
35  *  TODO:
36  *		- monitor sensing (DDC)
37  *              - virtual display
38  *		- other platform support (only ppc/x86 supported)
39  *		- hardware cursor support
40  *
41  *    Please cc: your patches to brad@neruo.com.
42  */
43 
44 /*
45  * A special note of gratitude to ATI's devrel for providing documentation,
46  * example code and hardware. Thanks Nitya.	-atong and brad
47  */
48 
49 
50 #include <linux/module.h>
51 #include <linux/moduleparam.h>
52 #include <linux/kernel.h>
53 #include <linux/errno.h>
54 #include <linux/string.h>
55 #include <linux/mm.h>
56 #include <linux/vmalloc.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/uaccess.h>
60 #include <linux/fb.h>
61 #include <linux/init.h>
62 #include <linux/pci.h>
63 #include <linux/ioport.h>
64 #include <linux/console.h>
65 #include <linux/backlight.h>
66 #include <asm/io.h>
67 
68 #ifdef CONFIG_PPC_PMAC
69 #include <asm/machdep.h>
70 #include <asm/pmac_feature.h>
71 #include <asm/prom.h>
72 #include "../macmodes.h"
73 #endif
74 
75 #ifdef CONFIG_PMAC_BACKLIGHT
76 #include <asm/backlight.h>
77 #endif
78 
79 #ifdef CONFIG_BOOTX_TEXT
80 #include <asm/btext.h>
81 #endif /* CONFIG_BOOTX_TEXT */
82 
83 #include <video/aty128.h>
84 
85 /* Debug flag */
86 #undef DEBUG
87 
88 #ifdef DEBUG
89 #define DBG(fmt, args...) \
90 	printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
91 #else
92 #define DBG(fmt, args...)
93 #endif
94 
95 #ifndef CONFIG_PPC_PMAC
96 /* default mode */
97 static const struct fb_var_screeninfo default_var = {
98 	/* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
99 	640, 480, 640, 480, 0, 0, 8, 0,
100 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
101 	0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
102 	0, FB_VMODE_NONINTERLACED
103 };
104 
105 #else /* CONFIG_PPC_PMAC */
106 /* default to 1024x768 at 75Hz on PPC - this will work
107  * on the iMac, the usual 640x480 @ 60Hz doesn't. */
108 static const struct fb_var_screeninfo default_var = {
109 	/* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
110 	1024, 768, 1024, 768, 0, 0, 8, 0,
111 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
112 	0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
113 	FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
114 	FB_VMODE_NONINTERLACED
115 };
116 #endif /* CONFIG_PPC_PMAC */
117 
118 /* default modedb mode */
119 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
120 static const struct fb_videomode defaultmode = {
121 	.refresh =	60,
122 	.xres =		640,
123 	.yres =		480,
124 	.pixclock =	39722,
125 	.left_margin =	48,
126 	.right_margin =	16,
127 	.upper_margin =	33,
128 	.lower_margin =	10,
129 	.hsync_len =	96,
130 	.vsync_len =	2,
131 	.sync =		0,
132 	.vmode =	FB_VMODE_NONINTERLACED
133 };
134 
135 /* Chip generations */
136 enum {
137 	rage_128,
138 	rage_128_pci,
139 	rage_128_pro,
140 	rage_128_pro_pci,
141 	rage_M3,
142 	rage_M3_pci,
143 	rage_M4,
144 	rage_128_ultra,
145 };
146 
147 /* Must match above enum */
148 static char * const r128_family[] = {
149 	"AGP",
150 	"PCI",
151 	"PRO AGP",
152 	"PRO PCI",
153 	"M3 AGP",
154 	"M3 PCI",
155 	"M4 AGP",
156 	"Ultra AGP",
157 };
158 
159 /*
160  * PCI driver prototypes
161  */
162 static int aty128_probe(struct pci_dev *pdev,
163                                const struct pci_device_id *ent);
164 static void aty128_remove(struct pci_dev *pdev);
165 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
166 static int aty128_pci_resume(struct pci_dev *pdev);
167 static int aty128_do_resume(struct pci_dev *pdev);
168 
169 /* supported Rage128 chipsets */
170 static const struct pci_device_id aty128_pci_tbl[] = {
171 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
172 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
173 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
174 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
175 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
176 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
177 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
178 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
179 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
180 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
181 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
182 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
183 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
184 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
185 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
186 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
187 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
188 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
189 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
190 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
191 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
192 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
193 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
194 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
195 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
196 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
197 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
198 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
199 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
200 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
201 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
202 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
203 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
204 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
205 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
206 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
207 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
208 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
209 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
210 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
211 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
212 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
213 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
214 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
215 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
216 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
217 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
218 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
219 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
220 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
221 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
222 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
223 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
224 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
225 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
226 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
227 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
228 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
229 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
230 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
231 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
232 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
233 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
234 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
235 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
236 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
237 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
238 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
239 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
240 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
241 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
242 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
243 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
244 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
245 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
246 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
247 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
248 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
249 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
250 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
251 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
252 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
253 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
254 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
255 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
256 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
257 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
258 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
259 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
260 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
261 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
262 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
263 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
264 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
265 	{ 0, }
266 };
267 
268 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
269 
270 static struct pci_driver aty128fb_driver = {
271 	.name		= "aty128fb",
272 	.id_table	= aty128_pci_tbl,
273 	.probe		= aty128_probe,
274 	.remove		= aty128_remove,
275 	.suspend	= aty128_pci_suspend,
276 	.resume		= aty128_pci_resume,
277 };
278 
279 /* packed BIOS settings */
280 #ifndef CONFIG_PPC
281 typedef struct {
282 	u8 clock_chip_type;
283 	u8 struct_size;
284 	u8 accelerator_entry;
285 	u8 VGA_entry;
286 	u16 VGA_table_offset;
287 	u16 POST_table_offset;
288 	u16 XCLK;
289 	u16 MCLK;
290 	u8 num_PLL_blocks;
291 	u8 size_PLL_blocks;
292 	u16 PCLK_ref_freq;
293 	u16 PCLK_ref_divider;
294 	u32 PCLK_min_freq;
295 	u32 PCLK_max_freq;
296 	u16 MCLK_ref_freq;
297 	u16 MCLK_ref_divider;
298 	u32 MCLK_min_freq;
299 	u32 MCLK_max_freq;
300 	u16 XCLK_ref_freq;
301 	u16 XCLK_ref_divider;
302 	u32 XCLK_min_freq;
303 	u32 XCLK_max_freq;
304 } __attribute__ ((packed)) PLL_BLOCK;
305 #endif /* !CONFIG_PPC */
306 
307 /* onboard memory information */
308 struct aty128_meminfo {
309 	u8 ML;
310 	u8 MB;
311 	u8 Trcd;
312 	u8 Trp;
313 	u8 Twr;
314 	u8 CL;
315 	u8 Tr2w;
316 	u8 LoopLatency;
317 	u8 DspOn;
318 	u8 Rloop;
319 	const char *name;
320 };
321 
322 /* various memory configurations */
