xref: /openbmc/linux/drivers/video/fbdev/aty/aty128fb.c (revision 3381df09)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
3  *  linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
4  *
5  *  Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
6  *  Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
7  *
8  *                Ani Joshi / Jeff Garzik
9  *                      - Code cleanup
10  *
11  *                Michel Danzer <michdaen@iiic.ethz.ch>
12  *                      - 15/16 bit cleanup
13  *                      - fix panning
14  *
15  *                Benjamin Herrenschmidt
16  *                      - pmac-specific PM stuff
17  *			- various fixes & cleanups
18  *
19  *                Andreas Hundt <andi@convergence.de>
20  *                      - FB_ACTIVATE fixes
21  *
22  *		  Paul Mackerras <paulus@samba.org>
23  *			- Convert to new framebuffer API,
24  *			  fix colormap setting at 16 bits/pixel (565)
25  *
26  *		  Paul Mundt
27  *		  	- PCI hotplug
28  *
29  *		  Jon Smirl <jonsmirl@yahoo.com>
30  * 			- PCI ID update
31  * 			- replace ROM BIOS search
32  *
33  *  Based off of Geert's atyfb.c and vfb.c.
34  *
35  *  TODO:
36  *		- monitor sensing (DDC)
37  *              - virtual display
38  *		- other platform support (only ppc/x86 supported)
39  *		- hardware cursor support
40  *
41  *    Please cc: your patches to brad@neruo.com.
42  */
43 
44 /*
45  * A special note of gratitude to ATI's devrel for providing documentation,
46  * example code and hardware. Thanks Nitya.	-atong and brad
47  */
48 
49 
50 #include <linux/module.h>
51 #include <linux/moduleparam.h>
52 #include <linux/kernel.h>
53 #include <linux/errno.h>
54 #include <linux/string.h>
55 #include <linux/mm.h>
56 #include <linux/vmalloc.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/uaccess.h>
60 #include <linux/fb.h>
61 #include <linux/init.h>
62 #include <linux/pci.h>
63 #include <linux/ioport.h>
64 #include <linux/console.h>
65 #include <linux/backlight.h>
66 #include <asm/io.h>
67 
68 #ifdef CONFIG_PPC_PMAC
69 #include <asm/machdep.h>
70 #include <asm/pmac_feature.h>
71 #include <asm/prom.h>
72 #include "../macmodes.h"
73 #endif
74 
75 #ifdef CONFIG_PMAC_BACKLIGHT
76 #include <asm/backlight.h>
77 #endif
78 
79 #ifdef CONFIG_BOOTX_TEXT
80 #include <asm/btext.h>
81 #endif /* CONFIG_BOOTX_TEXT */
82 
83 #include <video/aty128.h>
84 
85 /* Debug flag */
86 #undef DEBUG
87 
88 #ifdef DEBUG
89 #define DBG(fmt, args...) \
90 	printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
91 #else
92 #define DBG(fmt, args...)
93 #endif
94 
95 #ifndef CONFIG_PPC_PMAC
96 /* default mode */
97 static const struct fb_var_screeninfo default_var = {
98 	/* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
99 	640, 480, 640, 480, 0, 0, 8, 0,
100 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
101 	0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
102 	0, FB_VMODE_NONINTERLACED
103 };
104 
105 #else /* CONFIG_PPC_PMAC */
106 /* default to 1024x768 at 75Hz on PPC - this will work
107  * on the iMac, the usual 640x480 @ 60Hz doesn't. */
108 static const struct fb_var_screeninfo default_var = {
109 	/* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
110 	1024, 768, 1024, 768, 0, 0, 8, 0,
111 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
112 	0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
113 	FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
114 	FB_VMODE_NONINTERLACED
115 };
116 #endif /* CONFIG_PPC_PMAC */
117 
118 /* default modedb mode */
119 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
120 static const struct fb_videomode defaultmode = {
121 	.refresh =	60,
122 	.xres =		640,
123 	.yres =		480,
124 	.pixclock =	39722,
125 	.left_margin =	48,
126 	.right_margin =	16,
127 	.upper_margin =	33,
128 	.lower_margin =	10,
129 	.hsync_len =	96,
130 	.vsync_len =	2,
131 	.sync =		0,
132 	.vmode =	FB_VMODE_NONINTERLACED
133 };
134 
135 /* Chip generations */
136 enum {
137 	rage_128,
138 	rage_128_pci,
139 	rage_128_pro,
140 	rage_128_pro_pci,
141 	rage_M3,
142 	rage_M3_pci,
143 	rage_M4,
144 	rage_128_ultra,
145 };
146 
147 /* Must match above enum */
148 static char * const r128_family[] = {
149 	"AGP",
150 	"PCI",
151 	"PRO AGP",
152 	"PRO PCI",
153 	"M3 AGP",
154 	"M3 PCI",
155 	"M4 AGP",
156 	"Ultra AGP",
157 };
158 
159 /*
160  * PCI driver prototypes
161  */
162 static int aty128_probe(struct pci_dev *pdev,
163                                const struct pci_device_id *ent);
164 static void aty128_remove(struct pci_dev *pdev);
165 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
166 static int aty128_pci_resume(struct pci_dev *pdev);
167 static int aty128_do_resume(struct pci_dev *pdev);
168 
169 /* supported Rage128 chipsets */
170 static const struct pci_device_id aty128_pci_tbl[] = {
171 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
172 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
173 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
174 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
175 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
176 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
177 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
178 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
179 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
180 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
181 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
182 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
183 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
184 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
185 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
186 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
187 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
188 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
189 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
190 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
191 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
192 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
193 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
194 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
195 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
196 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
197 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
198 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
199 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
200 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
201 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
202 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
203 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
204 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
205 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
206 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
207 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
208 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
209 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
210 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
211 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
212 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
213 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
214 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
215 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
216 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
217 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
218 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
219 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
220 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
221 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
222 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
223 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
224 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
225 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
226 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
227 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
228 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
229 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
230 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
231 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
232 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
233 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
234 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
235 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
236 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
237 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
238 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
239 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
240 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
241 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
242 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
243 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
244 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
245 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
246 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
247 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
248 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
249 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
250 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
251 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
252 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
253 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
254 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
255 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
256 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
257 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
258 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
