1 // SPDX-License-Identifier: GPL-2.0-only
2 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
3 * linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
4 *
5 * Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
6 * Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
7 *
8 * Ani Joshi / Jeff Garzik
9 * - Code cleanup
10 *
11 * Michel Danzer <michdaen@iiic.ethz.ch>
12 * - 15/16 bit cleanup
13 * - fix panning
14 *
15 * Benjamin Herrenschmidt
16 * - pmac-specific PM stuff
17 * - various fixes & cleanups
18 *
19 * Andreas Hundt <andi@convergence.de>
20 * - FB_ACTIVATE fixes
21 *
22 * Paul Mackerras <paulus@samba.org>
23 * - Convert to new framebuffer API,
24 * fix colormap setting at 16 bits/pixel (565)
25 *
26 * Paul Mundt
27 * - PCI hotplug
28 *
29 * Jon Smirl <jonsmirl@yahoo.com>
30 * - PCI ID update
31 * - replace ROM BIOS search
32 *
33 * Based off of Geert's atyfb.c and vfb.c.
34 *
35 * TODO:
36 * - monitor sensing (DDC)
37 * - virtual display
38 * - other platform support (only ppc/x86 supported)
39 * - hardware cursor support
40 *
41 * Please cc: your patches to brad@neruo.com.
42 */
43
44 /*
45 * A special note of gratitude to ATI's devrel for providing documentation,
46 * example code and hardware. Thanks Nitya. -atong and brad
47 */
48
49
50 #include <linux/aperture.h>
51 #include <linux/module.h>
52 #include <linux/moduleparam.h>
53 #include <linux/kernel.h>
54 #include <linux/errno.h>
55 #include <linux/string.h>
56 #include <linux/mm.h>
57 #include <linux/vmalloc.h>
58 #include <linux/delay.h>
59 #include <linux/interrupt.h>
60 #include <linux/uaccess.h>
61 #include <linux/fb.h>
62 #include <linux/init.h>
63 #include <linux/pci.h>
64 #include <linux/ioport.h>
65 #include <linux/console.h>
66 #include <linux/backlight.h>
67 #include <asm/io.h>
68
69 #ifdef CONFIG_PPC_PMAC
70 #include <asm/machdep.h>
71 #include <asm/pmac_feature.h>
72 #include "../macmodes.h"
73 #endif
74
75 #ifdef CONFIG_PMAC_BACKLIGHT
76 #include <asm/backlight.h>
77 #endif
78
79 #ifdef CONFIG_BOOTX_TEXT
80 #include <asm/btext.h>
81 #endif /* CONFIG_BOOTX_TEXT */
82
83 #include <video/aty128.h>
84
85 /* Debug flag */
86 #undef DEBUG
87
88 #ifdef DEBUG
89 #define DBG(fmt, args...) \
90 printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
91 #else
92 #define DBG(fmt, args...)
93 #endif
94
95 #ifndef CONFIG_PPC_PMAC
96 /* default mode */
97 static const struct fb_var_screeninfo default_var = {
98 /* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
99 640, 480, 640, 480, 0, 0, 8, 0,
100 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
101 0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
102 0, FB_VMODE_NONINTERLACED
103 };
104
105 #else /* CONFIG_PPC_PMAC */
106 /* default to 1024x768 at 75Hz on PPC - this will work
107 * on the iMac, the usual 640x480 @ 60Hz doesn't. */
108 static const struct fb_var_screeninfo default_var = {
109 /* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
110 1024, 768, 1024, 768, 0, 0, 8, 0,
111 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
112 0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
113 FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
114 FB_VMODE_NONINTERLACED
115 };
116 #endif /* CONFIG_PPC_PMAC */
117
118 /* default modedb mode */
119 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
120 static const struct fb_videomode defaultmode = {
121 .refresh = 60,
122 .xres = 640,
123 .yres = 480,
124 .pixclock = 39722,
125 .left_margin = 48,
126 .right_margin = 16,
127 .upper_margin = 33,
128 .lower_margin = 10,
129 .hsync_len = 96,
130 .vsync_len = 2,
131 .sync = 0,
132 .vmode = FB_VMODE_NONINTERLACED
133 };
134
135 /* Chip generations */
136 enum {
137 rage_128,
138 rage_128_pci,
139 rage_128_pro,
140 rage_128_pro_pci,
141 rage_M3,
142 rage_M3_pci,
143 rage_M4,
144 rage_128_ultra,
145 };
146
147 /* Must match above enum */
148 static char * const r128_family[] = {
149 "AGP",
150 "PCI",
151 "PRO AGP",
152 "PRO PCI",
153 "M3 AGP",
154 "M3 PCI",
155 "M4 AGP",
156 "Ultra AGP",
157 };
158
159 /*
160 * PCI driver prototypes
161 */
162 static int aty128_probe(struct pci_dev *pdev,
163 const struct pci_device_id *ent);
164 static void aty128_remove(struct pci_dev *pdev);
165 static int aty128_pci_suspend_late(struct device *dev, pm_message_t state);
166 static int __maybe_unused aty128_pci_suspend(struct device *dev);
167 static int __maybe_unused aty128_pci_hibernate(struct device *dev);
168 static int __maybe_unused aty128_pci_freeze(struct device *dev);
169 static int __maybe_unused aty128_pci_resume(struct device *dev);
170 static int aty128_do_resume(struct pci_dev *pdev);
171
172 static const struct dev_pm_ops aty128_pci_pm_ops = {
173 .suspend = aty128_pci_suspend,
174 .resume = aty128_pci_resume,
175 .freeze = aty128_pci_freeze,
176 .thaw = aty128_pci_resume,
177 .poweroff = aty128_pci_hibernate,
178 .restore = aty128_pci_resume,
179 };
180
181 /* supported Rage128 chipsets */
182 static const struct pci_device_id aty128_pci_tbl[] = {
183 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
184 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
185 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
186 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
187 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
188 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
189 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
190 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
191 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
192 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
193 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
194 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
195 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
196 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
197 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
198 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
199 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
200 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
201 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
202 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
203 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
204 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
205 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
206 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
207 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
208 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
209 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
210 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
211 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
212 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
213 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
214 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
215 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
216 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
217 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
218 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
219 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
220 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
221 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
223 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
224 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
225 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
226 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
227 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
228 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
229 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
230 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
231 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
232 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
233 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
234 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
235 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
237 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
239 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
241 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
242 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
243 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
244 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
245 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
246 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
247 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
248 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
249 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
250 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
251 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
252 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
253 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
254 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
255 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
256 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
257 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
258 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
259 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
260 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
261 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
262 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
263 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
264 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
265 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
266 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
267 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
268 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
269 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
270 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