323 static const struct aty128_meminfo sdr_128 = {
324 	.ML = 4,
325 	.MB = 4,
326 	.Trcd = 3,
327 	.Trp = 3,
328 	.Twr = 1,
329 	.CL = 3,
330 	.Tr2w = 1,
331 	.LoopLatency = 16,
332 	.DspOn = 30,
333 	.Rloop = 16,
334 	.name = "128-bit SDR SGRAM (1:1)",
335 };
336 
337 static const struct aty128_meminfo sdr_sgram = {
338 	.ML = 4,
339 	.MB = 4,
340 	.Trcd = 1,
341 	.Trp = 2,
342 	.Twr = 1,
343 	.CL = 2,
344 	.Tr2w = 1,
345 	.LoopLatency = 16,
346 	.DspOn = 24,
347 	.Rloop = 16,
348 	.name = "64-bit SDR SGRAM (2:1)",
349 };
350 
351 static const struct aty128_meminfo ddr_sgram = {
352 	.ML = 4,
353 	.MB = 4,
354 	.Trcd = 3,
355 	.Trp = 3,
356 	.Twr = 2,
357 	.CL = 3,
358 	.Tr2w = 1,
359 	.LoopLatency = 16,
360 	.DspOn = 31,
361 	.Rloop = 16,
362 	.name = "64-bit DDR SGRAM",
363 };
364 
365 static const struct fb_fix_screeninfo aty128fb_fix = {
366 	.id		= "ATY Rage128",
367 	.type		= FB_TYPE_PACKED_PIXELS,
368 	.visual		= FB_VISUAL_PSEUDOCOLOR,
369 	.xpanstep	= 8,
370 	.ypanstep	= 1,
371 	.mmio_len	= 0x2000,
372 	.accel		= FB_ACCEL_ATI_RAGE128,
373 };
374 
375 static char *mode_option = NULL;
376 
377 #ifdef CONFIG_PPC_PMAC
378 static int default_vmode = VMODE_1024_768_60;
379 static int default_cmode = CMODE_8;
380 #endif
381 
382 static int default_crt_on = 0;
383 static int default_lcd_on = 1;
384 static bool mtrr = true;
385 
386 #ifdef CONFIG_FB_ATY128_BACKLIGHT
387 static int backlight = IS_BUILTIN(CONFIG_PMAC_BACKLIGHT);
388 #endif
389 
390 /* PLL constants */
391 struct aty128_constants {
392 	u32 ref_clk;
393 	u32 ppll_min;
394 	u32 ppll_max;
395 	u32 ref_divider;
396 	u32 xclk;
397 	u32 fifo_width;
398 	u32 fifo_depth;
399 };
400 
401 struct aty128_crtc {
402 	u32 gen_cntl;
403 	u32 h_total, h_sync_strt_wid;
404 	u32 v_total, v_sync_strt_wid;
405 	u32 pitch;
406 	u32 offset, offset_cntl;
407 	u32 xoffset, yoffset;
408 	u32 vxres, vyres;
409 	u32 depth, bpp;
410 };
411 
412 struct aty128_pll {
413 	u32 post_divider;
414 	u32 feedback_divider;
415 	u32 vclk;
416 };
417 
418 struct aty128_ddafifo {
419 	u32 dda_config;
420 	u32 dda_on_off;
421 };
422 
423 /* register values for a specific mode */
424 struct aty128fb_par {
425 	struct aty128_crtc crtc;
426 	struct aty128_pll pll;
427 	struct aty128_ddafifo fifo_reg;
428 	u32 accel_flags;
429 	struct aty128_constants constants;  /* PLL and others      */
430 	void __iomem *regbase;              /* remapped mmio       */
431 	u32 vram_size;                      /* onboard video ram   */
432 	int chip_gen;
433 	const struct aty128_meminfo *mem;   /* onboard mem info    */
434 	int wc_cookie;
435 	int blitter_may_be_busy;
436 	int fifo_slots;                 /* free slots in FIFO (64 max) */
437 
438 	int crt_on, lcd_on;
439 	struct pci_dev *pdev;
440 	struct fb_info *next;
441 	int	asleep;
442 	int	lock_blank;
443 
444 	u8	red[32];		/* see aty128fb_setcolreg */
445 	u8	green[64];
446 	u8	blue[32];
447 	u32	pseudo_palette[16];	/* used for TRUECOLOR */
448 };
449 
450 
451 #define round_div(n, d) ((n+(d/2))/d)
452 
453 static int aty128fb_check_var(struct fb_var_screeninfo *var,
454 			      struct fb_info *info);
455 static int aty128fb_set_par(struct fb_info *info);
456 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
457 			      u_int transp, struct fb_info *info);
458 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
459 			   struct fb_info *fb);
460 static int aty128fb_blank(int blank, struct fb_info *fb);
461 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
462 static int aty128fb_sync(struct fb_info *info);
463 
464     /*
465      *  Internal routines
466      */
467 
468 static int aty128_encode_var(struct fb_var_screeninfo *var,
469                              const struct aty128fb_par *par);
470 static int aty128_decode_var(struct fb_var_screeninfo *var,
471                              struct aty128fb_par *par);
472 static void aty128_timings(struct aty128fb_par *par);
473 static void aty128_init_engine(struct aty128fb_par *par);
474 static void aty128_reset_engine(const struct aty128fb_par *par);
475 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
476 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
477 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
478 static void wait_for_idle(struct aty128fb_par *par);
479 static u32 depth_to_dst(u32 depth);
480 
481 #ifdef CONFIG_FB_ATY128_BACKLIGHT
482 static void aty128_bl_set_power(struct fb_info *info, int power);
483 #endif
484 
485 #define BIOS_IN8(v)  	(readb(bios + (v)))
486 #define BIOS_IN16(v) 	(readb(bios + (v)) | \
487 			  (readb(bios + (v) + 1) << 8))
488 #define BIOS_IN32(v) 	(readb(bios + (v)) | \
489 			  (readb(bios + (v) + 1) << 8) | \
490 			  (readb(bios + (v) + 2) << 16) | \
491 			  (readb(bios + (v) + 3) << 24))
492 
493 
494 static const struct fb_ops aty128fb_ops = {
495 	.owner		= THIS_MODULE,
496 	.fb_check_var	= aty128fb_check_var,
497 	.fb_set_par	= aty128fb_set_par,
498 	.fb_setcolreg	= aty128fb_setcolreg,
499 	.fb_pan_display = aty128fb_pan_display,
500 	.fb_blank	= aty128fb_blank,
501 	.fb_ioctl	= aty128fb_ioctl,
502 	.fb_sync	= aty128fb_sync,
503 	.fb_fillrect	= cfb_fillrect,
504 	.fb_copyarea	= cfb_copyarea,
505 	.fb_imageblit	= cfb_imageblit,
506 };
507 
508     /*
509      * Functions to read from/write to the mmio registers
510      *	- endian conversions may possibly be avoided by
511      *    using the other register aperture. TODO.
512      */
513 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
514 			       const struct aty128fb_par *par)
515 {
516 	return readl (par->regbase + regindex);
517 }
518 
519 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
520 				const struct aty128fb_par *par)
521 {
522 	writel (val, par->regbase + regindex);
523 }
524 
525 static inline u8 _aty_ld_8(unsigned int regindex,
526 			   const struct aty128fb_par *par)
527 {
528 	return readb (par->regbase + regindex);
529 }
530 
531 static inline void _aty_st_8(unsigned int regindex, u8 val,
532 			     const struct aty128fb_par *par)
533 {
534 	writeb (val, par->regbase + regindex);
535 }
536 
537 #define aty_ld_le32(regindex)		_aty_ld_le32(regindex, par)
538 #define aty_st_le32(regindex, val)	_aty_st_le32(regindex, val, par)
539 #define aty_ld_8(regindex)		_aty_ld_8(regindex, par)
540 #define aty_st_8(regindex, val)		_aty_st_8(regindex, val, par)
541 
542     /*
543      * Functions to read from/write to the pll registers
544      */
545 
546 #define aty_ld_pll(pll_index)		_aty_ld_pll(pll_index, par)
547 #define aty_st_pll(pll_index, val)	_aty_st_pll(pll_index, val, par)
548 
549 
550 static u32 _aty_ld_pll(unsigned int pll_index,
551 		       const struct aty128fb_par *par)
552 {
553 	aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
554 	return aty_ld_le32(CLOCK_CNTL_DATA);
555 }
556 
557 
558 static void _aty_st_pll(unsigned int pll_index, u32 val,
559 			const struct aty128fb_par *par)
560 {
561 	aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
562 	aty_st_le32(CLOCK_CNTL_DATA, val);
563 }
564 
565 
566 /* return true when the PLL has completed an atomic update */
567 static int aty_pll_readupdate(const struct aty128fb_par *par)
568 {
569 	return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
570 }
571 
572 
573 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
574 {
575 	unsigned long timeout = jiffies + HZ/100; // should be more than enough
576 	int reset = 1;
577 
578 	while (time_before(jiffies, timeout))
579 		if (aty_pll_readupdate(par)) {
580 			reset = 0;
581 			break;
582 		}
583 
584 	if (reset)	/* reset engine?? */
585 		printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
586 }
587 
588 
589 /* tell PLL to update */
590 static void aty_pll_writeupdate(const struct aty128fb_par *par)
591 {
592 	aty_pll_wait_readupdate(par);
593 
594 	aty_st_pll(PPLL_REF_DIV,
595 		   aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
596 }
597 
598 
599 /* write to the scratch register to test r/w functionality */
600 static int register_test(const struct aty128fb_par *par)
601 {
602 	u32 val;
603 	int flag = 0;
604 
605 	val = aty_ld_le32(BIOS_0_SCRATCH);
606 
607 	aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
608 	if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
609 		aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
610 
611 		if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
612 			flag = 1;
613 	}
614 
615 	aty_st_le32(BIOS_0_SCRATCH, val);	// restore value
616 	return flag;
617 }
618 
619 
620 /*
621  * Accelerator engine functions
622  */
623 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
624 {
625 	int i;
626 
627 	for (;;) {
628 		for (i = 0; i < 2000000; i++) {
629 			par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
630 			if (par->fifo_slots >= entries)
631 				return;
632 		}
633 		aty128_reset_engine(par);
634 	}
635 }
636 
637 
638 static void wait_for_idle(struct aty128fb_par *par)
639 {
640 	int i;
641 
642 	do_wait_for_fifo(64, par);
643 
644 	for (;;) {
645 		for (i = 0; i < 2000000; i++) {
646 			if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
647 				aty128_flush_pixel_cache(par);
648 				par->blitter_may_be_busy = 0;
649 				return;
650 			}
651 		}
652 		aty128_reset_engine(par);
653 	}
654 }
655 
656 
657 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
658 {
659 	if (par->fifo_slots < entries)
660 		do_wait_for_fifo(64, par);
661 	par->fifo_slots -= entries;
662 }
663 
664 
665 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
666 {
667 	int i;
668 	u32 tmp;
669 
670 	tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
671 	tmp &= ~(0x00ff);
672 	tmp |= 0x00ff;
673 	aty_st_le32(PC_NGUI_CTLSTAT, tmp);
674 
675 	for (i = 0; i < 2000000; i++)
676 		if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
677 			break;
678 }
679 
680 
681 static void aty128_reset_engine(const struct aty128fb_par *par)
682 {
683 	u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
684 
685 	aty128_flush_pixel_cache(par);
686 
687 	clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
688 	mclk_cntl = aty_ld_pll(MCLK_CNTL);
689 
690 	aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
691 
692 	gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
693 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
694 	aty_ld_le32(GEN_RESET_CNTL);
695 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
696 	aty_ld_le32(GEN_RESET_CNTL);
697 