259 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
260 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
261 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
262 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
263 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
264 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
265 	{ 0, }
266 };
267 
268 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
269 
270 static struct pci_driver aty128fb_driver = {
271 	.name		= "aty128fb",
272 	.id_table	= aty128_pci_tbl,
273 	.probe		= aty128_probe,
274 	.remove		= aty128_remove,
275 	.suspend	= aty128_pci_suspend,
276 	.resume		= aty128_pci_resume,
277 };
278 
279 /* packed BIOS settings */
280 #ifndef CONFIG_PPC
281 typedef struct {
282 	u8 clock_chip_type;
283 	u8 struct_size;
284 	u8 accelerator_entry;
285 	u8 VGA_entry;
286 	u16 VGA_table_offset;
287 	u16 POST_table_offset;
288 	u16 XCLK;
289 	u16 MCLK;
290 	u8 num_PLL_blocks;
291 	u8 size_PLL_blocks;
292 	u16 PCLK_ref_freq;
293 	u16 PCLK_ref_divider;
294 	u32 PCLK_min_freq;
295 	u32 PCLK_max_freq;
296 	u16 MCLK_ref_freq;
297 	u16 MCLK_ref_divider;
298 	u32 MCLK_min_freq;
299 	u32 MCLK_max_freq;
300 	u16 XCLK_ref_freq;
301 	u16 XCLK_ref_divider;
302 	u32 XCLK_min_freq;
303 	u32 XCLK_max_freq;
304 } __attribute__ ((packed)) PLL_BLOCK;
305 #endif /* !CONFIG_PPC */
306 
307 /* onboard memory information */
308 struct aty128_meminfo {
309 	u8 ML;
310 	u8 MB;
311 	u8 Trcd;
312 	u8 Trp;
313 	u8 Twr;
314 	u8 CL;
315 	u8 Tr2w;
316 	u8 LoopLatency;
317 	u8 DspOn;
318 	u8 Rloop;
319 	const char *name;
320 };
321 
322 /* various memory configurations */
323 static const struct aty128_meminfo sdr_128 = {
324 	.ML = 4,
325 	.MB = 4,
326 	.Trcd = 3,
327 	.Trp = 3,
328 	.Twr = 1,
329 	.CL = 3,
330 	.Tr2w = 1,
331 	.LoopLatency = 16,
332 	.DspOn = 30,
333 	.Rloop = 16,
334 	.name = "128-bit SDR SGRAM (1:1)",
335 };
336 
337 static const struct aty128_meminfo sdr_64 = {
338 	.ML = 4,
339 	.MB = 8,
340 	.Trcd = 3,
341 	.Trp = 3,
342 	.Twr = 1,
343 	.CL = 3,
344 	.Tr2w = 1,
345 	.LoopLatency = 17,
346 	.DspOn = 46,
347 	.Rloop = 17,
348 	.name = "64-bit SDR SGRAM (1:1)",
349 };
350 
351 static const struct aty128_meminfo sdr_sgram = {
352 	.ML = 4,
353 	.MB = 4,
354 	.Trcd = 1,
355 	.Trp = 2,
356 	.Twr = 1,
357 	.CL = 2,
358 	.Tr2w = 1,
359 	.LoopLatency = 16,
360 	.DspOn = 24,
361 	.Rloop = 16,
362 	.name = "64-bit SDR SGRAM (2:1)",
363 };
364 
365 static const struct aty128_meminfo ddr_sgram = {
366 	.ML = 4,
367 	.MB = 4,
368 	.Trcd = 3,
369 	.Trp = 3,
370 	.Twr = 2,
371 	.CL = 3,
372 	.Tr2w = 1,
373 	.LoopLatency = 16,
374 	.DspOn = 31,
375 	.Rloop = 16,
376 	.name = "64-bit DDR SGRAM",
377 };
378 
379 static const struct fb_fix_screeninfo aty128fb_fix = {
380 	.id		= "ATY Rage128",
381 	.type		= FB_TYPE_PACKED_PIXELS,
382 	.visual		= FB_VISUAL_PSEUDOCOLOR,
383 	.xpanstep	= 8,
384 	.ypanstep	= 1,
385 	.mmio_len	= 0x2000,
386 	.accel		= FB_ACCEL_ATI_RAGE128,
387 };
388 
389 static char *mode_option = NULL;
390 
391 #ifdef CONFIG_PPC_PMAC
392 static int default_vmode = VMODE_1024_768_60;
393 static int default_cmode = CMODE_8;
394 #endif
395 
396 static int default_crt_on = 0;
397 static int default_lcd_on = 1;
398 static bool mtrr = true;
399 
400 #ifdef CONFIG_FB_ATY128_BACKLIGHT
401 #ifdef CONFIG_PMAC_BACKLIGHT
402 static int backlight = 1;
403 #else
404 static int backlight = 0;
405 #endif
406 #endif
407 
408 /* PLL constants */
409 struct aty128_constants {
410 	u32 ref_clk;
411 	u32 ppll_min;
412 	u32 ppll_max;
413 	u32 ref_divider;
414 	u32 xclk;
415 	u32 fifo_width;
416 	u32 fifo_depth;
417 };
418 
419 struct aty128_crtc {
420 	u32 gen_cntl;
421 	u32 h_total, h_sync_strt_wid;
422 	u32 v_total, v_sync_strt_wid;
423 	u32 pitch;
424 	u32 offset, offset_cntl;
425 	u32 xoffset, yoffset;
426 	u32 vxres, vyres;
427 	u32 depth, bpp;
428 };
429 
430 struct aty128_pll {
431 	u32 post_divider;
432 	u32 feedback_divider;
433 	u32 vclk;
434 };
435 
436 struct aty128_ddafifo {
437 	u32 dda_config;
438 	u32 dda_on_off;
439 };
440 
441 /* register values for a specific mode */
442 struct aty128fb_par {
443 	struct aty128_crtc crtc;
444 	struct aty128_pll pll;
445 	struct aty128_ddafifo fifo_reg;
446 	u32 accel_flags;
447 	struct aty128_constants constants;  /* PLL and others      */
448 	void __iomem *regbase;              /* remapped mmio       */
449 	u32 vram_size;                      /* onboard video ram   */
450 	int chip_gen;
451 	const struct aty128_meminfo *mem;   /* onboard mem info    */
452 	int wc_cookie;
453 	int blitter_may_be_busy;
454 	int fifo_slots;                 /* free slots in FIFO (64 max) */
455 
456 	int crt_on, lcd_on;
457 	struct pci_dev *pdev;
458 	struct fb_info *next;
459 	int	asleep;
460 	int	lock_blank;
461 
462 	u8	red[32];		/* see aty128fb_setcolreg */
463 	u8	green[64];
464 	u8	blue[32];
465 	u32	pseudo_palette[16];	/* used for TRUECOLOR */
466 };
467 
468 
469 #define round_div(n, d) ((n+(d/2))/d)
470 
471 static int aty128fb_check_var(struct fb_var_screeninfo *var,
472 			      struct fb_info *info);
473 static int aty128fb_set_par(struct fb_info *info);
474 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
475 			      u_int transp, struct fb_info *info);
476 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
477 			   struct fb_info *fb);
478 static int aty128fb_blank(int blank, struct fb_info *fb);
479 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
480 static int aty128fb_sync(struct fb_info *info);
481 
482     /*
483      *  Internal routines
484      */
485 
486 static int aty128_encode_var(struct fb_var_screeninfo *var,
487                              const struct aty128fb_par *par);
488 static int aty128_decode_var(struct fb_var_screeninfo *var,
489                              struct aty128fb_par *par);
490 static void aty128_timings(struct aty128fb_par *par);
491 static void aty128_init_engine(struct aty128fb_par *par);
492 static void aty128_reset_engine(const struct aty128fb_par *par);
493 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
494 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
495 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
496 static void wait_for_idle(struct aty128fb_par *par);
497 static u32 depth_to_dst(u32 depth);
498 
499 #ifdef CONFIG_FB_ATY128_BACKLIGHT
500 static void aty128_bl_set_power(struct fb_info *info, int power);
501 #endif
502 
503 #define BIOS_IN8(v)  	(readb(bios + (v)))
504 #define BIOS_IN16(v) 	(readb(bios + (v)) | \
505 			  (readb(bios + (v) + 1) << 8))
506 #define BIOS_IN32(v) 	(readb(bios + (v)) | \
507 			  (readb(bios + (v) + 1) << 8) | \
508 			  (readb(bios + (v) + 2) << 16) | \
509 			  (readb(bios + (v) + 3) << 24))
510 
511 
512 static const struct fb_ops aty128fb_ops = {
513 	.owner		= THIS_MODULE,
514 	.fb_check_var	= aty128fb_check_var,
515 	.fb_set_par	= aty128fb_set_par,
516 	.fb_setcolreg	= aty128fb_setcolreg,
517 	.fb_pan_display = aty128fb_pan_display,
518 	.fb_blank	= aty128fb_blank,
519 	.fb_ioctl	= aty128fb_ioctl,
520 	.fb_sync	= aty128fb_sync,
521 	.fb_fillrect	= cfb_fillrect,
522 	.fb_copyarea	= cfb_copyarea,
523 	.fb_imageblit	= cfb_imageblit,
524 };
525 
526     /*
527      * Functions to read from/write to the mmio registers
528      *	- endian conversions may possibly be avoided by
529      *    using the other register aperture. TODO.
530      */
531 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
532 			       const struct aty128fb_par *par)
533 {
534 	return readl (par->regbase + regindex);
535 }
536 
537 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
538 				const struct aty128fb_par *par)
539 {
540 	writel (val, par->regbase + regindex);
541 }
542 
543 static inline u8 _aty_ld_8(unsigned int regindex,
544 			   const struct aty128fb_par *par)
545 {
546 	return readb (par->regbase + regindex);
547 }
548 
549 static inline void _aty_st_8(unsigned int regindex, u8 val,
550 			     const struct aty128fb_par *par)
551 {
552 	writeb (val, par->regbase + regindex);
553 }
554 
555 #define aty_ld_le32(regindex)		_aty_ld_le32(regindex, par)
556 #define aty_st_le32(regindex, val)	_aty_st_le32(regindex, val, par)
557 #define aty_ld_8(regindex)		_aty_ld_8(regindex, par)
558 #define aty_st_8(regindex, val)		_aty_st_8(regindex, val, par)
559 
560     /*
561      * Functions to read from/write to the pll registers
562      */
563 
564 #define aty_ld_pll(pll_index)		_aty_ld_pll(pll_index, par)
565 #define aty_st_pll(pll_index, val)	_aty_st_pll(pll_index, val, par)
566 
567 
568 static u32 _aty_ld_pll(unsigned int pll_index,
569 		       const struct aty128fb_par *par)
570 {
571 	aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
572 	return aty_ld_le32(CLOCK_CNTL_DATA);
573 }
574 
575 
576 static void _aty_st_pll(unsigned int pll_index, u32 val,
577 			const struct aty128fb_par *par)
578 {
579 	aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
580 	aty_st_le32(CLOCK_CNTL_DATA, val);
581 }
582 
583 
584 /* return true when the PLL has completed an atomic update */
585 static int aty_pll_readupdate(const struct aty128fb_par *par)
586 {
587 	return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
588 }
589 
590 
591 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
592 {
593 	unsigned long timeout = jiffies + HZ/100; // should be more than enough
594 	int reset = 1;
595 
596 	while (time_before(jiffies, timeout))
597 		if (aty_pll_readupdate(par)) {
598 			reset = 0;
599 			break;
600 		}
601 
602 	if (reset)	/* reset engine?? */
603 		printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
604 }
605 
606 
607 /* tell PLL to update */
608 static void aty_pll_writeupdate(const struct aty128fb_par *par)
609 {
610 	aty_pll_wait_readupdate(par);
611 
612 	aty_st_pll(PPLL_REF_DIV,
613 		   aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
614 }
615 
616 
617 /* write to the scratch register to test r/w functionality */