271 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
272 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
273 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
274 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
275 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
276 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
277 { 0, }
278 };
279
280 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
281
282 static struct pci_driver aty128fb_driver = {
283 .name = "aty128fb",
284 .id_table = aty128_pci_tbl,
285 .probe = aty128_probe,
286 .remove = aty128_remove,
287 .driver.pm = &aty128_pci_pm_ops,
288 };
289
290 /* packed BIOS settings */
291 #ifndef CONFIG_PPC
292 typedef struct {
293 u8 clock_chip_type;
294 u8 struct_size;
295 u8 accelerator_entry;
296 u8 VGA_entry;
297 u16 VGA_table_offset;
298 u16 POST_table_offset;
299 u16 XCLK;
300 u16 MCLK;
301 u8 num_PLL_blocks;
302 u8 size_PLL_blocks;
303 u16 PCLK_ref_freq;
304 u16 PCLK_ref_divider;
305 u32 PCLK_min_freq;
306 u32 PCLK_max_freq;
307 u16 MCLK_ref_freq;
308 u16 MCLK_ref_divider;
309 u32 MCLK_min_freq;
310 u32 MCLK_max_freq;
311 u16 XCLK_ref_freq;
312 u16 XCLK_ref_divider;
313 u32 XCLK_min_freq;
314 u32 XCLK_max_freq;
315 } __attribute__ ((packed)) PLL_BLOCK;
316 #endif /* !CONFIG_PPC */
317
318 /* onboard memory information */
319 struct aty128_meminfo {
320 u8 ML;
321 u8 MB;
322 u8 Trcd;
323 u8 Trp;
324 u8 Twr;
325 u8 CL;
326 u8 Tr2w;
327 u8 LoopLatency;
328 u8 DspOn;
329 u8 Rloop;
330 const char *name;
331 };
332
333 /* various memory configurations */
334 static const struct aty128_meminfo sdr_128 = {
335 .ML = 4,
336 .MB = 4,
337 .Trcd = 3,
338 .Trp = 3,
339 .Twr = 1,
340 .CL = 3,
341 .Tr2w = 1,
342 .LoopLatency = 16,
343 .DspOn = 30,
344 .Rloop = 16,
345 .name = "128-bit SDR SGRAM (1:1)",
346 };
347
348 static const struct aty128_meminfo sdr_sgram = {
349 .ML = 4,
350 .MB = 4,
351 .Trcd = 1,
352 .Trp = 2,
353 .Twr = 1,
354 .CL = 2,
355 .Tr2w = 1,
356 .LoopLatency = 16,
357 .DspOn = 24,
358 .Rloop = 16,
359 .name = "64-bit SDR SGRAM (2:1)",
360 };
361
362 static const struct aty128_meminfo ddr_sgram = {
363 .ML = 4,
364 .MB = 4,
365 .Trcd = 3,
366 .Trp = 3,
367 .Twr = 2,
368 .CL = 3,
369 .Tr2w = 1,
370 .LoopLatency = 16,
371 .DspOn = 31,
372 .Rloop = 16,
373 .name = "64-bit DDR SGRAM",
374 };
375
376 static const struct fb_fix_screeninfo aty128fb_fix = {
377 .id = "ATY Rage128",
378 .type = FB_TYPE_PACKED_PIXELS,
379 .visual = FB_VISUAL_PSEUDOCOLOR,
380 .xpanstep = 8,
381 .ypanstep = 1,
382 .mmio_len = 0x2000,
383 .accel = FB_ACCEL_ATI_RAGE128,
384 };
385
386 static char *mode_option = NULL;
387
388 #ifdef CONFIG_PPC_PMAC
389 static int default_vmode = VMODE_1024_768_60;
390 static int default_cmode = CMODE_8;
391 #endif
392
393 static int default_crt_on = 0;
394 static int default_lcd_on = 1;
395 static bool mtrr = true;
396
397 #ifdef CONFIG_FB_ATY128_BACKLIGHT
398 static int backlight = IS_BUILTIN(CONFIG_PMAC_BACKLIGHT);
399 #endif
400
401 /* PLL constants */
402 struct aty128_constants {
403 u32 ref_clk;
404 u32 ppll_min;
405 u32 ppll_max;
406 u32 ref_divider;
407 u32 xclk;
408 u32 fifo_width;
409 u32 fifo_depth;
410 };
411
412 struct aty128_crtc {
413 u32 gen_cntl;
414 u32 h_total, h_sync_strt_wid;
415 u32 v_total, v_sync_strt_wid;
416 u32 pitch;
417 u32 offset, offset_cntl;
418 u32 xoffset, yoffset;
419 u32 vxres, vyres;
420 u32 depth, bpp;
421 };
422
423 struct aty128_pll {
424 u32 post_divider;
425 u32 feedback_divider;
426 u32 vclk;
427 };
428
429 struct aty128_ddafifo {
430 u32 dda_config;
431 u32 dda_on_off;
432 };
433
434 /* register values for a specific mode */
435 struct aty128fb_par {
436 struct aty128_crtc crtc;
437 struct aty128_pll pll;
438 struct aty128_ddafifo fifo_reg;
439 u32 accel_flags;
440 struct aty128_constants constants; /* PLL and others */
441 void __iomem *regbase; /* remapped mmio */
442 u32 vram_size; /* onboard video ram */
443 int chip_gen;
444 const struct aty128_meminfo *mem; /* onboard mem info */
445 int wc_cookie;
446 int blitter_may_be_busy;
447 int fifo_slots; /* free slots in FIFO (64 max) */
448
449 int crt_on, lcd_on;
450 struct pci_dev *pdev;
451 struct fb_info *next;
452 int asleep;
453 int lock_blank;
454
455 u8 red[32]; /* see aty128fb_setcolreg */
456 u8 green[64];
457 u8 blue[32];
458 u32 pseudo_palette[16]; /* used for TRUECOLOR */
459 };
460
461
462 #define round_div(n, d) ((n+(d/2))/d)
463
464 static int aty128fb_check_var(struct fb_var_screeninfo *var,
465 struct fb_info *info);
466 static int aty128fb_set_par(struct fb_info *info);
467 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
468 u_int transp, struct fb_info *info);
469 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
470 struct fb_info *fb);
471 static int aty128fb_blank(int blank, struct fb_info *fb);
472 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
473 static int aty128fb_sync(struct fb_info *info);
474
475 /*
476 * Internal routines
477 */
478
479 static int aty128_encode_var(struct fb_var_screeninfo *var,
480 const struct aty128fb_par *par);
481 static int aty128_decode_var(struct fb_var_screeninfo *var,
482 struct aty128fb_par *par);
483 static void aty128_timings(struct aty128fb_par *par);
484 static void aty128_init_engine(struct aty128fb_par *par);
485 static void aty128_reset_engine(const struct aty128fb_par *par);
486 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
487 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
488 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
489 static void wait_for_idle(struct aty128fb_par *par);
490 static u32 depth_to_dst(u32 depth);
491
492 #ifdef CONFIG_FB_ATY128_BACKLIGHT
493 static void aty128_bl_set_power(struct fb_info *info, int power);
494 #endif
495
496 #define BIOS_IN8(v) (readb(bios + (v)))
497 #define BIOS_IN16(v) (readb(bios + (v)) | \
498 (readb(bios + (v) + 1) << 8))
499 #define BIOS_IN32(v) (readb(bios + (v)) | \
500 (readb(bios + (v) + 1) << 8) | \
501 (readb(bios + (v) + 2) << 16) | \
502 (readb(bios + (v) + 3) << 24))
503
504
505 static const struct fb_ops aty128fb_ops = {
506 .owner = THIS_MODULE,
507 FB_DEFAULT_IOMEM_OPS,
508 .fb_check_var = aty128fb_check_var,
509 .fb_set_par = aty128fb_set_par,
510 .fb_setcolreg = aty128fb_setcolreg,
511 .fb_pan_display = aty128fb_pan_display,
512 .fb_blank = aty128fb_blank,
513 .fb_ioctl = aty128fb_ioctl,
514 .fb_sync = aty128fb_sync,
515 };
516
517 /*
518 * Functions to read from/write to the mmio registers
519 * - endian conversions may possibly be avoided by
520 * using the other register aperture. TODO.
521 */
_aty_ld_le32(volatile unsigned int regindex,const struct aty128fb_par * par)522 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
523 const struct aty128fb_par *par)
524 {
525 return readl (par->regbase + regindex);
526 }
527
_aty_st_le32(volatile unsigned int regindex,u32 val,const struct aty128fb_par * par)528 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
529 const struct aty128fb_par *par)
530 {
531 writel (val, par->regbase + regindex);
532 }
533
_aty_ld_8(unsigned int regindex,const struct aty128fb_par * par)534 static inline u8 _aty_ld_8(unsigned int regindex,
535 const struct aty128fb_par *par)
536 {
537 return readb (par->regbase + regindex);
538 }
539
_aty_st_8(unsigned int regindex,u8 val,const struct aty128fb_par * par)540 static inline void _aty_st_8(unsigned int regindex, u8 val,
541 const struct aty128fb_par *par)
542 {
543 writeb (val, par->regbase + regindex);
544 }
545
546 #define aty_ld_le32(regindex) _aty_ld_le32(regindex, par)
547 #define aty_st_le32(regindex, val) _aty_st_le32(regindex, val, par)
548 #define aty_ld_8(regindex) _aty_ld_8(regindex, par)
549 #define aty_st_8(regindex, val) _aty_st_8(regindex, val, par)
550
551 /*
552 * Functions to read from/write to the pll registers
553 */
554
555 #define aty_ld_pll(pll_index) _aty_ld_pll(pll_index, par)
556 #define aty_st_pll(pll_index, val) _aty_st_pll(pll_index, val, par)
557
558
_aty_ld_pll(unsigned int pll_index,const struct aty128fb_par * par)559 static u32 _aty_ld_pll(unsigned int pll_index,
560 const struct aty128fb_par *par)
561 {
562 aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
563 return aty_ld_le32(CLOCK_CNTL_DATA);
564 }
565
566
_aty_st_pll(unsigned int pll_index,u32 val,const struct aty128fb_par * par)567 static void _aty_st_pll(unsigned int pll_index, u32 val,
568 const struct aty128fb_par *par)
569 {
570 aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
571 aty_st_le32(CLOCK_CNTL_DATA, val);
572 }
573
574
575 /* return true when the PLL has completed an atomic update */
aty_pll_readupdate(const struct aty128fb_par * par)576 static int aty_pll_readupdate(const struct aty128fb_par *par)
577 {
578 return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
579 }
580
581
aty_pll_wait_readupdate(const struct aty128fb_par * par)582 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
583 {
584 unsigned long timeout = jiffies + HZ/100; // should be more than enough
585 int reset = 1;
586
587 while (time_before(jiffies, timeout))
588 if (aty_pll_readupdate(par)) {
589 reset = 0;
590 break;
591 }
592
593 if (reset) /* reset engine?? */
594 printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
595 }
596
597
598 /* tell PLL to update */
aty_pll_writeupdate(const struct aty128fb_par * par)599 static void aty_pll_writeupdate(const struct aty128fb_par *par)
600 {
601 aty_pll_wait_readupdate(par);
602
603 aty_st_pll(PPLL_REF_DIV,
604 aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
605 }
606
607
608 /* write to the scratch register to test r/w functionality */
register_test(const struct aty128fb_par * par)609 static int register_test(const struct aty128fb_par *par)
610 {
611 u32 val;
612 int flag = 0;
613
614 val = aty_ld_le32(BIOS_0_SCRATCH);
615
616 aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
617 if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