698 	aty_st_pll(MCLK_CNTL, mclk_cntl);
699 	aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
700 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
701 
702 	/* use old pio mode */
703 	aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
704 
705 	DBG("engine reset");
706 }
707 
708 
709 static void aty128_init_engine(struct aty128fb_par *par)
710 {
711 	u32 pitch_value;
712 
713 	wait_for_idle(par);
714 
715 	/* 3D scaler not spoken here */
716 	wait_for_fifo(1, par);
717 	aty_st_le32(SCALE_3D_CNTL, 0x00000000);
718 
719 	aty128_reset_engine(par);
720 
721 	pitch_value = par->crtc.pitch;
722 	if (par->crtc.bpp == 24) {
723 		pitch_value = pitch_value * 3;
724 	}
725 
726 	wait_for_fifo(4, par);
727 	/* setup engine offset registers */
728 	aty_st_le32(DEFAULT_OFFSET, 0x00000000);
729 
730 	/* setup engine pitch registers */
731 	aty_st_le32(DEFAULT_PITCH, pitch_value);
732 
733 	/* set the default scissor register to max dimensions */
734 	aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
735 
736 	/* set the drawing controls registers */
737 	aty_st_le32(DP_GUI_MASTER_CNTL,
738 		    GMC_SRC_PITCH_OFFSET_DEFAULT		|
739 		    GMC_DST_PITCH_OFFSET_DEFAULT		|
740 		    GMC_SRC_CLIP_DEFAULT			|
741 		    GMC_DST_CLIP_DEFAULT			|
742 		    GMC_BRUSH_SOLIDCOLOR			|
743 		    (depth_to_dst(par->crtc.depth) << 8)	|
744 		    GMC_SRC_DSTCOLOR			|
745 		    GMC_BYTE_ORDER_MSB_TO_LSB		|
746 		    GMC_DP_CONVERSION_TEMP_6500		|
747 		    ROP3_PATCOPY				|
748 		    GMC_DP_SRC_RECT				|
749 		    GMC_3D_FCN_EN_CLR			|
750 		    GMC_DST_CLR_CMP_FCN_CLEAR		|
751 		    GMC_AUX_CLIP_CLEAR			|
752 		    GMC_WRITE_MASK_SET);
753 
754 	wait_for_fifo(8, par);
755 	/* clear the line drawing registers */
756 	aty_st_le32(DST_BRES_ERR, 0);
757 	aty_st_le32(DST_BRES_INC, 0);
758 	aty_st_le32(DST_BRES_DEC, 0);
759 
760 	/* set brush color registers */
761 	aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
762 	aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
763 
764 	/* set source color registers */
765 	aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF);   /* white */
766 	aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000);   /* black */
767 
768 	/* default write mask */
769 	aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
770 
771 	/* Wait for all the writes to be completed before returning */
772 	wait_for_idle(par);
773 }
774 
775 
776 /* convert depth values to their register representation */
777 static u32 depth_to_dst(u32 depth)
778 {
779 	if (depth <= 8)
780 		return DST_8BPP;
781 	else if (depth <= 15)
782 		return DST_15BPP;
783 	else if (depth == 16)
784 		return DST_16BPP;
785 	else if (depth <= 24)
786 		return DST_24BPP;
787 	else if (depth <= 32)
788 		return DST_32BPP;
789 
790 	return -EINVAL;
791 }
792 
793 /*
794  * PLL informations retreival
795  */
796 
797 
798 #ifndef __sparc__
799 static void __iomem *aty128_map_ROM(const struct aty128fb_par *par,
800 				    struct pci_dev *dev)
801 {
802 	u16 dptr;
803 	u8 rom_type;
804 	void __iomem *bios;
805 	size_t rom_size;
806 
807     	/* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
808     	unsigned int temp;
809 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
810 	temp &= 0x00ffffffu;
811 	temp |= 0x04 << 24;
812 	aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
813 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
814 
815 	bios = pci_map_rom(dev, &rom_size);
816 
817 	if (!bios) {
818 		printk(KERN_ERR "aty128fb: ROM failed to map\n");
819 		return NULL;
820 	}
821 
822 	/* Very simple test to make sure it appeared */
823 	if (BIOS_IN16(0) != 0xaa55) {
824 		printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
825 			" be 0xaa55\n", BIOS_IN16(0));
826 		goto failed;
827 	}
828 
829 	/* Look for the PCI data to check the ROM type */
830 	dptr = BIOS_IN16(0x18);
831 
832 	/* Check the PCI data signature. If it's wrong, we still assume a normal
833 	 * x86 ROM for now, until I've verified this works everywhere.
834 	 * The goal here is more to phase out Open Firmware images.
835 	 *
836 	 * Currently, we only look at the first PCI data, we could iteratre and
837 	 * deal with them all, and we should use fb_bios_start relative to start
838 	 * of image and not relative start of ROM, but so far, I never found a
839 	 * dual-image ATI card.
840 	 *
841 	 * typedef struct {
842 	 * 	u32	signature;	+ 0x00
843 	 * 	u16	vendor;		+ 0x04
844 	 * 	u16	device;		+ 0x06
845 	 * 	u16	reserved_1;	+ 0x08
846 	 * 	u16	dlen;		+ 0x0a
847 	 * 	u8	drevision;	+ 0x0c
848 	 * 	u8	class_hi;	+ 0x0d
849 	 * 	u16	class_lo;	+ 0x0e
850 	 * 	u16	ilen;		+ 0x10
851 	 * 	u16	irevision;	+ 0x12
852 	 * 	u8	type;		+ 0x14
853 	 * 	u8	indicator;	+ 0x15
854 	 * 	u16	reserved_2;	+ 0x16
855 	 * } pci_data_t;
856 	 */
857 	if (BIOS_IN32(dptr) !=  (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
858 		printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
859 		       BIOS_IN32(dptr));
860 		goto anyway;
861 	}
862 	rom_type = BIOS_IN8(dptr + 0x14);
863 	switch(rom_type) {
864 	case 0:
865 		printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
866 		break;
867 	case 1:
868 		printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
869 		goto failed;
870 	case 2:
871 		printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
872 		goto failed;
873 	default:
874 		printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n",
875 		       rom_type);
876 		goto failed;
877 	}
878  anyway:
879 	return bios;
880 
881  failed:
882 	pci_unmap_rom(dev, bios);
883 	return NULL;
884 }
885 
886 static void aty128_get_pllinfo(struct aty128fb_par *par,
887 			       unsigned char __iomem *bios)
888 {
889 	unsigned int bios_hdr;
890 	unsigned int bios_pll;
891 
892 	bios_hdr = BIOS_IN16(0x48);
893 	bios_pll = BIOS_IN16(bios_hdr + 0x30);
894 
895 	par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
896 	par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
897 	par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
898 	par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
899 	par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
900 
901 	DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
902 			par->constants.ppll_max, par->constants.ppll_min,
903 			par->constants.xclk, par->constants.ref_divider,
904 			par->constants.ref_clk);
905 
906 }
907 
908 #ifdef CONFIG_X86
909 static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par)
910 {
911 	/* I simplified this code as we used to miss the signatures in
912 	 * a lot of case. It's now closer to XFree, we just don't check
913 	 * for signatures at all... Something better will have to be done
914 	 * if we end up having conflicts
915 	 */
916         u32  segstart;
917         unsigned char __iomem *rom_base = NULL;
918 
919         for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
920                 rom_base = ioremap(segstart, 0x10000);
921 		if (rom_base == NULL)
922 			return NULL;
923 		if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
924 	                break;
925                 iounmap(rom_base);
926 		rom_base = NULL;
927         }
928 	return rom_base;
929 }
930 #endif
931 #endif /* ndef(__sparc__) */
932 
933 /* fill in known card constants if pll_block is not available */
934 static void aty128_timings(struct aty128fb_par *par)
935 {
936 #ifdef CONFIG_PPC
937 	/* instead of a table lookup, assume OF has properly
938 	 * setup the PLL registers and use their values
939 	 * to set the XCLK values and reference divider values */
940 
941 	u32 x_mpll_ref_fb_div;
942 	u32 xclk_cntl;
943 	u32 Nx, M;
944 	unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
945 #endif
946 
947 	if (!par->constants.ref_clk)
948 		par->constants.ref_clk = 2950;
949 
950 #ifdef CONFIG_PPC
951 	x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
952 	xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
953 	Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
954 	M  = x_mpll_ref_fb_div & 0x0000ff;
955 
956 	par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
957 					(M * PostDivSet[xclk_cntl]));
958 
959 	par->constants.ref_divider =
960 		aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
961 #endif
962 
963 	if (!par->constants.ref_divider) {
964 		par->constants.ref_divider = 0x3b;
965 
966 		aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
967 		aty_pll_writeupdate(par);
968 	}
969 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
970 	aty_pll_writeupdate(par);
971 
972 	/* from documentation */
973 	if (!par->constants.ppll_min)
974 		par->constants.ppll_min = 12500;
975 	if (!par->constants.ppll_max)
976 		par->constants.ppll_max = 25000;    /* 23000 on some cards? */
977 	if (!par->constants.xclk)
978 		par->constants.xclk = 0x1d4d;	     /* same as mclk */
979 
980 	par->constants.fifo_width = 128;
981 	par->constants.fifo_depth = 32;
982 
983 	switch (aty_ld_le32(MEM_CNTL) & 0x3) {
984 	case 0:
985 		par->mem = &sdr_128;
986 		break;
987 	case 1:
988 		par->mem = &sdr_sgram;
989 		break;
990 	case 2:
991 		par->mem = &ddr_sgram;
992 		break;
993 	default:
994 		par->mem = &sdr_sgram;
995 	}
996 }
997 
998 
999 
1000 /*
1001  * CRTC programming
1002  */
1003 
1004 /* Program the CRTC registers */
1005 static void aty128_set_crtc(const struct aty128_crtc *crtc,
1006 			    const struct aty128fb_par *par)
1007 {
1008 	aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
1009 	aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
1010 	aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
1011 	aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
1012 	aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
1013 	aty_st_le32(CRTC_PITCH, crtc->pitch);
1014 	aty_st_le32(CRTC_OFFSET, crtc->offset);
1015 	aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
1016 	/* Disable ATOMIC updating.  Is this the right place? */
1017 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1018 }
1019 
1020 
1021 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1022 			      struct aty128_crtc *crtc,
1023 			      const struct aty128fb_par *par)
1024 {
1025 	u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1026 	u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1027 	u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1028 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1029 	u32 depth, bytpp;
