xref: /openbmc/linux/drivers/video/fbdev/aty/aty128fb.c (revision 4a44a19b)
1 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
2  *  linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
3  *
4  *  Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
5  *  Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
6  *
7  *                Ani Joshi / Jeff Garzik
8  *                      - Code cleanup
9  *
10  *                Michel Danzer <michdaen@iiic.ethz.ch>
11  *                      - 15/16 bit cleanup
12  *                      - fix panning
13  *
14  *                Benjamin Herrenschmidt
15  *                      - pmac-specific PM stuff
16  *			- various fixes & cleanups
17  *
18  *                Andreas Hundt <andi@convergence.de>
19  *                      - FB_ACTIVATE fixes
20  *
21  *		  Paul Mackerras <paulus@samba.org>
22  *			- Convert to new framebuffer API,
23  *			  fix colormap setting at 16 bits/pixel (565)
24  *
25  *		  Paul Mundt
26  *		  	- PCI hotplug
27  *
28  *		  Jon Smirl <jonsmirl@yahoo.com>
29  * 			- PCI ID update
30  * 			- replace ROM BIOS search
31  *
32  *  Based off of Geert's atyfb.c and vfb.c.
33  *
34  *  TODO:
35  *		- monitor sensing (DDC)
36  *              - virtual display
37  *		- other platform support (only ppc/x86 supported)
38  *		- hardware cursor support
39  *
40  *    Please cc: your patches to brad@neruo.com.
41  */
42 
43 /*
44  * A special note of gratitude to ATI's devrel for providing documentation,
45  * example code and hardware. Thanks Nitya.	-atong and brad
46  */
47 
48 
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kernel.h>
52 #include <linux/errno.h>
53 #include <linux/string.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <linux/delay.h>
57 #include <linux/interrupt.h>
58 #include <linux/uaccess.h>
59 #include <linux/fb.h>
60 #include <linux/init.h>
61 #include <linux/pci.h>
62 #include <linux/ioport.h>
63 #include <linux/console.h>
64 #include <linux/backlight.h>
65 #include <asm/io.h>
66 
67 #ifdef CONFIG_PPC_PMAC
68 #include <asm/machdep.h>
69 #include <asm/pmac_feature.h>
70 #include <asm/prom.h>
71 #include <asm/pci-bridge.h>
72 #include "../macmodes.h"
73 #endif
74 
75 #ifdef CONFIG_PMAC_BACKLIGHT
76 #include <asm/backlight.h>
77 #endif
78 
79 #ifdef CONFIG_BOOTX_TEXT
80 #include <asm/btext.h>
81 #endif /* CONFIG_BOOTX_TEXT */
82 
83 #ifdef CONFIG_MTRR
84 #include <asm/mtrr.h>
85 #endif
86 
87 #include <video/aty128.h>
88 
89 /* Debug flag */
90 #undef DEBUG
91 
92 #ifdef DEBUG
93 #define DBG(fmt, args...) \
94 	printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
95 #else
96 #define DBG(fmt, args...)
97 #endif
98 
99 #ifndef CONFIG_PPC_PMAC
100 /* default mode */
101 static struct fb_var_screeninfo default_var = {
102 	/* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
103 	640, 480, 640, 480, 0, 0, 8, 0,
104 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
105 	0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
106 	0, FB_VMODE_NONINTERLACED
107 };
108 
109 #else /* CONFIG_PPC_PMAC */
110 /* default to 1024x768 at 75Hz on PPC - this will work
111  * on the iMac, the usual 640x480 @ 60Hz doesn't. */
112 static struct fb_var_screeninfo default_var = {
113 	/* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
114 	1024, 768, 1024, 768, 0, 0, 8, 0,
115 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
116 	0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
117 	FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
118 	FB_VMODE_NONINTERLACED
119 };
120 #endif /* CONFIG_PPC_PMAC */
121 
122 /* default modedb mode */
123 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
124 static struct fb_videomode defaultmode = {
125 	.refresh =	60,
126 	.xres =		640,
127 	.yres =		480,
128 	.pixclock =	39722,
129 	.left_margin =	48,
130 	.right_margin =	16,
131 	.upper_margin =	33,
132 	.lower_margin =	10,
133 	.hsync_len =	96,
134 	.vsync_len =	2,
135 	.sync =		0,
136 	.vmode =	FB_VMODE_NONINTERLACED
137 };
138 
139 /* Chip generations */
140 enum {
141 	rage_128,
142 	rage_128_pci,
143 	rage_128_pro,
144 	rage_128_pro_pci,
145 	rage_M3,
146 	rage_M3_pci,
147 	rage_M4,
148 	rage_128_ultra,
149 };
150 
151 /* Must match above enum */
152 static char * const r128_family[] = {
153 	"AGP",
154 	"PCI",
155 	"PRO AGP",
156 	"PRO PCI",
157 	"M3 AGP",
158 	"M3 PCI",
159 	"M4 AGP",
160 	"Ultra AGP",
161 };
162 
163 /*
164  * PCI driver prototypes
165  */
166 static int aty128_probe(struct pci_dev *pdev,
167                                const struct pci_device_id *ent);
168 static void aty128_remove(struct pci_dev *pdev);
169 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
170 static int aty128_pci_resume(struct pci_dev *pdev);
171 static int aty128_do_resume(struct pci_dev *pdev);
172 
173 /* supported Rage128 chipsets */
174 static struct pci_device_id aty128_pci_tbl[] = {
175 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
176 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
177 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
178 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
179 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
180 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
181 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
182 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
183 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
184 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
185 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
186 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
187 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
188 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
189 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
190 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
191 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
192 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
193 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
194 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
195 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
196 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
197 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
198 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
199 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
200 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
201 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
202 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
203 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
204 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
205 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
206 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
207 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
208 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
209 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
210 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
211 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
212 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
213 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
214 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
215 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
216 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
217 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
218 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
219 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
220 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
221 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
222 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
223 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
224 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
225 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
226 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
227 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
228 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
229 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
230 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
231 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
232 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
233 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
234 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
235 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
236 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
237 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
238 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
239 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
240 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
241 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
242 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
243 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
244 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
245 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
246 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
247 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
248 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
249 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
250 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
251 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
252 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
253 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
254 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
255 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
256 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
257 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
258 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
259 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
260 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
261 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
262 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
263 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
264 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
265 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
266 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
267 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
268 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
269 	{ 0, }
270 };
271 
272 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
273 
274 static struct pci_driver aty128fb_driver = {
275 	.name		= "aty128fb",
276 	.id_table	= aty128_pci_tbl,
277 	.probe		= aty128_probe,
278 	.remove		= aty128_remove,
279 	.suspend	= aty128_pci_suspend,
280 	.resume		= aty128_pci_resume,
281 };
282 
283 /* packed BIOS settings */
284 #ifndef CONFIG_PPC
285 typedef struct {
286 	u8 clock_chip_type;
287 	u8 struct_size;
288 	u8 accelerator_entry;
289 	u8 VGA_entry;
290 	u16 VGA_table_offset;
291 	u16 POST_table_offset;
292 	u16 XCLK;
293 	u16 MCLK;
294 	u8 num_PLL_blocks;
295 	u8 size_PLL_blocks;
296 	u16 PCLK_ref_freq;
297 	u16 PCLK_ref_divider;
298 	u32 PCLK_min_freq;
299 	u32 PCLK_max_freq;
300 	u16 MCLK_ref_freq;
301 	u16 MCLK_ref_divider;
302 	u32 MCLK_min_freq;
303 	u32 MCLK_max_freq;
304 	u16 XCLK_ref_freq;
305 	u16 XCLK_ref_divider;
306 	u32 XCLK_min_freq;
307 	u32 XCLK_max_freq;
308 } __attribute__ ((packed)) PLL_BLOCK;
309 #endif /* !CONFIG_PPC */
310 
311 /* onboard memory information */
312 struct aty128_meminfo {
313 	u8 ML;
314 	u8 MB;
315 	u8 Trcd;
316 	u8 Trp;
317 	u8 Twr;
318 	u8 CL;
319 	u8 Tr2w;
320 	u8 LoopLatency;
321 	u8 DspOn;
322 	u8 Rloop;
323 	const char *name;