618 static int register_test(const struct aty128fb_par *par)
619 {
620 	u32 val;
621 	int flag = 0;
622 
623 	val = aty_ld_le32(BIOS_0_SCRATCH);
624 
625 	aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
626 	if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
627 		aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
628 
629 		if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
630 			flag = 1;
631 	}
632 
633 	aty_st_le32(BIOS_0_SCRATCH, val);	// restore value
634 	return flag;
635 }
636 
637 
638 /*
639  * Accelerator engine functions
640  */
641 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
642 {
643 	int i;
644 
645 	for (;;) {
646 		for (i = 0; i < 2000000; i++) {
647 			par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
648 			if (par->fifo_slots >= entries)
649 				return;
650 		}
651 		aty128_reset_engine(par);
652 	}
653 }
654 
655 
656 static void wait_for_idle(struct aty128fb_par *par)
657 {
658 	int i;
659 
660 	do_wait_for_fifo(64, par);
661 
662 	for (;;) {
663 		for (i = 0; i < 2000000; i++) {
664 			if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
665 				aty128_flush_pixel_cache(par);
666 				par->blitter_may_be_busy = 0;
667 				return;
668 			}
669 		}
670 		aty128_reset_engine(par);
671 	}
672 }
673 
674 
675 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
676 {
677 	if (par->fifo_slots < entries)
678 		do_wait_for_fifo(64, par);
679 	par->fifo_slots -= entries;
680 }
681 
682 
683 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
684 {
685 	int i;
686 	u32 tmp;
687 
688 	tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
689 	tmp &= ~(0x00ff);
690 	tmp |= 0x00ff;
691 	aty_st_le32(PC_NGUI_CTLSTAT, tmp);
692 
693 	for (i = 0; i < 2000000; i++)
694 		if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
695 			break;
696 }
697 
698 
699 static void aty128_reset_engine(const struct aty128fb_par *par)
700 {
701 	u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
702 
703 	aty128_flush_pixel_cache(par);
704 
705 	clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
706 	mclk_cntl = aty_ld_pll(MCLK_CNTL);
707 
708 	aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
709 
710 	gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
711 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
712 	aty_ld_le32(GEN_RESET_CNTL);
713 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
714 	aty_ld_le32(GEN_RESET_CNTL);
715 
716 	aty_st_pll(MCLK_CNTL, mclk_cntl);
717 	aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
718 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
719 
720 	/* use old pio mode */
721 	aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
722 
723 	DBG("engine reset");
724 }
725 
726 
727 static void aty128_init_engine(struct aty128fb_par *par)
728 {
729 	u32 pitch_value;
730 
731 	wait_for_idle(par);
732 
733 	/* 3D scaler not spoken here */
734 	wait_for_fifo(1, par);
735 	aty_st_le32(SCALE_3D_CNTL, 0x00000000);
736 
737 	aty128_reset_engine(par);
738 
739 	pitch_value = par->crtc.pitch;
740 	if (par->crtc.bpp == 24) {
741 		pitch_value = pitch_value * 3;
742 	}
743 
744 	wait_for_fifo(4, par);
745 	/* setup engine offset registers */
746 	aty_st_le32(DEFAULT_OFFSET, 0x00000000);
747 
748 	/* setup engine pitch registers */
749 	aty_st_le32(DEFAULT_PITCH, pitch_value);
750 
751 	/* set the default scissor register to max dimensions */
752 	aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
753 
754 	/* set the drawing controls registers */
755 	aty_st_le32(DP_GUI_MASTER_CNTL,
756 		    GMC_SRC_PITCH_OFFSET_DEFAULT		|
757 		    GMC_DST_PITCH_OFFSET_DEFAULT		|
758 		    GMC_SRC_CLIP_DEFAULT			|
759 		    GMC_DST_CLIP_DEFAULT			|
760 		    GMC_BRUSH_SOLIDCOLOR			|
761 		    (depth_to_dst(par->crtc.depth) << 8)	|
762 		    GMC_SRC_DSTCOLOR			|
763 		    GMC_BYTE_ORDER_MSB_TO_LSB		|
764 		    GMC_DP_CONVERSION_TEMP_6500		|
765 		    ROP3_PATCOPY				|
766 		    GMC_DP_SRC_RECT				|
767 		    GMC_3D_FCN_EN_CLR			|
768 		    GMC_DST_CLR_CMP_FCN_CLEAR		|
769 		    GMC_AUX_CLIP_CLEAR			|
770 		    GMC_WRITE_MASK_SET);
771 
772 	wait_for_fifo(8, par);
773 	/* clear the line drawing registers */
774 	aty_st_le32(DST_BRES_ERR, 0);
775 	aty_st_le32(DST_BRES_INC, 0);
776 	aty_st_le32(DST_BRES_DEC, 0);
777 
778 	/* set brush color registers */
779 	aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
780 	aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
781 
782 	/* set source color registers */
783 	aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF);   /* white */
784 	aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000);   /* black */
785 
786 	/* default write mask */
787 	aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
788 
789 	/* Wait for all the writes to be completed before returning */
790 	wait_for_idle(par);
791 }
792 
793 
794 /* convert depth values to their register representation */
795 static u32 depth_to_dst(u32 depth)
796 {
797 	if (depth <= 8)
798 		return DST_8BPP;
799 	else if (depth <= 15)
800 		return DST_15BPP;
801 	else if (depth == 16)
802 		return DST_16BPP;
803 	else if (depth <= 24)
804 		return DST_24BPP;
805 	else if (depth <= 32)
806 		return DST_32BPP;
807 
808 	return -EINVAL;
809 }
810 
811 /*
812  * PLL informations retreival
813  */
814 
815 
816 #ifndef __sparc__
817 static void __iomem *aty128_map_ROM(const struct aty128fb_par *par,
818 				    struct pci_dev *dev)
819 {
820 	u16 dptr;
821 	u8 rom_type;
822 	void __iomem *bios;
823 	size_t rom_size;
824 
825     	/* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
826     	unsigned int temp;
827 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
828 	temp &= 0x00ffffffu;
829 	temp |= 0x04 << 24;
830 	aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
831 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
832 
833 	bios = pci_map_rom(dev, &rom_size);
834 
835 	if (!bios) {
836 		printk(KERN_ERR "aty128fb: ROM failed to map\n");
837 		return NULL;
838 	}
839 
840 	/* Very simple test to make sure it appeared */
841 	if (BIOS_IN16(0) != 0xaa55) {
842 		printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
843 			" be 0xaa55\n", BIOS_IN16(0));
844 		goto failed;
845 	}
846 
847 	/* Look for the PCI data to check the ROM type */
848 	dptr = BIOS_IN16(0x18);
849 
850 	/* Check the PCI data signature. If it's wrong, we still assume a normal
851 	 * x86 ROM for now, until I've verified this works everywhere.
852 	 * The goal here is more to phase out Open Firmware images.
853 	 *
854 	 * Currently, we only look at the first PCI data, we could iteratre and
855 	 * deal with them all, and we should use fb_bios_start relative to start
856 	 * of image and not relative start of ROM, but so far, I never found a
857 	 * dual-image ATI card.
858 	 *
859 	 * typedef struct {
860 	 * 	u32	signature;	+ 0x00
861 	 * 	u16	vendor;		+ 0x04
862 	 * 	u16	device;		+ 0x06
863 	 * 	u16	reserved_1;	+ 0x08
864 	 * 	u16	dlen;		+ 0x0a
865 	 * 	u8	drevision;	+ 0x0c
866 	 * 	u8	class_hi;	+ 0x0d
867 	 * 	u16	class_lo;	+ 0x0e
868 	 * 	u16	ilen;		+ 0x10
869 	 * 	u16	irevision;	+ 0x12
870 	 * 	u8	type;		+ 0x14
871 	 * 	u8	indicator;	+ 0x15
872 	 * 	u16	reserved_2;	+ 0x16
873 	 * } pci_data_t;
874 	 */
875 	if (BIOS_IN32(dptr) !=  (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
876 		printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
877 		       BIOS_IN32(dptr));
878 		goto anyway;
879 	}
880 	rom_type = BIOS_IN8(dptr + 0x14);
881 	switch(rom_type) {
882 	case 0:
883 		printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
884 		break;
885 	case 1:
886 		printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
887 		goto failed;
888 	case 2:
889 		printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
890 		goto failed;
891 	default:
892 		printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n",
893 		       rom_type);
894 		goto failed;
895 	}
896  anyway:
897 	return bios;
898 
899  failed:
900 	pci_unmap_rom(dev, bios);
901 	return NULL;
902 }
903 
904 static void aty128_get_pllinfo(struct aty128fb_par *par,
905 			       unsigned char __iomem *bios)
906 {
907 	unsigned int bios_hdr;
908 	unsigned int bios_pll;
909 
910 	bios_hdr = BIOS_IN16(0x48);
911 	bios_pll = BIOS_IN16(bios_hdr + 0x30);
912 
913 	par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
914 	par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
915 	par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
916 	par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
917 	par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
918 
919 	DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
920 			par->constants.ppll_max, par->constants.ppll_min,
921 			par->constants.xclk, par->constants.ref_divider,
922 			par->constants.ref_clk);
923 
924 }
925 
926 #ifdef CONFIG_X86
927 static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par)
928 {
929 	/* I simplified this code as we used to miss the signatures in
930 	 * a lot of case. It's now closer to XFree, we just don't check
931 	 * for signatures at all... Something better will have to be done
932 	 * if we end up having conflicts
933 	 */
934         u32  segstart;
935         unsigned char __iomem *rom_base = NULL;
936 
937         for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
938                 rom_base = ioremap(segstart, 0x10000);
939 		if (rom_base == NULL)
940 			return NULL;
941 		if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
942 	                break;
943                 iounmap(rom_base);
944 		rom_base = NULL;
945         }
946 	return rom_base;
947 }
948 #endif
949 #endif /* ndef(__sparc__) */
950 
951 /* fill in known card constants if pll_block is not available */
952 static void aty128_timings(struct aty128fb_par *par)
953 {
954 #ifdef CONFIG_PPC
955 	/* instead of a table lookup, assume OF has properly
956 	 * setup the PLL registers and use their values
