1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple PWM based backlight control, board code has to setup 4 * 1) pin configuration so PWM waveforms can output 5 * 2) platform_data being correctly configured 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/gpio/consumer.h> 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/platform_device.h> 14 #include <linux/fb.h> 15 #include <linux/backlight.h> 16 #include <linux/err.h> 17 #include <linux/pwm.h> 18 #include <linux/pwm_backlight.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/slab.h> 21 22 struct pwm_bl_data { 23 struct pwm_device *pwm; 24 struct device *dev; 25 unsigned int lth_brightness; 26 unsigned int *levels; 27 bool enabled; 28 struct regulator *power_supply; 29 struct gpio_desc *enable_gpio; 30 unsigned int scale; 31 unsigned int post_pwm_on_delay; 32 unsigned int pwm_off_delay; 33 int (*notify)(struct device *, 34 int brightness); 35 void (*notify_after)(struct device *, 36 int brightness); 37 int (*check_fb)(struct device *, struct fb_info *); 38 void (*exit)(struct device *); 39 }; 40 41 static void pwm_backlight_power_on(struct pwm_bl_data *pb) 42 { 43 int err; 44 45 if (pb->enabled) 46 return; 47 48 if (pb->power_supply) { 49 err = regulator_enable(pb->power_supply); 50 if (err < 0) 51 dev_err(pb->dev, "failed to enable power supply\n"); 52 } 53 54 if (pb->post_pwm_on_delay) 55 msleep(pb->post_pwm_on_delay); 56 57 gpiod_set_value_cansleep(pb->enable_gpio, 1); 58 59 pb->enabled = true; 60 } 61 62 static void pwm_backlight_power_off(struct pwm_bl_data *pb) 63 { 64 if (!pb->enabled) 65 return; 66 67 gpiod_set_value_cansleep(pb->enable_gpio, 0); 68 69 if (pb->pwm_off_delay) 70 msleep(pb->pwm_off_delay); 71 72 if (pb->power_supply) 73 regulator_disable(pb->power_supply); 74 pb->enabled = false; 75 } 76 77 static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness, struct pwm_state *state) 78 { 79 unsigned int lth = pb->lth_brightness; 80 u64 duty_cycle; 81 82 if (pb->levels) 83 duty_cycle = pb->levels[brightness]; 84 else 85 duty_cycle = brightness; 86 87 duty_cycle *= state->period - lth; 88 do_div(duty_cycle, pb->scale); 89 90 return duty_cycle + lth; 91 } 92 93 static int pwm_backlight_update_status(struct backlight_device *bl) 94 { 95 struct pwm_bl_data *pb = bl_get_data(bl); 96 int brightness = backlight_get_brightness(bl); 97 struct pwm_state state; 98 99 if (pb->notify) 100 brightness = pb->notify(pb->dev, brightness); 101 102 if (brightness > 0) { 103 pwm_get_state(pb->pwm, &state); 104 state.duty_cycle = compute_duty_cycle(pb, brightness, &state); 105 state.enabled = true; 106 pwm_apply_state(pb->pwm, &state); 107 108 pwm_backlight_power_on(pb); 109 } else { 110 pwm_backlight_power_off(pb); 111 112 pwm_get_state(pb->pwm, &state); 113 state.duty_cycle = 0; 114 /* 115 * We cannot assume a disabled PWM to drive its output to the 116 * inactive state. If we have an enable GPIO and/or a regulator 117 * we assume that this isn't relevant and we can disable the PWM 118 * to save power. If however there is neither an enable GPIO nor 119 * a regulator keep the PWM on be sure to get a constant 120 * inactive output. 