324 };
325 
326 /* various memory configurations */
327 static const struct aty128_meminfo sdr_128 = {
328 	.ML = 4,
329 	.MB = 4,
330 	.Trcd = 3,
331 	.Trp = 3,
332 	.Twr = 1,
333 	.CL = 3,
334 	.Tr2w = 1,
335 	.LoopLatency = 16,
336 	.DspOn = 30,
337 	.Rloop = 16,
338 	.name = "128-bit SDR SGRAM (1:1)",
339 };
340 
341 static const struct aty128_meminfo sdr_64 = {
342 	.ML = 4,
343 	.MB = 8,
344 	.Trcd = 3,
345 	.Trp = 3,
346 	.Twr = 1,
347 	.CL = 3,
348 	.Tr2w = 1,
349 	.LoopLatency = 17,
350 	.DspOn = 46,
351 	.Rloop = 17,
352 	.name = "64-bit SDR SGRAM (1:1)",
353 };
354 
355 static const struct aty128_meminfo sdr_sgram = {
356 	.ML = 4,
357 	.MB = 4,
358 	.Trcd = 1,
359 	.Trp = 2,
360 	.Twr = 1,
361 	.CL = 2,
362 	.Tr2w = 1,
363 	.LoopLatency = 16,
364 	.DspOn = 24,
365 	.Rloop = 16,
366 	.name = "64-bit SDR SGRAM (2:1)",
367 };
368 
369 static const struct aty128_meminfo ddr_sgram = {
370 	.ML = 4,
371 	.MB = 4,
372 	.Trcd = 3,
373 	.Trp = 3,
374 	.Twr = 2,
375 	.CL = 3,
376 	.Tr2w = 1,
377 	.LoopLatency = 16,
378 	.DspOn = 31,
379 	.Rloop = 16,
380 	.name = "64-bit DDR SGRAM",
381 };
382 
383 static struct fb_fix_screeninfo aty128fb_fix = {
384 	.id		= "ATY Rage128",
385 	.type		= FB_TYPE_PACKED_PIXELS,
386 	.visual		= FB_VISUAL_PSEUDOCOLOR,
387 	.xpanstep	= 8,
388 	.ypanstep	= 1,
389 	.mmio_len	= 0x2000,
390 	.accel		= FB_ACCEL_ATI_RAGE128,
391 };
392 
393 static char *mode_option = NULL;
394 
395 #ifdef CONFIG_PPC_PMAC
396 static int default_vmode = VMODE_1024_768_60;
397 static int default_cmode = CMODE_8;
398 #endif
399 
400 static int default_crt_on = 0;
401 static int default_lcd_on = 1;
402 
403 #ifdef CONFIG_MTRR
404 static bool mtrr = true;
405 #endif
406 
407 #ifdef CONFIG_FB_ATY128_BACKLIGHT
408 #ifdef CONFIG_PMAC_BACKLIGHT
409 static int backlight = 1;
410 #else
411 static int backlight = 0;
412 #endif
413 #endif
414 
415 /* PLL constants */
416 struct aty128_constants {
417 	u32 ref_clk;
418 	u32 ppll_min;
419 	u32 ppll_max;
420 	u32 ref_divider;
421 	u32 xclk;
422 	u32 fifo_width;
423 	u32 fifo_depth;
424 };
425 
426 struct aty128_crtc {
427 	u32 gen_cntl;
428 	u32 h_total, h_sync_strt_wid;
429 	u32 v_total, v_sync_strt_wid;
430 	u32 pitch;
431 	u32 offset, offset_cntl;
432 	u32 xoffset, yoffset;
433 	u32 vxres, vyres;
434 	u32 depth, bpp;
435 };
436 
437 struct aty128_pll {
438 	u32 post_divider;
439 	u32 feedback_divider;
440 	u32 vclk;
441 };
442 
443 struct aty128_ddafifo {
444 	u32 dda_config;
445 	u32 dda_on_off;
446 };
447 
448 /* register values for a specific mode */
449 struct aty128fb_par {
450 	struct aty128_crtc crtc;
451 	struct aty128_pll pll;
452 	struct aty128_ddafifo fifo_reg;
453 	u32 accel_flags;
454 	struct aty128_constants constants;  /* PLL and others      */
455 	void __iomem *regbase;              /* remapped mmio       */
456 	u32 vram_size;                      /* onboard video ram   */
457 	int chip_gen;
458 	const struct aty128_meminfo *mem;   /* onboard mem info    */
459 #ifdef CONFIG_MTRR
460 	struct { int vram; int vram_valid; } mtrr;
461 #endif
462 	int blitter_may_be_busy;
463 	int fifo_slots;                 /* free slots in FIFO (64 max) */
464 
465 	int crt_on, lcd_on;
466 	struct pci_dev *pdev;
467 	struct fb_info *next;
468 	int	asleep;
469 	int	lock_blank;
470 
471 	u8	red[32];		/* see aty128fb_setcolreg */
472 	u8	green[64];
473 	u8	blue[32];
474 	u32	pseudo_palette[16];	/* used for TRUECOLOR */
475 };
476 
477 
478 #define round_div(n, d) ((n+(d/2))/d)
479 
480 static int aty128fb_check_var(struct fb_var_screeninfo *var,
481 			      struct fb_info *info);
482 static int aty128fb_set_par(struct fb_info *info);
483 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
484 			      u_int transp, struct fb_info *info);
485 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
486 			   struct fb_info *fb);
487 static int aty128fb_blank(int blank, struct fb_info *fb);
488 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
489 static int aty128fb_sync(struct fb_info *info);
490 
491     /*
492      *  Internal routines
493      */
494 
495 static int aty128_encode_var(struct fb_var_screeninfo *var,
496                              const struct aty128fb_par *par);
497 static int aty128_decode_var(struct fb_var_screeninfo *var,
498                              struct aty128fb_par *par);
499 #if 0
500 static void aty128_get_pllinfo(struct aty128fb_par *par, void __iomem *bios);
501 static void __iomem *aty128_map_ROM(struct pci_dev *pdev,
502 				    const struct aty128fb_par *par);
503 #endif
504 static void aty128_timings(struct aty128fb_par *par);
505 static void aty128_init_engine(struct aty128fb_par *par);
506 static void aty128_reset_engine(const struct aty128fb_par *par);
507 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
508 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
509 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
510 static void wait_for_idle(struct aty128fb_par *par);
511 static u32 depth_to_dst(u32 depth);
512 
513 #ifdef CONFIG_FB_ATY128_BACKLIGHT
514 static void aty128_bl_set_power(struct fb_info *info, int power);
515 #endif
516 
517 #define BIOS_IN8(v)  	(readb(bios + (v)))
518 #define BIOS_IN16(v) 	(readb(bios + (v)) | \
519 			  (readb(bios + (v) + 1) << 8))
520 #define BIOS_IN32(v) 	(readb(bios + (v)) | \
521 			  (readb(bios + (v) + 1) << 8) | \
522 			  (readb(bios + (v) + 2) << 16) | \
523 			  (readb(bios + (v) + 3) << 24))
524 
525 
526 static struct fb_ops aty128fb_ops = {
527 	.owner		= THIS_MODULE,
528 	.fb_check_var	= aty128fb_check_var,
529 	.fb_set_par	= aty128fb_set_par,
530 	.fb_setcolreg	= aty128fb_setcolreg,
531 	.fb_pan_display = aty128fb_pan_display,
532 	.fb_blank	= aty128fb_blank,
533 	.fb_ioctl	= aty128fb_ioctl,
534 	.fb_sync	= aty128fb_sync,
535 	.fb_fillrect	= cfb_fillrect,
536 	.fb_copyarea	= cfb_copyarea,
537 	.fb_imageblit	= cfb_imageblit,
538 };
539 
540     /*
541      * Functions to read from/write to the mmio registers
542      *	- endian conversions may possibly be avoided by
543      *    using the other register aperture. TODO.
544      */
545 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
546 			       const struct aty128fb_par *par)
547 {
548 	return readl (par->regbase + regindex);
549 }
550 
551 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
552 				const struct aty128fb_par *par)
553 {
554 	writel (val, par->regbase + regindex);
555 }
556 
557 static inline u8 _aty_ld_8(unsigned int regindex,
558 			   const struct aty128fb_par *par)
559 {
560 	return readb (par->regbase + regindex);
561 }
562 
563 static inline void _aty_st_8(unsigned int regindex, u8 val,
564 			     const struct aty128fb_par *par)
565 {
566 	writeb (val, par->regbase + regindex);
567 }
568 
569 #define aty_ld_le32(regindex)		_aty_ld_le32(regindex, par)
570 #define aty_st_le32(regindex, val)	_aty_st_le32(regindex, val, par)
571 #define aty_ld_8(regindex)		_aty_ld_8(regindex, par)
572 #define aty_st_8(regindex, val)		_aty_st_8(regindex, val, par)
573 
574     /*
575      * Functions to read from/write to the pll registers
576      */
577 
578 #define aty_ld_pll(pll_index)		_aty_ld_pll(pll_index, par)
579 #define aty_st_pll(pll_index, val)	_aty_st_pll(pll_index, val, par)
580 
581 
582 static u32 _aty_ld_pll(unsigned int pll_index,
583 		       const struct aty128fb_par *par)
584 {
585 	aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
586 	return aty_ld_le32(CLOCK_CNTL_DATA);
587 }
588 
589 
590 static void _aty_st_pll(unsigned int pll_index, u32 val,
591 			const struct aty128fb_par *par)
592 {
593 	aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
594 	aty_st_le32(CLOCK_CNTL_DATA, val);
595 }
596 
597 
598 /* return true when the PLL has completed an atomic update */
599 static int aty_pll_readupdate(const struct aty128fb_par *par)
600 {
601 	return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
602 }
603 
604 
605 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
606 {
607 	unsigned long timeout = jiffies + HZ/100; // should be more than enough
608 	int reset = 1;
609 
610 	while (time_before(jiffies, timeout))
611 		if (aty_pll_readupdate(par)) {
612 			reset = 0;
613 			break;
614 		}
615 
616 	if (reset)	/* reset engine?? */
617 		printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
618 }
619 
620 
621 /* tell PLL to update */
622 static void aty_pll_writeupdate(const struct aty128fb_par *par)
623 {
624 	aty_pll_wait_readupdate(par);
625 
626 	aty_st_pll(PPLL_REF_DIV,
627 		   aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
628 }
629 
630 
631 /* write to the scratch register to test r/w functionality */
632 static int register_test(const struct aty128fb_par *par)
633 {
634 	u32 val;
635 	int flag = 0;
636 
637 	val = aty_ld_le32(BIOS_0_SCRATCH);
638 
639 	aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
640 	if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
641 		aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
642 
643 		if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
644 			flag = 1;
645 	}
646 
647 	aty_st_le32(BIOS_0_SCRATCH, val);	// restore value
648 	return flag;
649 }
650 
651 
652 /*
653  * Accelerator engine functions
654  */
655 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
656 {
657 	int i;
658 
659 	for (;;) {
660 		for (i = 0; i < 2000000; i++) {
661 			par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
662 			if (par->fifo_slots >= entries)
663 				return;
664 		}
665 		aty128_reset_engine(par);
666 	}
667 }
668 
669 
670 static void wait_for_idle(struct aty128fb_par *par)
671 {
672 	int i;
673 
674 	do_wait_for_fifo(64, par);
675 
676 	for (;;) {
677 		for (i = 0; i < 2000000; i++) {
678 			if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
679 				aty128_flush_pixel_cache(par);
680 				par->blitter_may_be_busy = 0;
681 				return;
682 			}
683 		}
684 		aty128_reset_engine(par);
685 	}
686 }
687 
688 
689 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
690 {
691 	if (par->fifo_slots < entries)
692 		do_wait_for_fifo(64, par);
693 	par->fifo_slots -= entries;
694 }
695 
696 
697 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
698 {
699 	int i;
700 	u32 tmp;
701 
702 	tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
703 	tmp &= ~(0x00ff);
704 	tmp |= 0x00ff;
705 	aty_st_le32(PC_NGUI_CTLSTAT, tmp);
706 
707 	for (i = 0; i < 2000000; i++)
708 		if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
709 			break;
710 }
711 
712 
713 static void aty128_reset_engine(const struct aty128fb_par *par)
714 {
715 	u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
716 
717 	aty128_flush_pixel_cache(par);
718 
719 	clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
720 	mclk_cntl = aty_ld_pll(MCLK_CNTL);
721 
722 	aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
723 
724 	gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
725 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
726 	aty_ld_le32(GEN_RESET_CNTL);
727 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
728 	aty_ld_le32(GEN_RESET_CNTL);
729 
730 	aty_st_pll(MCLK_CNTL, mclk_cntl);
731 	aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
732 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
733 
734 	/* use old pio mode */
735 	aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
736 
737 	DBG("engine reset");
738 }
739 
740 
741 static void aty128_init_engine(struct aty128fb_par *par)
742 {
743 	u32 pitch_value;
744 
745 	wait_for_idle(par);
746 
747 	/* 3D scaler not spoken here */
748 	wait_for_fifo(1, par);