957 	 * to set the XCLK values and reference divider values */
958 
959 	u32 x_mpll_ref_fb_div;
960 	u32 xclk_cntl;
961 	u32 Nx, M;
962 	unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
963 #endif
964 
965 	if (!par->constants.ref_clk)
966 		par->constants.ref_clk = 2950;
967 
968 #ifdef CONFIG_PPC
969 	x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
970 	xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
971 	Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
972 	M  = x_mpll_ref_fb_div & 0x0000ff;
973 
974 	par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
975 					(M * PostDivSet[xclk_cntl]));
976 
977 	par->constants.ref_divider =
978 		aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
979 #endif
980 
981 	if (!par->constants.ref_divider) {
982 		par->constants.ref_divider = 0x3b;
983 
984 		aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
985 		aty_pll_writeupdate(par);
986 	}
987 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
988 	aty_pll_writeupdate(par);
989 
990 	/* from documentation */
991 	if (!par->constants.ppll_min)
992 		par->constants.ppll_min = 12500;
993 	if (!par->constants.ppll_max)
994 		par->constants.ppll_max = 25000;    /* 23000 on some cards? */
995 	if (!par->constants.xclk)
996 		par->constants.xclk = 0x1d4d;	     /* same as mclk */
997 
998 	par->constants.fifo_width = 128;
999 	par->constants.fifo_depth = 32;
1000 
1001 	switch (aty_ld_le32(MEM_CNTL) & 0x3) {
1002 	case 0:
1003 		par->mem = &sdr_128;
1004 		break;
1005 	case 1:
1006 		par->mem = &sdr_sgram;
1007 		break;
1008 	case 2:
1009 		par->mem = &ddr_sgram;
1010 		break;
1011 	default:
1012 		par->mem = &sdr_sgram;
1013 	}
1014 }
1015 
1016 
1017 
1018 /*
1019  * CRTC programming
1020  */
1021 
1022 /* Program the CRTC registers */
1023 static void aty128_set_crtc(const struct aty128_crtc *crtc,
1024 			    const struct aty128fb_par *par)
1025 {
1026 	aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
1027 	aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
1028 	aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
1029 	aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
1030 	aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
1031 	aty_st_le32(CRTC_PITCH, crtc->pitch);
1032 	aty_st_le32(CRTC_OFFSET, crtc->offset);
1033 	aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
1034 	/* Disable ATOMIC updating.  Is this the right place? */
1035 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1036 }
1037 
1038 
1039 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1040 			      struct aty128_crtc *crtc,
1041 			      const struct aty128fb_par *par)
1042 {
1043 	u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1044 	u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1045 	u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1046 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1047 	u32 depth, bytpp;
1048 	u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1049 
1050 	/* input */
1051 	xres = var->xres;
1052 	yres = var->yres;
1053 	vxres   = var->xres_virtual;
1054 	vyres   = var->yres_virtual;
1055 	xoffset = var->xoffset;
1056 	yoffset = var->yoffset;
1057 	bpp   = var->bits_per_pixel;
1058 	left  = var->left_margin;
1059 	right = var->right_margin;
1060 	upper = var->upper_margin;
1061 	lower = var->lower_margin;
1062 	hslen = var->hsync_len;
1063 	vslen = var->vsync_len;
1064 	sync  = var->sync;
1065 	vmode = var->vmode;
1066 
1067 	if (bpp != 16)
1068 		depth = bpp;
1069 	else
1070 		depth = (var->green.length == 6) ? 16 : 15;
1071 
1072 	/* check for mode eligibility
1073 	 * accept only non interlaced modes */
1074 	if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1075 		return -EINVAL;
1076 
1077 	/* convert (and round up) and validate */
1078 	xres = (xres + 7) & ~7;
1079 	xoffset = (xoffset + 7) & ~7;
1080 
1081 	if (vxres < xres + xoffset)
1082 		vxres = xres + xoffset;
1083 
1084 	if (vyres < yres + yoffset)
1085 		vyres = yres + yoffset;
1086 
1087 	/* convert depth into ATI register depth */
1088 	dst = depth_to_dst(depth);
1089 
1090 	if (dst == -EINVAL) {
1091 		printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1092 		return -EINVAL;
1093 	}
1094 
1095 	/* convert register depth to bytes per pixel */
1096 	bytpp = mode_bytpp[dst];
1097 
1098 	/* make sure there is enough video ram for the mode */
1099 	if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1100 		printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1101 		return -EINVAL;
1102 	}
1103 
1104 	h_disp = (xres >> 3) - 1;
1105 	h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1106 
1107 	v_disp = yres - 1;
1108 	v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1109 
1110 	/* check to make sure h_total and v_total are in range */
1111 	if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1112 		printk(KERN_ERR "aty128fb: invalid width ranges\n");
1113 		return -EINVAL;
1114 	}
1115 
1116 	h_sync_wid = (hslen + 7) >> 3;
1117 	if (h_sync_wid == 0)
1118 		h_sync_wid = 1;
1119 	else if (h_sync_wid > 0x3f)        /* 0x3f = max hwidth */
1120 		h_sync_wid = 0x3f;
1121 
1122 	h_sync_strt = (h_disp << 3) + right;
1123 
1124 	v_sync_wid = vslen;
1125 	if (v_sync_wid == 0)
1126 		v_sync_wid = 1;
1127 	else if (v_sync_wid > 0x1f)        /* 0x1f = max vwidth */
1128 		v_sync_wid = 0x1f;
1129 
1130 	v_sync_strt = v_disp + lower;
1131 
1132 	h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1133 	v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1134 
1135 	c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1136 
1137 	crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1138 
1139 	crtc->h_total = h_total | (h_disp << 16);
1140 	crtc->v_total = v_total | (v_disp << 16);
1141 
1142 	crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1143 	        (h_sync_pol << 23);
1144 	crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1145                 (v_sync_pol << 23);
1146 
1147 	crtc->pitch = vxres >> 3;
1148 
1149 	crtc->offset = 0;
1150 
1151 	if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1152 		crtc->offset_cntl = 0x00010000;
1153 	else
1154 		crtc->offset_cntl = 0;
1155 
1156 	crtc->vxres = vxres;
1157 	crtc->vyres = vyres;
1158 	crtc->xoffset = xoffset;
1159 	crtc->yoffset = yoffset;
1160 	crtc->depth = depth;
1161 	crtc->bpp = bpp;
1162 
1163 	return 0;
1164 }
1165 
1166 
1167 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1168 {
1169 
1170 	/* fill in pixel info */
1171 	var->red.msb_right = 0;
1172 	var->green.msb_right = 0;
1173 	var->blue.offset = 0;
1174 	var->blue.msb_right = 0;
1175 	var->transp.offset = 0;
1176 	var->transp.length = 0;
1177 	var->transp.msb_right = 0;
1178 	switch (pix_width) {
1179 	case CRTC_PIX_WIDTH_8BPP:
1180 		var->bits_per_pixel = 8;
1181 		var->red.offset = 0;
1182 		var->red.length = 8;
1183 		var->green.offset = 0;
1184 		var->green.length = 8;
1185 		var->blue.length = 8;
1186 		break;
1187 	case CRTC_PIX_WIDTH_15BPP:
1188 		var->bits_per_pixel = 16;
1189 		var->red.offset = 10;
1190 		var->red.length = 5;
1191 		var->green.offset = 5;
1192 		var->green.length = 5;
1193 		var->blue.length = 5;
1194 		break;
1195 	case CRTC_PIX_WIDTH_16BPP:
1196 		var->bits_per_pixel = 16;
1197 		var->red.offset = 11;
1198 		var->red.length = 5;
1199 		var->green.offset = 5;
1200 		var->green.length = 6;
1201 		var->blue.length = 5;
1202 		break;
1203 	case CRTC_PIX_WIDTH_24BPP:
1204 		var->bits_per_pixel = 24;
1205 		var->red.offset = 16;
1206 		var->red.length = 8;
1207 		var->green.offset = 8;
1208 		var->green.length = 8;
1209 		var->blue.length = 8;
1210 		break;
1211 	case CRTC_PIX_WIDTH_32BPP:
1212 		var->bits_per_pixel = 32;
1213 		var->red.offset = 16;
1214 		var->red.length = 8;
1215 		var->green.offset = 8;
1216 		var->green.length = 8;
1217 		var->blue.length = 8;
1218 		var->transp.offset = 24;
1219 		var->transp.length = 8;
1220 		break;
1221 	default:
1222 		printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1223 		return -EINVAL;
1224 	}
1225 
1226 	return 0;
1227 }
1228 
1229 
1230 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1231 			      struct fb_var_screeninfo *var)
1232 {
1233 	u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1234 	u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1235 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1236 	u32 pix_width;
1237 
1238 	/* fun with masking */
1239 	h_total     = crtc->h_total & 0x1ff;
1240 	h_disp      = (crtc->h_total >> 16) & 0xff;
1241 	h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1242 	h_sync_dly  = crtc->h_sync_strt_wid & 0x7;
1243 	h_sync_wid  = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1244 	h_sync_pol  = (crtc->h_sync_strt_wid >> 23) & 0x1;
1245 	v_total     = crtc->v_total & 0x7ff;
1246 	v_disp      = (crtc->v_total >> 16) & 0x7ff;
1247 	v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1248 	v_sync_wid  = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1249 	v_sync_pol  = (crtc->v_sync_strt_wid >> 23) & 0x1;
1250 	c_sync      = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1251 	pix_width   = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1252 
1253 	/* do conversions */
1254 	xres  = (h_disp + 1) << 3;
1255 	yres  = v_disp + 1;
1256 	left  = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1257 	right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1258 	hslen = h_sync_wid << 3;
1259 	upper = v_total - v_sync_strt - v_sync_wid;
1260 	lower = v_sync_strt - v_disp;
1261 	vslen = v_sync_wid;
1262 	sync  = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1263 		(v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1264 		(c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1265 
1266 	aty128_pix_width_to_var(pix_width, var);
1267 
1268 	var->xres = xres;
1269 	var->yres = yres;
1270 	var->xres_virtual = crtc->vxres;
1271 	var->yres_virtual = crtc->vyres;
1272 	var->xoffset = crtc->xoffset;