121 */ 122 state.enabled = !pb->power_supply && !pb->enable_gpio; 123 pwm_apply_state(pb->pwm, &state); 124 } 125 126 if (pb->notify_after) 127 pb->notify_after(pb->dev, brightness); 128 129 return 0; 130 } 131 132 static int pwm_backlight_check_fb(struct backlight_device *bl, 133 struct fb_info *info) 134 { 135 struct pwm_bl_data *pb = bl_get_data(bl); 136 137 return !pb->check_fb || pb->check_fb(pb->dev, info); 138 } 139 140 static const struct backlight_ops pwm_backlight_ops = { 141 .update_status = pwm_backlight_update_status, 142 .check_fb = pwm_backlight_check_fb, 143 }; 144 145 #ifdef CONFIG_OF 146 #define PWM_LUMINANCE_SHIFT 16 147 #define PWM_LUMINANCE_SCALE (1 << PWM_LUMINANCE_SHIFT) /* luminance scale */ 148 149 /* 150 * CIE lightness to PWM conversion. 151 * 152 * The CIE 1931 lightness formula is what actually describes how we perceive 153 * light: 154 * Y = (L* / 903.3) if L* ≤ 8 155 * Y = ((L* + 16) / 116)^3 if L* > 8 156 * 157 * Where Y is the luminance, the amount of light coming out of the screen, and 158 * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human 159 * perceives the screen to be, and is a number between 0 and 100. 160 * 161 * The following function does the fixed point maths needed to implement the 162 * above formula. 163 */ 164 static u64 cie1931(unsigned int lightness) 165 { 166 u64 retval; 167 168 /* 169 * @lightness is given as a number between 0 and 1, expressed 170 * as a fixed-point number in scale 171 * PWM_LUMINANCE_SCALE. Convert to a percentage, still 172 * expressed as a fixed-point number, so the above formulas 173 * can be applied. 174 */ 175 lightness *= 100; 176 if (lightness <= (8 * PWM_LUMINANCE_SCALE)) { 177 retval = DIV_ROUND_CLOSEST(lightness * 10, 9033); 178 } else { 179 retval = (lightness + (16 * PWM_LUMINANCE_SCALE)) / 116; 180 retval *= retval * retval; 181 retval += 1ULL << (2*PWM_LUMINANCE_SHIFT - 1); 182 retval >>= 2*PWM_LUMINANCE_SHIFT; 183 } 184 185 return retval; 186 } 187 188 /* 189 * Create a default correction table for PWM values to create linear brightness 190 * for LED based backlights using the CIE1931 algorithm. 191 */ 192 static 193 int pwm_backlight_brightness_default(struct device *dev, 194 struct platform_pwm_backlight_data *data, 195 unsigned int period) 196 { 197 unsigned int i; 198 u64 retval; 199 200 /* 201 * Once we have 4096 levels there's little point going much higher... 202 * neither interactive sliders nor animation benefits from having 203 * more values in the table. 204 */ 205 data->max_brightness = 206 min((int)DIV_ROUND_UP(period, fls(period)), 4096); 207 208 data->levels = devm_kcalloc(dev, data->max_brightness, 209 sizeof(*data->levels), GFP_KERNEL); 210 if (!data->levels) 211 return -ENOMEM; 212 213 /* Fill the table using the cie1931 algorithm */ 214 for (i = 0; i < data->max_brightness; i++) { 215 retval = cie1931((i * PWM_LUMINANCE_SCALE) / 216 data->max_brightness) * period; 217 retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE); 218 if (retval > UINT_MAX) 219 return -EINVAL; 220 data->levels[i] = (unsigned int)retval; 221 } 222 223 data->dft_brightness = data->max_brightness / 2; 224 data->max_brightness--; 225 226 return 0; 227 } 228 229 static int pwm_backlight_parse_dt(struct device *dev, 230 struct platform_pwm_backlight_data *data) 231 { 232 struct device_node *node = dev->of_node; 233 unsigned int num_levels; 234 unsigned int num_steps = 0; 235 struct property *prop; 236 unsigned int *table; 237 int length; 238 u32 value; 239 int ret; 240 241 if (!node) 242 return -ENODEV; 243 244 memset(data, 0, sizeof(*data)); 245 246 /* 247 * These values are optional and set as 0 by default, the out values 248 * are modified only if a valid u32 value can be decoded. 