749 	aty_st_le32(SCALE_3D_CNTL, 0x00000000);
750 
751 	aty128_reset_engine(par);
752 
753 	pitch_value = par->crtc.pitch;
754 	if (par->crtc.bpp == 24) {
755 		pitch_value = pitch_value * 3;
756 	}
757 
758 	wait_for_fifo(4, par);
759 	/* setup engine offset registers */
760 	aty_st_le32(DEFAULT_OFFSET, 0x00000000);
761 
762 	/* setup engine pitch registers */
763 	aty_st_le32(DEFAULT_PITCH, pitch_value);
764 
765 	/* set the default scissor register to max dimensions */
766 	aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
767 
768 	/* set the drawing controls registers */
769 	aty_st_le32(DP_GUI_MASTER_CNTL,
770 		    GMC_SRC_PITCH_OFFSET_DEFAULT		|
771 		    GMC_DST_PITCH_OFFSET_DEFAULT		|
772 		    GMC_SRC_CLIP_DEFAULT			|
773 		    GMC_DST_CLIP_DEFAULT			|
774 		    GMC_BRUSH_SOLIDCOLOR			|
775 		    (depth_to_dst(par->crtc.depth) << 8)	|
776 		    GMC_SRC_DSTCOLOR			|
777 		    GMC_BYTE_ORDER_MSB_TO_LSB		|
778 		    GMC_DP_CONVERSION_TEMP_6500		|
779 		    ROP3_PATCOPY				|
780 		    GMC_DP_SRC_RECT				|
781 		    GMC_3D_FCN_EN_CLR			|
782 		    GMC_DST_CLR_CMP_FCN_CLEAR		|
783 		    GMC_AUX_CLIP_CLEAR			|
784 		    GMC_WRITE_MASK_SET);
785 
786 	wait_for_fifo(8, par);
787 	/* clear the line drawing registers */
788 	aty_st_le32(DST_BRES_ERR, 0);
789 	aty_st_le32(DST_BRES_INC, 0);
790 	aty_st_le32(DST_BRES_DEC, 0);
791 
792 	/* set brush color registers */
793 	aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
794 	aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
795 
796 	/* set source color registers */
797 	aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF);   /* white */
798 	aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000);   /* black */
799 
800 	/* default write mask */
801 	aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
802 
803 	/* Wait for all the writes to be completed before returning */
804 	wait_for_idle(par);
805 }
806 
807 
808 /* convert depth values to their register representation */
809 static u32 depth_to_dst(u32 depth)
810 {
811 	if (depth <= 8)
812 		return DST_8BPP;
813 	else if (depth <= 15)
814 		return DST_15BPP;
815 	else if (depth == 16)
816 		return DST_16BPP;
817 	else if (depth <= 24)
818 		return DST_24BPP;
819 	else if (depth <= 32)
820 		return DST_32BPP;
821 
822 	return -EINVAL;
823 }
824 
825 /*
826  * PLL informations retreival
827  */
828 
829 
830 #ifndef __sparc__
831 static void __iomem *aty128_map_ROM(const struct aty128fb_par *par,
832 				    struct pci_dev *dev)
833 {
834 	u16 dptr;
835 	u8 rom_type;
836 	void __iomem *bios;
837 	size_t rom_size;
838 
839     	/* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
840     	unsigned int temp;
841 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
842 	temp &= 0x00ffffffu;
843 	temp |= 0x04 << 24;
844 	aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
845 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
846 
847 	bios = pci_map_rom(dev, &rom_size);
848 
849 	if (!bios) {
850 		printk(KERN_ERR "aty128fb: ROM failed to map\n");
851 		return NULL;
852 	}
853 
854 	/* Very simple test to make sure it appeared */
855 	if (BIOS_IN16(0) != 0xaa55) {
856 		printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
857 			" be 0xaa55\n", BIOS_IN16(0));
858 		goto failed;
859 	}
860 
861 	/* Look for the PCI data to check the ROM type */
862 	dptr = BIOS_IN16(0x18);
863 
864 	/* Check the PCI data signature. If it's wrong, we still assume a normal
865 	 * x86 ROM for now, until I've verified this works everywhere.
866 	 * The goal here is more to phase out Open Firmware images.
867 	 *
868 	 * Currently, we only look at the first PCI data, we could iteratre and
869 	 * deal with them all, and we should use fb_bios_start relative to start
870 	 * of image and not relative start of ROM, but so far, I never found a
871 	 * dual-image ATI card.
872 	 *
873 	 * typedef struct {
874 	 * 	u32	signature;	+ 0x00
875 	 * 	u16	vendor;		+ 0x04
876 	 * 	u16	device;		+ 0x06
877 	 * 	u16	reserved_1;	+ 0x08
878 	 * 	u16	dlen;		+ 0x0a
879 	 * 	u8	drevision;	+ 0x0c
880 	 * 	u8	class_hi;	+ 0x0d
881 	 * 	u16	class_lo;	+ 0x0e
882 	 * 	u16	ilen;		+ 0x10
883 	 * 	u16	irevision;	+ 0x12
884 	 * 	u8	type;		+ 0x14
885 	 * 	u8	indicator;	+ 0x15
886 	 * 	u16	reserved_2;	+ 0x16
887 	 * } pci_data_t;
888 	 */
889 	if (BIOS_IN32(dptr) !=  (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
890 		printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
891 		       BIOS_IN32(dptr));
892 		goto anyway;
893 	}
894 	rom_type = BIOS_IN8(dptr + 0x14);
895 	switch(rom_type) {
896 	case 0:
897 		printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
898 		break;
899 	case 1:
900 		printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
901 		goto failed;
902 	case 2:
903 		printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
904 		goto failed;
905 	default:
906 		printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n",
907 		       rom_type);
908 		goto failed;
909 	}
910  anyway:
911 	return bios;
912 
913  failed:
914 	pci_unmap_rom(dev, bios);
915 	return NULL;
916 }
917 
918 static void aty128_get_pllinfo(struct aty128fb_par *par,
919 			       unsigned char __iomem *bios)
920 {
921 	unsigned int bios_hdr;
922 	unsigned int bios_pll;
923 
924 	bios_hdr = BIOS_IN16(0x48);
925 	bios_pll = BIOS_IN16(bios_hdr + 0x30);
926 
927 	par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
928 	par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
929 	par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
930 	par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
931 	par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
932 
933 	DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
934 			par->constants.ppll_max, par->constants.ppll_min,
935 			par->constants.xclk, par->constants.ref_divider,
936 			par->constants.ref_clk);
937 
938 }
939 
940 #ifdef CONFIG_X86
941 static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par)
942 {
943 	/* I simplified this code as we used to miss the signatures in
944 	 * a lot of case. It's now closer to XFree, we just don't check
945 	 * for signatures at all... Something better will have to be done
946 	 * if we end up having conflicts
947 	 */
948         u32  segstart;
949         unsigned char __iomem *rom_base = NULL;
950 
951         for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
952                 rom_base = ioremap(segstart, 0x10000);
953 		if (rom_base == NULL)
954 			return NULL;
955 		if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
956 	                break;
957                 iounmap(rom_base);
958 		rom_base = NULL;
959         }
960 	return rom_base;
961 }
962 #endif
963 #endif /* ndef(__sparc__) */
964 
965 /* fill in known card constants if pll_block is not available */
966 static void aty128_timings(struct aty128fb_par *par)
967 {
968 #ifdef CONFIG_PPC_OF
969 	/* instead of a table lookup, assume OF has properly
970 	 * setup the PLL registers and use their values
971 	 * to set the XCLK values and reference divider values */
972 
973 	u32 x_mpll_ref_fb_div;
974 	u32 xclk_cntl;
975 	u32 Nx, M;
976 	unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
977 #endif
978 
979 	if (!par->constants.ref_clk)
980 		par->constants.ref_clk = 2950;
981 
982 #ifdef CONFIG_PPC_OF
983 	x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
984 	xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
985 	Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
986 	M  = x_mpll_ref_fb_div & 0x0000ff;
987 
988 	par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
989 					(M * PostDivSet[xclk_cntl]));
990 
991 	par->constants.ref_divider =
992 		aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
993 #endif
994 
995 	if (!par->constants.ref_divider) {
996 		par->constants.ref_divider = 0x3b;
997 
998 		aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
999 		aty_pll_writeupdate(par);
1000 	}
1001 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
1002 	aty_pll_writeupdate(par);
1003 
1004 	/* from documentation */
1005 	if (!par->constants.ppll_min)
1006 		par->constants.ppll_min = 12500;
1007 	if (!par->constants.ppll_max)
1008 		par->constants.ppll_max = 25000;    /* 23000 on some cards? */
1009 	if (!par->constants.xclk)
1010 		par->constants.xclk = 0x1d4d;	     /* same as mclk */
1011 
1012 	par->constants.fifo_width = 128;
1013 	par->constants.fifo_depth = 32;
1014 
1015 	switch (aty_ld_le32(MEM_CNTL) & 0x3) {
1016 	case 0:
1017 		par->mem = &sdr_128;
1018 		break;
1019 	case 1:
1020 		par->mem = &sdr_sgram;
1021 		break;
1022 	case 2:
1023 		par->mem = &ddr_sgram;
1024 		break;
1025 	default:
1026 		par->mem = &sdr_sgram;
1027 	}
1028 }
1029 
1030 
1031 
1032 /*
1033  * CRTC programming
1034  */
1035 
1036 /* Program the CRTC registers */
1037 static void aty128_set_crtc(const struct aty128_crtc *crtc,
1038 			    const struct aty128fb_par *par)
1039 {
1040 	aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
1041 	aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
1042 	aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
1043 	aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
1044 	aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
1045 	aty_st_le32(CRTC_PITCH, crtc->pitch);
1046 	aty_st_le32(CRTC_OFFSET, crtc->offset);
1047 	aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
1048 	/* Disable ATOMIC updating.  Is this the right place? */
1049 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1050 }
1051 
1052 
1053 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1054 			      struct aty128_crtc *crtc,
1055 			      const struct aty128fb_par *par)
1056 {
1057 	u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1058 	u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1059 	u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1060 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1061 	u32 depth, bytpp;
1062 	u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1063 
1064 	/* input */
1065 	xres = var->xres;
1066 	yres = var->yres;
1067 	vxres   = var->xres_virtual;
1068 	vyres   = var->yres_virtual;
1069 	xoffset = var->xoffset;
1070 	yoffset = var->yoffset;
1071 	bpp   = var->bits_per_pixel;
1072 	left  = var->left_margin;
1073 	right = var->right_margin;
1074 	upper = var->upper_margin;
1075 	lower = var->lower_margin;
1076 	hslen = var->hsync_len;
1077 	vslen = var->vsync_len;
1078 	sync  = var->sync;
1079 	vmode = var->vmode;
1080 
1081 	if (bpp != 16)
1082 		depth = bpp;
1083 	else
1084 		depth = (var->green.length == 6) ? 16 : 15;
1085 
1086 	/* check for mode eligibility
1087 	 * accept only non interlaced modes */
1088 	if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1089 		return -EINVAL;
1090 
1091 	/* convert (and round up) and validate */
1092 	xres = (xres + 7) & ~7;
1093 	xoffset = (xoffset + 7) & ~7;
1094 
1095 	if (vxres < xres + xoffset)
1096 		vxres = xres + xoffset;
1097 
1098 	if (vyres < yres + yoffset)
1099 		vyres = yres + yoffset;
1100 
1101 	/* convert depth into ATI register depth */
1102 	dst = depth_to_dst(depth);
1103 
1104 	if (dst == -EINVAL) {
1105 		printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1106 		return -EINVAL;
1107 	}
1108 
1109 	/* convert register depth to bytes per pixel */
1110 	bytpp = mode_bytpp[dst];
1111 
1112 	/* make sure there is enough video ram for the mode */
1113 	if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1114 		printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1115 		return -EINVAL;
1116 	}
1117 