618 aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
619
620 if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
621 flag = 1;
622 }
623
624 aty_st_le32(BIOS_0_SCRATCH, val); // restore value
625 return flag;
626 }
627
628
629 /*
630 * Accelerator engine functions
631 */
do_wait_for_fifo(u16 entries,struct aty128fb_par * par)632 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
633 {
634 int i;
635
636 for (;;) {
637 for (i = 0; i < 2000000; i++) {
638 par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
639 if (par->fifo_slots >= entries)
640 return;
641 }
642 aty128_reset_engine(par);
643 }
644 }
645
646
wait_for_idle(struct aty128fb_par * par)647 static void wait_for_idle(struct aty128fb_par *par)
648 {
649 int i;
650
651 do_wait_for_fifo(64, par);
652
653 for (;;) {
654 for (i = 0; i < 2000000; i++) {
655 if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
656 aty128_flush_pixel_cache(par);
657 par->blitter_may_be_busy = 0;
658 return;
659 }
660 }
661 aty128_reset_engine(par);
662 }
663 }
664
665
wait_for_fifo(u16 entries,struct aty128fb_par * par)666 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
667 {
668 if (par->fifo_slots < entries)
669 do_wait_for_fifo(64, par);
670 par->fifo_slots -= entries;
671 }
672
673
aty128_flush_pixel_cache(const struct aty128fb_par * par)674 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
675 {
676 int i;
677 u32 tmp;
678
679 tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
680 tmp &= ~(0x00ff);
681 tmp |= 0x00ff;
682 aty_st_le32(PC_NGUI_CTLSTAT, tmp);
683
684 for (i = 0; i < 2000000; i++)
685 if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
686 break;
687 }
688
689
aty128_reset_engine(const struct aty128fb_par * par)690 static void aty128_reset_engine(const struct aty128fb_par *par)
691 {
692 u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
693
694 aty128_flush_pixel_cache(par);
695
696 clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
697 mclk_cntl = aty_ld_pll(MCLK_CNTL);
698
699 aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
700
701 gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
702 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
703 aty_ld_le32(GEN_RESET_CNTL);
704 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
705 aty_ld_le32(GEN_RESET_CNTL);
706
707 aty_st_pll(MCLK_CNTL, mclk_cntl);
708 aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
709 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
710
711 /* use old pio mode */
712 aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
713
714 DBG("engine reset");
715 }
716
717
aty128_init_engine(struct aty128fb_par * par)718 static void aty128_init_engine(struct aty128fb_par *par)
719 {
720 u32 pitch_value;
721
722 wait_for_idle(par);
723
724 /* 3D scaler not spoken here */
725 wait_for_fifo(1, par);
726 aty_st_le32(SCALE_3D_CNTL, 0x00000000);
727
728 aty128_reset_engine(par);
729
730 pitch_value = par->crtc.pitch;
731 if (par->crtc.bpp == 24) {
732 pitch_value = pitch_value * 3;
733 }
734
735 wait_for_fifo(4, par);
736 /* setup engine offset registers */
737 aty_st_le32(DEFAULT_OFFSET, 0x00000000);
738
739 /* setup engine pitch registers */
740 aty_st_le32(DEFAULT_PITCH, pitch_value);
741
742 /* set the default scissor register to max dimensions */
743 aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
744
745 /* set the drawing controls registers */
746 aty_st_le32(DP_GUI_MASTER_CNTL,
747 GMC_SRC_PITCH_OFFSET_DEFAULT |
748 GMC_DST_PITCH_OFFSET_DEFAULT |
749 GMC_SRC_CLIP_DEFAULT |
750 GMC_DST_CLIP_DEFAULT |
751 GMC_BRUSH_SOLIDCOLOR |
752 (depth_to_dst(par->crtc.depth) << 8) |
753 GMC_SRC_DSTCOLOR |
754 GMC_BYTE_ORDER_MSB_TO_LSB |
755 GMC_DP_CONVERSION_TEMP_6500 |
756 ROP3_PATCOPY |
757 GMC_DP_SRC_RECT |
758 GMC_3D_FCN_EN_CLR |
759 GMC_DST_CLR_CMP_FCN_CLEAR |
760 GMC_AUX_CLIP_CLEAR |
761 GMC_WRITE_MASK_SET);
762
763 wait_for_fifo(8, par);
764 /* clear the line drawing registers */
765 aty_st_le32(DST_BRES_ERR, 0);
766 aty_st_le32(DST_BRES_INC, 0);
767 aty_st_le32(DST_BRES_DEC, 0);
768
769 /* set brush color registers */
770 aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
771 aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
772
773 /* set source color registers */
774 aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF); /* white */
775 aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000); /* black */
776
777 /* default write mask */
778 aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
779
780 /* Wait for all the writes to be completed before returning */
781 wait_for_idle(par);
782 }
783
784
785 /* convert depth values to their register representation */
depth_to_dst(u32 depth)786 static u32 depth_to_dst(u32 depth)
787 {
788 if (depth <= 8)
789 return DST_8BPP;
790 else if (depth <= 15)
791 return DST_15BPP;
792 else if (depth == 16)
793 return DST_16BPP;
794 else if (depth <= 24)
795 return DST_24BPP;
796 else if (depth <= 32)
797 return DST_32BPP;
798
799 return -EINVAL;
800 }
801
802 /*
803 * PLL informations retreival
804 */
805
806
807 #ifndef __sparc__
aty128_map_ROM(const struct aty128fb_par * par,struct pci_dev * dev)808 static void __iomem *aty128_map_ROM(const struct aty128fb_par *par,
809 struct pci_dev *dev)
810 {
811 u16 dptr;
812 u8 rom_type;
813 void __iomem *bios;
814 size_t rom_size;
815
816 /* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
817 unsigned int temp;
818 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
819 temp &= 0x00ffffffu;
820 temp |= 0x04 << 24;
821 aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
822 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
823
824 bios = pci_map_rom(dev, &rom_size);
825
826 if (!bios) {
827 printk(KERN_ERR "aty128fb: ROM failed to map\n");
828 return NULL;
829 }
830
831 /* Very simple test to make sure it appeared */
832 if (BIOS_IN16(0) != 0xaa55) {
833 printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
834 " be 0xaa55\n", BIOS_IN16(0));
835 goto failed;
836 }
837
838 /* Look for the PCI data to check the ROM type */
839 dptr = BIOS_IN16(0x18);
840
841 /* Check the PCI data signature. If it's wrong, we still assume a normal
842 * x86 ROM for now, until I've verified this works everywhere.
843 * The goal here is more to phase out Open Firmware images.
844 *
845 * Currently, we only look at the first PCI data, we could iteratre and
846 * deal with them all, and we should use fb_bios_start relative to start
847 * of image and not relative start of ROM, but so far, I never found a
848 * dual-image ATI card.
849 *
850 * typedef struct {
851 * u32 signature; + 0x00
852 * u16 vendor; + 0x04
853 * u16 device; + 0x06
854 * u16 reserved_1; + 0x08
855 * u16 dlen; + 0x0a
856 * u8 drevision; + 0x0c
857 * u8 class_hi; + 0x0d
858 * u16 class_lo; + 0x0e
859 * u16 ilen; + 0x10
860 * u16 irevision; + 0x12
861 * u8 type; + 0x14
862 * u8 indicator; + 0x15
863 * u16 reserved_2; + 0x16
864 * } pci_data_t;
865 */
866 if (BIOS_IN32(dptr) != (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
867 printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
868 BIOS_IN32(dptr));
869 goto anyway;
870 }
871 rom_type = BIOS_IN8(dptr + 0x14);
872 switch(rom_type) {
873 case 0:
874 printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
875 break;
876 case 1:
877 printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
878 goto failed;
879 case 2:
880 printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
881 goto failed;
882 default:
883 printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n",
884 rom_type);
885 goto failed;
886 }
887 anyway:
888 return bios;
889
890 failed:
891 pci_unmap_rom(dev, bios);
892 return NULL;
893 }
894
aty128_get_pllinfo(struct aty128fb_par * par,unsigned char __iomem * bios)895 static void aty128_get_pllinfo(struct aty128fb_par *par,
896 unsigned char __iomem *bios)
897 {
898 unsigned int bios_hdr;
899 unsigned int bios_pll;
900
901 bios_hdr = BIOS_IN16(0x48);
902 bios_pll = BIOS_IN16(bios_hdr + 0x30);
903
904 par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
905 par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
906 par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
907 par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
908 par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
909
910 DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
911 par->constants.ppll_max, par->constants.ppll_min,
912 par->constants.xclk, par->constants.ref_divider,
913 par->constants.ref_clk);
914
915 }
916
917 #ifdef CONFIG_X86
aty128_find_mem_vbios(struct aty128fb_par * par)918 static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par)
919 {
920 /* I simplified this code as we used to miss the signatures in
921 * a lot of case. It's now closer to XFree, we just don't check
922 * for signatures at all... Something better will have to be done
923 * if we end up having conflicts
924 */
925 u32 segstart;
926 unsigned char __iomem *rom_base = NULL;
927
928 for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
929 rom_base = ioremap(segstart, 0x10000);
930 if (rom_base == NULL)
931 return NULL;
932 if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
933 break;
934 iounmap(rom_base);
935 rom_base = NULL;
936 }
937 return rom_base;
938 }
939 #endif
940 #endif /* ndef(__sparc__) */
941
942 /* fill in known card constants if pll_block is not available */
aty128_timings(struct aty128fb_par * par)943 static void aty128_timings(struct aty128fb_par *par)
944 {
945 #ifdef CONFIG_PPC
946 /* instead of a table lookup, assume OF has properly
947 * setup the PLL registers and use their values
948 * to set the XCLK values and reference divider values */
949
950 u32 x_mpll_ref_fb_div;
951 u32 xclk_cntl;
952 u32 Nx, M;
953 static const unsigned int PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
954 #endif
955
956 if (!par->constants.ref_clk)
957 par->constants.ref_clk = 2950;
958