1273 	var->yoffset = crtc->yoffset;
1274 	var->left_margin  = left;
1275 	var->right_margin = right;
1276 	var->upper_margin = upper;
1277 	var->lower_margin = lower;
1278 	var->hsync_len = hslen;
1279 	var->vsync_len = vslen;
1280 	var->sync  = sync;
1281 	var->vmode = FB_VMODE_NONINTERLACED;
1282 
1283 	return 0;
1284 }
1285 
1286 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1287 {
1288 	if (on) {
1289 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) |
1290 			    CRT_CRTC_ON);
1291 		aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) |
1292 			    DAC_PALETTE2_SNOOP_EN));
1293 	} else
1294 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) &
1295 			    ~CRT_CRTC_ON);
1296 }
1297 
1298 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1299 {
1300 	u32 reg;
1301 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1302 	struct fb_info *info = pci_get_drvdata(par->pdev);
1303 #endif
1304 
1305 	if (on) {
1306 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1307 		reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1308 		reg &= ~LVDS_DISPLAY_DIS;
1309 		aty_st_le32(LVDS_GEN_CNTL, reg);
1310 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1311 		aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1312 #endif
1313 	} else {
1314 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1315 		aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1316 #endif
1317 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1318 		reg |= LVDS_DISPLAY_DIS;
1319 		aty_st_le32(LVDS_GEN_CNTL, reg);
1320 		mdelay(100);
1321 		reg &= ~(LVDS_ON /*| LVDS_EN*/);
1322 		aty_st_le32(LVDS_GEN_CNTL, reg);
1323 	}
1324 }
1325 
1326 static void aty128_set_pll(struct aty128_pll *pll,
1327 			   const struct aty128fb_par *par)
1328 {
1329 	u32 div3;
1330 
1331 	unsigned char post_conv[] =	/* register values for post dividers */
1332         { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
1333 
1334 	/* select PPLL_DIV_3 */
1335 	aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1336 
1337 	/* reset PLL */
1338 	aty_st_pll(PPLL_CNTL,
1339 		   aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1340 
1341 	/* write the reference divider */
1342 	aty_pll_wait_readupdate(par);
1343 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1344 	aty_pll_writeupdate(par);
1345 
1346 	div3 = aty_ld_pll(PPLL_DIV_3);
1347 	div3 &= ~PPLL_FB3_DIV_MASK;
1348 	div3 |= pll->feedback_divider;
1349 	div3 &= ~PPLL_POST3_DIV_MASK;
1350 	div3 |= post_conv[pll->post_divider] << 16;
1351 
1352 	/* write feedback and post dividers */
1353 	aty_pll_wait_readupdate(par);
1354 	aty_st_pll(PPLL_DIV_3, div3);
1355 	aty_pll_writeupdate(par);
1356 
1357 	aty_pll_wait_readupdate(par);
1358 	aty_st_pll(HTOTAL_CNTL, 0);	/* no horiz crtc adjustment */
1359 	aty_pll_writeupdate(par);
1360 
1361 	/* clear the reset, just in case */
1362 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1363 }
1364 
1365 
1366 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1367 			     const struct aty128fb_par *par)
1368 {
1369 	const struct aty128_constants c = par->constants;
1370 	unsigned char post_dividers[] = {1,2,4,8,3,6,12};
1371 	u32 output_freq;
1372 	u32 vclk;        /* in .01 MHz */
1373 	int i = 0;
1374 	u32 n, d;
1375 
1376 	vclk = 100000000 / period_in_ps;	/* convert units to 10 kHz */
1377 
1378 	/* adjust pixel clock if necessary */
1379 	if (vclk > c.ppll_max)
1380 		vclk = c.ppll_max;
1381 	if (vclk * 12 < c.ppll_min)
1382 		vclk = c.ppll_min/12;
1383 
1384 	/* now, find an acceptable divider */
1385 	for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1386 		output_freq = post_dividers[i] * vclk;
1387 		if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1388 			pll->post_divider = post_dividers[i];
1389 			break;
1390 		}
1391 	}
1392 
1393 	if (i == ARRAY_SIZE(post_dividers))
1394 		return -EINVAL;
1395 
1396 	/* calculate feedback divider */
1397 	n = c.ref_divider * output_freq;
1398 	d = c.ref_clk;
1399 
1400 	pll->feedback_divider = round_div(n, d);
1401 	pll->vclk = vclk;
1402 
1403 	DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1404 	    "vclk_per: %d\n", pll->post_divider,
1405 	    pll->feedback_divider, vclk, output_freq,
1406 	    c.ref_divider, period_in_ps);
1407 
1408 	return 0;
1409 }
1410 
1411 
1412 static int aty128_pll_to_var(const struct aty128_pll *pll,
1413 			     struct fb_var_screeninfo *var)
1414 {
1415 	var->pixclock = 100000000 / pll->vclk;
1416 
1417 	return 0;
1418 }
1419 
1420 
1421 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1422 			    const struct aty128fb_par *par)
1423 {
1424 	aty_st_le32(DDA_CONFIG, dsp->dda_config);
1425 	aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1426 }
1427 
1428 
1429 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1430 			  const struct aty128_pll *pll,
1431 			  u32 depth,
1432 			  const struct aty128fb_par *par)
1433 {
1434 	const struct aty128_meminfo *m = par->mem;
1435 	u32 xclk = par->constants.xclk;
1436 	u32 fifo_width = par->constants.fifo_width;
1437 	u32 fifo_depth = par->constants.fifo_depth;
1438 	s32 x, b, p, ron, roff;
1439 	u32 n, d, bpp;
1440 
1441 	/* round up to multiple of 8 */
1442 	bpp = (depth+7) & ~7;
1443 
1444 	n = xclk * fifo_width;
1445 	d = pll->vclk * bpp;
1446 	x = round_div(n, d);
1447 
1448 	ron = 4 * m->MB +
1449 		3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1450 		2 * m->Trp +
1451 		m->Twr +
1452 		m->CL +
1453 		m->Tr2w +
1454 		x;
1455 
1456 	DBG("x %x\n", x);
1457 
1458 	b = 0;
1459 	while (x) {
1460 		x >>= 1;
1461 		b++;
1462 	}
1463 	p = b + 1;
1464 
1465 	ron <<= (11 - p);
1466 
1467 	n <<= (11 - p);
1468 	x = round_div(n, d);
1469 	roff = x * (fifo_depth - 4);
1470 
1471 	if ((ron + m->Rloop) >= roff) {
1472 		printk(KERN_ERR "aty128fb: Mode out of range!\n");
1473 		return -EINVAL;
1474 	}
1475 
1476 	DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1477 	    p, m->Rloop, x, ron, roff);
1478 
1479 	dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1480 	dsp->dda_on_off = ron << 16 | roff;
1481 
1482 	return 0;
1483 }
1484 
1485 
1486 /*
1487  * This actually sets the video mode.
1488  */
1489 static int aty128fb_set_par(struct fb_info *info)
1490 {
1491 	struct aty128fb_par *par = info->par;
1492 	u32 config;
1493 	int err;
1494 
1495 	if ((err = aty128_decode_var(&info->var, par)) != 0)
1496 		return err;
1497 
1498 	if (par->blitter_may_be_busy)
1499 		wait_for_idle(par);
1500 
1501 	/* clear all registers that may interfere with mode setting */
1502 	aty_st_le32(OVR_CLR, 0);
1503 	aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1504 	aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1505 	aty_st_le32(OV0_SCALE_CNTL, 0);
1506 	aty_st_le32(MPP_TB_CONFIG, 0);
1507 	aty_st_le32(MPP_GP_CONFIG, 0);
1508 	aty_st_le32(SUBPIC_CNTL, 0);
1509 	aty_st_le32(VIPH_CONTROL, 0);
1510 	aty_st_le32(I2C_CNTL_1, 0);         /* turn off i2c */
1511 	aty_st_le32(GEN_INT_CNTL, 0);	/* turn off interrupts */
1512 	aty_st_le32(CAP0_TRIG_CNTL, 0);
1513 	aty_st_le32(CAP1_TRIG_CNTL, 0);
1514 
1515 	aty_st_8(CRTC_EXT_CNTL + 1, 4);	/* turn video off */
1516 
1517 	aty128_set_crtc(&par->crtc, par);
1518 	aty128_set_pll(&par->pll, par);
1519 	aty128_set_fifo(&par->fifo_reg, par);
1520 
1521 	config = aty_ld_le32(CNFG_CNTL) & ~3;
1522 
1523 #if defined(__BIG_ENDIAN)
1524 	if (par->crtc.bpp == 32)
1525 		config |= 2;	/* make aperture do 32 bit swapping */
1526 	else if (par->crtc.bpp == 16)
1527 		config |= 1;	/* make aperture do 16 bit swapping */
1528 #endif
1529 
1530 	aty_st_le32(CNFG_CNTL, config);
1531 	aty_st_8(CRTC_EXT_CNTL + 1, 0);	/* turn the video back on */
1532 
1533 	info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1534 	info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1535 		: FB_VISUAL_DIRECTCOLOR;
1536 
1537 	if (par->chip_gen == rage_M3) {
1538 		aty128_set_crt_enable(par, par->crt_on);
1539 		aty128_set_lcd_enable(par, par->lcd_on);
1540 	}
1541 	if (par->accel_flags & FB_ACCELF_TEXT)
1542 		aty128_init_engine(par);
1543 
1544 #ifdef CONFIG_BOOTX_TEXT
1545 	btext_update_display(info->fix.smem_start,
1546 			     (((par->crtc.h_total>>16) & 0xff)+1)*8,
1547 			     ((par->crtc.v_total>>16) & 0x7ff)+1,
1548 			     par->crtc.bpp,
1549 			     par->crtc.vxres*par->crtc.bpp/8);
1550 #endif /* CONFIG_BOOTX_TEXT */
1551 
1552 	return 0;
1553 }
1554 
1555 /*
1556  *  encode/decode the User Defined Part of the Display
1557  */
1558 
1559 static int aty128_decode_var(struct fb_var_screeninfo *var,
1560 			     struct aty128fb_par *par)
1561 {
1562 	int err;
1563 	struct aty128_crtc crtc;
1564 	struct aty128_pll pll;
1565 	struct aty128_ddafifo fifo_reg;
1566 
1567 	if ((err = aty128_var_to_crtc(var, &crtc, par)))
1568 		return err;
1569 
1570 	if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1571 		return err;
1572 
1573 	if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1574 		return err;
1575 
1576 	par->crtc = crtc;
1577 	par->pll = pll;
1578 	par->fifo_reg = fifo_reg;
1579 	par->accel_flags = var->accel_flags;
1580 
1581 	return 0;
1582 }
1583 
1584 
1585 static int aty128_encode_var(struct fb_var_screeninfo *var,
1586 			     const struct aty128fb_par *par)
1587 {
1588 	int err;
1589 
1590 	if ((err = aty128_crtc_to_var(&par->crtc, var)))
1591 		return err;
1592 
1593 	if ((err = aty128_pll_to_var(&par->pll, var)))
1594 		return err;
1595 
1596 	var->nonstd = 0;
1597 	var->activate = 0;
1598 
1599 	var->height = -1;
1600 	var->width = -1;
1601 	var->accel_flags = par->accel_flags;
1602 
1603 	return 0;
1604 }
1605 
1606 
1607 static int aty128fb_check_var(struct fb_var_screeninfo *var,
1608 			      struct fb_info *info)
1609 {
1610 	struct aty128fb_par par;
1611 	int err;
1612 
1613 	par = *(struct aty128fb_par *)info->par;
1614 	if ((err = aty128_decode_var(var, &par)) != 0)
1615 		return err;
1616 	aty128_encode_var(var, &par);
1617 	return 0;
1618 }