1118 	h_disp = (xres >> 3) - 1;
1119 	h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1120 
1121 	v_disp = yres - 1;
1122 	v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1123 
1124 	/* check to make sure h_total and v_total are in range */
1125 	if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1126 		printk(KERN_ERR "aty128fb: invalid width ranges\n");
1127 		return -EINVAL;
1128 	}
1129 
1130 	h_sync_wid = (hslen + 7) >> 3;
1131 	if (h_sync_wid == 0)
1132 		h_sync_wid = 1;
1133 	else if (h_sync_wid > 0x3f)        /* 0x3f = max hwidth */
1134 		h_sync_wid = 0x3f;
1135 
1136 	h_sync_strt = (h_disp << 3) + right;
1137 
1138 	v_sync_wid = vslen;
1139 	if (v_sync_wid == 0)
1140 		v_sync_wid = 1;
1141 	else if (v_sync_wid > 0x1f)        /* 0x1f = max vwidth */
1142 		v_sync_wid = 0x1f;
1143 
1144 	v_sync_strt = v_disp + lower;
1145 
1146 	h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1147 	v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1148 
1149 	c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1150 
1151 	crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1152 
1153 	crtc->h_total = h_total | (h_disp << 16);
1154 	crtc->v_total = v_total | (v_disp << 16);
1155 
1156 	crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1157 	        (h_sync_pol << 23);
1158 	crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1159                 (v_sync_pol << 23);
1160 
1161 	crtc->pitch = vxres >> 3;
1162 
1163 	crtc->offset = 0;
1164 
1165 	if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1166 		crtc->offset_cntl = 0x00010000;
1167 	else
1168 		crtc->offset_cntl = 0;
1169 
1170 	crtc->vxres = vxres;
1171 	crtc->vyres = vyres;
1172 	crtc->xoffset = xoffset;
1173 	crtc->yoffset = yoffset;
1174 	crtc->depth = depth;
1175 	crtc->bpp = bpp;
1176 
1177 	return 0;
1178 }
1179 
1180 
1181 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1182 {
1183 
1184 	/* fill in pixel info */
1185 	var->red.msb_right = 0;
1186 	var->green.msb_right = 0;
1187 	var->blue.offset = 0;
1188 	var->blue.msb_right = 0;
1189 	var->transp.offset = 0;
1190 	var->transp.length = 0;
1191 	var->transp.msb_right = 0;
1192 	switch (pix_width) {
1193 	case CRTC_PIX_WIDTH_8BPP:
1194 		var->bits_per_pixel = 8;
1195 		var->red.offset = 0;
1196 		var->red.length = 8;
1197 		var->green.offset = 0;
1198 		var->green.length = 8;
1199 		var->blue.length = 8;
1200 		break;
1201 	case CRTC_PIX_WIDTH_15BPP:
1202 		var->bits_per_pixel = 16;
1203 		var->red.offset = 10;
1204 		var->red.length = 5;
1205 		var->green.offset = 5;
1206 		var->green.length = 5;
1207 		var->blue.length = 5;
1208 		break;
1209 	case CRTC_PIX_WIDTH_16BPP:
1210 		var->bits_per_pixel = 16;
1211 		var->red.offset = 11;
1212 		var->red.length = 5;
1213 		var->green.offset = 5;
1214 		var->green.length = 6;
1215 		var->blue.length = 5;
1216 		break;
1217 	case CRTC_PIX_WIDTH_24BPP:
1218 		var->bits_per_pixel = 24;
1219 		var->red.offset = 16;
1220 		var->red.length = 8;
1221 		var->green.offset = 8;
1222 		var->green.length = 8;
1223 		var->blue.length = 8;
1224 		break;
1225 	case CRTC_PIX_WIDTH_32BPP:
1226 		var->bits_per_pixel = 32;
1227 		var->red.offset = 16;
1228 		var->red.length = 8;
1229 		var->green.offset = 8;
1230 		var->green.length = 8;
1231 		var->blue.length = 8;
1232 		var->transp.offset = 24;
1233 		var->transp.length = 8;
1234 		break;
1235 	default:
1236 		printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1237 		return -EINVAL;
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 
1244 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1245 			      struct fb_var_screeninfo *var)
1246 {
1247 	u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1248 	u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1249 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1250 	u32 pix_width;
1251 
1252 	/* fun with masking */
1253 	h_total     = crtc->h_total & 0x1ff;
1254 	h_disp      = (crtc->h_total >> 16) & 0xff;
1255 	h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1256 	h_sync_dly  = crtc->h_sync_strt_wid & 0x7;
1257 	h_sync_wid  = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1258 	h_sync_pol  = (crtc->h_sync_strt_wid >> 23) & 0x1;
1259 	v_total     = crtc->v_total & 0x7ff;
1260 	v_disp      = (crtc->v_total >> 16) & 0x7ff;
1261 	v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1262 	v_sync_wid  = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1263 	v_sync_pol  = (crtc->v_sync_strt_wid >> 23) & 0x1;
1264 	c_sync      = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1265 	pix_width   = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1266 
1267 	/* do conversions */
1268 	xres  = (h_disp + 1) << 3;
1269 	yres  = v_disp + 1;
1270 	left  = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1271 	right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1272 	hslen = h_sync_wid << 3;
1273 	upper = v_total - v_sync_strt - v_sync_wid;
1274 	lower = v_sync_strt - v_disp;
1275 	vslen = v_sync_wid;
1276 	sync  = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1277 		(v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1278 		(c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1279 
1280 	aty128_pix_width_to_var(pix_width, var);
1281 
1282 	var->xres = xres;
1283 	var->yres = yres;
1284 	var->xres_virtual = crtc->vxres;
1285 	var->yres_virtual = crtc->vyres;
1286 	var->xoffset = crtc->xoffset;
1287 	var->yoffset = crtc->yoffset;
1288 	var->left_margin  = left;
1289 	var->right_margin = right;
1290 	var->upper_margin = upper;
1291 	var->lower_margin = lower;
1292 	var->hsync_len = hslen;
1293 	var->vsync_len = vslen;
1294 	var->sync  = sync;
1295 	var->vmode = FB_VMODE_NONINTERLACED;
1296 
1297 	return 0;
1298 }
1299 
1300 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1301 {
1302 	if (on) {
1303 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) |
1304 			    CRT_CRTC_ON);
1305 		aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) |
1306 			    DAC_PALETTE2_SNOOP_EN));
1307 	} else
1308 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) &
1309 			    ~CRT_CRTC_ON);
1310 }
1311 
1312 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1313 {
1314 	u32 reg;
1315 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1316 	struct fb_info *info = pci_get_drvdata(par->pdev);
1317 #endif
1318 
1319 	if (on) {
1320 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1321 		reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1322 		reg &= ~LVDS_DISPLAY_DIS;
1323 		aty_st_le32(LVDS_GEN_CNTL, reg);
1324 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1325 		aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1326 #endif
1327 	} else {
1328 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1329 		aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1330 #endif
1331 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1332 		reg |= LVDS_DISPLAY_DIS;
1333 		aty_st_le32(LVDS_GEN_CNTL, reg);
1334 		mdelay(100);
1335 		reg &= ~(LVDS_ON /*| LVDS_EN*/);
1336 		aty_st_le32(LVDS_GEN_CNTL, reg);
1337 	}
1338 }
1339 
1340 static void aty128_set_pll(struct aty128_pll *pll,
1341 			   const struct aty128fb_par *par)
1342 {
1343 	u32 div3;
1344 
1345 	unsigned char post_conv[] =	/* register values for post dividers */
1346         { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
1347 
1348 	/* select PPLL_DIV_3 */
1349 	aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1350 
1351 	/* reset PLL */
1352 	aty_st_pll(PPLL_CNTL,
1353 		   aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1354 
1355 	/* write the reference divider */
1356 	aty_pll_wait_readupdate(par);
1357 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1358 	aty_pll_writeupdate(par);
1359 
1360 	div3 = aty_ld_pll(PPLL_DIV_3);
1361 	div3 &= ~PPLL_FB3_DIV_MASK;
1362 	div3 |= pll->feedback_divider;
1363 	div3 &= ~PPLL_POST3_DIV_MASK;
1364 	div3 |= post_conv[pll->post_divider] << 16;
1365 
1366 	/* write feedback and post dividers */
1367 	aty_pll_wait_readupdate(par);
1368 	aty_st_pll(PPLL_DIV_3, div3);
1369 	aty_pll_writeupdate(par);
1370 
1371 	aty_pll_wait_readupdate(par);
1372 	aty_st_pll(HTOTAL_CNTL, 0);	/* no horiz crtc adjustment */
1373 	aty_pll_writeupdate(par);
1374 
1375 	/* clear the reset, just in case */
1376 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1377 }
1378 
1379 
1380 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1381 			     const struct aty128fb_par *par)
1382 {
1383 	const struct aty128_constants c = par->constants;
1384 	unsigned char post_dividers[] = {1,2,4,8,3,6,12};
1385 	u32 output_freq;
1386 	u32 vclk;        /* in .01 MHz */
1387 	int i = 0;
1388 	u32 n, d;
1389 
1390 	vclk = 100000000 / period_in_ps;	/* convert units to 10 kHz */
1391 
1392 	/* adjust pixel clock if necessary */
1393 	if (vclk > c.ppll_max)
1394 		vclk = c.ppll_max;
1395 	if (vclk * 12 < c.ppll_min)
1396 		vclk = c.ppll_min/12;
1397 
1398 	/* now, find an acceptable divider */
1399 	for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1400 		output_freq = post_dividers[i] * vclk;
1401 		if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1402 			pll->post_divider = post_dividers[i];
1403 			break;
1404 		}
1405 	}
1406 
1407 	if (i == ARRAY_SIZE(post_dividers))
1408 		return -EINVAL;
1409 
1410 	/* calculate feedback divider */
1411 	n = c.ref_divider * output_freq;
1412 	d = c.ref_clk;
1413 
1414 	pll->feedback_divider = round_div(n, d);
1415 	pll->vclk = vclk;
1416 
1417 	DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1418 	    "vclk_per: %d\n", pll->post_divider,
1419 	    pll->feedback_divider, vclk, output_freq,
1420 	    c.ref_divider, period_in_ps);
1421 
1422 	return 0;
1423 }
1424 
1425 
1426 static int aty128_pll_to_var(const struct aty128_pll *pll,
1427 			     struct fb_var_screeninfo *var)
1428 {
1429 	var->pixclock = 100000000 / pll->vclk;
1430 
1431 	return 0;
1432 }
1433 
1434 
1435 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1436 			    const struct aty128fb_par *par)
1437 {
1438 	aty_st_le32(DDA_CONFIG, dsp->dda_config);
1439 	aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1440 }
1441 
1442 
1443 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1444 			  const struct aty128_pll *pll,
1445 			  u32 depth,
1446 			  const struct aty128fb_par *par)
1447 {
1448 	const struct aty128_meminfo *m = par->mem;
1449 	u32 xclk = par->constants.xclk;
1450 	u32 fifo_width = par->constants.fifo_width;
1451 	u32 fifo_depth = par->constants.fifo_depth;
1452 	s32 x, b, p, ron, roff;
1453 	u32 n, d, bpp;
1454 
1455 	/* round up to multiple of 8 */
1456 	bpp = (depth+7) & ~7;
1457 
1458 	n = xclk * fifo_width;
1459 	d = pll->vclk * bpp;
1460 	x = round_div(n, d);
1461 
1462 	ron = 4 * m->MB +
1463 		3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1464 		2 * m->Trp +
1465 		m->Twr +
1466 		m->CL +
1467 		m->Tr2w +
1468 		x;
1469 
1470 	DBG("x %x\n", x);
1471 
1472 	b = 0;
1473 	while (x) {
1474 		x >>= 1;
1475 		b++;
1476 	}
1477 	p = b + 1;
1478 
1479 	ron <<= (11 - p);
1480 
1481 	n <<= (11 - p);
1482 	x = round_div(n, d);
1483 	roff = x * (fifo_depth - 4);
1484 
1485 	if ((ron + m->Rloop) >= roff) {
1486 		printk(KERN_ERR "aty128fb: Mode out of range!\n");
1487 		return -EINVAL;
1488 	}
1489 
1490 	DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1491 	    p, m->Rloop, x, ron, roff);
1492 
1493 	dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1494 	dsp->dda_on_off = ron << 16 | roff;
1495 
1496 	return 0;
1497 }
1498 
1499 
1500 /*
1501  * This actually sets the video mode.