249 */ 250 of_property_read_u32(node, "post-pwm-on-delay-ms", 251 &data->post_pwm_on_delay); 252 of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay); 253 254 /* 255 * Determine the number of brightness levels, if this property is not 256 * set a default table of brightness levels will be used. 257 */ 258 prop = of_find_property(node, "brightness-levels", &length); 259 if (!prop) 260 return 0; 261 262 num_levels = length / sizeof(u32); 263 264 /* read brightness levels from DT property */ 265 if (num_levels > 0) { 266 data->levels = devm_kcalloc(dev, num_levels, 267 sizeof(*data->levels), GFP_KERNEL); 268 if (!data->levels) 269 return -ENOMEM; 270 271 ret = of_property_read_u32_array(node, "brightness-levels", 272 data->levels, 273 num_levels); 274 if (ret < 0) 275 return ret; 276 277 ret = of_property_read_u32(node, "default-brightness-level", 278 &value); 279 if (ret < 0) 280 return ret; 281 282 data->dft_brightness = value; 283 284 /* 285 * This property is optional, if is set enables linear 286 * interpolation between each of the values of brightness levels 287 * and creates a new pre-computed table. 288 */ 289 of_property_read_u32(node, "num-interpolated-steps", 290 &num_steps); 291 292 /* 293 * Make sure that there is at least two entries in the 294 * brightness-levels table, otherwise we can't interpolate 295 * between two points. 296 */ 297 if (num_steps) { 298 unsigned int num_input_levels = num_levels; 299 unsigned int i; 300 u32 x1, x2, x, dx; 301 u32 y1, y2; 302 s64 dy; 303 304 if (num_input_levels < 2) { 305 dev_err(dev, "can't interpolate\n"); 306 return -EINVAL; 307 } 308 309 /* 310 * Recalculate the number of brightness levels, now 311 * taking in consideration the number of interpolated 312 * steps between two levels. 313 */ 314 num_levels = (num_input_levels - 1) * num_steps + 1; 315 dev_dbg(dev, "new number of brightness levels: %d\n", 316 num_levels); 317 318 /* 319 * Create a new table of brightness levels with all the 320 * interpolated steps. 321 */ 322 table = devm_kcalloc(dev, num_levels, sizeof(*table), 323 GFP_KERNEL); 324 if (!table) 325 return -ENOMEM; 326 /* 327 * Fill the interpolated table[x] = y 328 * by draw lines between each (x1, y1) to (x2, y2). 329 */ 330 dx = num_steps; 331 for (i = 0; i < num_input_levels - 1; i++) { 332 x1 = i * dx; 333 x2 = x1 + dx; 334 y1 = data->levels[i]; 335 y2 = data->levels[i + 1]; 336 dy = (s64)y2 - y1; 337 338 for (x = x1; x < x2; x++) { 339 table[x] = y1 + 340 div_s64(dy * (x - x1), dx); 341 } 342 } 343 /* Fill in the last point, since no line starts here. */ 344 table[x2] = y2; 345 346 /* 347 * As we use interpolation lets remove current 348 * brightness levels table and replace for the 349 * new interpolated table. 