1030 	u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1031 
1032 	/* input */
1033 	xres = var->xres;
1034 	yres = var->yres;
1035 	vxres   = var->xres_virtual;
1036 	vyres   = var->yres_virtual;
1037 	xoffset = var->xoffset;
1038 	yoffset = var->yoffset;
1039 	bpp   = var->bits_per_pixel;
1040 	left  = var->left_margin;
1041 	right = var->right_margin;
1042 	upper = var->upper_margin;
1043 	lower = var->lower_margin;
1044 	hslen = var->hsync_len;
1045 	vslen = var->vsync_len;
1046 	sync  = var->sync;
1047 	vmode = var->vmode;
1048 
1049 	if (bpp != 16)
1050 		depth = bpp;
1051 	else
1052 		depth = (var->green.length == 6) ? 16 : 15;
1053 
1054 	/* check for mode eligibility
1055 	 * accept only non interlaced modes */
1056 	if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1057 		return -EINVAL;
1058 
1059 	/* convert (and round up) and validate */
1060 	xres = (xres + 7) & ~7;
1061 	xoffset = (xoffset + 7) & ~7;
1062 
1063 	if (vxres < xres + xoffset)
1064 		vxres = xres + xoffset;
1065 
1066 	if (vyres < yres + yoffset)
1067 		vyres = yres + yoffset;
1068 
1069 	/* convert depth into ATI register depth */
1070 	dst = depth_to_dst(depth);
1071 
1072 	if (dst == -EINVAL) {
1073 		printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1074 		return -EINVAL;
1075 	}
1076 
1077 	/* convert register depth to bytes per pixel */
1078 	bytpp = mode_bytpp[dst];
1079 
1080 	/* make sure there is enough video ram for the mode */
1081 	if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1082 		printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1083 		return -EINVAL;
1084 	}
1085 
1086 	h_disp = (xres >> 3) - 1;
1087 	h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1088 
1089 	v_disp = yres - 1;
1090 	v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1091 
1092 	/* check to make sure h_total and v_total are in range */
1093 	if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1094 		printk(KERN_ERR "aty128fb: invalid width ranges\n");
1095 		return -EINVAL;
1096 	}
1097 
1098 	h_sync_wid = (hslen + 7) >> 3;
1099 	if (h_sync_wid == 0)
1100 		h_sync_wid = 1;
1101 	else if (h_sync_wid > 0x3f)        /* 0x3f = max hwidth */
1102 		h_sync_wid = 0x3f;
1103 
1104 	h_sync_strt = (h_disp << 3) + right;
1105 
1106 	v_sync_wid = vslen;
1107 	if (v_sync_wid == 0)
1108 		v_sync_wid = 1;
1109 	else if (v_sync_wid > 0x1f)        /* 0x1f = max vwidth */
1110 		v_sync_wid = 0x1f;
1111 
1112 	v_sync_strt = v_disp + lower;
1113 
1114 	h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1115 	v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1116 
1117 	c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1118 
1119 	crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1120 
1121 	crtc->h_total = h_total | (h_disp << 16);
1122 	crtc->v_total = v_total | (v_disp << 16);
1123 
1124 	crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1125 	        (h_sync_pol << 23);
1126 	crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1127                 (v_sync_pol << 23);
1128 
1129 	crtc->pitch = vxres >> 3;
1130 
1131 	crtc->offset = 0;
1132 
1133 	if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1134 		crtc->offset_cntl = 0x00010000;
1135 	else
1136 		crtc->offset_cntl = 0;
1137 
1138 	crtc->vxres = vxres;
1139 	crtc->vyres = vyres;
1140 	crtc->xoffset = xoffset;
1141 	crtc->yoffset = yoffset;
1142 	crtc->depth = depth;
1143 	crtc->bpp = bpp;
1144 
1145 	return 0;
1146 }
1147 
1148 
1149 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1150 {
1151 
1152 	/* fill in pixel info */
1153 	var->red.msb_right = 0;
1154 	var->green.msb_right = 0;
1155 	var->blue.offset = 0;
1156 	var->blue.msb_right = 0;
1157 	var->transp.offset = 0;
1158 	var->transp.length = 0;
1159 	var->transp.msb_right = 0;
1160 	switch (pix_width) {
1161 	case CRTC_PIX_WIDTH_8BPP:
1162 		var->bits_per_pixel = 8;
1163 		var->red.offset = 0;
1164 		var->red.length = 8;
1165 		var->green.offset = 0;
1166 		var->green.length = 8;
1167 		var->blue.length = 8;
1168 		break;
1169 	case CRTC_PIX_WIDTH_15BPP:
1170 		var->bits_per_pixel = 16;
1171 		var->red.offset = 10;
1172 		var->red.length = 5;
1173 		var->green.offset = 5;
1174 		var->green.length = 5;
1175 		var->blue.length = 5;
1176 		break;
1177 	case CRTC_PIX_WIDTH_16BPP:
1178 		var->bits_per_pixel = 16;
1179 		var->red.offset = 11;
1180 		var->red.length = 5;
1181 		var->green.offset = 5;
1182 		var->green.length = 6;
1183 		var->blue.length = 5;
1184 		break;
1185 	case CRTC_PIX_WIDTH_24BPP:
1186 		var->bits_per_pixel = 24;
1187 		var->red.offset = 16;
1188 		var->red.length = 8;
1189 		var->green.offset = 8;
1190 		var->green.length = 8;
1191 		var->blue.length = 8;
1192 		break;
1193 	case CRTC_PIX_WIDTH_32BPP:
1194 		var->bits_per_pixel = 32;
1195 		var->red.offset = 16;
1196 		var->red.length = 8;
1197 		var->green.offset = 8;
1198 		var->green.length = 8;
1199 		var->blue.length = 8;
1200 		var->transp.offset = 24;
1201 		var->transp.length = 8;
1202 		break;
1203 	default:
1204 		printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1205 		return -EINVAL;
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 
1212 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1213 			      struct fb_var_screeninfo *var)
1214 {
1215 	u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1216 	u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1217 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1218 	u32 pix_width;
1219 
1220 	/* fun with masking */
1221 	h_total     = crtc->h_total & 0x1ff;
1222 	h_disp      = (crtc->h_total >> 16) & 0xff;
1223 	h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1224 	h_sync_dly  = crtc->h_sync_strt_wid & 0x7;
1225 	h_sync_wid  = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1226 	h_sync_pol  = (crtc->h_sync_strt_wid >> 23) & 0x1;
1227 	v_total     = crtc->v_total & 0x7ff;
1228 	v_disp      = (crtc->v_total >> 16) & 0x7ff;
1229 	v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1230 	v_sync_wid  = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1231 	v_sync_pol  = (crtc->v_sync_strt_wid >> 23) & 0x1;
1232 	c_sync      = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1233 	pix_width   = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1234 
1235 	/* do conversions */
1236 	xres  = (h_disp + 1) << 3;
1237 	yres  = v_disp + 1;
1238 	left  = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1239 	right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1240 	hslen = h_sync_wid << 3;
1241 	upper = v_total - v_sync_strt - v_sync_wid;
1242 	lower = v_sync_strt - v_disp;
1243 	vslen = v_sync_wid;
1244 	sync  = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1245 		(v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1246 		(c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1247 
1248 	aty128_pix_width_to_var(pix_width, var);
1249 
1250 	var->xres = xres;
1251 	var->yres = yres;
1252 	var->xres_virtual = crtc->vxres;
1253 	var->yres_virtual = crtc->vyres;
1254 	var->xoffset = crtc->xoffset;
1255 	var->yoffset = crtc->yoffset;
1256 	var->left_margin  = left;
1257 	var->right_margin = right;
1258 	var->upper_margin = upper;
1259 	var->lower_margin = lower;
1260 	var->hsync_len = hslen;
1261 	var->vsync_len = vslen;
1262 	var->sync  = sync;
1263 	var->vmode = FB_VMODE_NONINTERLACED;
1264 
1265 	return 0;
1266 }
1267 
1268 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1269 {
1270 	if (on) {
1271 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) |
1272 			    CRT_CRTC_ON);
1273 		aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) |
1274 			    DAC_PALETTE2_SNOOP_EN));
1275 	} else
1276 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) &
1277 			    ~CRT_CRTC_ON);
1278 }
1279 
1280 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1281 {
1282 	u32 reg;
1283 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1284 	struct fb_info *info = pci_get_drvdata(par->pdev);
1285 #endif
1286 
1287 	if (on) {
1288 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1289 		reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1290 		reg &= ~LVDS_DISPLAY_DIS;
1291 		aty_st_le32(LVDS_GEN_CNTL, reg);
1292 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1293 		aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1294 #endif
1295 	} else {
1296 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1297 		aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1298 #endif
1299 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1300 		reg |= LVDS_DISPLAY_DIS;
1301 		aty_st_le32(LVDS_GEN_CNTL, reg);
1302 		mdelay(100);
1303 		reg &= ~(LVDS_ON /*| LVDS_EN*/);
1304 		aty_st_le32(LVDS_GEN_CNTL, reg);
1305 	}
1306 }
1307 
1308 static void aty128_set_pll(struct aty128_pll *pll,
1309 			   const struct aty128fb_par *par)
1310 {
1311 	u32 div3;
1312 
1313 	unsigned char post_conv[] =	/* register values for post dividers */
1314         { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
1315 
1316 	/* select PPLL_DIV_3 */
1317 	aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1318 
1319 	/* reset PLL */
1320 	aty_st_pll(PPLL_CNTL,
1321 		   aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1322 
1323 	/* write the reference divider */
1324 	aty_pll_wait_readupdate(par);
1325 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1326 	aty_pll_writeupdate(par);
1327 
1328 	div3 = aty_ld_pll(PPLL_DIV_3);
1329 	div3 &= ~PPLL_FB3_DIV_MASK;
1330 	div3 |= pll->feedback_divider;
1331 	div3 &= ~PPLL_POST3_DIV_MASK;
1332 	div3 |= post_conv[pll->post_divider] << 16;
1333 
1334 	/* write feedback and post dividers */
1335 	aty_pll_wait_readupdate(par);
1336 	aty_st_pll(PPLL_DIV_3, div3);
1337 	aty_pll_writeupdate(par);
1338 
1339 	aty_pll_wait_readupdate(par);
1340 	aty_st_pll(HTOTAL_CNTL, 0);	/* no horiz crtc adjustment */
1341 	aty_pll_writeupdate(par);
1342 
1343 	/* clear the reset, just in case */
1344 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1345 }
1346 
1347 
1348 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1349 			     const struct aty128fb_par *par)
1350 {
1351 	const struct aty128_constants c = par->constants;
1352 	unsigned char post_dividers[] = {1,2,4,8,3,6,12};
1353 	u32 output_freq;
1354 	u32 vclk;        /* in .01 MHz */
1355 	int i = 0;
1356 	u32 n, d;
1357 
1358 	vclk = 100000000 / period_in_ps;	/* convert units to 10 kHz */
1359 
1360 	/* adjust pixel clock if necessary */
1361 	if (vclk > c.ppll_max)