959 #ifdef CONFIG_PPC
960 x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
961 xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
962 Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
963 M = x_mpll_ref_fb_div & 0x0000ff;
964
965 par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
966 (M * PostDivSet[xclk_cntl]));
967
968 par->constants.ref_divider =
969 aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
970 #endif
971
972 if (!par->constants.ref_divider) {
973 par->constants.ref_divider = 0x3b;
974
975 aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
976 aty_pll_writeupdate(par);
977 }
978 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
979 aty_pll_writeupdate(par);
980
981 /* from documentation */
982 if (!par->constants.ppll_min)
983 par->constants.ppll_min = 12500;
984 if (!par->constants.ppll_max)
985 par->constants.ppll_max = 25000; /* 23000 on some cards? */
986 if (!par->constants.xclk)
987 par->constants.xclk = 0x1d4d; /* same as mclk */
988
989 par->constants.fifo_width = 128;
990 par->constants.fifo_depth = 32;
991
992 switch (aty_ld_le32(MEM_CNTL) & 0x3) {
993 case 0:
994 par->mem = &sdr_128;
995 break;
996 case 1:
997 par->mem = &sdr_sgram;
998 break;
999 case 2:
1000 par->mem = &ddr_sgram;
1001 break;
1002 default:
1003 par->mem = &sdr_sgram;
1004 }
1005 }
1006
1007
1008
1009 /*
1010 * CRTC programming
1011 */
1012
1013 /* Program the CRTC registers */
aty128_set_crtc(const struct aty128_crtc * crtc,const struct aty128fb_par * par)1014 static void aty128_set_crtc(const struct aty128_crtc *crtc,
1015 const struct aty128fb_par *par)
1016 {
1017 aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
1018 aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
1019 aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
1020 aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
1021 aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
1022 aty_st_le32(CRTC_PITCH, crtc->pitch);
1023 aty_st_le32(CRTC_OFFSET, crtc->offset);
1024 aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
1025 /* Disable ATOMIC updating. Is this the right place? */
1026 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1027 }
1028
1029
aty128_var_to_crtc(const struct fb_var_screeninfo * var,struct aty128_crtc * crtc,const struct aty128fb_par * par)1030 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1031 struct aty128_crtc *crtc,
1032 const struct aty128fb_par *par)
1033 {
1034 u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1035 u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1036 u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1037 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1038 u32 depth, bytpp;
1039 u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1040
1041 /* input */
1042 xres = var->xres;
1043 yres = var->yres;
1044 vxres = var->xres_virtual;
1045 vyres = var->yres_virtual;
1046 xoffset = var->xoffset;
1047 yoffset = var->yoffset;
1048 bpp = var->bits_per_pixel;
1049 left = var->left_margin;
1050 right = var->right_margin;
1051 upper = var->upper_margin;
1052 lower = var->lower_margin;
1053 hslen = var->hsync_len;
1054 vslen = var->vsync_len;
1055 sync = var->sync;
1056 vmode = var->vmode;
1057
1058 if (bpp != 16)
1059 depth = bpp;
1060 else
1061 depth = (var->green.length == 6) ? 16 : 15;
1062
1063 /* check for mode eligibility
1064 * accept only non interlaced modes */
1065 if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1066 return -EINVAL;
1067
1068 /* convert (and round up) and validate */
1069 xres = (xres + 7) & ~7;
1070 xoffset = (xoffset + 7) & ~7;
1071
1072 if (vxres < xres + xoffset)
1073 vxres = xres + xoffset;
1074
1075 if (vyres < yres + yoffset)
1076 vyres = yres + yoffset;
1077
1078 /* convert depth into ATI register depth */
1079 dst = depth_to_dst(depth);
1080
1081 if (dst == -EINVAL) {
1082 printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1083 return -EINVAL;
1084 }
1085
1086 /* convert register depth to bytes per pixel */
1087 bytpp = mode_bytpp[dst];
1088
1089 /* make sure there is enough video ram for the mode */
1090 if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1091 printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1092 return -EINVAL;
1093 }
1094
1095 h_disp = (xres >> 3) - 1;
1096 h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1097
1098 v_disp = yres - 1;
1099 v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1100
1101 /* check to make sure h_total and v_total are in range */
1102 if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1103 printk(KERN_ERR "aty128fb: invalid width ranges\n");
1104 return -EINVAL;
1105 }
1106
1107 h_sync_wid = (hslen + 7) >> 3;
1108 if (h_sync_wid == 0)
1109 h_sync_wid = 1;
1110 else if (h_sync_wid > 0x3f) /* 0x3f = max hwidth */
1111 h_sync_wid = 0x3f;
1112
1113 h_sync_strt = (h_disp << 3) + right;
1114
1115 v_sync_wid = vslen;
1116 if (v_sync_wid == 0)
1117 v_sync_wid = 1;
1118 else if (v_sync_wid > 0x1f) /* 0x1f = max vwidth */
1119 v_sync_wid = 0x1f;
1120
1121 v_sync_strt = v_disp + lower;
1122
1123 h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1124 v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1125
1126 c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1127
1128 crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1129
1130 crtc->h_total = h_total | (h_disp << 16);
1131 crtc->v_total = v_total | (v_disp << 16);
1132
1133 crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1134 (h_sync_pol << 23);
1135 crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1136 (v_sync_pol << 23);
1137
1138 crtc->pitch = vxres >> 3;
1139
1140 crtc->offset = 0;
1141
1142 if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1143 crtc->offset_cntl = 0x00010000;
1144 else
1145 crtc->offset_cntl = 0;
1146
1147 crtc->vxres = vxres;
1148 crtc->vyres = vyres;
1149 crtc->xoffset = xoffset;
1150 crtc->yoffset = yoffset;
1151 crtc->depth = depth;
1152 crtc->bpp = bpp;
1153
1154 return 0;
1155 }
1156
1157
aty128_pix_width_to_var(int pix_width,struct fb_var_screeninfo * var)1158 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1159 {
1160
1161 /* fill in pixel info */
1162 var->red.msb_right = 0;
1163 var->green.msb_right = 0;
1164 var->blue.offset = 0;
1165 var->blue.msb_right = 0;
1166 var->transp.offset = 0;
1167 var->transp.length = 0;
1168 var->transp.msb_right = 0;
1169 switch (pix_width) {
1170 case CRTC_PIX_WIDTH_8BPP:
1171 var->bits_per_pixel = 8;
1172 var->red.offset = 0;
1173 var->red.length = 8;
1174 var->green.offset = 0;
1175 var->green.length = 8;
1176 var->blue.length = 8;
1177 break;
1178 case CRTC_PIX_WIDTH_15BPP:
1179 var->bits_per_pixel = 16;
1180 var->red.offset = 10;
1181 var->red.length = 5;
1182 var->green.offset = 5;
1183 var->green.length = 5;
1184 var->blue.length = 5;
1185 break;
1186 case CRTC_PIX_WIDTH_16BPP:
1187 var->bits_per_pixel = 16;
1188 var->red.offset = 11;
1189 var->red.length = 5;
1190 var->green.offset = 5;
1191 var->green.length = 6;
1192 var->blue.length = 5;
1193 break;
1194 case CRTC_PIX_WIDTH_24BPP:
1195 var->bits_per_pixel = 24;
1196 var->red.offset = 16;
1197 var->red.length = 8;
1198 var->green.offset = 8;
1199 var->green.length = 8;
1200 var->blue.length = 8;
1201 break;
1202 case CRTC_PIX_WIDTH_32BPP:
1203 var->bits_per_pixel = 32;
1204 var->red.offset = 16;
1205 var->red.length = 8;
1206 var->green.offset = 8;
1207 var->green.length = 8;
1208 var->blue.length = 8;
1209 var->transp.offset = 24;
1210 var->transp.length = 8;
1211 break;
1212 default:
1213 printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1214 return -EINVAL;
1215 }
1216
1217 return 0;
1218 }
1219
1220
aty128_crtc_to_var(const struct aty128_crtc * crtc,struct fb_var_screeninfo * var)1221 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1222 struct fb_var_screeninfo *var)
1223 {
1224 u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1225 u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1226 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1227 u32 pix_width;
1228
1229 /* fun with masking */
1230 h_total = crtc->h_total & 0x1ff;
1231 h_disp = (crtc->h_total >> 16) & 0xff;
1232 h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1233 h_sync_dly = crtc->h_sync_strt_wid & 0x7;
1234 h_sync_wid = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1235 h_sync_pol = (crtc->h_sync_strt_wid >> 23) & 0x1;
1236 v_total = crtc->v_total & 0x7ff;
1237 v_disp = (crtc->v_total >> 16) & 0x7ff;
1238 v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1239 v_sync_wid = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1240 v_sync_pol = (crtc->v_sync_strt_wid >> 23) & 0x1;
1241 c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1242 pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1243
1244 /* do conversions */
1245 xres = (h_disp + 1) << 3;
1246 yres = v_disp + 1;
1247 left = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1248 right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1249 hslen = h_sync_wid << 3;
1250 upper = v_total - v_sync_strt - v_sync_wid;
1251 lower = v_sync_strt - v_disp;
1252 vslen = v_sync_wid;
1253 sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1254 (v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1255 (c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1256
1257 aty128_pix_width_to_var(pix_width, var);
1258
1259 var->xres = xres;
1260 var->yres = yres;
1261 var->xres_virtual = crtc->vxres;
1262 var->yres_virtual = crtc->vyres;
1263 var->xoffset = crtc->xoffset;
1264 var->yoffset = crtc->yoffset;
1265 var->left_margin = left;
1266 var->right_margin = right;
1267 var->upper_margin = upper;
1268 var->lower_margin = lower;
1269 var->hsync_len = hslen;
1270 var->vsync_len = vslen;
1271 var->sync = sync;
1272 var->vmode = FB_VMODE_NONINTERLACED;
1273
1274 return 0;
1275 }
1276
aty128_set_crt_enable(struct aty128fb_par * par,int on)1277 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1278 {