1619 
1620 
1621 /*
1622  *  Pan or Wrap the Display
1623  */
1624 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
1625 				struct fb_info *fb)
1626 {
1627 	struct aty128fb_par *par = fb->par;
1628 	u32 xoffset, yoffset;
1629 	u32 offset;
1630 	u32 xres, yres;
1631 
1632 	xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1633 	yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1634 
1635 	xoffset = (var->xoffset +7) & ~7;
1636 	yoffset = var->yoffset;
1637 
1638 	if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1639 		return -EINVAL;
1640 
1641 	par->crtc.xoffset = xoffset;
1642 	par->crtc.yoffset = yoffset;
1643 
1644 	offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3))
1645 									  & ~7;
1646 
1647 	if (par->crtc.bpp == 24)
1648 		offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1649 
1650 	aty_st_le32(CRTC_OFFSET, offset);
1651 
1652 	return 0;
1653 }
1654 
1655 
1656 /*
1657  *  Helper function to store a single palette register
1658  */
1659 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1660 			  struct aty128fb_par *par)
1661 {
1662 	if (par->chip_gen == rage_M3) {
1663 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) &
1664 			    ~DAC_PALETTE_ACCESS_CNTL);
1665 	}
1666 
1667 	aty_st_8(PALETTE_INDEX, regno);
1668 	aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1669 }
1670 
1671 static int aty128fb_sync(struct fb_info *info)
1672 {
1673 	struct aty128fb_par *par = info->par;
1674 
1675 	if (par->blitter_may_be_busy)
1676 		wait_for_idle(par);
1677 	return 0;
1678 }
1679 
1680 #ifndef MODULE
1681 static int aty128fb_setup(char *options)
1682 {
1683 	char *this_opt;
1684 
1685 	if (!options || !*options)
1686 		return 0;
1687 
1688 	while ((this_opt = strsep(&options, ",")) != NULL) {
1689 		if (!strncmp(this_opt, "lcd:", 4)) {
1690 			default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1691 			continue;
1692 		} else if (!strncmp(this_opt, "crt:", 4)) {
1693 			default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1694 			continue;
1695 		} else if (!strncmp(this_opt, "backlight:", 10)) {
1696 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1697 			backlight = simple_strtoul(this_opt+10, NULL, 0);
1698 #endif
1699 			continue;
1700 		}
1701 		if(!strncmp(this_opt, "nomtrr", 6)) {
1702 			mtrr = false;
1703 			continue;
1704 		}
1705 #ifdef CONFIG_PPC_PMAC
1706 		/* vmode and cmode deprecated */
1707 		if (!strncmp(this_opt, "vmode:", 6)) {
1708 			unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1709 			if (vmode > 0 && vmode <= VMODE_MAX)
1710 				default_vmode = vmode;
1711 			continue;
1712 		} else if (!strncmp(this_opt, "cmode:", 6)) {
1713 			unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1714 			switch (cmode) {
1715 			case 0:
1716 			case 8:
1717 				default_cmode = CMODE_8;
1718 				break;
1719 			case 15:
1720 			case 16:
1721 				default_cmode = CMODE_16;
1722 				break;
1723 			case 24:
1724 			case 32:
1725 				default_cmode = CMODE_32;
1726 				break;
1727 			}
1728 			continue;
1729 		}
1730 #endif /* CONFIG_PPC_PMAC */
1731 		mode_option = this_opt;
1732 	}
1733 	return 0;
1734 }
1735 #endif  /*  MODULE  */
1736 
1737 /* Backlight */
1738 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1739 #define MAX_LEVEL 0xFF
1740 
1741 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1742 		int level)
1743 {
1744 	struct fb_info *info = pci_get_drvdata(par->pdev);
1745 	int atylevel;
1746 
1747 	/* Get and convert the value */
1748 	/* No locking of bl_curve since we read a single value */
1749 	atylevel = MAX_LEVEL -
1750 		(info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1751 
1752 	if (atylevel < 0)
1753 		atylevel = 0;
1754 	else if (atylevel > MAX_LEVEL)
1755 		atylevel = MAX_LEVEL;
1756 
1757 	return atylevel;
1758 }
1759 
1760 /* We turn off the LCD completely instead of just dimming the backlight.
1761  * This provides greater power saving and the display is useless without
1762  * backlight anyway
1763  */
1764 #define BACKLIGHT_LVDS_OFF
1765 /* That one prevents proper CRT output with LCD off */
1766 #undef BACKLIGHT_DAC_OFF
1767 
1768 static int aty128_bl_update_status(struct backlight_device *bd)
1769 {
1770 	struct aty128fb_par *par = bl_get_data(bd);
1771 	unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1772 	int level;
1773 
1774 	if (bd->props.power != FB_BLANK_UNBLANK ||
1775 	    bd->props.fb_blank != FB_BLANK_UNBLANK ||
1776 	    !par->lcd_on)
1777 		level = 0;
1778 	else
1779 		level = bd->props.brightness;
1780 
1781 	reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1782 	if (level > 0) {
1783 		reg |= LVDS_DIGION;
1784 		if (!(reg & LVDS_ON)) {
1785 			reg &= ~LVDS_BLON;
1786 			aty_st_le32(LVDS_GEN_CNTL, reg);
1787 			aty_ld_le32(LVDS_GEN_CNTL);
1788 			mdelay(10);
1789 			reg |= LVDS_BLON;
1790 			aty_st_le32(LVDS_GEN_CNTL, reg);
1791 		}
1792 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1793 		reg |= (aty128_bl_get_level_brightness(par, level) <<
1794 			LVDS_BL_MOD_LEVEL_SHIFT);
1795 #ifdef BACKLIGHT_LVDS_OFF
1796 		reg |= LVDS_ON | LVDS_EN;
1797 		reg &= ~LVDS_DISPLAY_DIS;
1798 #endif
1799 		aty_st_le32(LVDS_GEN_CNTL, reg);
1800 #ifdef BACKLIGHT_DAC_OFF
1801 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1802 #endif
1803 	} else {
1804 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1805 		reg |= (aty128_bl_get_level_brightness(par, 0) <<
1806 			LVDS_BL_MOD_LEVEL_SHIFT);
1807 #ifdef BACKLIGHT_LVDS_OFF
1808 		reg |= LVDS_DISPLAY_DIS;
1809 		aty_st_le32(LVDS_GEN_CNTL, reg);
1810 		aty_ld_le32(LVDS_GEN_CNTL);
1811 		udelay(10);
1812 		reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1813 #endif
1814 		aty_st_le32(LVDS_GEN_CNTL, reg);
1815 #ifdef BACKLIGHT_DAC_OFF
1816 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1817 #endif
1818 	}
1819 
1820 	return 0;
1821 }
1822 
1823 static const struct backlight_ops aty128_bl_data = {
1824 	.update_status	= aty128_bl_update_status,
1825 };
1826 
1827 static void aty128_bl_set_power(struct fb_info *info, int power)
1828 {
1829 	if (info->bl_dev) {
1830 		info->bl_dev->props.power = power;
1831 		backlight_update_status(info->bl_dev);
1832 	}
1833 }
1834 
1835 static void aty128_bl_init(struct aty128fb_par *par)
1836 {
1837 	struct backlight_properties props;
1838 	struct fb_info *info = pci_get_drvdata(par->pdev);
1839 	struct backlight_device *bd;
1840 	char name[12];
1841 
1842 	/* Could be extended to Rage128Pro LVDS output too */
1843 	if (par->chip_gen != rage_M3)
1844 		return;
1845 
1846 #ifdef CONFIG_PMAC_BACKLIGHT
1847 	if (!pmac_has_backlight_type("ati"))
1848 		return;
1849 #endif
1850 
1851 	snprintf(name, sizeof(name), "aty128bl%d", info->node);
1852 
1853 	memset(&props, 0, sizeof(struct backlight_properties));
1854 	props.type = BACKLIGHT_RAW;
1855 	props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1856 	bd = backlight_device_register(name, info->dev, par, &aty128_bl_data,
1857 				       &props);
1858 	if (IS_ERR(bd)) {
1859 		info->bl_dev = NULL;
1860 		printk(KERN_WARNING "aty128: Backlight registration failed\n");
1861 		goto error;
1862 	}
1863 
1864 	info->bl_dev = bd;
1865 	fb_bl_default_curve(info, 0,
1866 		 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1867 		219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1868 
1869 	bd->props.brightness = bd->props.max_brightness;
1870 	bd->props.power = FB_BLANK_UNBLANK;
1871 	backlight_update_status(bd);
1872 
1873 	printk("aty128: Backlight initialized (%s)\n", name);
1874 
1875 	return;
1876 
1877 error:
1878 	return;
1879 }
1880 
1881 static void aty128_bl_exit(struct backlight_device *bd)
1882 {
1883 	backlight_device_unregister(bd);
1884 	printk("aty128: Backlight unloaded\n");
1885 }
1886 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1887 
1888 /*
1889  *  Initialisation
1890  */
1891 
1892 #ifdef CONFIG_PPC_PMAC__disabled
1893 static void aty128_early_resume(void *data)
1894 {
1895         struct aty128fb_par *par = data;
1896 
1897 	if (!console_trylock())
1898 		return;
1899 	pci_restore_state(par->pdev);
1900 	aty128_do_resume(par->pdev);
1901 	console_unlock();
1902 }
1903 #endif /* CONFIG_PPC_PMAC */
1904 
1905 static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1906 {
1907 	struct fb_info *info = pci_get_drvdata(pdev);
1908 	struct aty128fb_par *par = info->par;
1909 	struct fb_var_screeninfo var;
1910 	char video_card[50];
1911 	u8 chip_rev;
1912 	u32 dac;
1913 
1914 	/* Get the chip revision */
1915 	chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1916 
1917 	strcpy(video_card, "Rage128 XX ");
1918 	video_card[8] = ent->device >> 8;
1919 	video_card[9] = ent->device & 0xFF;
1920 
1921 	/* range check to make sure */
1922 	if (ent->driver_data < ARRAY_SIZE(r128_family))
1923 		strlcat(video_card, r128_family[ent->driver_data],
1924 			sizeof(video_card));
1925 
1926 	printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1927 
1928 	if (par->vram_size % (1024 * 1024) == 0)
1929 		printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1930 	else
1931 		printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1932 
1933 	par->chip_gen = ent->driver_data;
1934 
1935 	/* fill in info */
1936 	info->fbops = &aty128fb_ops;
1937 	info->flags = FBINFO_FLAG_DEFAULT;
1938 
1939 	par->lcd_on = default_lcd_on;
1940 	par->crt_on = default_crt_on;
1941 
1942 	var = default_var;
1943 #ifdef CONFIG_PPC_PMAC
1944 	if (machine_is(powermac)) {
1945 		/* Indicate sleep capability */
1946 		if (par->chip_gen == rage_M3) {
1947 			pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1948 #if 0 /* Disable the early video resume hack for now as it's causing problems,
1949        * among others we now rely on the PCI core restoring the config space
1950        * for us, which isn't the case with that hack, and that code path causes
1951        * various things to be called with interrupts off while they shouldn't.