1502  */
1503 static int aty128fb_set_par(struct fb_info *info)
1504 {
1505 	struct aty128fb_par *par = info->par;
1506 	u32 config;
1507 	int err;
1508 
1509 	if ((err = aty128_decode_var(&info->var, par)) != 0)
1510 		return err;
1511 
1512 	if (par->blitter_may_be_busy)
1513 		wait_for_idle(par);
1514 
1515 	/* clear all registers that may interfere with mode setting */
1516 	aty_st_le32(OVR_CLR, 0);
1517 	aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1518 	aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1519 	aty_st_le32(OV0_SCALE_CNTL, 0);
1520 	aty_st_le32(MPP_TB_CONFIG, 0);
1521 	aty_st_le32(MPP_GP_CONFIG, 0);
1522 	aty_st_le32(SUBPIC_CNTL, 0);
1523 	aty_st_le32(VIPH_CONTROL, 0);
1524 	aty_st_le32(I2C_CNTL_1, 0);         /* turn off i2c */
1525 	aty_st_le32(GEN_INT_CNTL, 0);	/* turn off interrupts */
1526 	aty_st_le32(CAP0_TRIG_CNTL, 0);
1527 	aty_st_le32(CAP1_TRIG_CNTL, 0);
1528 
1529 	aty_st_8(CRTC_EXT_CNTL + 1, 4);	/* turn video off */
1530 
1531 	aty128_set_crtc(&par->crtc, par);
1532 	aty128_set_pll(&par->pll, par);
1533 	aty128_set_fifo(&par->fifo_reg, par);
1534 
1535 	config = aty_ld_le32(CNFG_CNTL) & ~3;
1536 
1537 #if defined(__BIG_ENDIAN)
1538 	if (par->crtc.bpp == 32)
1539 		config |= 2;	/* make aperture do 32 bit swapping */
1540 	else if (par->crtc.bpp == 16)
1541 		config |= 1;	/* make aperture do 16 bit swapping */
1542 #endif
1543 
1544 	aty_st_le32(CNFG_CNTL, config);
1545 	aty_st_8(CRTC_EXT_CNTL + 1, 0);	/* turn the video back on */
1546 
1547 	info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1548 	info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1549 		: FB_VISUAL_DIRECTCOLOR;
1550 
1551 	if (par->chip_gen == rage_M3) {
1552 		aty128_set_crt_enable(par, par->crt_on);
1553 		aty128_set_lcd_enable(par, par->lcd_on);
1554 	}
1555 	if (par->accel_flags & FB_ACCELF_TEXT)
1556 		aty128_init_engine(par);
1557 
1558 #ifdef CONFIG_BOOTX_TEXT
1559 	btext_update_display(info->fix.smem_start,
1560 			     (((par->crtc.h_total>>16) & 0xff)+1)*8,
1561 			     ((par->crtc.v_total>>16) & 0x7ff)+1,
1562 			     par->crtc.bpp,
1563 			     par->crtc.vxres*par->crtc.bpp/8);
1564 #endif /* CONFIG_BOOTX_TEXT */
1565 
1566 	return 0;
1567 }
1568 
1569 /*
1570  *  encode/decode the User Defined Part of the Display
1571  */
1572 
1573 static int aty128_decode_var(struct fb_var_screeninfo *var,
1574 			     struct aty128fb_par *par)
1575 {
1576 	int err;
1577 	struct aty128_crtc crtc;
1578 	struct aty128_pll pll;
1579 	struct aty128_ddafifo fifo_reg;
1580 
1581 	if ((err = aty128_var_to_crtc(var, &crtc, par)))
1582 		return err;
1583 
1584 	if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1585 		return err;
1586 
1587 	if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1588 		return err;
1589 
1590 	par->crtc = crtc;
1591 	par->pll = pll;
1592 	par->fifo_reg = fifo_reg;
1593 	par->accel_flags = var->accel_flags;
1594 
1595 	return 0;
1596 }
1597 
1598 
1599 static int aty128_encode_var(struct fb_var_screeninfo *var,
1600 			     const struct aty128fb_par *par)
1601 {
1602 	int err;
1603 
1604 	if ((err = aty128_crtc_to_var(&par->crtc, var)))
1605 		return err;
1606 
1607 	if ((err = aty128_pll_to_var(&par->pll, var)))
1608 		return err;
1609 
1610 	var->nonstd = 0;
1611 	var->activate = 0;
1612 
1613 	var->height = -1;
1614 	var->width = -1;
1615 	var->accel_flags = par->accel_flags;
1616 
1617 	return 0;
1618 }
1619 
1620 
1621 static int aty128fb_check_var(struct fb_var_screeninfo *var,
1622 			      struct fb_info *info)
1623 {
1624 	struct aty128fb_par par;
1625 	int err;
1626 
1627 	par = *(struct aty128fb_par *)info->par;
1628 	if ((err = aty128_decode_var(var, &par)) != 0)
1629 		return err;
1630 	aty128_encode_var(var, &par);
1631 	return 0;
1632 }
1633 
1634 
1635 /*
1636  *  Pan or Wrap the Display
1637  */
1638 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
1639 				struct fb_info *fb)
1640 {
1641 	struct aty128fb_par *par = fb->par;
1642 	u32 xoffset, yoffset;
1643 	u32 offset;
1644 	u32 xres, yres;
1645 
1646 	xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1647 	yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1648 
1649 	xoffset = (var->xoffset +7) & ~7;
1650 	yoffset = var->yoffset;
1651 
1652 	if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1653 		return -EINVAL;
1654 
1655 	par->crtc.xoffset = xoffset;
1656 	par->crtc.yoffset = yoffset;
1657 
1658 	offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3))
1659 									  & ~7;
1660 
1661 	if (par->crtc.bpp == 24)
1662 		offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1663 
1664 	aty_st_le32(CRTC_OFFSET, offset);
1665 
1666 	return 0;
1667 }
1668 
1669 
1670 /*
1671  *  Helper function to store a single palette register
1672  */
1673 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1674 			  struct aty128fb_par *par)
1675 {
1676 	if (par->chip_gen == rage_M3) {
1677 #if 0
1678 		/* Note: For now, on M3, we set palette on both heads, which may
1679 		 * be useless. Can someone with a M3 check this ?