1279 if (on) {
1280 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) |
1281 CRT_CRTC_ON);
1282 aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) |
1283 DAC_PALETTE2_SNOOP_EN));
1284 } else
1285 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) &
1286 ~CRT_CRTC_ON);
1287 }
1288
aty128_set_lcd_enable(struct aty128fb_par * par,int on)1289 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1290 {
1291 u32 reg;
1292 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1293 struct fb_info *info = pci_get_drvdata(par->pdev);
1294 #endif
1295
1296 if (on) {
1297 reg = aty_ld_le32(LVDS_GEN_CNTL);
1298 reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1299 reg &= ~LVDS_DISPLAY_DIS;
1300 aty_st_le32(LVDS_GEN_CNTL, reg);
1301 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1302 aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1303 #endif
1304 } else {
1305 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1306 aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1307 #endif
1308 reg = aty_ld_le32(LVDS_GEN_CNTL);
1309 reg |= LVDS_DISPLAY_DIS;
1310 aty_st_le32(LVDS_GEN_CNTL, reg);
1311 mdelay(100);
1312 reg &= ~(LVDS_ON /*| LVDS_EN*/);
1313 aty_st_le32(LVDS_GEN_CNTL, reg);
1314 }
1315 }
1316
aty128_set_pll(struct aty128_pll * pll,const struct aty128fb_par * par)1317 static void aty128_set_pll(struct aty128_pll *pll,
1318 const struct aty128fb_par *par)
1319 {
1320 u32 div3;
1321
1322 /* register values for post dividers */
1323 static const unsigned char post_conv[] = {
1324 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7
1325 };
1326
1327 /* select PPLL_DIV_3 */
1328 aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1329
1330 /* reset PLL */
1331 aty_st_pll(PPLL_CNTL,
1332 aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1333
1334 /* write the reference divider */
1335 aty_pll_wait_readupdate(par);
1336 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1337 aty_pll_writeupdate(par);
1338
1339 div3 = aty_ld_pll(PPLL_DIV_3);
1340 div3 &= ~PPLL_FB3_DIV_MASK;
1341 div3 |= pll->feedback_divider;
1342 div3 &= ~PPLL_POST3_DIV_MASK;
1343 div3 |= post_conv[pll->post_divider] << 16;
1344
1345 /* write feedback and post dividers */
1346 aty_pll_wait_readupdate(par);
1347 aty_st_pll(PPLL_DIV_3, div3);
1348 aty_pll_writeupdate(par);
1349
1350 aty_pll_wait_readupdate(par);
1351 aty_st_pll(HTOTAL_CNTL, 0); /* no horiz crtc adjustment */
1352 aty_pll_writeupdate(par);
1353
1354 /* clear the reset, just in case */
1355 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1356 }
1357
1358
aty128_var_to_pll(u32 period_in_ps,struct aty128_pll * pll,const struct aty128fb_par * par)1359 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1360 const struct aty128fb_par *par)
1361 {
1362 const struct aty128_constants c = par->constants;
1363 static const unsigned char post_dividers[] = { 1, 2, 4, 8, 3, 6, 12 };
1364 u32 output_freq;
1365 u32 vclk; /* in .01 MHz */
1366 int i = 0;
1367 u32 n, d;
1368
1369 vclk = 100000000 / period_in_ps; /* convert units to 10 kHz */
1370
1371 /* adjust pixel clock if necessary */
1372 if (vclk > c.ppll_max)
1373 vclk = c.ppll_max;
1374 if (vclk * 12 < c.ppll_min)
1375 vclk = c.ppll_min/12;
1376
1377 /* now, find an acceptable divider */
1378 for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1379 output_freq = post_dividers[i] * vclk;
1380 if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1381 pll->post_divider = post_dividers[i];
1382 break;
1383 }
1384 }
1385
1386 if (i == ARRAY_SIZE(post_dividers))
1387 return -EINVAL;
1388
1389 /* calculate feedback divider */
1390 n = c.ref_divider * output_freq;
1391 d = c.ref_clk;
1392
1393 pll->feedback_divider = round_div(n, d);
1394 pll->vclk = vclk;
1395
1396 DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1397 "vclk_per: %d\n", pll->post_divider,
1398 pll->feedback_divider, vclk, output_freq,
1399 c.ref_divider, period_in_ps);
1400
1401 return 0;
1402 }
1403
1404
aty128_pll_to_var(const struct aty128_pll * pll,struct fb_var_screeninfo * var)1405 static int aty128_pll_to_var(const struct aty128_pll *pll,
1406 struct fb_var_screeninfo *var)
1407 {
1408 var->pixclock = 100000000 / pll->vclk;
1409
1410 return 0;
1411 }
1412
1413
aty128_set_fifo(const struct aty128_ddafifo * dsp,const struct aty128fb_par * par)1414 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1415 const struct aty128fb_par *par)
1416 {
1417 aty_st_le32(DDA_CONFIG, dsp->dda_config);
1418 aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1419 }
1420
1421
aty128_ddafifo(struct aty128_ddafifo * dsp,const struct aty128_pll * pll,u32 depth,const struct aty128fb_par * par)1422 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1423 const struct aty128_pll *pll,
1424 u32 depth,
1425 const struct aty128fb_par *par)
1426 {
1427 const struct aty128_meminfo *m = par->mem;
1428 u32 xclk = par->constants.xclk;
1429 u32 fifo_width = par->constants.fifo_width;
1430 u32 fifo_depth = par->constants.fifo_depth;
1431 s32 x, b, p, ron, roff;
1432 u32 n, d, bpp;
1433
1434 /* round up to multiple of 8 */
1435 bpp = (depth+7) & ~7;
1436
1437 n = xclk * fifo_width;
1438 d = pll->vclk * bpp;
1439 x = round_div(n, d);
1440
1441 ron = 4 * m->MB +
1442 3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1443 2 * m->Trp +
1444 m->Twr +
1445 m->CL +
1446 m->Tr2w +
1447 x;
1448
1449 DBG("x %x\n", x);
1450
1451 b = 0;
1452 while (x) {
1453 x >>= 1;
1454 b++;
1455 }
1456 p = b + 1;
1457
1458 ron <<= (11 - p);
1459
1460 n <<= (11 - p);
1461 x = round_div(n, d);
1462 roff = x * (fifo_depth - 4);
1463
1464 if ((ron + m->Rloop) >= roff) {
1465 printk(KERN_ERR "aty128fb: Mode out of range!\n");
1466 return -EINVAL;
1467 }
1468
1469 DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1470 p, m->Rloop, x, ron, roff);
1471
1472 dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1473 dsp->dda_on_off = ron << 16 | roff;
1474
1475 return 0;
1476 }
1477
1478
1479 /*
1480 * This actually sets the video mode.
1481 */
aty128fb_set_par(struct fb_info * info)1482 static int aty128fb_set_par(struct fb_info *info)
1483 {
1484 struct aty128fb_par *par = info->par;
1485 u32 config;
1486 int err;
1487
1488 if ((err = aty128_decode_var(&info->var, par)) != 0)
1489 return err;
1490
1491 if (par->blitter_may_be_busy)
1492 wait_for_idle(par);
1493
1494 /* clear all registers that may interfere with mode setting */
1495 aty_st_le32(OVR_CLR, 0);
1496 aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1497 aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1498 aty_st_le32(OV0_SCALE_CNTL, 0);
1499 aty_st_le32(MPP_TB_CONFIG, 0);
1500 aty_st_le32(MPP_GP_CONFIG, 0);
1501 aty_st_le32(SUBPIC_CNTL, 0);
1502 aty_st_le32(VIPH_CONTROL, 0);
1503 aty_st_le32(I2C_CNTL_1, 0); /* turn off i2c */
1504 aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */
1505 aty_st_le32(CAP0_TRIG_CNTL, 0);
1506 aty_st_le32(CAP1_TRIG_CNTL, 0);
1507
1508 aty_st_8(CRTC_EXT_CNTL + 1, 4); /* turn video off */
1509
1510 aty128_set_crtc(&par->crtc, par);
1511 aty128_set_pll(&par->pll, par);
1512 aty128_set_fifo(&par->fifo_reg, par);
1513
1514 config = aty_ld_le32(CNFG_CNTL) & ~3;
1515
1516 #if defined(__BIG_ENDIAN)
1517 if (par->crtc.bpp == 32)
1518 config |= 2; /* make aperture do 32 bit swapping */
1519 else if (par->crtc.bpp == 16)
1520 config |= 1; /* make aperture do 16 bit swapping */
1521 #endif
1522
1523 aty_st_le32(CNFG_CNTL, config);
1524 aty_st_8(CRTC_EXT_CNTL + 1, 0); /* turn the video back on */
1525
1526 info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1527 info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1528 : FB_VISUAL_DIRECTCOLOR;
1529
1530 if (par->chip_gen == rage_M3) {
1531 aty128_set_crt_enable(par, par->crt_on);
1532 aty128_set_lcd_enable(par, par->lcd_on);
1533 }
1534 if (par->accel_flags & FB_ACCELF_TEXT)
1535 aty128_init_engine(par);
1536
1537 #ifdef CONFIG_BOOTX_TEXT
1538 btext_update_display(info->fix.smem_start,
1539 (((par->crtc.h_total>>16) & 0xff)+1)*8,
1540 ((par->crtc.v_total>>16) & 0x7ff)+1,
1541 par->crtc.bpp,
1542 par->crtc.vxres*par->crtc.bpp/8);
1543 #endif /* CONFIG_BOOTX_TEXT */
1544
1545 return 0;
1546 }
1547
1548 /*
1549 * encode/decode the User Defined Part of the Display
1550 */
1551
aty128_decode_var(struct fb_var_screeninfo * var,struct aty128fb_par * par)1552 static int aty128_decode_var(struct fb_var_screeninfo *var,
1553 struct aty128fb_par *par)
1554 {
1555 int err;
1556 struct aty128_crtc crtc;
1557 struct aty128_pll pll;
1558 struct aty128_ddafifo fifo_reg;
1559
1560 if ((err = aty128_var_to_crtc(var, &crtc, par)))
1561 return err;
1562
1563 if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1564 return err;
1565
1566 if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1567 return err;
1568
1569 par->crtc = crtc;
1570 par->pll = pll;
1571 par->fifo_reg = fifo_reg;
1572 par->accel_flags = var->accel_flags;
1573
1574 return 0;
1575 }
1576
1577
aty128_encode_var(struct fb_var_screeninfo * var,const struct aty128fb_par * par)1578 static int aty128_encode_var(struct fb_var_screeninfo *var,
1579 const struct aty128fb_par *par)
1580 {
1581 int err;
1582
1583 if ((err = aty128_crtc_to_var(&par->crtc, var)))
1584 return err;
1585
1586 if ((err = aty128_pll_to_var(&par->pll, var)))
1587 return err;
1588
1589 var->nonstd = 0;
1590 var->activate = 0;
1591
1592 var->height = -1;
1593 var->width = -1;
1594 var->accel_flags = par->accel_flags;
1595
1596 return 0;
1597 }
1598
1599
aty128fb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)1600 static int aty128fb_check_var(struct fb_var_screeninfo *var,
1601 struct fb_info *info)
1602 {
1603 struct aty128fb_par par;
1604 int err;
1605
1606 par = *(struct aty128fb_par *)info->par;
1607 if ((err = aty128_decode_var(var, &par)) != 0)
1608 return err;
1609 aty128_encode_var(var, &par);
1610 return 0;
1611 }
1612
1613
1614 /*