350 */ 351 devm_kfree(dev, data->levels); 352 data->levels = table; 353 } 354 355 data->max_brightness = num_levels - 1; 356 } 357 358 return 0; 359 } 360 361 static const struct of_device_id pwm_backlight_of_match[] = { 362 { .compatible = "pwm-backlight" }, 363 { } 364 }; 365 366 MODULE_DEVICE_TABLE(of, pwm_backlight_of_match); 367 #else 368 static int pwm_backlight_parse_dt(struct device *dev, 369 struct platform_pwm_backlight_data *data) 370 { 371 return -ENODEV; 372 } 373 374 static 375 int pwm_backlight_brightness_default(struct device *dev, 376 struct platform_pwm_backlight_data *data, 377 unsigned int period) 378 { 379 return -ENODEV; 380 } 381 #endif 382 383 static bool pwm_backlight_is_linear(struct platform_pwm_backlight_data *data) 384 { 385 unsigned int nlevels = data->max_brightness + 1; 386 unsigned int min_val = data->levels[0]; 387 unsigned int max_val = data->levels[nlevels - 1]; 388 /* 389 * Multiplying by 128 means that even in pathological cases such 390 * as (max_val - min_val) == nlevels the error at max_val is less 391 * than 1%. 392 */ 393 unsigned int slope = (128 * (max_val - min_val)) / nlevels; 394 unsigned int margin = (max_val - min_val) / 20; /* 5% */ 395 int i; 396 397 for (i = 1; i < nlevels; i++) { 398 unsigned int linear_value = min_val + ((i * slope) / 128); 399 unsigned int delta = abs(linear_value - data->levels[i]); 400 401 if (delta > margin) 402 return false; 403 } 404 405 return true; 406 } 407 408 static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb) 409 { 410 struct device_node *node = pb->dev->of_node; 411 bool active = true; 412 413 /* 414 * If the enable GPIO is present, observable (either as input 415 * or output) and off then the backlight is not currently active. 416 * */ 417 if (pb->enable_gpio && gpiod_get_value_cansleep(pb->enable_gpio) == 0) 418 active = false; 419 420 if (pb->power_supply && !regulator_is_enabled(pb->power_supply)) 421 active = false; 422 423 if (!pwm_is_enabled(pb->pwm)) 424 active = false; 425 426 /* 427 * Synchronize the enable_gpio with the observed state of the 428 * hardware. 429 */ 430 gpiod_direction_output(pb->enable_gpio, active); 431 432 /* 433 * Do not change pb->enabled here! pb->enabled essentially 434 * tells us if we own one of the regulator's use counts and 435 * right now we do not. 436 */ 437 438 /* Not booted with device tree or no phandle link to the node */ 439 if (!node || !node->phandle) 440 return FB_BLANK_UNBLANK; 441 442 /* 443 * If the driver is probed from the device tree and there is a 444 * phandle link pointing to the backlight node, it is safe to 445 * assume that another driver will enable the backlight at the 446 * appropriate time. Therefore, if it is disabled, keep it so. 447 */ 448 return active ? FB_BLANK_UNBLANK: FB_BLANK_POWERDOWN; 449 } 450 451 static int pwm_backlight_probe(struct platform_device *pdev) 452 { 453 struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev); 454 struct platform_pwm_backlight_data defdata; 455 struct backlight_properties props; 456 struct backlight_device *bl; 457 struct pwm_bl_data *pb; 458 struct pwm_state state; 459 unsigned int i; 460 int ret; 461 462 if (!data) { 463 ret = pwm_backlight_parse_dt(&pdev->dev, &defdata); 464 if (ret < 0) { 465 dev_err(&pdev->dev, "failed to find platform data\n"); 466 return ret; 467 } 468 469 data = &defdata; 470 } 471 472 if (data->init) { 473 ret = data->init(&pdev->dev); 474 if (ret < 0) 475 return ret; 476 } 477 478 pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL); 479 if (!pb) { 480 ret = -ENOMEM; 481 goto err_alloc; 482 } 483 484 pb->notify = data->notify; 485 pb->notify_after = data->notify_after; 486 pb->check_fb = data->check_fb; 487 pb->exit = data->exit; 488 pb->dev = &pdev->dev; 489 pb->enabled = false; 490 pb->post_pwm_on_delay = data->post_pwm_on_delay; 491 pb->pwm_off_delay = data->pwm_off_delay; 492 493 pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable", 494 GPIOD_ASIS); 495 if (IS_ERR(pb->enable_gpio)) { 496 ret = PTR_ERR(pb->enable_gpio); 497 goto err_alloc; 498 } 499 500 pb->power_supply = devm_regulator_get_optional(&pdev->dev, "power"); 501 if (IS_ERR(pb->power_supply)) { 502 ret = PTR_ERR(pb->power_supply); 503 if (ret == -ENODEV) 504 pb->power_supply = NULL; 505 else 506 goto err_alloc; 507 } 508 509 pb->pwm = devm_pwm_get(&pdev->dev, NULL); 510 if (IS_ERR(pb->pwm)) { 511 ret = PTR_ERR(pb->pwm); 512 if (ret != -EPROBE_DEFER) 513 dev_err(&pdev->dev, "unable to request PWM\n"); 514 goto err_alloc; 515 } 516 517 dev_dbg(&pdev->dev, "got pwm for backlight\n"); 518 519 /* Sync up PWM state. */ 520 pwm_init_state(pb->pwm, &state); 521 522 /* 523 * The DT case will set the pwm_period_ns field to 0 and store the 524 * period, parsed from the DT, in the PWM device. For the non-DT case, 525 * set the period from platform data if it has not already been set 526 * via the PWM lookup table. 527 */ 528 if (!state.period && (data->pwm_period_ns > 0)) 529 state.period = data->pwm_period_ns; 530 531 ret = pwm_apply_state(pb->pwm, &state); 532 if (ret) { 533 dev_err(&pdev->dev, "failed to apply initial PWM state: %d\n", 534 ret); 535 goto err_alloc; 536 } 537 538 memset(&props, 0, sizeof(struct backlight_properties)); 539 540 if (data->levels) { 541 pb->levels = data->levels; 542 543 /* 544 * For the DT case, only when brightness levels is defined 545 * data->levels is filled. For the non-DT case, data->levels 546 * can come from platform data, however is not usual. 547 */ 548 for (i = 0; i <= data->max_brightness; i++) 549 if (data->levels[i] > pb->scale) 550 pb->scale = data->levels[i]; 551 552 if (pwm_backlight_is_linear(data)) 553 props.scale = BACKLIGHT_SCALE_LINEAR; 554 else 555 props.scale = BACKLIGHT_SCALE_NON_LINEAR; 556 } else if (!data->max_brightness) { 557 /* 558 * If no brightness levels are provided and max_brightness is 559 * not set, use the default brightness table. For the DT case, 560 * max_brightness is set to 0 when brightness levels is not 561 * specified. For the non-DT case, max_brightness is usually 562 * set to some value. 563 */ 564 565 /* Get the PWM period (in nanoseconds) */ 566 pwm_get_state(pb->pwm, &state); 567 568 ret = pwm_backlight_brightness_default(&pdev->dev, data, 569 state.period); 570 if (ret < 0) { 571 dev_err(&pdev->dev, 572 "failed to setup default brightness table\n"); 573 goto err_alloc; 574 } 575 576 for (i = 0; i <= data->max_brightness; i++) { 577 if (data->levels[i] > pb->scale) 578 pb->scale = data->levels[i]; 579 580 pb->levels = data->levels; 581 } 582 583 props.scale = BACKLIGHT_SCALE_NON_LINEAR; 584 } else { 585 /* 586 * That only happens for the non-DT case, where platform data 587 * sets the max_brightness value. 