1680 		 *
1681 		 * This code would still be useful if using the second CRTC to
1682 		 * do mirroring
1683 		 */
1684 
1685 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) |
1686 			    DAC_PALETTE_ACCESS_CNTL);
1687 		aty_st_8(PALETTE_INDEX, regno);
1688 		aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1689 #endif
1690 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) &
1691 			    ~DAC_PALETTE_ACCESS_CNTL);
1692 	}
1693 
1694 	aty_st_8(PALETTE_INDEX, regno);
1695 	aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1696 }
1697 
1698 static int aty128fb_sync(struct fb_info *info)
1699 {
1700 	struct aty128fb_par *par = info->par;
1701 
1702 	if (par->blitter_may_be_busy)
1703 		wait_for_idle(par);
1704 	return 0;
1705 }
1706 
1707 #ifndef MODULE
1708 static int aty128fb_setup(char *options)
1709 {
1710 	char *this_opt;
1711 
1712 	if (!options || !*options)
1713 		return 0;
1714 
1715 	while ((this_opt = strsep(&options, ",")) != NULL) {
1716 		if (!strncmp(this_opt, "lcd:", 4)) {
1717 			default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1718 			continue;
1719 		} else if (!strncmp(this_opt, "crt:", 4)) {
1720 			default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1721 			continue;
1722 		} else if (!strncmp(this_opt, "backlight:", 10)) {
1723 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1724 			backlight = simple_strtoul(this_opt+10, NULL, 0);
1725 #endif
1726 			continue;
1727 		}
1728 #ifdef CONFIG_MTRR
1729 		if(!strncmp(this_opt, "nomtrr", 6)) {
1730 			mtrr = 0;
1731 			continue;
1732 		}
1733 #endif
1734 #ifdef CONFIG_PPC_PMAC
1735 		/* vmode and cmode deprecated */
1736 		if (!strncmp(this_opt, "vmode:", 6)) {
1737 			unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1738 			if (vmode > 0 && vmode <= VMODE_MAX)
1739 				default_vmode = vmode;
1740 			continue;
1741 		} else if (!strncmp(this_opt, "cmode:", 6)) {
1742 			unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1743 			switch (cmode) {
1744 			case 0:
1745 			case 8:
1746 				default_cmode = CMODE_8;
1747 				break;
1748 			case 15:
1749 			case 16:
1750 				default_cmode = CMODE_16;
1751 				break;
1752 			case 24:
1753 			case 32:
1754 				default_cmode = CMODE_32;
1755 				break;
1756 			}
1757 			continue;
1758 		}
1759 #endif /* CONFIG_PPC_PMAC */
1760 		mode_option = this_opt;
1761 	}
1762 	return 0;
1763 }
1764 #endif  /*  MODULE  */
1765 
1766 /* Backlight */
1767 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1768 #define MAX_LEVEL 0xFF
1769 
1770 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1771 		int level)
1772 {
1773 	struct fb_info *info = pci_get_drvdata(par->pdev);
1774 	int atylevel;
1775 
1776 	/* Get and convert the value */
1777 	/* No locking of bl_curve since we read a single value */
1778 	atylevel = MAX_LEVEL -
1779 		(info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1780 
1781 	if (atylevel < 0)
1782 		atylevel = 0;
1783 	else if (atylevel > MAX_LEVEL)
1784 		atylevel = MAX_LEVEL;
1785 
1786 	return atylevel;
1787 }
1788 
1789 /* We turn off the LCD completely instead of just dimming the backlight.
1790  * This provides greater power saving and the display is useless without
1791  * backlight anyway
1792  */
1793 #define BACKLIGHT_LVDS_OFF
1794 /* That one prevents proper CRT output with LCD off */
1795 #undef BACKLIGHT_DAC_OFF
1796 
1797 static int aty128_bl_update_status(struct backlight_device *bd)
1798 {
1799 	struct aty128fb_par *par = bl_get_data(bd);
1800 	unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1801 	int level;
1802 
1803 	if (bd->props.power != FB_BLANK_UNBLANK ||
1804 	    bd->props.fb_blank != FB_BLANK_UNBLANK ||
1805 	    !par->lcd_on)
1806 		level = 0;
1807 	else
1808 		level = bd->props.brightness;
1809 
1810 	reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1811 	if (level > 0) {
1812 		reg |= LVDS_DIGION;
1813 		if (!(reg & LVDS_ON)) {
1814 			reg &= ~LVDS_BLON;
1815 			aty_st_le32(LVDS_GEN_CNTL, reg);
1816 			aty_ld_le32(LVDS_GEN_CNTL);
1817 			mdelay(10);
1818 			reg |= LVDS_BLON;
1819 			aty_st_le32(LVDS_GEN_CNTL, reg);
1820 		}
1821 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1822 		reg |= (aty128_bl_get_level_brightness(par, level) <<
1823 			LVDS_BL_MOD_LEVEL_SHIFT);
1824 #ifdef BACKLIGHT_LVDS_OFF
1825 		reg |= LVDS_ON | LVDS_EN;
1826 		reg &= ~LVDS_DISPLAY_DIS;
1827 #endif
1828 		aty_st_le32(LVDS_GEN_CNTL, reg);
1829 #ifdef BACKLIGHT_DAC_OFF
1830 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1831 #endif
1832 	} else {
1833 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1834 		reg |= (aty128_bl_get_level_brightness(par, 0) <<
1835 			LVDS_BL_MOD_LEVEL_SHIFT);
1836 #ifdef BACKLIGHT_LVDS_OFF
1837 		reg |= LVDS_DISPLAY_DIS;
1838 		aty_st_le32(LVDS_GEN_CNTL, reg);
1839 		aty_ld_le32(LVDS_GEN_CNTL);
1840 		udelay(10);
1841 		reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1842 #endif
1843 		aty_st_le32(LVDS_GEN_CNTL, reg);
1844 #ifdef BACKLIGHT_DAC_OFF
1845 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1846 #endif
1847 	}
1848 
1849 	return 0;
1850 }
1851 
1852 static const struct backlight_ops aty128_bl_data = {
1853 	.update_status	= aty128_bl_update_status,
1854 };
1855 
1856 static void aty128_bl_set_power(struct fb_info *info, int power)
1857 {
1858 	if (info->bl_dev) {
1859 		info->bl_dev->props.power = power;
1860 		backlight_update_status(info->bl_dev);
1861 	}
1862 }
1863 
1864 static void aty128_bl_init(struct aty128fb_par *par)
1865 {
1866 	struct backlight_properties props;
1867 	struct fb_info *info = pci_get_drvdata(par->pdev);
1868 	struct backlight_device *bd;
1869 	char name[12];
1870 
1871 	/* Could be extended to Rage128Pro LVDS output too */
1872 	if (par->chip_gen != rage_M3)
1873 		return;
1874 
1875 #ifdef CONFIG_PMAC_BACKLIGHT
1876 	if (!pmac_has_backlight_type("ati"))
1877 		return;
1878 #endif
1879 
1880 	snprintf(name, sizeof(name), "aty128bl%d", info->node);
1881 
1882 	memset(&props, 0, sizeof(struct backlight_properties));
1883 	props.type = BACKLIGHT_RAW;
1884 	props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1885 	bd = backlight_device_register(name, info->dev, par, &aty128_bl_data,
1886 				       &props);
1887 	if (IS_ERR(bd)) {
1888 		info->bl_dev = NULL;
1889 		printk(KERN_WARNING "aty128: Backlight registration failed\n");
1890 		goto error;
1891 	}
1892 
1893 	info->bl_dev = bd;
1894 	fb_bl_default_curve(info, 0,
1895 		 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1896 		219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1897 
1898 	bd->props.brightness = bd->props.max_brightness;
1899 	bd->props.power = FB_BLANK_UNBLANK;
1900 	backlight_update_status(bd);
1901 
1902 	printk("aty128: Backlight initialized (%s)\n", name);
1903 
1904 	return;
1905 
1906 error:
1907 	return;
1908 }
1909 
1910 static void aty128_bl_exit(struct backlight_device *bd)
1911 {
1912 	backlight_device_unregister(bd);
1913 	printk("aty128: Backlight unloaded\n");
1914 }
1915 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1916 
1917 /*
1918  *  Initialisation
1919  */
1920 
1921 #ifdef CONFIG_PPC_PMAC__disabled
1922 static void aty128_early_resume(void *data)
1923 {
1924         struct aty128fb_par *par = data;
1925 
1926 	if (!console_trylock())
1927 		return;
1928 	pci_restore_state(par->pdev);
1929 	aty128_do_resume(par->pdev);
1930 	console_unlock();
1931 }
1932 #endif /* CONFIG_PPC_PMAC */
1933 
1934 static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1935 {
1936 	struct fb_info *info = pci_get_drvdata(pdev);
1937 	struct aty128fb_par *par = info->par;
1938 	struct fb_var_screeninfo var;
1939 	char video_card[50];
1940 	u8 chip_rev;
1941 	u32 dac;
1942 
1943 	/* Get the chip revision */
1944 	chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1945 
1946 	strcpy(video_card, "Rage128 XX ");
1947 	video_card[8] = ent->device >> 8;
1948 	video_card[9] = ent->device & 0xFF;
1949 
1950 	/* range check to make sure */
1951 	if (ent->driver_data < ARRAY_SIZE(r128_family))
1952 		strlcat(video_card, r128_family[ent->driver_data],
1953 			sizeof(video_card));
1954 
1955 	printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1956 
1957 	if (par->vram_size % (1024 * 1024) == 0)
1958 		printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1959 	else
1960 		printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1961 
1962 	par->chip_gen = ent->driver_data;
1963 
1964 	/* fill in info */
1965 	info->fbops = &aty128fb_ops;
1966 	info->flags = FBINFO_FLAG_DEFAULT;
1967 
1968 	par->lcd_on = default_lcd_on;
1969 	par->crt_on = default_crt_on;
1970 
1971 	var = default_var;
1972 #ifdef CONFIG_PPC_PMAC
1973 	if (machine_is(powermac)) {
1974 		/* Indicate sleep capability */
1975 		if (par->chip_gen == rage_M3) {
1976 			pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1977 #if 0 /* Disable the early video resume hack for now as it's causing problems,
1978        * among others we now rely on the PCI core restoring the config space
1979        * for us, which isn't the case with that hack, and that code path causes
1980        * various things to be called with interrupts off while they shouldn't.