1615 * Pan or Wrap the Display
1616 */
aty128fb_pan_display(struct fb_var_screeninfo * var,struct fb_info * fb)1617 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
1618 struct fb_info *fb)
1619 {
1620 struct aty128fb_par *par = fb->par;
1621 u32 xoffset, yoffset;
1622 u32 offset;
1623 u32 xres, yres;
1624
1625 xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1626 yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1627
1628 xoffset = (var->xoffset +7) & ~7;
1629 yoffset = var->yoffset;
1630
1631 if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1632 return -EINVAL;
1633
1634 par->crtc.xoffset = xoffset;
1635 par->crtc.yoffset = yoffset;
1636
1637 offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3))
1638 & ~7;
1639
1640 if (par->crtc.bpp == 24)
1641 offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1642
1643 aty_st_le32(CRTC_OFFSET, offset);
1644
1645 return 0;
1646 }
1647
1648
1649 /*
1650 * Helper function to store a single palette register
1651 */
aty128_st_pal(u_int regno,u_int red,u_int green,u_int blue,struct aty128fb_par * par)1652 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1653 struct aty128fb_par *par)
1654 {
1655 if (par->chip_gen == rage_M3) {
1656 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) &
1657 ~DAC_PALETTE_ACCESS_CNTL);
1658 }
1659
1660 aty_st_8(PALETTE_INDEX, regno);
1661 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1662 }
1663
aty128fb_sync(struct fb_info * info)1664 static int aty128fb_sync(struct fb_info *info)
1665 {
1666 struct aty128fb_par *par = info->par;
1667
1668 if (par->blitter_may_be_busy)
1669 wait_for_idle(par);
1670 return 0;
1671 }
1672
1673 #ifndef MODULE
aty128fb_setup(char * options)1674 static int aty128fb_setup(char *options)
1675 {
1676 char *this_opt;
1677
1678 if (!options || !*options)
1679 return 0;
1680
1681 while ((this_opt = strsep(&options, ",")) != NULL) {
1682 if (!strncmp(this_opt, "lcd:", 4)) {
1683 default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1684 continue;
1685 } else if (!strncmp(this_opt, "crt:", 4)) {
1686 default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1687 continue;
1688 } else if (!strncmp(this_opt, "backlight:", 10)) {
1689 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1690 backlight = simple_strtoul(this_opt+10, NULL, 0);
1691 #endif
1692 continue;
1693 }
1694 if(!strncmp(this_opt, "nomtrr", 6)) {
1695 mtrr = false;
1696 continue;
1697 }
1698 #ifdef CONFIG_PPC_PMAC
1699 /* vmode and cmode deprecated */
1700 if (!strncmp(this_opt, "vmode:", 6)) {
1701 unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1702 if (vmode > 0 && vmode <= VMODE_MAX)
1703 default_vmode = vmode;
1704 continue;
1705 } else if (!strncmp(this_opt, "cmode:", 6)) {
1706 unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1707 switch (cmode) {
1708 case 0:
1709 case 8:
1710 default_cmode = CMODE_8;
1711 break;
1712 case 15:
1713 case 16:
1714 default_cmode = CMODE_16;
1715 break;
1716 case 24:
1717 case 32:
1718 default_cmode = CMODE_32;
1719 break;
1720 }
1721 continue;
1722 }
1723 #endif /* CONFIG_PPC_PMAC */
1724 mode_option = this_opt;
1725 }
1726 return 0;
1727 }
1728 #endif /* MODULE */
1729
1730 /* Backlight */
1731 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1732 #define MAX_LEVEL 0xFF
1733
aty128_bl_get_level_brightness(struct aty128fb_par * par,int level)1734 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1735 int level)
1736 {
1737 struct fb_info *info = pci_get_drvdata(par->pdev);
1738 int atylevel;
1739
1740 /* Get and convert the value */
1741 /* No locking of bl_curve since we read a single value */
1742 atylevel = MAX_LEVEL -
1743 (info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1744
1745 if (atylevel < 0)
1746 atylevel = 0;
1747 else if (atylevel > MAX_LEVEL)
1748 atylevel = MAX_LEVEL;
1749
1750 return atylevel;
1751 }
1752
1753 /* We turn off the LCD completely instead of just dimming the backlight.
1754 * This provides greater power saving and the display is useless without
1755 * backlight anyway
1756 */
1757 #define BACKLIGHT_LVDS_OFF
1758 /* That one prevents proper CRT output with LCD off */
1759 #undef BACKLIGHT_DAC_OFF
1760
aty128_bl_update_status(struct backlight_device * bd)1761 static int aty128_bl_update_status(struct backlight_device *bd)
1762 {
1763 struct aty128fb_par *par = bl_get_data(bd);
1764 unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1765 int level;
1766
1767 if (!par->lcd_on)
1768 level = 0;
1769 else
1770 level = backlight_get_brightness(bd);
1771
1772 reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1773 if (level > 0) {
1774 reg |= LVDS_DIGION;
1775 if (!(reg & LVDS_ON)) {
1776 reg &= ~LVDS_BLON;
1777 aty_st_le32(LVDS_GEN_CNTL, reg);
1778 aty_ld_le32(LVDS_GEN_CNTL);
1779 mdelay(10);
1780 reg |= LVDS_BLON;
1781 aty_st_le32(LVDS_GEN_CNTL, reg);
1782 }
1783 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1784 reg |= (aty128_bl_get_level_brightness(par, level) <<
1785 LVDS_BL_MOD_LEVEL_SHIFT);
1786 #ifdef BACKLIGHT_LVDS_OFF
1787 reg |= LVDS_ON | LVDS_EN;
1788 reg &= ~LVDS_DISPLAY_DIS;
1789 #endif
1790 aty_st_le32(LVDS_GEN_CNTL, reg);
1791 #ifdef BACKLIGHT_DAC_OFF
1792 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1793 #endif
1794 } else {
1795 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1796 reg |= (aty128_bl_get_level_brightness(par, 0) <<
1797 LVDS_BL_MOD_LEVEL_SHIFT);
1798 #ifdef BACKLIGHT_LVDS_OFF
1799 reg |= LVDS_DISPLAY_DIS;
1800 aty_st_le32(LVDS_GEN_CNTL, reg);
1801 aty_ld_le32(LVDS_GEN_CNTL);
1802 udelay(10);
1803 reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1804 #endif
1805 aty_st_le32(LVDS_GEN_CNTL, reg);
1806 #ifdef BACKLIGHT_DAC_OFF
1807 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1808 #endif
1809 }
1810
1811 return 0;
1812 }
1813
1814 static const struct backlight_ops aty128_bl_data = {
1815 .update_status = aty128_bl_update_status,
1816 };
1817
aty128_bl_set_power(struct fb_info * info,int power)1818 static void aty128_bl_set_power(struct fb_info *info, int power)
1819 {
1820 if (info->bl_dev) {
1821 info->bl_dev->props.power = power;
1822 backlight_update_status(info->bl_dev);
1823 }
1824 }
1825
aty128_bl_init(struct aty128fb_par * par)1826 static void aty128_bl_init(struct aty128fb_par *par)
1827 {
1828 struct backlight_properties props;
1829 struct fb_info *info = pci_get_drvdata(par->pdev);
1830 struct backlight_device *bd;
1831 char name[12];
1832
1833 /* Could be extended to Rage128Pro LVDS output too */
1834 if (par->chip_gen != rage_M3)
1835 return;
1836
1837 #ifdef CONFIG_PMAC_BACKLIGHT
1838 if (!pmac_has_backlight_type("ati"))
1839 return;
1840 #endif
1841
1842 snprintf(name, sizeof(name), "aty128bl%d", info->node);
1843
1844 memset(&props, 0, sizeof(struct backlight_properties));
1845 props.type = BACKLIGHT_RAW;
1846 props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1847 bd = backlight_device_register(name, info->device, par, &aty128_bl_data,
1848 &props);
1849 if (IS_ERR(bd)) {
1850 info->bl_dev = NULL;
1851 printk(KERN_WARNING "aty128: Backlight registration failed\n");
1852 goto error;
1853 }
1854
1855 info->bl_dev = bd;
1856 fb_bl_default_curve(info, 0,
1857 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1858 219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1859
1860 bd->props.brightness = bd->props.max_brightness;
1861 bd->props.power = FB_BLANK_UNBLANK;
1862 backlight_update_status(bd);
1863
1864 printk("aty128: Backlight initialized (%s)\n", name);
1865
1866 return;
1867
1868 error:
1869 return;
1870 }
1871
aty128_bl_exit(struct backlight_device * bd)1872 static void aty128_bl_exit(struct backlight_device *bd)
1873 {
1874 backlight_device_unregister(bd);
1875 printk("aty128: Backlight unloaded\n");
1876 }
1877 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1878
1879 /*
1880 * Initialisation
1881 */
1882
1883 #ifdef CONFIG_PPC_PMAC__disabled
aty128_early_resume(void * data)1884 static void aty128_early_resume(void *data)
1885 {
1886 struct aty128fb_par *par = data;
1887
1888 if (!console_trylock())
1889 return;
1890 pci_restore_state(par->pdev);
1891 aty128_do_resume(par->pdev);
1892 console_unlock();
1893 }
1894 #endif /* CONFIG_PPC_PMAC */
1895
aty128_init(struct pci_dev * pdev,const struct pci_device_id * ent)1896 static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1897 {
1898 struct fb_info *info = pci_get_drvdata(pdev);
1899 struct aty128fb_par *par = info->par;
1900 struct fb_var_screeninfo var;
1901 char video_card[50];
1902 u8 chip_rev;
1903 u32 dac;
1904
1905 /* Get the chip revision */
1906 chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1907
1908 strcpy(video_card, "Rage128 XX ");
1909 video_card[8] = ent->device >> 8;
1910 video_card[9] = ent->device & 0xFF;
1911
1912 /* range check to make sure */
1913 if (ent->driver_data < ARRAY_SIZE(r128_family))
1914 strlcat(video_card, r128_family[ent->driver_data],
1915 sizeof(video_card));
1916
1917 printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1918
1919 if (par->vram_size % (1024 * 1024) == 0)
1920 printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1921 else
1922 printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1923
1924 par->chip_gen = ent->driver_data;
1925
1926 /* fill in info */
1927 info->fbops = &aty128fb_ops;
1928
1929 par->lcd_on = default_lcd_on;
1930 par->crt_on = default_crt_on;
1931
1932 var = default_var;
1933 #ifdef CONFIG_PPC_PMAC
1934 if (machine_is(powermac)) {
1935 /* Indicate sleep capability */
1936 if (par->chip_gen == rage_M3) {
1937 pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1938 #if 0 /* Disable the early video resume hack for now as it's causing problems,
1939 * among others we now rely on the PCI core restoring the config space
1940 * for us, which isn't the case with that hack, and that code path causes
1941 * various things to be called with interrupts off while they shouldn't.