1952        * I'm leaving the code in as it can be useful for debugging purposes
1953        */
1954 			pmac_set_early_video_resume(aty128_early_resume, par);
1955 #endif
1956 		}
1957 
1958 		/* Find default mode */
1959 		if (mode_option) {
1960 			if (!mac_find_mode(&var, info, mode_option, 8))
1961 				var = default_var;
1962 		} else {
1963 			if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1964 				default_vmode = VMODE_1024_768_60;
1965 
1966 			/* iMacs need that resolution
1967 			 * PowerMac2,1 first r128 iMacs
1968 			 * PowerMac2,2 summer 2000 iMacs
1969 			 * PowerMac4,1 january 2001 iMacs "flower power"
1970 			 */
1971 			if (of_machine_is_compatible("PowerMac2,1") ||
1972 			    of_machine_is_compatible("PowerMac2,2") ||
1973 			    of_machine_is_compatible("PowerMac4,1"))
1974 				default_vmode = VMODE_1024_768_75;
1975 
1976 			/* iBook SE */
1977 			if (of_machine_is_compatible("PowerBook2,2"))
1978 				default_vmode = VMODE_800_600_60;
1979 
1980 			/* PowerBook Firewire (Pismo), iBook Dual USB */
1981 			if (of_machine_is_compatible("PowerBook3,1") ||
1982 			    of_machine_is_compatible("PowerBook4,1"))
1983 				default_vmode = VMODE_1024_768_60;
1984 
1985 			/* PowerBook Titanium */
1986 			if (of_machine_is_compatible("PowerBook3,2"))
1987 				default_vmode = VMODE_1152_768_60;
1988 
1989 			if (default_cmode > 16)
1990 				default_cmode = CMODE_32;
1991 			else if (default_cmode > 8)
1992 				default_cmode = CMODE_16;
1993 			else
1994 				default_cmode = CMODE_8;
1995 
1996 			if (mac_vmode_to_var(default_vmode, default_cmode, &var))
1997 				var = default_var;
1998 		}
1999 	} else
2000 #endif /* CONFIG_PPC_PMAC */
2001 	{
2002 		if (mode_option)
2003 			if (fb_find_mode(&var, info, mode_option, NULL,
2004 					 0, &defaultmode, 8) == 0)
2005 				var = default_var;
2006 	}
2007 
2008 	var.accel_flags &= ~FB_ACCELF_TEXT;
2009 //	var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
2010 
2011 	if (aty128fb_check_var(&var, info)) {
2012 		printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
2013 		return 0;
2014 	}
2015 
2016 	/* setup the DAC the way we like it */
2017 	dac = aty_ld_le32(DAC_CNTL);
2018 	dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2019 	dac |= DAC_MASK;
2020 	if (par->chip_gen == rage_M3)
2021 		dac |= DAC_PALETTE2_SNOOP_EN;
2022 	aty_st_le32(DAC_CNTL, dac);
2023 
2024 	/* turn off bus mastering, just in case */
2025 	aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2026 
2027 	info->var = var;
2028 	fb_alloc_cmap(&info->cmap, 256, 0);
2029 
2030 	var.activate = FB_ACTIVATE_NOW;
2031 
2032 	aty128_init_engine(par);
2033 
2034 	par->pdev = pdev;
2035 	par->asleep = 0;
2036 	par->lock_blank = 0;
2037 
2038 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2039 	if (backlight)
2040 		aty128_bl_init(par);
2041 #endif
2042 
2043 	if (register_framebuffer(info) < 0)
2044 		return 0;
2045 
2046 	fb_info(info, "%s frame buffer device on %s\n",
2047 		info->fix.id, video_card);
2048 
2049 	return 1;	/* success! */
2050 }
2051 
2052 #ifdef CONFIG_PCI
2053 /* register a card    ++ajoshi */
2054 static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2055 {
2056 	unsigned long fb_addr, reg_addr;
2057 	struct aty128fb_par *par;
2058 	struct fb_info *info;
2059 	int err;
2060 #ifndef __sparc__
2061 	void __iomem *bios = NULL;
2062 #endif
2063 
2064 	/* Enable device in PCI config */
2065 	if ((err = pci_enable_device(pdev))) {
2066 		printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2067 				err);
2068 		return -ENODEV;
2069 	}
2070 
2071 	fb_addr = pci_resource_start(pdev, 0);
2072 	if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2073 				"aty128fb FB")) {
2074 		printk(KERN_ERR "aty128fb: cannot reserve frame "
2075 				"buffer memory\n");
2076 		return -ENODEV;
2077 	}
2078 
2079 	reg_addr = pci_resource_start(pdev, 2);
2080 	if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2081 				"aty128fb MMIO")) {
2082 		printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2083 		goto err_free_fb;
2084 	}
2085 
2086 	/* We have the resources. Now virtualize them */
2087 	info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2088 	if (!info)
2089 		goto err_free_mmio;
2090 
2091 	par = info->par;
2092 
2093 	info->pseudo_palette = par->pseudo_palette;
2094 
2095 	/* Virtualize mmio region */
2096 	info->fix.mmio_start = reg_addr;
2097 	par->regbase = pci_ioremap_bar(pdev, 2);
2098 	if (!par->regbase)
2099 		goto err_free_info;
2100 
2101 	/* Grab memory size from the card */
2102 	// How does this relate to the resource length from the PCI hardware?
2103 	par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2104 
2105 	/* Virtualize the framebuffer */
2106 	info->screen_base = ioremap_wc(fb_addr, par->vram_size);
2107 	if (!info->screen_base)
2108 		goto err_unmap_out;
2109 
2110 	/* Set up info->fix */
2111 	info->fix = aty128fb_fix;
2112 	info->fix.smem_start = fb_addr;
2113 	info->fix.smem_len = par->vram_size;
2114 	info->fix.mmio_start = reg_addr;
2115 
2116 	/* If we can't test scratch registers, something is seriously wrong */
2117 	if (!register_test(par)) {
2118 		printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2119 		goto err_out;
2120 	}
2121 
2122 #ifndef __sparc__
2123 	bios = aty128_map_ROM(par, pdev);
2124 #ifdef CONFIG_X86
2125 	if (bios == NULL)
2126 		bios = aty128_find_mem_vbios(par);
2127 #endif
2128 	if (bios == NULL)
2129 		printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2130 	else {
2131 		printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2132 		aty128_get_pllinfo(par, bios);
2133 		pci_unmap_rom(pdev, bios);
2134 	}
2135 #endif /* __sparc__ */
2136 
2137 	aty128_timings(par);
2138 	pci_set_drvdata(pdev, info);
2139 
2140 	if (!aty128_init(pdev, ent))
2141 		goto err_out;
2142 
2143 	if (mtrr)
2144 		par->wc_cookie = arch_phys_wc_add(info->fix.smem_start,
2145 						  par->vram_size);
2146 	return 0;
2147 
2148 err_out:
2149 	iounmap(info->screen_base);
2150 err_unmap_out:
2151 	iounmap(par->regbase);
2152 err_free_info:
2153 	framebuffer_release(info);
2154 err_free_mmio:
2155 	release_mem_region(pci_resource_start(pdev, 2),
2156 			pci_resource_len(pdev, 2));
2157 err_free_fb:
2158 	release_mem_region(pci_resource_start(pdev, 0),
2159 			pci_resource_len(pdev, 0));
2160 	return -ENODEV;
2161 }
2162 
2163 static void aty128_remove(struct pci_dev *pdev)
2164 {
2165 	struct fb_info *info = pci_get_drvdata(pdev);
2166 	struct aty128fb_par *par;
2167 
2168 	if (!info)
2169 		return;
2170 
2171 	par = info->par;
2172 
2173 	unregister_framebuffer(info);
2174 
2175 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2176 	aty128_bl_exit(info->bl_dev);
2177 #endif
2178 
2179 	arch_phys_wc_del(par->wc_cookie);
2180 	iounmap(par->regbase);
2181 	iounmap(info->screen_base);
2182 
2183 	release_mem_region(pci_resource_start(pdev, 0),
2184 			   pci_resource_len(pdev, 0));
2185 	release_mem_region(pci_resource_start(pdev, 2),
2186 			   pci_resource_len(pdev, 2));
2187 	framebuffer_release(info);
2188 }
2189 #endif /* CONFIG_PCI */
2190 
2191 
2192 
2193     /*
2194      *  Blank the display.
2195      */
2196 static int aty128fb_blank(int blank, struct fb_info *fb)
2197 {
2198 	struct aty128fb_par *par = fb->par;
2199 	u8 state;
2200 
2201 	if (par->lock_blank || par->asleep)
2202 		return 0;
2203 
2204 	switch (blank) {
2205 	case FB_BLANK_NORMAL:
2206 		state = 4;
2207 		break;
2208 	case FB_BLANK_VSYNC_SUSPEND:
2209 		state = 6;
2210 		break;
2211 	case FB_BLANK_HSYNC_SUSPEND:
2212 		state = 5;
2213 		break;
2214 	case FB_BLANK_POWERDOWN:
2215 		state = 7;
2216 		break;
2217 	case FB_BLANK_UNBLANK:
2218 	default:
2219 		state = 0;
2220 		break;
2221 	}
2222 	aty_st_8(CRTC_EXT_CNTL+1, state);
2223 
2224 	if (par->chip_gen == rage_M3) {
2225 		aty128_set_crt_enable(par, par->crt_on && !blank);
2226 		aty128_set_lcd_enable(par, par->lcd_on && !blank);
2227 	}
2228 
2229 	return 0;
2230 }
2231 
2232 /*
2233  *  Set a single color register. The values supplied are already
2234  *  rounded down to the hardware's capabilities (according to the
2235  *  entries in the var structure). Return != 0 for invalid regno.