1362 		vclk = c.ppll_max;
1363 	if (vclk * 12 < c.ppll_min)
1364 		vclk = c.ppll_min/12;
1365 
1366 	/* now, find an acceptable divider */
1367 	for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1368 		output_freq = post_dividers[i] * vclk;
1369 		if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1370 			pll->post_divider = post_dividers[i];
1371 			break;
1372 		}
1373 	}
1374 
1375 	if (i == ARRAY_SIZE(post_dividers))
1376 		return -EINVAL;
1377 
1378 	/* calculate feedback divider */
1379 	n = c.ref_divider * output_freq;
1380 	d = c.ref_clk;
1381 
1382 	pll->feedback_divider = round_div(n, d);
1383 	pll->vclk = vclk;
1384 
1385 	DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1386 	    "vclk_per: %d\n", pll->post_divider,
1387 	    pll->feedback_divider, vclk, output_freq,
1388 	    c.ref_divider, period_in_ps);
1389 
1390 	return 0;
1391 }
1392 
1393 
1394 static int aty128_pll_to_var(const struct aty128_pll *pll,
1395 			     struct fb_var_screeninfo *var)
1396 {
1397 	var->pixclock = 100000000 / pll->vclk;
1398 
1399 	return 0;
1400 }
1401 
1402 
1403 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1404 			    const struct aty128fb_par *par)
1405 {
1406 	aty_st_le32(DDA_CONFIG, dsp->dda_config);
1407 	aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1408 }
1409 
1410 
1411 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1412 			  const struct aty128_pll *pll,
1413 			  u32 depth,
1414 			  const struct aty128fb_par *par)
1415 {
1416 	const struct aty128_meminfo *m = par->mem;
1417 	u32 xclk = par->constants.xclk;
1418 	u32 fifo_width = par->constants.fifo_width;
1419 	u32 fifo_depth = par->constants.fifo_depth;
1420 	s32 x, b, p, ron, roff;
1421 	u32 n, d, bpp;
1422 
1423 	/* round up to multiple of 8 */
1424 	bpp = (depth+7) & ~7;
1425 
1426 	n = xclk * fifo_width;
1427 	d = pll->vclk * bpp;
1428 	x = round_div(n, d);
1429 
1430 	ron = 4 * m->MB +
1431 		3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1432 		2 * m->Trp +
1433 		m->Twr +
1434 		m->CL +
1435 		m->Tr2w +
1436 		x;
1437 
1438 	DBG("x %x\n", x);
1439 
1440 	b = 0;
1441 	while (x) {
1442 		x >>= 1;
1443 		b++;
1444 	}
1445 	p = b + 1;
1446 
1447 	ron <<= (11 - p);
1448 
1449 	n <<= (11 - p);
1450 	x = round_div(n, d);
1451 	roff = x * (fifo_depth - 4);
1452 
1453 	if ((ron + m->Rloop) >= roff) {
1454 		printk(KERN_ERR "aty128fb: Mode out of range!\n");
1455 		return -EINVAL;
1456 	}
1457 
1458 	DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1459 	    p, m->Rloop, x, ron, roff);
1460 
1461 	dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1462 	dsp->dda_on_off = ron << 16 | roff;
1463 
1464 	return 0;
1465 }
1466 
1467 
1468 /*
1469  * This actually sets the video mode.
1470  */
1471 static int aty128fb_set_par(struct fb_info *info)
1472 {
1473 	struct aty128fb_par *par = info->par;
1474 	u32 config;
1475 	int err;
1476 
1477 	if ((err = aty128_decode_var(&info->var, par)) != 0)
1478 		return err;
1479 
1480 	if (par->blitter_may_be_busy)
1481 		wait_for_idle(par);
1482 
1483 	/* clear all registers that may interfere with mode setting */
1484 	aty_st_le32(OVR_CLR, 0);
1485 	aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1486 	aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1487 	aty_st_le32(OV0_SCALE_CNTL, 0);
1488 	aty_st_le32(MPP_TB_CONFIG, 0);
1489 	aty_st_le32(MPP_GP_CONFIG, 0);
1490 	aty_st_le32(SUBPIC_CNTL, 0);
1491 	aty_st_le32(VIPH_CONTROL, 0);
1492 	aty_st_le32(I2C_CNTL_1, 0);         /* turn off i2c */
1493 	aty_st_le32(GEN_INT_CNTL, 0);	/* turn off interrupts */
1494 	aty_st_le32(CAP0_TRIG_CNTL, 0);
1495 	aty_st_le32(CAP1_TRIG_CNTL, 0);
1496 
1497 	aty_st_8(CRTC_EXT_CNTL + 1, 4);	/* turn video off */
1498 
1499 	aty128_set_crtc(&par->crtc, par);
1500 	aty128_set_pll(&par->pll, par);
1501 	aty128_set_fifo(&par->fifo_reg, par);
1502 
1503 	config = aty_ld_le32(CNFG_CNTL) & ~3;
1504 
1505 #if defined(__BIG_ENDIAN)
1506 	if (par->crtc.bpp == 32)
1507 		config |= 2;	/* make aperture do 32 bit swapping */
1508 	else if (par->crtc.bpp == 16)
1509 		config |= 1;	/* make aperture do 16 bit swapping */
1510 #endif
1511 
1512 	aty_st_le32(CNFG_CNTL, config);
1513 	aty_st_8(CRTC_EXT_CNTL + 1, 0);	/* turn the video back on */
1514 
1515 	info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1516 	info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1517 		: FB_VISUAL_DIRECTCOLOR;
1518 
1519 	if (par->chip_gen == rage_M3) {
1520 		aty128_set_crt_enable(par, par->crt_on);
1521 		aty128_set_lcd_enable(par, par->lcd_on);
1522 	}
1523 	if (par->accel_flags & FB_ACCELF_TEXT)
1524 		aty128_init_engine(par);
1525 
1526 #ifdef CONFIG_BOOTX_TEXT
1527 	btext_update_display(info->fix.smem_start,
1528 			     (((par->crtc.h_total>>16) & 0xff)+1)*8,
1529 			     ((par->crtc.v_total>>16) & 0x7ff)+1,
1530 			     par->crtc.bpp,
1531 			     par->crtc.vxres*par->crtc.bpp/8);
1532 #endif /* CONFIG_BOOTX_TEXT */
1533 
1534 	return 0;
1535 }
1536 
1537 /*
1538  *  encode/decode the User Defined Part of the Display
1539  */
1540 
1541 static int aty128_decode_var(struct fb_var_screeninfo *var,
1542 			     struct aty128fb_par *par)
1543 {
1544 	int err;
1545 	struct aty128_crtc crtc;
1546 	struct aty128_pll pll;
1547 	struct aty128_ddafifo fifo_reg;
1548 
1549 	if ((err = aty128_var_to_crtc(var, &crtc, par)))
1550 		return err;
1551 
1552 	if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1553 		return err;
1554 
1555 	if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1556 		return err;
1557 
1558 	par->crtc = crtc;
1559 	par->pll = pll;
1560 	par->fifo_reg = fifo_reg;
1561 	par->accel_flags = var->accel_flags;
1562 
1563 	return 0;
1564 }
1565 
1566 
1567 static int aty128_encode_var(struct fb_var_screeninfo *var,
1568 			     const struct aty128fb_par *par)
1569 {
1570 	int err;
1571 
1572 	if ((err = aty128_crtc_to_var(&par->crtc, var)))
1573 		return err;
1574 
1575 	if ((err = aty128_pll_to_var(&par->pll, var)))
1576 		return err;
1577 
1578 	var->nonstd = 0;
1579 	var->activate = 0;
1580 
1581 	var->height = -1;
1582 	var->width = -1;
1583 	var->accel_flags = par->accel_flags;
1584 
1585 	return 0;
1586 }
1587 
1588 
1589 static int aty128fb_check_var(struct fb_var_screeninfo *var,
1590 			      struct fb_info *info)
1591 {
1592 	struct aty128fb_par par;
1593 	int err;
1594 
1595 	par = *(struct aty128fb_par *)info->par;
1596 	if ((err = aty128_decode_var(var, &par)) != 0)
1597 		return err;
1598 	aty128_encode_var(var, &par);
1599 	return 0;
1600 }
1601 
1602 
1603 /*
1604  *  Pan or Wrap the Display
1605  */
1606 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
1607 				struct fb_info *fb)
1608 {
1609 	struct aty128fb_par *par = fb->par;
1610 	u32 xoffset, yoffset;
1611 	u32 offset;
1612 	u32 xres, yres;
1613 
1614 	xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1615 	yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1616 
1617 	xoffset = (var->xoffset +7) & ~7;
1618 	yoffset = var->yoffset;
1619 
1620 	if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1621 		return -EINVAL;
1622 
1623 	par->crtc.xoffset = xoffset;
1624 	par->crtc.yoffset = yoffset;
1625 
1626 	offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3))
1627 									  & ~7;
1628 
1629 	if (par->crtc.bpp == 24)
1630 		offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1631 
1632 	aty_st_le32(CRTC_OFFSET, offset);
1633 
1634 	return 0;
1635 }
1636 
1637 
1638 /*
1639  *  Helper function to store a single palette register
1640  */
1641 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1642 			  struct aty128fb_par *par)
1643 {
1644 	if (par->chip_gen == rage_M3) {
1645 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) &
1646 			    ~DAC_PALETTE_ACCESS_CNTL);
1647 	}
1648 
1649 	aty_st_8(PALETTE_INDEX, regno);
1650 	aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1651 }
1652 
1653 static int aty128fb_sync(struct fb_info *info)
1654 {
1655 	struct aty128fb_par *par = info->par;
1656 
1657 	if (par->blitter_may_be_busy)
1658 		wait_for_idle(par);
1659 	return 0;
1660 }
1661 
1662 #ifndef MODULE
1663 static int aty128fb_setup(char *options)
1664 {
1665 	char *this_opt;
1666 
1667 	if (!options || !*options)
1668 		return 0;
1669 
1670 	while ((this_opt = strsep(&options, ",")) != NULL) {
1671 		if (!strncmp(this_opt, "lcd:", 4)) {
1672 			default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1673 			continue;
1674 		} else if (!strncmp(this_opt, "crt:", 4)) {
1675 			default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1676 			continue;
1677 		} else if (!strncmp(this_opt, "backlight:", 10)) {
1678 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1679 			backlight = simple_strtoul(this_opt+10, NULL, 0);
1680 #endif
1681 			continue;
1682 		}
1683 		if(!strncmp(this_opt, "nomtrr", 6)) {
1684 			mtrr = false;
1685 			continue;
1686 		}
1687 #ifdef CONFIG_PPC_PMAC
1688 		/* vmode and cmode deprecated */
1689 		if (!strncmp(this_opt, "vmode:", 6)) {
1690 			unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1691 			if (vmode > 0 && vmode <= VMODE_MAX)
1692 				default_vmode = vmode;
1693 			continue;
1694 		} else if (!strncmp(this_opt, "cmode:", 6)) {
1695 			unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1696 			switch (cmode) {
1697 			case 0:
1698 			case 8:
1699 				default_cmode = CMODE_8;
1700 				break;
1701 			case 15:
1702 			case 16:
1703 				default_cmode = CMODE_16;
1704 				break;
1705 			case 24:
1706 			case 32:
1707 				default_cmode = CMODE_32;
1708 				break;
1709 			}
1710 			continue;
1711 		}
1712 #endif /* CONFIG_PPC_PMAC */
1713 		mode_option = this_opt;
1714 	}
1715 	return 0;
1716 }
1717 #endif  /*  MODULE  */
1718 
1719 /* Backlight */
1720 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1721 #define MAX_LEVEL 0xFF
1722 
1723 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1724 		int level)
1725 {
1726 	struct fb_info *info = pci_get_drvdata(par->pdev);
1727 	int atylevel;
1728 
1729 	/* Get and convert the value */
1730 	/* No locking of bl_curve since we read a single value */
1731 	atylevel = MAX_LEVEL -
1732 		(info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1733 
1734 	if (atylevel < 0)
1735 		atylevel = 0;
1736 	else if (atylevel > MAX_LEVEL)
1737 		atylevel = MAX_LEVEL;
1738 
1739 	return atylevel;
1740 }
1741 
1742 /* We turn off the LCD completely instead of just dimming the backlight.