588 */ 589 pb->scale = data->max_brightness; 590 } 591 592 pb->lth_brightness = data->lth_brightness * (div_u64(state.period, 593 pb->scale)); 594 595 props.type = BACKLIGHT_RAW; 596 props.max_brightness = data->max_brightness; 597 bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb, 598 &pwm_backlight_ops, &props); 599 if (IS_ERR(bl)) { 600 dev_err(&pdev->dev, "failed to register backlight\n"); 601 ret = PTR_ERR(bl); 602 goto err_alloc; 603 } 604 605 if (data->dft_brightness > data->max_brightness) { 606 dev_warn(&pdev->dev, 607 "invalid default brightness level: %u, using %u\n", 608 data->dft_brightness, data->max_brightness); 609 data->dft_brightness = data->max_brightness; 610 } 611 612 bl->props.brightness = data->dft_brightness; 613 bl->props.power = pwm_backlight_initial_power_state(pb); 614 backlight_update_status(bl); 615 616 platform_set_drvdata(pdev, bl); 617 return 0; 618 619 err_alloc: 620 if (data->exit) 621 data->exit(&pdev->dev); 622 return ret; 623 } 624 625 static void pwm_backlight_remove(struct platform_device *pdev) 626 { 627 struct backlight_device *bl = platform_get_drvdata(pdev); 628 struct pwm_bl_data *pb = bl_get_data(bl); 629 struct pwm_state state; 630 631 backlight_device_unregister(bl); 632 pwm_backlight_power_off(pb); 633 pwm_get_state(pb->pwm, &state); 634 state.duty_cycle = 0; 635 state.enabled = false; 636 pwm_apply_state(pb->pwm, &state); 637 638 if (pb->exit) 639 pb->exit(&pdev->dev); 640 } 641 642 static void pwm_backlight_shutdown(struct platform_device *pdev) 643 { 644 struct backlight_device *bl = platform_get_drvdata(pdev); 645 struct pwm_bl_data *pb = bl_get_data(bl); 646 struct pwm_state state; 647 648 pwm_backlight_power_off(pb); 649 pwm_get_state(pb->pwm, &state); 650 state.duty_cycle = 0; 651 state.enabled = false; 652 pwm_apply_state(pb->pwm, &state); 653 } 654 655 #ifdef CONFIG_PM_SLEEP 656 static int pwm_backlight_suspend(struct device *dev) 657 { 658 struct backlight_device *bl = dev_get_drvdata(dev); 659 struct pwm_bl_data *pb = bl_get_data(bl); 660 struct pwm_state state; 661 662 if (pb->notify) 663 pb->notify(pb->dev, 0); 664 665 pwm_backlight_power_off(pb); 666 667 /* 668 * Note that disabling the PWM doesn't guarantee that the output stays 669 * at its inactive state. However without the PWM disabled, the PWM 670 * driver refuses to suspend. So disable here even though this might 671 * enable the backlight on poorly designed boards. 672 */ 673 pwm_get_state(pb->pwm, &state); 674 state.duty_cycle = 0; 675 state.enabled = false; 676 pwm_apply_state(pb->pwm, &state); 677 678 if (pb->notify_after) 679 pb->notify_after(pb->dev, 0); 680 681 return 0; 682 } 683 684 static int pwm_backlight_resume(struct device *dev) 685 { 686 struct backlight_device *bl = dev_get_drvdata(dev); 687 688 backlight_update_status(bl); 689 690 return 0; 691 } 692 #endif 693 694 static const struct dev_pm_ops pwm_backlight_pm_ops = { 695 #ifdef CONFIG_PM_SLEEP 696 .suspend = pwm_backlight_suspend, 697 .resume = pwm_backlight_resume, 698 .poweroff = pwm_backlight_suspend, 699 .restore = pwm_backlight_resume, 700 #endif 701 }; 702 703 static struct platform_driver pwm_backlight_driver = { 704 .driver = { 705 .name = "pwm-backlight", 706 .pm = &pwm_backlight_pm_ops, 707 .of_match_table = of_match_ptr(pwm_backlight_of_match), 708 }, 709 .probe = pwm_backlight_probe, 710 .remove_new = pwm_backlight_remove, 711 .shutdown = pwm_backlight_shutdown, 712 }; 713 714 module_platform_driver(pwm_backlight_driver); 715 716 MODULE_DESCRIPTION("PWM based Backlight Driver"); 717 MODULE_LICENSE("GPL v2"); 718 MODULE_ALIAS("platform:pwm-backlight"); 719