1942 * I'm leaving the code in as it can be useful for debugging purposes
1943 */
1944 pmac_set_early_video_resume(aty128_early_resume, par);
1945 #endif
1946 }
1947
1948 /* Find default mode */
1949 if (mode_option) {
1950 if (!mac_find_mode(&var, info, mode_option, 8))
1951 var = default_var;
1952 } else {
1953 if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1954 default_vmode = VMODE_1024_768_60;
1955
1956 /* iMacs need that resolution
1957 * PowerMac2,1 first r128 iMacs
1958 * PowerMac2,2 summer 2000 iMacs
1959 * PowerMac4,1 january 2001 iMacs "flower power"
1960 */
1961 if (of_machine_is_compatible("PowerMac2,1") ||
1962 of_machine_is_compatible("PowerMac2,2") ||
1963 of_machine_is_compatible("PowerMac4,1"))
1964 default_vmode = VMODE_1024_768_75;
1965
1966 /* iBook SE */
1967 if (of_machine_is_compatible("PowerBook2,2"))
1968 default_vmode = VMODE_800_600_60;
1969
1970 /* PowerBook Firewire (Pismo), iBook Dual USB */
1971 if (of_machine_is_compatible("PowerBook3,1") ||
1972 of_machine_is_compatible("PowerBook4,1"))
1973 default_vmode = VMODE_1024_768_60;
1974
1975 /* PowerBook Titanium */
1976 if (of_machine_is_compatible("PowerBook3,2"))
1977 default_vmode = VMODE_1152_768_60;
1978
1979 if (default_cmode > 16)
1980 default_cmode = CMODE_32;
1981 else if (default_cmode > 8)
1982 default_cmode = CMODE_16;
1983 else
1984 default_cmode = CMODE_8;
1985
1986 if (mac_vmode_to_var(default_vmode, default_cmode, &var))
1987 var = default_var;
1988 }
1989 } else
1990 #endif /* CONFIG_PPC_PMAC */
1991 {
1992 if (mode_option)
1993 if (fb_find_mode(&var, info, mode_option, NULL,
1994 0, &defaultmode, 8) == 0)
1995 var = default_var;
1996 }
1997
1998 var.accel_flags &= ~FB_ACCELF_TEXT;
1999 // var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
2000
2001 if (aty128fb_check_var(&var, info)) {
2002 printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
2003 return 0;
2004 }
2005
2006 /* setup the DAC the way we like it */
2007 dac = aty_ld_le32(DAC_CNTL);
2008 dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2009 dac |= DAC_MASK;
2010 if (par->chip_gen == rage_M3)
2011 dac |= DAC_PALETTE2_SNOOP_EN;
2012 aty_st_le32(DAC_CNTL, dac);
2013
2014 /* turn off bus mastering, just in case */
2015 aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2016
2017 info->var = var;
2018 fb_alloc_cmap(&info->cmap, 256, 0);
2019
2020 var.activate = FB_ACTIVATE_NOW;
2021
2022 aty128_init_engine(par);
2023
2024 par->pdev = pdev;
2025 par->asleep = 0;
2026 par->lock_blank = 0;
2027
2028 if (register_framebuffer(info) < 0)
2029 return 0;
2030
2031 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2032 if (backlight)
2033 aty128_bl_init(par);
2034 #endif
2035
2036 fb_info(info, "%s frame buffer device on %s\n",
2037 info->fix.id, video_card);
2038
2039 return 1; /* success! */
2040 }
2041
2042 #ifdef CONFIG_PCI
2043 /* register a card ++ajoshi */
aty128_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2044 static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2045 {
2046 unsigned long fb_addr, reg_addr;
2047 struct aty128fb_par *par;
2048 struct fb_info *info;
2049 int err;
2050 #ifndef __sparc__
2051 void __iomem *bios = NULL;
2052 #endif
2053
2054 err = aperture_remove_conflicting_pci_devices(pdev, "aty128fb");
2055 if (err)
2056 return err;
2057
2058 /* Enable device in PCI config */
2059 if ((err = pci_enable_device(pdev))) {
2060 printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2061 err);
2062 return -ENODEV;
2063 }
2064
2065 fb_addr = pci_resource_start(pdev, 0);
2066 if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2067 "aty128fb FB")) {
2068 printk(KERN_ERR "aty128fb: cannot reserve frame "
2069 "buffer memory\n");
2070 return -ENODEV;
2071 }
2072
2073 reg_addr = pci_resource_start(pdev, 2);
2074 if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2075 "aty128fb MMIO")) {
2076 printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2077 goto err_free_fb;
2078 }
2079
2080 /* We have the resources. Now virtualize them */
2081 info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2082 if (!info)
2083 goto err_free_mmio;
2084
2085 par = info->par;
2086
2087 info->pseudo_palette = par->pseudo_palette;
2088
2089 /* Virtualize mmio region */
2090 info->fix.mmio_start = reg_addr;
2091 par->regbase = pci_ioremap_bar(pdev, 2);
2092 if (!par->regbase)
2093 goto err_free_info;
2094
2095 /* Grab memory size from the card */
2096 // How does this relate to the resource length from the PCI hardware?
2097 par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2098
2099 /* Virtualize the framebuffer */
2100 info->screen_base = ioremap_wc(fb_addr, par->vram_size);
2101 if (!info->screen_base)
2102 goto err_unmap_out;
2103
2104 /* Set up info->fix */
2105 info->fix = aty128fb_fix;
2106 info->fix.smem_start = fb_addr;
2107 info->fix.smem_len = par->vram_size;
2108 info->fix.mmio_start = reg_addr;
2109
2110 /* If we can't test scratch registers, something is seriously wrong */
2111 if (!register_test(par)) {
2112 printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2113 goto err_out;
2114 }
2115
2116 #ifndef __sparc__
2117 bios = aty128_map_ROM(par, pdev);
2118 #ifdef CONFIG_X86
2119 if (bios == NULL)
2120 bios = aty128_find_mem_vbios(par);
2121 #endif
2122 if (bios == NULL)
2123 printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2124 else {
2125 printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2126 aty128_get_pllinfo(par, bios);
2127 pci_unmap_rom(pdev, bios);
2128 }
2129 #endif /* __sparc__ */
2130
2131 aty128_timings(par);
2132 pci_set_drvdata(pdev, info);
2133
2134 if (!aty128_init(pdev, ent))
2135 goto err_out;
2136
2137 if (mtrr)
2138 par->wc_cookie = arch_phys_wc_add(info->fix.smem_start,
2139 par->vram_size);
2140 return 0;
2141
2142 err_out:
2143 iounmap(info->screen_base);
2144 err_unmap_out:
2145 iounmap(par->regbase);
2146 err_free_info:
2147 framebuffer_release(info);
2148 err_free_mmio:
2149 release_mem_region(pci_resource_start(pdev, 2),
2150 pci_resource_len(pdev, 2));
2151 err_free_fb:
2152 release_mem_region(pci_resource_start(pdev, 0),
2153 pci_resource_len(pdev, 0));
2154 return -ENODEV;
2155 }
2156
aty128_remove(struct pci_dev * pdev)2157 static void aty128_remove(struct pci_dev *pdev)
2158 {
2159 struct fb_info *info = pci_get_drvdata(pdev);
2160 struct aty128fb_par *par;
2161
2162 if (!info)
2163 return;
2164
2165 par = info->par;
2166
2167 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2168 aty128_bl_exit(info->bl_dev);
2169 #endif
2170
2171 unregister_framebuffer(info);
2172
2173 arch_phys_wc_del(par->wc_cookie);
2174 iounmap(par->regbase);
2175 iounmap(info->screen_base);
2176
2177 release_mem_region(pci_resource_start(pdev, 0),
2178 pci_resource_len(pdev, 0));
2179 release_mem_region(pci_resource_start(pdev, 2),
2180 pci_resource_len(pdev, 2));
2181 framebuffer_release(info);
2182 }
2183 #endif /* CONFIG_PCI */
2184
2185
2186
2187 /*
2188 * Blank the display.
2189 */
aty128fb_blank(int blank,struct fb_info * fb)2190 static int aty128fb_blank(int blank, struct fb_info *fb)
2191 {
2192 struct aty128fb_par *par = fb->par;
2193 u8 state;
2194
2195 if (par->lock_blank || par->asleep)
2196 return 0;
2197
2198 switch (blank) {
2199 case FB_BLANK_NORMAL:
2200 state = 4;
2201 break;
2202 case FB_BLANK_VSYNC_SUSPEND:
2203 state = 6;
2204 break;
2205 case FB_BLANK_HSYNC_SUSPEND:
2206 state = 5;
2207 break;
2208 case FB_BLANK_POWERDOWN:
2209 state = 7;
2210 break;
2211 case FB_BLANK_UNBLANK:
2212 default:
2213 state = 0;
2214 break;
2215 }
2216 aty_st_8(CRTC_EXT_CNTL+1, state);
2217
2218 if (par->chip_gen == rage_M3) {
2219 aty128_set_crt_enable(par, par->crt_on && !blank);
2220 aty128_set_lcd_enable(par, par->lcd_on && !blank);
2221 }
2222
2223 return 0;
2224 }
2225
2226 /*
2227 * Set a single color register. The values supplied are already
2228 * rounded down to the hardware's capabilities (according to the
2229 * entries in the var structure). Return != 0 for invalid regno.
2230 */
aty128fb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int transp,struct fb_info * info)2231 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2232 u_int transp, struct fb_info *info)
2233 {
2234 struct aty128fb_par *par = info->par;
2235
2236 if (regno > 255
2237 || (par->crtc.depth == 16 && regno > 63)
2238 || (par->crtc.depth == 15 && regno > 31))
2239 return 1;
2240
2241 red >>= 8;
2242 green >>= 8;
2243 blue >>= 8;
2244
2245 if (regno < 16) {
2246 int i;
2247 u32 *pal = info->pseudo_palette;
2248
2249 switch (par->crtc.depth) {
2250 case 15:
2251 pal[regno] = (regno << 10) | (regno << 5) | regno;
2252 break;
2253 case 16:
2254 pal[regno] = (regno << 11) | (regno << 6) | regno;
2255 break;
2256 case 24:
2257 pal[regno] = (regno << 16) | (regno << 8) | regno;
2258 break;
2259 case 32:
2260 i = (regno << 8) | regno;
2261 pal[regno] = (i << 16) | i;
2262 break;
2263 }
2264 }
2265
2266 if (par->crtc.depth == 16 && regno > 0) {
2267 /*
2268 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2269 * have 32 slots for R and B values but 64 slots for G values.