1743  * This provides greater power saving and the display is useless without
1744  * backlight anyway
1745  */
1746 #define BACKLIGHT_LVDS_OFF
1747 /* That one prevents proper CRT output with LCD off */
1748 #undef BACKLIGHT_DAC_OFF
1749 
1750 static int aty128_bl_update_status(struct backlight_device *bd)
1751 {
1752 	struct aty128fb_par *par = bl_get_data(bd);
1753 	unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1754 	int level;
1755 
1756 	if (bd->props.power != FB_BLANK_UNBLANK ||
1757 	    bd->props.fb_blank != FB_BLANK_UNBLANK ||
1758 	    !par->lcd_on)
1759 		level = 0;
1760 	else
1761 		level = bd->props.brightness;
1762 
1763 	reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1764 	if (level > 0) {
1765 		reg |= LVDS_DIGION;
1766 		if (!(reg & LVDS_ON)) {
1767 			reg &= ~LVDS_BLON;
1768 			aty_st_le32(LVDS_GEN_CNTL, reg);
1769 			aty_ld_le32(LVDS_GEN_CNTL);
1770 			mdelay(10);
1771 			reg |= LVDS_BLON;
1772 			aty_st_le32(LVDS_GEN_CNTL, reg);
1773 		}
1774 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1775 		reg |= (aty128_bl_get_level_brightness(par, level) <<
1776 			LVDS_BL_MOD_LEVEL_SHIFT);
1777 #ifdef BACKLIGHT_LVDS_OFF
1778 		reg |= LVDS_ON | LVDS_EN;
1779 		reg &= ~LVDS_DISPLAY_DIS;
1780 #endif
1781 		aty_st_le32(LVDS_GEN_CNTL, reg);
1782 #ifdef BACKLIGHT_DAC_OFF
1783 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1784 #endif
1785 	} else {
1786 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1787 		reg |= (aty128_bl_get_level_brightness(par, 0) <<
1788 			LVDS_BL_MOD_LEVEL_SHIFT);
1789 #ifdef BACKLIGHT_LVDS_OFF
1790 		reg |= LVDS_DISPLAY_DIS;
1791 		aty_st_le32(LVDS_GEN_CNTL, reg);
1792 		aty_ld_le32(LVDS_GEN_CNTL);
1793 		udelay(10);
1794 		reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1795 #endif
1796 		aty_st_le32(LVDS_GEN_CNTL, reg);
1797 #ifdef BACKLIGHT_DAC_OFF
1798 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1799 #endif
1800 	}
1801 
1802 	return 0;
1803 }
1804 
1805 static const struct backlight_ops aty128_bl_data = {
1806 	.update_status	= aty128_bl_update_status,
1807 };
1808 
1809 static void aty128_bl_set_power(struct fb_info *info, int power)
1810 {
1811 	if (info->bl_dev) {
1812 		info->bl_dev->props.power = power;
1813 		backlight_update_status(info->bl_dev);
1814 	}
1815 }
1816 
1817 static void aty128_bl_init(struct aty128fb_par *par)
1818 {
1819 	struct backlight_properties props;
1820 	struct fb_info *info = pci_get_drvdata(par->pdev);
1821 	struct backlight_device *bd;
1822 	char name[12];
1823 
1824 	/* Could be extended to Rage128Pro LVDS output too */
1825 	if (par->chip_gen != rage_M3)
1826 		return;
1827 
1828 #ifdef CONFIG_PMAC_BACKLIGHT
1829 	if (!pmac_has_backlight_type("ati"))
1830 		return;
1831 #endif
1832 
1833 	snprintf(name, sizeof(name), "aty128bl%d", info->node);
1834 
1835 	memset(&props, 0, sizeof(struct backlight_properties));
1836 	props.type = BACKLIGHT_RAW;
1837 	props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1838 	bd = backlight_device_register(name, info->dev, par, &aty128_bl_data,
1839 				       &props);
1840 	if (IS_ERR(bd)) {
1841 		info->bl_dev = NULL;
1842 		printk(KERN_WARNING "aty128: Backlight registration failed\n");
1843 		goto error;
1844 	}
1845 
1846 	info->bl_dev = bd;
1847 	fb_bl_default_curve(info, 0,
1848 		 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1849 		219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1850 
1851 	bd->props.brightness = bd->props.max_brightness;
1852 	bd->props.power = FB_BLANK_UNBLANK;
1853 	backlight_update_status(bd);
1854 
1855 	printk("aty128: Backlight initialized (%s)\n", name);
1856 
1857 	return;
1858 
1859 error:
1860 	return;
1861 }
1862 
1863 static void aty128_bl_exit(struct backlight_device *bd)
1864 {
1865 	backlight_device_unregister(bd);
1866 	printk("aty128: Backlight unloaded\n");
1867 }
1868 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1869 
1870 /*
1871  *  Initialisation
1872  */
1873 
1874 #ifdef CONFIG_PPC_PMAC__disabled
1875 static void aty128_early_resume(void *data)
1876 {
1877         struct aty128fb_par *par = data;
1878 
1879 	if (!console_trylock())
1880 		return;
1881 	pci_restore_state(par->pdev);
1882 	aty128_do_resume(par->pdev);
1883 	console_unlock();
1884 }
1885 #endif /* CONFIG_PPC_PMAC */
1886 
1887 static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1888 {
1889 	struct fb_info *info = pci_get_drvdata(pdev);
1890 	struct aty128fb_par *par = info->par;
1891 	struct fb_var_screeninfo var;
1892 	char video_card[50];
1893 	u8 chip_rev;
1894 	u32 dac;
1895 
1896 	/* Get the chip revision */
1897 	chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1898 
1899 	strcpy(video_card, "Rage128 XX ");
1900 	video_card[8] = ent->device >> 8;
1901 	video_card[9] = ent->device & 0xFF;
1902 
1903 	/* range check to make sure */
1904 	if (ent->driver_data < ARRAY_SIZE(r128_family))
1905 		strlcat(video_card, r128_family[ent->driver_data],
1906 			sizeof(video_card));
1907 
1908 	printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1909 
1910 	if (par->vram_size % (1024 * 1024) == 0)
1911 		printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1912 	else
1913 		printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1914 
1915 	par->chip_gen = ent->driver_data;
1916 
1917 	/* fill in info */
1918 	info->fbops = &aty128fb_ops;
1919 	info->flags = FBINFO_FLAG_DEFAULT;
1920 
1921 	par->lcd_on = default_lcd_on;
1922 	par->crt_on = default_crt_on;
1923 
1924 	var = default_var;
1925 #ifdef CONFIG_PPC_PMAC
1926 	if (machine_is(powermac)) {
1927 		/* Indicate sleep capability */
1928 		if (par->chip_gen == rage_M3) {
1929 			pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1930 #if 0 /* Disable the early video resume hack for now as it's causing problems,
1931        * among others we now rely on the PCI core restoring the config space
1932        * for us, which isn't the case with that hack, and that code path causes
1933        * various things to be called with interrupts off while they shouldn't.