1981        * I'm leaving the code in as it can be useful for debugging purposes
1982        */
1983 			pmac_set_early_video_resume(aty128_early_resume, par);
1984 #endif
1985 		}
1986 
1987 		/* Find default mode */
1988 		if (mode_option) {
1989 			if (!mac_find_mode(&var, info, mode_option, 8))
1990 				var = default_var;
1991 		} else {
1992 			if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1993 				default_vmode = VMODE_1024_768_60;
1994 
1995 			/* iMacs need that resolution
1996 			 * PowerMac2,1 first r128 iMacs
1997 			 * PowerMac2,2 summer 2000 iMacs
1998 			 * PowerMac4,1 january 2001 iMacs "flower power"
1999 			 */
2000 			if (of_machine_is_compatible("PowerMac2,1") ||
2001 			    of_machine_is_compatible("PowerMac2,2") ||
2002 			    of_machine_is_compatible("PowerMac4,1"))
2003 				default_vmode = VMODE_1024_768_75;
2004 
2005 			/* iBook SE */
2006 			if (of_machine_is_compatible("PowerBook2,2"))
2007 				default_vmode = VMODE_800_600_60;
2008 
2009 			/* PowerBook Firewire (Pismo), iBook Dual USB */
2010 			if (of_machine_is_compatible("PowerBook3,1") ||
2011 			    of_machine_is_compatible("PowerBook4,1"))
2012 				default_vmode = VMODE_1024_768_60;
2013 
2014 			/* PowerBook Titanium */
2015 			if (of_machine_is_compatible("PowerBook3,2"))
2016 				default_vmode = VMODE_1152_768_60;
2017 
2018 			if (default_cmode > 16)
2019 				default_cmode = CMODE_32;
2020 			else if (default_cmode > 8)
2021 				default_cmode = CMODE_16;
2022 			else
2023 				default_cmode = CMODE_8;
2024 
2025 			if (mac_vmode_to_var(default_vmode, default_cmode, &var))
2026 				var = default_var;
2027 		}
2028 	} else
2029 #endif /* CONFIG_PPC_PMAC */
2030 	{
2031 		if (mode_option)
2032 			if (fb_find_mode(&var, info, mode_option, NULL,
2033 					 0, &defaultmode, 8) == 0)
2034 				var = default_var;
2035 	}
2036 
2037 	var.accel_flags &= ~FB_ACCELF_TEXT;
2038 //	var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
2039 
2040 	if (aty128fb_check_var(&var, info)) {
2041 		printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
2042 		return 0;
2043 	}
2044 
2045 	/* setup the DAC the way we like it */
2046 	dac = aty_ld_le32(DAC_CNTL);
2047 	dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2048 	dac |= DAC_MASK;
2049 	if (par->chip_gen == rage_M3)
2050 		dac |= DAC_PALETTE2_SNOOP_EN;
2051 	aty_st_le32(DAC_CNTL, dac);
2052 
2053 	/* turn off bus mastering, just in case */
2054 	aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2055 
2056 	info->var = var;
2057 	fb_alloc_cmap(&info->cmap, 256, 0);
2058 
2059 	var.activate = FB_ACTIVATE_NOW;
2060 
2061 	aty128_init_engine(par);
2062 
2063 	par->pdev = pdev;
2064 	par->asleep = 0;
2065 	par->lock_blank = 0;
2066 
2067 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2068 	if (backlight)
2069 		aty128_bl_init(par);
2070 #endif
2071 
2072 	if (register_framebuffer(info) < 0)
2073 		return 0;
2074 
2075 	fb_info(info, "%s frame buffer device on %s\n",
2076 		info->fix.id, video_card);
2077 
2078 	return 1;	/* success! */
2079 }
2080 
2081 #ifdef CONFIG_PCI
2082 /* register a card    ++ajoshi */
2083 static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2084 {
2085 	unsigned long fb_addr, reg_addr;
2086 	struct aty128fb_par *par;
2087 	struct fb_info *info;
2088 	int err;
2089 #ifndef __sparc__
2090 	void __iomem *bios = NULL;
2091 #endif
2092 
2093 	/* Enable device in PCI config */
2094 	if ((err = pci_enable_device(pdev))) {
2095 		printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2096 				err);
2097 		return -ENODEV;
2098 	}
2099 
2100 	fb_addr = pci_resource_start(pdev, 0);
2101 	if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2102 				"aty128fb FB")) {
2103 		printk(KERN_ERR "aty128fb: cannot reserve frame "
2104 				"buffer memory\n");
2105 		return -ENODEV;
2106 	}
2107 
2108 	reg_addr = pci_resource_start(pdev, 2);
2109 	if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2110 				"aty128fb MMIO")) {
2111 		printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2112 		goto err_free_fb;
2113 	}
2114 
2115 	/* We have the resources. Now virtualize them */
2116 	info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2117 	if (info == NULL) {
2118 		printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
2119 		goto err_free_mmio;
2120 	}
2121 	par = info->par;
2122 
2123 	info->pseudo_palette = par->pseudo_palette;
2124 
2125 	/* Virtualize mmio region */
2126 	info->fix.mmio_start = reg_addr;
2127 	par->regbase = pci_ioremap_bar(pdev, 2);
2128 	if (!par->regbase)
2129 		goto err_free_info;
2130 
2131 	/* Grab memory size from the card */
2132 	// How does this relate to the resource length from the PCI hardware?
2133 	par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2134 
2135 	/* Virtualize the framebuffer */
2136 	info->screen_base = ioremap(fb_addr, par->vram_size);
2137 	if (!info->screen_base)
2138 		goto err_unmap_out;
2139 
2140 	/* Set up info->fix */
2141 	info->fix = aty128fb_fix;
2142 	info->fix.smem_start = fb_addr;
2143 	info->fix.smem_len = par->vram_size;
2144 	info->fix.mmio_start = reg_addr;
2145 
2146 	/* If we can't test scratch registers, something is seriously wrong */
2147 	if (!register_test(par)) {
2148 		printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2149 		goto err_out;
2150 	}
2151 
2152 #ifndef __sparc__
2153 	bios = aty128_map_ROM(par, pdev);
2154 #ifdef CONFIG_X86
2155 	if (bios == NULL)
2156 		bios = aty128_find_mem_vbios(par);
2157 #endif
2158 	if (bios == NULL)
2159 		printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2160 	else {
2161 		printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2162 		aty128_get_pllinfo(par, bios);
2163 		pci_unmap_rom(pdev, bios);
2164 	}
2165 #endif /* __sparc__ */
2166 
2167 	aty128_timings(par);
2168 	pci_set_drvdata(pdev, info);
2169 
2170 	if (!aty128_init(pdev, ent))
2171 		goto err_out;
2172 
2173 #ifdef CONFIG_MTRR
2174 	if (mtrr) {
2175 		par->mtrr.vram = mtrr_add(info->fix.smem_start,
2176 				par->vram_size, MTRR_TYPE_WRCOMB, 1);
2177 		par->mtrr.vram_valid = 1;
2178 		/* let there be speed */
2179 		printk(KERN_INFO "aty128fb: Rage128 MTRR set to ON\n");
2180 	}
2181 #endif /* CONFIG_MTRR */
2182 	return 0;
2183 
2184 err_out:
2185 	iounmap(info->screen_base);
2186 err_unmap_out:
2187 	iounmap(par->regbase);
2188 err_free_info:
2189 	framebuffer_release(info);
2190 err_free_mmio:
2191 	release_mem_region(pci_resource_start(pdev, 2),
2192 			pci_resource_len(pdev, 2));
2193 err_free_fb:
2194 	release_mem_region(pci_resource_start(pdev, 0),
2195 			pci_resource_len(pdev, 0));
2196 	return -ENODEV;
2197 }
2198 
2199 static void aty128_remove(struct pci_dev *pdev)
2200 {
2201 	struct fb_info *info = pci_get_drvdata(pdev);
2202 	struct aty128fb_par *par;
2203 
2204 	if (!info)
2205 		return;
2206 
2207 	par = info->par;
2208 
2209 	unregister_framebuffer(info);
2210 
2211 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2212 	aty128_bl_exit(info->bl_dev);
2213 #endif
2214 
2215 #ifdef CONFIG_MTRR
2216 	if (par->mtrr.vram_valid)
2217 		mtrr_del(par->mtrr.vram, info->fix.smem_start,
2218 			 par->vram_size);
2219 #endif /* CONFIG_MTRR */
2220 	iounmap(par->regbase);
2221 	iounmap(info->screen_base);
2222 
2223 	release_mem_region(pci_resource_start(pdev, 0),
2224 			   pci_resource_len(pdev, 0));
2225 	release_mem_region(pci_resource_start(pdev, 2),
2226 			   pci_resource_len(pdev, 2));
2227 	framebuffer_release(info);
2228 }
2229 #endif /* CONFIG_PCI */
2230 
2231 
2232 
2233     /*
2234      *  Blank the display.
2235      */
2236 static int aty128fb_blank(int blank, struct fb_info *fb)
2237 {
2238 	struct aty128fb_par *par = fb->par;
2239 	u8 state;
2240 
2241 	if (par->lock_blank || par->asleep)
2242 		return 0;
2243 
2244 	switch (blank) {
2245 	case FB_BLANK_NORMAL:
2246 		state = 4;
2247 		break;
2248 	case FB_BLANK_VSYNC_SUSPEND:
2249 		state = 6;
2250 		break;
2251 	case FB_BLANK_HSYNC_SUSPEND:
2252 		state = 5;
2253 		break;
2254 	case FB_BLANK_POWERDOWN:
2255 		state = 7;
2256 		break;
2257 	case FB_BLANK_UNBLANK:
2258 	default:
2259 		state = 0;
2260 		break;
2261 	}
2262 	aty_st_8(CRTC_EXT_CNTL+1, state);
2263 
2264 	if (par->chip_gen == rage_M3) {
2265 		aty128_set_crt_enable(par, par->crt_on && !blank);
2266 		aty128_set_lcd_enable(par, par->lcd_on && !blank);
2267 	}
2268 
2269 	return 0;
2270 }
2271 
2272 /*
2273  *  Set a single color register. The values supplied are already
2274  *  rounded down to the hardware's capabilities (according to the
2275  *  entries in the var structure). Return != 0 for invalid regno.
2276  */
2277 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2278 			      u_int transp, struct fb_info *info)
2279 {
2280 	struct aty128fb_par *par = info->par;
2281 
2282 	if (regno > 255
2283 	    || (par->crtc.depth == 16 && regno > 63)
2284 	    || (par->crtc.depth == 15 && regno > 31))
2285 		return 1;
2286 
2287 	red >>= 8;
2288 	green >>= 8;
2289 	blue >>= 8;
2290 
2291 	if (regno < 16) {
2292 		int i;
2293 		u32 *pal = info->pseudo_palette;
2294 
2295 		switch (par->crtc.depth) {
2296 		case 15:
2297 			pal[regno] = (regno << 10) | (regno << 5) | regno;
2298 			break;
2299 		case 16:
2300 			pal[regno] = (regno << 11) | (regno << 6) | regno;
2301 			break;
2302 		case 24:
2303 			pal[regno] = (regno << 16) | (regno << 8) | regno;
2304 			break;
2305 		case 32:
2306 			i = (regno << 8) | regno;
2307 			pal[regno] = (i << 16) | i;
2308 			break;
2309 		}
2310 	}
2311 
2312 	if (par->crtc.depth == 16 && regno > 0) {
2313 		/*
2314 		 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2315 		 * have 32 slots for R and B values but 64 slots for G values.
2316 		 * Thus the R and B values go in one slot but the G value
2317 		 * goes in a different slot, and we have to avoid disturbing
2318 		 * the other fields in the slots we touch.