2236  */
2237 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2238 			      u_int transp, struct fb_info *info)
2239 {
2240 	struct aty128fb_par *par = info->par;
2241 
2242 	if (regno > 255
2243 	    || (par->crtc.depth == 16 && regno > 63)
2244 	    || (par->crtc.depth == 15 && regno > 31))
2245 		return 1;
2246 
2247 	red >>= 8;
2248 	green >>= 8;
2249 	blue >>= 8;
2250 
2251 	if (regno < 16) {
2252 		int i;
2253 		u32 *pal = info->pseudo_palette;
2254 
2255 		switch (par->crtc.depth) {
2256 		case 15:
2257 			pal[regno] = (regno << 10) | (regno << 5) | regno;
2258 			break;
2259 		case 16:
2260 			pal[regno] = (regno << 11) | (regno << 6) | regno;
2261 			break;
2262 		case 24:
2263 			pal[regno] = (regno << 16) | (regno << 8) | regno;
2264 			break;
2265 		case 32:
2266 			i = (regno << 8) | regno;
2267 			pal[regno] = (i << 16) | i;
2268 			break;
2269 		}
2270 	}
2271 
2272 	if (par->crtc.depth == 16 && regno > 0) {
2273 		/*
2274 		 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2275 		 * have 32 slots for R and B values but 64 slots for G values.
2276 		 * Thus the R and B values go in one slot but the G value
2277 		 * goes in a different slot, and we have to avoid disturbing
2278 		 * the other fields in the slots we touch.
2279 		 */
2280 		par->green[regno] = green;
2281 		if (regno < 32) {
2282 			par->red[regno] = red;
2283 			par->blue[regno] = blue;
2284 			aty128_st_pal(regno * 8, red, par->green[regno*2],
2285 				      blue, par);
2286 		}
2287 		red = par->red[regno/2];
2288 		blue = par->blue[regno/2];
2289 		regno <<= 2;
2290 	} else if (par->crtc.bpp == 16)
2291 		regno <<= 3;
2292 	aty128_st_pal(regno, red, green, blue, par);
2293 
2294 	return 0;
2295 }
2296 
2297 #define ATY_MIRROR_LCD_ON	0x00000001
2298 #define ATY_MIRROR_CRT_ON	0x00000002
2299 
2300 /* out param: u32*	backlight value: 0 to 15 */
2301 #define FBIO_ATY128_GET_MIRROR	_IOR('@', 1, __u32)
2302 /* in param: u32*	backlight value: 0 to 15 */
2303 #define FBIO_ATY128_SET_MIRROR	_IOW('@', 2, __u32)
2304 
2305 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2306 {
2307 	struct aty128fb_par *par = info->par;
2308 	u32 value;
2309 	int rc;
2310 
2311 	switch (cmd) {
2312 	case FBIO_ATY128_SET_MIRROR:
2313 		if (par->chip_gen != rage_M3)
2314 			return -EINVAL;
2315 		rc = get_user(value, (__u32 __user *)arg);
2316 		if (rc)
2317 			return rc;
2318 		par->lcd_on = (value & 0x01) != 0;
2319 		par->crt_on = (value & 0x02) != 0;
2320 		if (!par->crt_on && !par->lcd_on)
2321 			par->lcd_on = 1;
2322 		aty128_set_crt_enable(par, par->crt_on);
2323 		aty128_set_lcd_enable(par, par->lcd_on);
2324 		return 0;
2325 	case FBIO_ATY128_GET_MIRROR:
2326 		if (par->chip_gen != rage_M3)
2327 			return -EINVAL;
2328 		value = (par->crt_on << 1) | par->lcd_on;
2329 		return put_user(value, (__u32 __user *)arg);
2330 	}
2331 	return -EINVAL;
2332 }
2333 
2334 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2335 {
2336 	u32	pmgt;
2337 	struct pci_dev *pdev = par->pdev;
2338 
2339 	if (!par->pdev->pm_cap)
2340 		return;
2341 
2342 	/* Set the chip into the appropriate suspend mode (we use D2,
2343 	 * D3 would require a complete re-initialisation of the chip,
2344 	 * including PCI config registers, clocks, AGP configuration, ...)
2345 	 *
2346 	 * For resume, the core will have already brought us back to D0
2347 	 */
2348 	if (suspend) {
2349 		/* Make sure CRTC2 is reset. Remove that the day we decide to
2350 		 * actually use CRTC2 and replace it with real code for disabling
2351 		 * the CRTC2 output during sleep
2352 		 */
2353 		aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2354 			~(CRTC2_EN));
2355 
2356 		/* Set the power management mode to be PCI based */
2357 		/* Use this magic value for now */
2358 		pmgt = 0x0c005407;
2359 		aty_st_pll(POWER_MANAGEMENT, pmgt);
2360 		(void)aty_ld_pll(POWER_MANAGEMENT);
2361 		aty_st_le32(BUS_CNTL1, 0x00000010);
2362 		aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2363 		msleep(100);
2364 
2365 		/* Switch PCI power management to D2 */
2366 		pci_set_power_state(pdev, PCI_D2);
2367 	}
2368 }
2369 
2370 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2371 {
2372 	struct fb_info *info = pci_get_drvdata(pdev);
2373 	struct aty128fb_par *par = info->par;
2374 
2375 	/* Because we may change PCI D state ourselves, we need to
2376 	 * first save the config space content so the core can
2377 	 * restore it properly on resume.
2378 	 */
2379 	pci_save_state(pdev);
2380 
2381 	/* We don't do anything but D2, for now we return 0, but
2382 	 * we may want to change that. How do we know if the BIOS
2383 	 * can properly take care of D3 ? Also, with swsusp, we
2384 	 * know we'll be rebooted, ...
2385 	 */
2386 #ifndef CONFIG_PPC_PMAC
2387 	/* HACK ALERT ! Once I find a proper way to say to each driver
2388 	 * individually what will happen with it's PCI slot, I'll change
2389 	 * that. On laptops, the AGP slot is just unclocked, so D2 is
2390 	 * expected, while on desktops, the card is powered off
2391 	 */
2392 	return 0;
2393 #endif /* CONFIG_PPC_PMAC */
2394 
2395 	if (state.event == pdev->dev.power.power_state.event)
2396 		return 0;
2397 
2398 	printk(KERN_DEBUG "aty128fb: suspending...\n");
2399 
2400 	console_lock();
2401 
2402 	fb_set_suspend(info, 1);
2403 
2404 	/* Make sure engine is reset */
2405 	wait_for_idle(par);
2406 	aty128_reset_engine(par);
2407 	wait_for_idle(par);
2408 
2409 	/* Blank display and LCD */
2410 	aty128fb_blank(FB_BLANK_POWERDOWN, info);
2411 
2412 	/* Sleep */
2413 	par->asleep = 1;
2414 	par->lock_blank = 1;
2415 
2416 #ifdef CONFIG_PPC_PMAC
2417 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2418 	 * use them here. We'll ultimately need some generic support here,
2419 	 * but the generic code isn't quite ready for that yet
2420 	 */
2421 	pmac_suspend_agp_for_card(pdev);
2422 #endif /* CONFIG_PPC_PMAC */
2423 
2424 	/* We need a way to make sure the fbdev layer will _not_ touch the
2425 	 * framebuffer before we put the chip to suspend state. On 2.4, I
2426 	 * used dummy fb ops, 2.5 need proper support for this at the
2427 	 * fbdev level
2428 	 */
2429 	if (state.event != PM_EVENT_ON)
2430 		aty128_set_suspend(par, 1);
2431 
2432 	console_unlock();
2433 
2434 	pdev->dev.power.power_state = state;
2435 
2436 	return 0;
2437 }
2438 
2439 static int aty128_do_resume(struct pci_dev *pdev)
2440 {
2441 	struct fb_info *info = pci_get_drvdata(pdev);
2442 	struct aty128fb_par *par = info->par;
2443 
2444 	if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2445 		return 0;
2446 
2447 	/* PCI state will have been restored by the core, so
2448 	 * we should be in D0 now with our config space fully
2449 	 * restored
2450 	 */
2451 
2452 	/* Wakeup chip */
2453 	aty128_set_suspend(par, 0);
2454 	par->asleep = 0;
2455 
2456 	/* Restore display & engine */
2457 	aty128_reset_engine(par);
2458 	wait_for_idle(par);
2459 	aty128fb_set_par(info);
2460 	fb_pan_display(info, &info->var);
2461 	fb_set_cmap(&info->cmap, info);
2462 
2463 	/* Refresh */
2464 	fb_set_suspend(info, 0);
2465 
2466 	/* Unblank */
2467 	par->lock_blank = 0;
2468 	aty128fb_blank(0, info);
2469 
2470 #ifdef CONFIG_PPC_PMAC
2471 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2472 	 * use them here. We'll ultimately need some generic support here,
2473 	 * but the generic code isn't quite ready for that yet
2474 	 */
2475 	pmac_resume_agp_for_card(pdev);
2476 #endif /* CONFIG_PPC_PMAC */
2477 
2478 	pdev->dev.power.power_state = PMSG_ON;
2479 
2480 	printk(KERN_DEBUG "aty128fb: resumed !\n");
2481 
2482 	return 0;
2483 }
2484 
2485 static int aty128_pci_resume(struct pci_dev *pdev)
2486 {
2487 	int rc;
2488 
2489 	console_lock();
2490 	rc = aty128_do_resume(pdev);
2491 	console_unlock();
2492 
2493 	return rc;
2494 }
2495 
2496 
2497 static int aty128fb_init(void)
2498 {
2499 #ifndef MODULE
2500 	char *option = NULL;
2501 
2502 	if (fb_get_options("aty128fb", &option))
2503 		return -ENODEV;
2504 	aty128fb_setup(option);
2505 #endif
2506 
2507 	return pci_register_driver(&aty128fb_driver);
2508 }
2509 
2510 static void __exit aty128fb_exit(void)
2511 {
2512 	pci_unregister_driver(&aty128fb_driver);
2513 }
2514 
2515 module_init(aty128fb_init);
2516 
2517 module_exit(aty128fb_exit);
2518 
2519 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2520 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2521 MODULE_LICENSE("GPL");
2522 module_param(mode_option, charp, 0);
2523 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2524 module_param_named(nomtrr, mtrr, invbool, 0);
2525 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2526