1934        * I'm leaving the code in as it can be useful for debugging purposes
1935        */
1936 			pmac_set_early_video_resume(aty128_early_resume, par);
1937 #endif
1938 		}
1939 
1940 		/* Find default mode */
1941 		if (mode_option) {
1942 			if (!mac_find_mode(&var, info, mode_option, 8))
1943 				var = default_var;
1944 		} else {
1945 			if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1946 				default_vmode = VMODE_1024_768_60;
1947 
1948 			/* iMacs need that resolution
1949 			 * PowerMac2,1 first r128 iMacs
1950 			 * PowerMac2,2 summer 2000 iMacs
1951 			 * PowerMac4,1 january 2001 iMacs "flower power"
1952 			 */
1953 			if (of_machine_is_compatible("PowerMac2,1") ||
1954 			    of_machine_is_compatible("PowerMac2,2") ||
1955 			    of_machine_is_compatible("PowerMac4,1"))
1956 				default_vmode = VMODE_1024_768_75;
1957 
1958 			/* iBook SE */
1959 			if (of_machine_is_compatible("PowerBook2,2"))
1960 				default_vmode = VMODE_800_600_60;
1961 
1962 			/* PowerBook Firewire (Pismo), iBook Dual USB */
1963 			if (of_machine_is_compatible("PowerBook3,1") ||
1964 			    of_machine_is_compatible("PowerBook4,1"))
1965 				default_vmode = VMODE_1024_768_60;
1966 
1967 			/* PowerBook Titanium */
1968 			if (of_machine_is_compatible("PowerBook3,2"))
1969 				default_vmode = VMODE_1152_768_60;
1970 
1971 			if (default_cmode > 16)
1972 				default_cmode = CMODE_32;
1973 			else if (default_cmode > 8)
1974 				default_cmode = CMODE_16;
1975 			else
1976 				default_cmode = CMODE_8;
1977 
1978 			if (mac_vmode_to_var(default_vmode, default_cmode, &var))
1979 				var = default_var;
1980 		}
1981 	} else
1982 #endif /* CONFIG_PPC_PMAC */
1983 	{
1984 		if (mode_option)
1985 			if (fb_find_mode(&var, info, mode_option, NULL,
1986 					 0, &defaultmode, 8) == 0)
1987 				var = default_var;
1988 	}
1989 
1990 	var.accel_flags &= ~FB_ACCELF_TEXT;
1991 //	var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
1992 
1993 	if (aty128fb_check_var(&var, info)) {
1994 		printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
1995 		return 0;
1996 	}
1997 
1998 	/* setup the DAC the way we like it */
1999 	dac = aty_ld_le32(DAC_CNTL);
2000 	dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2001 	dac |= DAC_MASK;
2002 	if (par->chip_gen == rage_M3)
2003 		dac |= DAC_PALETTE2_SNOOP_EN;
2004 	aty_st_le32(DAC_CNTL, dac);
2005 
2006 	/* turn off bus mastering, just in case */
2007 	aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2008 
2009 	info->var = var;
2010 	fb_alloc_cmap(&info->cmap, 256, 0);
2011 
2012 	var.activate = FB_ACTIVATE_NOW;
2013 
2014 	aty128_init_engine(par);
2015 
2016 	par->pdev = pdev;
2017 	par->asleep = 0;
2018 	par->lock_blank = 0;
2019 
2020 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2021 	if (backlight)
2022 		aty128_bl_init(par);
2023 #endif
2024 
2025 	if (register_framebuffer(info) < 0)
2026 		return 0;
2027 
2028 	fb_info(info, "%s frame buffer device on %s\n",
2029 		info->fix.id, video_card);
2030 
2031 	return 1;	/* success! */
2032 }
2033 
2034 #ifdef CONFIG_PCI
2035 /* register a card    ++ajoshi */
2036 static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2037 {
2038 	unsigned long fb_addr, reg_addr;
2039 	struct aty128fb_par *par;
2040 	struct fb_info *info;
2041 	int err;
2042 #ifndef __sparc__
2043 	void __iomem *bios = NULL;
2044 #endif
2045 
2046 	/* Enable device in PCI config */
2047 	if ((err = pci_enable_device(pdev))) {
2048 		printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2049 				err);
2050 		return -ENODEV;
2051 	}
2052 
2053 	fb_addr = pci_resource_start(pdev, 0);
2054 	if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2055 				"aty128fb FB")) {
2056 		printk(KERN_ERR "aty128fb: cannot reserve frame "
2057 				"buffer memory\n");
2058 		return -ENODEV;
2059 	}
2060 
2061 	reg_addr = pci_resource_start(pdev, 2);
2062 	if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2063 				"aty128fb MMIO")) {
2064 		printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2065 		goto err_free_fb;
2066 	}
2067 
2068 	/* We have the resources. Now virtualize them */
2069 	info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2070 	if (!info)
2071 		goto err_free_mmio;
2072 
2073 	par = info->par;
2074 
2075 	info->pseudo_palette = par->pseudo_palette;
2076 
2077 	/* Virtualize mmio region */
2078 	info->fix.mmio_start = reg_addr;
2079 	par->regbase = pci_ioremap_bar(pdev, 2);
2080 	if (!par->regbase)
2081 		goto err_free_info;
2082 
2083 	/* Grab memory size from the card */
2084 	// How does this relate to the resource length from the PCI hardware?
2085 	par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2086 
2087 	/* Virtualize the framebuffer */
2088 	info->screen_base = ioremap_wc(fb_addr, par->vram_size);
2089 	if (!info->screen_base)
2090 		goto err_unmap_out;
2091 
2092 	/* Set up info->fix */
2093 	info->fix = aty128fb_fix;
2094 	info->fix.smem_start = fb_addr;
2095 	info->fix.smem_len = par->vram_size;
2096 	info->fix.mmio_start = reg_addr;
2097 
2098 	/* If we can't test scratch registers, something is seriously wrong */
2099 	if (!register_test(par)) {
2100 		printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2101 		goto err_out;
2102 	}
2103 
2104 #ifndef __sparc__
2105 	bios = aty128_map_ROM(par, pdev);
2106 #ifdef CONFIG_X86
2107 	if (bios == NULL)
2108 		bios = aty128_find_mem_vbios(par);
2109 #endif
2110 	if (bios == NULL)
2111 		printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2112 	else {
2113 		printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2114 		aty128_get_pllinfo(par, bios);
2115 		pci_unmap_rom(pdev, bios);
2116 	}
2117 #endif /* __sparc__ */
2118 
2119 	aty128_timings(par);
2120 	pci_set_drvdata(pdev, info);
2121 
2122 	if (!aty128_init(pdev, ent))
2123 		goto err_out;
2124 
2125 	if (mtrr)
2126 		par->wc_cookie = arch_phys_wc_add(info->fix.smem_start,
2127 						  par->vram_size);
2128 	return 0;
2129 
2130 err_out:
2131 	iounmap(info->screen_base);
2132 err_unmap_out:
2133 	iounmap(par->regbase);
2134 err_free_info:
2135 	framebuffer_release(info);
2136 err_free_mmio:
2137 	release_mem_region(pci_resource_start(pdev, 2),
2138 			pci_resource_len(pdev, 2));
2139 err_free_fb:
2140 	release_mem_region(pci_resource_start(pdev, 0),
2141 			pci_resource_len(pdev, 0));
2142 	return -ENODEV;
2143 }
2144 
2145 static void aty128_remove(struct pci_dev *pdev)
2146 {
2147 	struct fb_info *info = pci_get_drvdata(pdev);
2148 	struct aty128fb_par *par;
2149 
2150 	if (!info)
2151 		return;
2152 
2153 	par = info->par;
2154 
2155 	unregister_framebuffer(info);
2156 
2157 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2158 	aty128_bl_exit(info->bl_dev);
2159 #endif
2160 
2161 	arch_phys_wc_del(par->wc_cookie);
2162 	iounmap(par->regbase);
2163 	iounmap(info->screen_base);
2164 
2165 	release_mem_region(pci_resource_start(pdev, 0),
2166 			   pci_resource_len(pdev, 0));
2167 	release_mem_region(pci_resource_start(pdev, 2),
2168 			   pci_resource_len(pdev, 2));
2169 	framebuffer_release(info);
2170 }
2171 #endif /* CONFIG_PCI */
2172 
2173 
2174 
2175     /*
2176      *  Blank the display.
2177      */
2178 static int aty128fb_blank(int blank, struct fb_info *fb)
2179 {
2180 	struct aty128fb_par *par = fb->par;
2181 	u8 state;
2182 
2183 	if (par->lock_blank || par->asleep)
2184 		return 0;
2185 
2186 	switch (blank) {
2187 	case FB_BLANK_NORMAL:
2188 		state = 4;
2189 		break;
2190 	case FB_BLANK_VSYNC_SUSPEND:
2191 		state = 6;
2192 		break;
2193 	case FB_BLANK_HSYNC_SUSPEND:
2194 		state = 5;
2195 		break;
2196 	case FB_BLANK_POWERDOWN:
2197 		state = 7;
2198 		break;
2199 	case FB_BLANK_UNBLANK:
2200 	default:
2201 		state = 0;
2202 		break;
2203 	}
2204 	aty_st_8(CRTC_EXT_CNTL+1, state);
2205 
2206 	if (par->chip_gen == rage_M3) {
2207 		aty128_set_crt_enable(par, par->crt_on && !blank);
2208 		aty128_set_lcd_enable(par, par->lcd_on && !blank);
2209 	}
2210 
2211 	return 0;
2212 }
2213 
2214 /*
2215  *  Set a single color register. The values supplied are already
2216  *  rounded down to the hardware's capabilities (according to the
2217  *  entries in the var structure). Return != 0 for invalid regno.