2270 * Thus the R and B values go in one slot but the G value
2271 * goes in a different slot, and we have to avoid disturbing
2272 * the other fields in the slots we touch.
2273 */
2274 par->green[regno] = green;
2275 if (regno < 32) {
2276 par->red[regno] = red;
2277 par->blue[regno] = blue;
2278 aty128_st_pal(regno * 8, red, par->green[regno*2],
2279 blue, par);
2280 }
2281 red = par->red[regno/2];
2282 blue = par->blue[regno/2];
2283 regno <<= 2;
2284 } else if (par->crtc.bpp == 16)
2285 regno <<= 3;
2286 aty128_st_pal(regno, red, green, blue, par);
2287
2288 return 0;
2289 }
2290
2291 #define ATY_MIRROR_LCD_ON 0x00000001
2292 #define ATY_MIRROR_CRT_ON 0x00000002
2293
2294 /* out param: u32* backlight value: 0 to 15 */
2295 #define FBIO_ATY128_GET_MIRROR _IOR('@', 1, __u32)
2296 /* in param: u32* backlight value: 0 to 15 */
2297 #define FBIO_ATY128_SET_MIRROR _IOW('@', 2, __u32)
2298
aty128fb_ioctl(struct fb_info * info,u_int cmd,u_long arg)2299 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2300 {
2301 struct aty128fb_par *par = info->par;
2302 u32 value;
2303 int rc;
2304
2305 switch (cmd) {
2306 case FBIO_ATY128_SET_MIRROR:
2307 if (par->chip_gen != rage_M3)
2308 return -EINVAL;
2309 rc = get_user(value, (__u32 __user *)arg);
2310 if (rc)
2311 return rc;
2312 par->lcd_on = (value & 0x01) != 0;
2313 par->crt_on = (value & 0x02) != 0;
2314 if (!par->crt_on && !par->lcd_on)
2315 par->lcd_on = 1;
2316 aty128_set_crt_enable(par, par->crt_on);
2317 aty128_set_lcd_enable(par, par->lcd_on);
2318 return 0;
2319 case FBIO_ATY128_GET_MIRROR:
2320 if (par->chip_gen != rage_M3)
2321 return -EINVAL;
2322 value = (par->crt_on << 1) | par->lcd_on;
2323 return put_user(value, (__u32 __user *)arg);
2324 }
2325 return -EINVAL;
2326 }
2327
aty128_set_suspend(struct aty128fb_par * par,int suspend)2328 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2329 {
2330 u32 pmgt;
2331
2332 if (!par->pdev->pm_cap)
2333 return;
2334
2335 /* Set the chip into the appropriate suspend mode (we use D2,
2336 * D3 would require a complete re-initialisation of the chip,
2337 * including PCI config registers, clocks, AGP configuration, ...)
2338 *
2339 * For resume, the core will have already brought us back to D0
2340 */
2341 if (suspend) {
2342 /* Make sure CRTC2 is reset. Remove that the day we decide to
2343 * actually use CRTC2 and replace it with real code for disabling
2344 * the CRTC2 output during sleep
2345 */
2346 aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2347 ~(CRTC2_EN));
2348
2349 /* Set the power management mode to be PCI based */
2350 /* Use this magic value for now */
2351 pmgt = 0x0c005407;
2352 aty_st_pll(POWER_MANAGEMENT, pmgt);
2353 (void)aty_ld_pll(POWER_MANAGEMENT);
2354 aty_st_le32(BUS_CNTL1, 0x00000010);
2355 aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2356 msleep(100);
2357 }
2358 }
2359
aty128_pci_suspend_late(struct device * dev,pm_message_t state)2360 static int aty128_pci_suspend_late(struct device *dev, pm_message_t state)
2361 {
2362 struct pci_dev *pdev = to_pci_dev(dev);
2363 struct fb_info *info = pci_get_drvdata(pdev);
2364 struct aty128fb_par *par = info->par;
2365
2366 /* We don't do anything but D2, for now we return 0, but
2367 * we may want to change that. How do we know if the BIOS
2368 * can properly take care of D3 ? Also, with swsusp, we
2369 * know we'll be rebooted, ...
2370 */
2371 #ifndef CONFIG_PPC_PMAC
2372 /* HACK ALERT ! Once I find a proper way to say to each driver
2373 * individually what will happen with it's PCI slot, I'll change
2374 * that. On laptops, the AGP slot is just unclocked, so D2 is
2375 * expected, while on desktops, the card is powered off
2376 */
2377 return 0;
2378 #endif /* CONFIG_PPC_PMAC */
2379
2380 if (state.event == pdev->dev.power.power_state.event)
2381 return 0;
2382
2383 printk(KERN_DEBUG "aty128fb: suspending...\n");
2384
2385 console_lock();
2386
2387 fb_set_suspend(info, 1);
2388
2389 /* Make sure engine is reset */
2390 wait_for_idle(par);
2391 aty128_reset_engine(par);
2392 wait_for_idle(par);
2393
2394 /* Blank display and LCD */
2395 aty128fb_blank(FB_BLANK_POWERDOWN, info);
2396
2397 /* Sleep */
2398 par->asleep = 1;
2399 par->lock_blank = 1;
2400
2401 #ifdef CONFIG_PPC_PMAC
2402 /* On powermac, we have hooks to properly suspend/resume AGP now,
2403 * use them here. We'll ultimately need some generic support here,
2404 * but the generic code isn't quite ready for that yet
2405 */
2406 pmac_suspend_agp_for_card(pdev);
2407 #endif /* CONFIG_PPC_PMAC */
2408
2409 /* We need a way to make sure the fbdev layer will _not_ touch the
2410 * framebuffer before we put the chip to suspend state. On 2.4, I
2411 * used dummy fb ops, 2.5 need proper support for this at the
2412 * fbdev level
2413 */
2414 if (state.event != PM_EVENT_ON)
2415 aty128_set_suspend(par, 1);
2416
2417 console_unlock();
2418
2419 pdev->dev.power.power_state = state;
2420
2421 return 0;
2422 }
2423
aty128_pci_suspend(struct device * dev)2424 static int __maybe_unused aty128_pci_suspend(struct device *dev)
2425 {
2426 return aty128_pci_suspend_late(dev, PMSG_SUSPEND);
2427 }
2428
aty128_pci_hibernate(struct device * dev)2429 static int __maybe_unused aty128_pci_hibernate(struct device *dev)
2430 {
2431 return aty128_pci_suspend_late(dev, PMSG_HIBERNATE);
2432 }
2433
aty128_pci_freeze(struct device * dev)2434 static int __maybe_unused aty128_pci_freeze(struct device *dev)
2435 {
2436 return aty128_pci_suspend_late(dev, PMSG_FREEZE);
2437 }
2438
aty128_do_resume(struct pci_dev * pdev)2439 static int aty128_do_resume(struct pci_dev *pdev)
2440 {
2441 struct fb_info *info = pci_get_drvdata(pdev);
2442 struct aty128fb_par *par = info->par;
2443
2444 if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2445 return 0;
2446
2447 /* PCI state will have been restored by the core, so
2448 * we should be in D0 now with our config space fully
2449 * restored
2450 */
2451
2452 /* Wakeup chip */
2453 aty128_set_suspend(par, 0);
2454 par->asleep = 0;
2455
2456 /* Restore display & engine */
2457 aty128_reset_engine(par);
2458 wait_for_idle(par);
2459 aty128fb_set_par(info);
2460 fb_pan_display(info, &info->var);
2461 fb_set_cmap(&info->cmap, info);
2462
2463 /* Refresh */
2464 fb_set_suspend(info, 0);
2465
2466 /* Unblank */
2467 par->lock_blank = 0;
2468 aty128fb_blank(0, info);
2469
2470 #ifdef CONFIG_PPC_PMAC
2471 /* On powermac, we have hooks to properly suspend/resume AGP now,
2472 * use them here. We'll ultimately need some generic support here,
2473 * but the generic code isn't quite ready for that yet
2474 */
2475 pmac_resume_agp_for_card(pdev);
2476 #endif /* CONFIG_PPC_PMAC */
2477
2478 pdev->dev.power.power_state = PMSG_ON;
2479
2480 printk(KERN_DEBUG "aty128fb: resumed !\n");
2481
2482 return 0;
2483 }
2484
aty128_pci_resume(struct device * dev)2485 static int __maybe_unused aty128_pci_resume(struct device *dev)
2486 {
2487 int rc;
2488
2489 console_lock();
2490 rc = aty128_do_resume(to_pci_dev(dev));
2491 console_unlock();
2492
2493 return rc;
2494 }
2495
2496
aty128fb_init(void)2497 static int aty128fb_init(void)
2498 {
2499 #ifndef MODULE
2500 char *option = NULL;
2501 #endif
2502
2503 if (fb_modesetting_disabled("aty128fb"))
2504 return -ENODEV;
2505
2506 #ifndef MODULE
2507 if (fb_get_options("aty128fb", &option))
2508 return -ENODEV;
2509 aty128fb_setup(option);
2510 #endif
2511
2512 return pci_register_driver(&aty128fb_driver);
2513 }
2514
aty128fb_exit(void)2515 static void __exit aty128fb_exit(void)
2516 {
2517 pci_unregister_driver(&aty128fb_driver);
2518 }
2519
2520 module_init(aty128fb_init);
2521
2522 module_exit(aty128fb_exit);
2523
2524 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2525 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2526 MODULE_LICENSE("GPL");
2527 module_param(mode_option, charp, 0);
2528 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2529 module_param_named(nomtrr, mtrr, invbool, 0);
2530 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2531