2319 		 */
2320 		par->green[regno] = green;
2321 		if (regno < 32) {
2322 			par->red[regno] = red;
2323 			par->blue[regno] = blue;
2324 			aty128_st_pal(regno * 8, red, par->green[regno*2],
2325 				      blue, par);
2326 		}
2327 		red = par->red[regno/2];
2328 		blue = par->blue[regno/2];
2329 		regno <<= 2;
2330 	} else if (par->crtc.bpp == 16)
2331 		regno <<= 3;
2332 	aty128_st_pal(regno, red, green, blue, par);
2333 
2334 	return 0;
2335 }
2336 
2337 #define ATY_MIRROR_LCD_ON	0x00000001
2338 #define ATY_MIRROR_CRT_ON	0x00000002
2339 
2340 /* out param: u32*	backlight value: 0 to 15 */
2341 #define FBIO_ATY128_GET_MIRROR	_IOR('@', 1, __u32)
2342 /* in param: u32*	backlight value: 0 to 15 */
2343 #define FBIO_ATY128_SET_MIRROR	_IOW('@', 2, __u32)
2344 
2345 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2346 {
2347 	struct aty128fb_par *par = info->par;
2348 	u32 value;
2349 	int rc;
2350 
2351 	switch (cmd) {
2352 	case FBIO_ATY128_SET_MIRROR:
2353 		if (par->chip_gen != rage_M3)
2354 			return -EINVAL;
2355 		rc = get_user(value, (__u32 __user *)arg);
2356 		if (rc)
2357 			return rc;
2358 		par->lcd_on = (value & 0x01) != 0;
2359 		par->crt_on = (value & 0x02) != 0;
2360 		if (!par->crt_on && !par->lcd_on)
2361 			par->lcd_on = 1;
2362 		aty128_set_crt_enable(par, par->crt_on);
2363 		aty128_set_lcd_enable(par, par->lcd_on);
2364 		return 0;
2365 	case FBIO_ATY128_GET_MIRROR:
2366 		if (par->chip_gen != rage_M3)
2367 			return -EINVAL;
2368 		value = (par->crt_on << 1) | par->lcd_on;
2369 		return put_user(value, (__u32 __user *)arg);
2370 	}
2371 	return -EINVAL;
2372 }
2373 
2374 #if 0
2375     /*
2376      *  Accelerated functions
2377      */
2378 
2379 static inline void aty128_rectcopy(int srcx, int srcy, int dstx, int dsty,
2380 				   u_int width, u_int height,
2381 				   struct fb_info_aty128 *par)
2382 {
2383 	u32 save_dp_datatype, save_dp_cntl, dstval;
2384 
2385 	if (!width || !height)
2386 		return;
2387 
2388 	dstval = depth_to_dst(par->current_par.crtc.depth);
2389 	if (dstval == DST_24BPP) {
2390 		srcx *= 3;
2391 		dstx *= 3;
2392 		width *= 3;
2393 	} else if (dstval == -EINVAL) {
2394 		printk("aty128fb: invalid depth or RGBA\n");
2395 		return;
2396 	}
2397 
2398 	wait_for_fifo(2, par);
2399 	save_dp_datatype = aty_ld_le32(DP_DATATYPE);
2400 	save_dp_cntl     = aty_ld_le32(DP_CNTL);
2401 
2402 	wait_for_fifo(6, par);
2403 	aty_st_le32(SRC_Y_X, (srcy << 16) | srcx);
2404 	aty_st_le32(DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);
2405 	aty_st_le32(DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);
2406 	aty_st_le32(DP_DATATYPE, save_dp_datatype | dstval | SRC_DSTCOLOR);
2407 
2408 	aty_st_le32(DST_Y_X, (dsty << 16) | dstx);
2409 	aty_st_le32(DST_HEIGHT_WIDTH, (height << 16) | width);
2410 
2411 	par->blitter_may_be_busy = 1;
2412 
2413 	wait_for_fifo(2, par);
2414 	aty_st_le32(DP_DATATYPE, save_dp_datatype);
2415 	aty_st_le32(DP_CNTL, save_dp_cntl);
2416 }
2417 
2418 
2419     /*
2420      * Text mode accelerated functions
2421      */
2422 
2423 static void fbcon_aty128_bmove(struct display *p, int sy, int sx, int dy,
2424 			       int dx, int height, int width)
2425 {
2426 	sx     *= fontwidth(p);
2427 	sy     *= fontheight(p);
2428 	dx     *= fontwidth(p);
2429 	dy     *= fontheight(p);
2430 	width  *= fontwidth(p);
2431 	height *= fontheight(p);
2432 
2433 	aty128_rectcopy(sx, sy, dx, dy, width, height,
2434 			(struct fb_info_aty128 *)p->fb_info);
2435 }
2436 #endif /* 0 */
2437 
2438 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2439 {
2440 	u32	pmgt;
2441 	struct pci_dev *pdev = par->pdev;
2442 
2443 	if (!par->pdev->pm_cap)
2444 		return;
2445 
2446 	/* Set the chip into the appropriate suspend mode (we use D2,
2447 	 * D3 would require a complete re-initialisation of the chip,
2448 	 * including PCI config registers, clocks, AGP configuration, ...)
2449 	 *
2450 	 * For resume, the core will have already brought us back to D0
2451 	 */
2452 	if (suspend) {
2453 		/* Make sure CRTC2 is reset. Remove that the day we decide to
2454 		 * actually use CRTC2 and replace it with real code for disabling
2455 		 * the CRTC2 output during sleep
2456 		 */
2457 		aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2458 			~(CRTC2_EN));
2459 
2460 		/* Set the power management mode to be PCI based */
2461 		/* Use this magic value for now */
2462 		pmgt = 0x0c005407;
2463 		aty_st_pll(POWER_MANAGEMENT, pmgt);
2464 		(void)aty_ld_pll(POWER_MANAGEMENT);
2465 		aty_st_le32(BUS_CNTL1, 0x00000010);
2466 		aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2467 		mdelay(100);
2468 
2469 		/* Switch PCI power management to D2 */
2470 		pci_set_power_state(pdev, PCI_D2);
2471 	}
2472 }
2473 
2474 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2475 {
2476 	struct fb_info *info = pci_get_drvdata(pdev);
2477 	struct aty128fb_par *par = info->par;
2478 
2479 	/* Because we may change PCI D state ourselves, we need to
2480 	 * first save the config space content so the core can
2481 	 * restore it properly on resume.
2482 	 */
2483 	pci_save_state(pdev);
2484 
2485 	/* We don't do anything but D2, for now we return 0, but
2486 	 * we may want to change that. How do we know if the BIOS
2487 	 * can properly take care of D3 ? Also, with swsusp, we
2488 	 * know we'll be rebooted, ...
2489 	 */
2490 #ifndef CONFIG_PPC_PMAC
2491 	/* HACK ALERT ! Once I find a proper way to say to each driver
2492 	 * individually what will happen with it's PCI slot, I'll change
2493 	 * that. On laptops, the AGP slot is just unclocked, so D2 is
2494 	 * expected, while on desktops, the card is powered off
2495 	 */
2496 	return 0;
2497 #endif /* CONFIG_PPC_PMAC */
2498 
2499 	if (state.event == pdev->dev.power.power_state.event)
2500 		return 0;
2501 
2502 	printk(KERN_DEBUG "aty128fb: suspending...\n");
2503 
2504 	console_lock();
2505 
2506 	fb_set_suspend(info, 1);
2507 
2508 	/* Make sure engine is reset */
2509 	wait_for_idle(par);
2510 	aty128_reset_engine(par);
2511 	wait_for_idle(par);
2512 
2513 	/* Blank display and LCD */
2514 	aty128fb_blank(FB_BLANK_POWERDOWN, info);
2515 
2516 	/* Sleep */
2517 	par->asleep = 1;
2518 	par->lock_blank = 1;
2519 
2520 #ifdef CONFIG_PPC_PMAC
2521 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2522 	 * use them here. We'll ultimately need some generic support here,
2523 	 * but the generic code isn't quite ready for that yet
2524 	 */
2525 	pmac_suspend_agp_for_card(pdev);
2526 #endif /* CONFIG_PPC_PMAC */
2527 
2528 	/* We need a way to make sure the fbdev layer will _not_ touch the
2529 	 * framebuffer before we put the chip to suspend state. On 2.4, I
2530 	 * used dummy fb ops, 2.5 need proper support for this at the
2531 	 * fbdev level
2532 	 */
2533 	if (state.event != PM_EVENT_ON)
2534 		aty128_set_suspend(par, 1);
2535 
2536 	console_unlock();
2537 
2538 	pdev->dev.power.power_state = state;
2539 
2540 	return 0;
2541 }
2542 
2543 static int aty128_do_resume(struct pci_dev *pdev)
2544 {
2545 	struct fb_info *info = pci_get_drvdata(pdev);
2546 	struct aty128fb_par *par = info->par;
2547 
2548 	if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2549 		return 0;
2550 
2551 	/* PCI state will have been restored by the core, so
2552 	 * we should be in D0 now with our config space fully
2553 	 * restored
2554 	 */
2555 
2556 	/* Wakeup chip */
2557 	aty128_set_suspend(par, 0);
2558 	par->asleep = 0;
2559 
2560 	/* Restore display & engine */
2561 	aty128_reset_engine(par);
2562 	wait_for_idle(par);
2563 	aty128fb_set_par(info);
2564 	fb_pan_display(info, &info->var);
2565 	fb_set_cmap(&info->cmap, info);
2566 
2567 	/* Refresh */
2568 	fb_set_suspend(info, 0);
2569 
2570 	/* Unblank */
2571 	par->lock_blank = 0;
2572 	aty128fb_blank(0, info);
2573 
2574 #ifdef CONFIG_PPC_PMAC
2575 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2576 	 * use them here. We'll ultimately need some generic support here,
2577 	 * but the generic code isn't quite ready for that yet
2578 	 */
2579 	pmac_resume_agp_for_card(pdev);
2580 #endif /* CONFIG_PPC_PMAC */
2581 
2582 	pdev->dev.power.power_state = PMSG_ON;
2583 
2584 	printk(KERN_DEBUG "aty128fb: resumed !\n");
2585 
2586 	return 0;
2587 }
2588 
2589 static int aty128_pci_resume(struct pci_dev *pdev)
2590 {
2591 	int rc;
2592 
2593 	console_lock();
2594 	rc = aty128_do_resume(pdev);
2595 	console_unlock();
2596 
2597 	return rc;
2598 }
2599 
2600 
2601 static int aty128fb_init(void)
2602 {
2603 #ifndef MODULE
2604 	char *option = NULL;
2605 
2606 	if (fb_get_options("aty128fb", &option))
2607 		return -ENODEV;
2608 	aty128fb_setup(option);
2609 #endif
2610 
2611 	return pci_register_driver(&aty128fb_driver);
2612 }
2613 
2614 static void __exit aty128fb_exit(void)
2615 {
2616 	pci_unregister_driver(&aty128fb_driver);
2617 }
2618 
2619 module_init(aty128fb_init);
2620 
2621 module_exit(aty128fb_exit);
2622 
2623 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2624 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2625 MODULE_LICENSE("GPL");
2626 module_param(mode_option, charp, 0);
2627 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2628 #ifdef CONFIG_MTRR
2629 module_param_named(nomtrr, mtrr, invbool, 0);
2630 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2631 #endif
2632 
2633