2218  */
2219 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2220 			      u_int transp, struct fb_info *info)
2221 {
2222 	struct aty128fb_par *par = info->par;
2223 
2224 	if (regno > 255
2225 	    || (par->crtc.depth == 16 && regno > 63)
2226 	    || (par->crtc.depth == 15 && regno > 31))
2227 		return 1;
2228 
2229 	red >>= 8;
2230 	green >>= 8;
2231 	blue >>= 8;
2232 
2233 	if (regno < 16) {
2234 		int i;
2235 		u32 *pal = info->pseudo_palette;
2236 
2237 		switch (par->crtc.depth) {
2238 		case 15:
2239 			pal[regno] = (regno << 10) | (regno << 5) | regno;
2240 			break;
2241 		case 16:
2242 			pal[regno] = (regno << 11) | (regno << 6) | regno;
2243 			break;
2244 		case 24:
2245 			pal[regno] = (regno << 16) | (regno << 8) | regno;
2246 			break;
2247 		case 32:
2248 			i = (regno << 8) | regno;
2249 			pal[regno] = (i << 16) | i;
2250 			break;
2251 		}
2252 	}
2253 
2254 	if (par->crtc.depth == 16 && regno > 0) {
2255 		/*
2256 		 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2257 		 * have 32 slots for R and B values but 64 slots for G values.
2258 		 * Thus the R and B values go in one slot but the G value
2259 		 * goes in a different slot, and we have to avoid disturbing
2260 		 * the other fields in the slots we touch.
2261 		 */
2262 		par->green[regno] = green;
2263 		if (regno < 32) {
2264 			par->red[regno] = red;
2265 			par->blue[regno] = blue;
2266 			aty128_st_pal(regno * 8, red, par->green[regno*2],
2267 				      blue, par);
2268 		}
2269 		red = par->red[regno/2];
2270 		blue = par->blue[regno/2];
2271 		regno <<= 2;
2272 	} else if (par->crtc.bpp == 16)
2273 		regno <<= 3;
2274 	aty128_st_pal(regno, red, green, blue, par);
2275 
2276 	return 0;
2277 }
2278 
2279 #define ATY_MIRROR_LCD_ON	0x00000001
2280 #define ATY_MIRROR_CRT_ON	0x00000002
2281 
2282 /* out param: u32*	backlight value: 0 to 15 */
2283 #define FBIO_ATY128_GET_MIRROR	_IOR('@', 1, __u32)
2284 /* in param: u32*	backlight value: 0 to 15 */
2285 #define FBIO_ATY128_SET_MIRROR	_IOW('@', 2, __u32)
2286 
2287 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2288 {
2289 	struct aty128fb_par *par = info->par;
2290 	u32 value;
2291 	int rc;
2292 
2293 	switch (cmd) {
2294 	case FBIO_ATY128_SET_MIRROR:
2295 		if (par->chip_gen != rage_M3)
2296 			return -EINVAL;
2297 		rc = get_user(value, (__u32 __user *)arg);
2298 		if (rc)
2299 			return rc;
2300 		par->lcd_on = (value & 0x01) != 0;
2301 		par->crt_on = (value & 0x02) != 0;
2302 		if (!par->crt_on && !par->lcd_on)
2303 			par->lcd_on = 1;
2304 		aty128_set_crt_enable(par, par->crt_on);
2305 		aty128_set_lcd_enable(par, par->lcd_on);
2306 		return 0;
2307 	case FBIO_ATY128_GET_MIRROR:
2308 		if (par->chip_gen != rage_M3)
2309 			return -EINVAL;
2310 		value = (par->crt_on << 1) | par->lcd_on;
2311 		return put_user(value, (__u32 __user *)arg);
2312 	}
2313 	return -EINVAL;
2314 }
2315 
2316 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2317 {
2318 	u32	pmgt;
2319 	struct pci_dev *pdev = par->pdev;
2320 
2321 	if (!par->pdev->pm_cap)
2322 		return;
2323 
2324 	/* Set the chip into the appropriate suspend mode (we use D2,
2325 	 * D3 would require a complete re-initialisation of the chip,
2326 	 * including PCI config registers, clocks, AGP configuration, ...)
2327 	 *
2328 	 * For resume, the core will have already brought us back to D0
2329 	 */
2330 	if (suspend) {
2331 		/* Make sure CRTC2 is reset. Remove that the day we decide to
2332 		 * actually use CRTC2 and replace it with real code for disabling
2333 		 * the CRTC2 output during sleep
2334 		 */
2335 		aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2336 			~(CRTC2_EN));
2337 
2338 		/* Set the power management mode to be PCI based */
2339 		/* Use this magic value for now */
2340 		pmgt = 0x0c005407;
2341 		aty_st_pll(POWER_MANAGEMENT, pmgt);
2342 		(void)aty_ld_pll(POWER_MANAGEMENT);
2343 		aty_st_le32(BUS_CNTL1, 0x00000010);
2344 		aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2345 		msleep(100);
2346 
2347 		/* Switch PCI power management to D2 */
2348 		pci_set_power_state(pdev, PCI_D2);
2349 	}
2350 }
2351 
2352 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2353 {
2354 	struct fb_info *info = pci_get_drvdata(pdev);
2355 	struct aty128fb_par *par = info->par;
2356 
2357 	/* Because we may change PCI D state ourselves, we need to
2358 	 * first save the config space content so the core can
2359 	 * restore it properly on resume.
2360 	 */
2361 	pci_save_state(pdev);
2362 
2363 	/* We don't do anything but D2, for now we return 0, but
2364 	 * we may want to change that. How do we know if the BIOS
2365 	 * can properly take care of D3 ? Also, with swsusp, we
2366 	 * know we'll be rebooted, ...
2367 	 */
2368 #ifndef CONFIG_PPC_PMAC
2369 	/* HACK ALERT ! Once I find a proper way to say to each driver
2370 	 * individually what will happen with it's PCI slot, I'll change
2371 	 * that. On laptops, the AGP slot is just unclocked, so D2 is
2372 	 * expected, while on desktops, the card is powered off
2373 	 */
2374 	return 0;
2375 #endif /* CONFIG_PPC_PMAC */
2376 
2377 	if (state.event == pdev->dev.power.power_state.event)
2378 		return 0;
2379 
2380 	printk(KERN_DEBUG "aty128fb: suspending...\n");
2381 
2382 	console_lock();
2383 
2384 	fb_set_suspend(info, 1);
2385 
2386 	/* Make sure engine is reset */
2387 	wait_for_idle(par);
2388 	aty128_reset_engine(par);
2389 	wait_for_idle(par);
2390 
2391 	/* Blank display and LCD */
2392 	aty128fb_blank(FB_BLANK_POWERDOWN, info);
2393 
2394 	/* Sleep */
2395 	par->asleep = 1;
2396 	par->lock_blank = 1;
2397 
2398 #ifdef CONFIG_PPC_PMAC
2399 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2400 	 * use them here. We'll ultimately need some generic support here,
2401 	 * but the generic code isn't quite ready for that yet
2402 	 */
2403 	pmac_suspend_agp_for_card(pdev);
2404 #endif /* CONFIG_PPC_PMAC */
2405 
2406 	/* We need a way to make sure the fbdev layer will _not_ touch the
2407 	 * framebuffer before we put the chip to suspend state. On 2.4, I
2408 	 * used dummy fb ops, 2.5 need proper support for this at the
2409 	 * fbdev level
2410 	 */
2411 	if (state.event != PM_EVENT_ON)
2412 		aty128_set_suspend(par, 1);
2413 
2414 	console_unlock();
2415 
2416 	pdev->dev.power.power_state = state;
2417 
2418 	return 0;
2419 }
2420 
2421 static int aty128_do_resume(struct pci_dev *pdev)
2422 {
2423 	struct fb_info *info = pci_get_drvdata(pdev);
2424 	struct aty128fb_par *par = info->par;
2425 
2426 	if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2427 		return 0;
2428 
2429 	/* PCI state will have been restored by the core, so
2430 	 * we should be in D0 now with our config space fully
2431 	 * restored
2432 	 */
2433 
2434 	/* Wakeup chip */
2435 	aty128_set_suspend(par, 0);
2436 	par->asleep = 0;
2437 
2438 	/* Restore display & engine */
2439 	aty128_reset_engine(par);
2440 	wait_for_idle(par);
2441 	aty128fb_set_par(info);
2442 	fb_pan_display(info, &info->var);
2443 	fb_set_cmap(&info->cmap, info);
2444 
2445 	/* Refresh */
2446 	fb_set_suspend(info, 0);
2447 
2448 	/* Unblank */
2449 	par->lock_blank = 0;
2450 	aty128fb_blank(0, info);
2451 
2452 #ifdef CONFIG_PPC_PMAC
2453 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2454 	 * use them here. We'll ultimately need some generic support here,
2455 	 * but the generic code isn't quite ready for that yet
2456 	 */
2457 	pmac_resume_agp_for_card(pdev);
2458 #endif /* CONFIG_PPC_PMAC */
2459 
2460 	pdev->dev.power.power_state = PMSG_ON;
2461 
2462 	printk(KERN_DEBUG "aty128fb: resumed !\n");
2463 
2464 	return 0;
2465 }
2466 
2467 static int aty128_pci_resume(struct pci_dev *pdev)
2468 {
2469 	int rc;
2470 
2471 	console_lock();
2472 	rc = aty128_do_resume(pdev);
2473 	console_unlock();
2474 
2475 	return rc;
2476 }
2477 
2478 
2479 static int aty128fb_init(void)
2480 {
2481 #ifndef MODULE
2482 	char *option = NULL;
2483 
2484 	if (fb_get_options("aty128fb", &option))
2485 		return -ENODEV;
2486 	aty128fb_setup(option);
2487 #endif
2488 
2489 	return pci_register_driver(&aty128fb_driver);
2490 }
2491 
2492 static void __exit aty128fb_exit(void)
2493 {
2494 	pci_unregister_driver(&aty128fb_driver);
2495 }
2496 
2497 module_init(aty128fb_init);
2498 
2499 module_exit(aty128fb_exit);
2500 
2501 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2502 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2503 MODULE_LICENSE("GPL");
2504 module_param(mode_option, charp, 0);
2505 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2506 module_param_named(nomtrr, mtrr, invbool, 0);
2507 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2508