1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple PWM based backlight control, board code has to setup 4 * 1) pin configuration so PWM waveforms can output 5 * 2) platform_data being correctly configured 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/gpio/consumer.h> 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/platform_device.h> 14 #include <linux/fb.h> 15 #include <linux/backlight.h> 16 #include <linux/err.h> 17 #include <linux/pwm.h> 18 #include <linux/pwm_backlight.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/slab.h> 21 22 struct pwm_bl_data { 23 struct pwm_device *pwm; 24 struct device *dev; 25 unsigned int lth_brightness; 26 unsigned int *levels; 27 bool enabled; 28 struct regulator *power_supply; 29 struct gpio_desc *enable_gpio; 30 unsigned int scale; 31 bool legacy; 32 unsigned int post_pwm_on_delay; 33 unsigned int pwm_off_delay; 34 int (*notify)(struct device *, 35 int brightness); 36 void (*notify_after)(struct device *, 37 int brightness); 38 int (*check_fb)(struct device *, struct fb_info *); 39 void (*exit)(struct device *); 40 }; 41 42 static void pwm_backlight_power_on(struct pwm_bl_data *pb) 43 { 44 struct pwm_state state; 45 int err; 46 47 pwm_get_state(pb->pwm, &state); 48 if (pb->enabled) 49 return; 50 51 err = regulator_enable(pb->power_supply); 52 if (err < 0) 53 dev_err(pb->dev, "failed to enable power supply\n"); 54 55 state.enabled = true; 56 pwm_apply_state(pb->pwm, &state); 57 58 if (pb->post_pwm_on_delay) 59 msleep(pb->post_pwm_on_delay); 60 61 if (pb->enable_gpio) 62 gpiod_set_value_cansleep(pb->enable_gpio, 1); 63 64 pb->enabled = true; 65 } 66 67 static void pwm_backlight_power_off(struct pwm_bl_data *pb) 68 { 69 struct pwm_state state; 70 71 pwm_get_state(pb->pwm, &state); 72 if (!pb->enabled) 73 return; 74 75 if (pb->enable_gpio) 76 gpiod_set_value_cansleep(pb->enable_gpio, 0); 77 78 if (pb->pwm_off_delay) 79 msleep(pb->pwm_off_delay); 80 81 state.enabled = false; 82 state.duty_cycle = 0; 83 pwm_apply_state(pb->pwm, &state); 84 85 regulator_disable(pb->power_supply); 86 pb->enabled = false; 87 } 88 89 static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness) 90 { 91 unsigned int lth = pb->lth_brightness; 92 struct pwm_state state; 93 u64 duty_cycle; 94 95 pwm_get_state(pb->pwm, &state); 96 97 if (pb->levels) 98 duty_cycle = pb->levels[brightness]; 99 else 100 duty_cycle = brightness; 101 102 duty_cycle *= state.period - lth; 103 do_div(duty_cycle, pb->scale); 104 105 return duty_cycle + lth; 106 } 107 108 static int pwm_backlight_update_status(struct backlight_device *bl) 109 { 110 struct pwm_bl_data *pb = bl_get_data(bl); 111 int brightness = backlight_get_brightness(bl); 112 struct pwm_state state; 113 114 if (pb->notify) 115 brightness = pb->notify(pb->dev, brightness); 116 117 if (brightness > 0) { 118 pwm_get_state(pb->pwm, &state); 119 state.duty_cycle = compute_duty_cycle(pb, brightness); 120 pwm_apply_state(pb->pwm, &state); 121 pwm_backlight_power_on(pb); 122 } else { 123 pwm_backlight_power_off(pb); 124 } 125 126 if (pb->notify_after) 127 pb->notify_after(pb->dev, brightness); 128 129 return 0; 130 } 131 132 static int pwm_backlight_check_fb(struct backlight_device *bl, 133 struct fb_info *info) 134 { 135 struct pwm_bl_data *pb = bl_get_data(bl); 136 137 return !pb->check_fb || pb->check_fb(pb->dev, info); 138 } 139 140 static const struct backlight_ops pwm_backlight_ops = { 141 .update_status = pwm_backlight_update_status, 142 .check_fb = pwm_backlight_check_fb, 143 }; 144 145 #ifdef CONFIG_OF 146 #define PWM_LUMINANCE_SHIFT 16 147 #define PWM_LUMINANCE_SCALE (1 << PWM_LUMINANCE_SHIFT) /* luminance scale */ 148 149 /* 150 * CIE lightness to PWM conversion. 151 * 152 * The CIE 1931 lightness formula is what actually describes how we perceive 153 * light: 154 * Y = (L* / 903.3) if L* ≤ 8 155 * Y = ((L* + 16) / 116)^3 if L* > 8 156 * 157 * Where Y is the luminance, the amount of light coming out of the screen, and 158 * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human 159 * perceives the screen to be, and is a number between 0 and 100. 160 * 161 * The following function does the fixed point maths needed to implement the 162 * above formula. 163 */ 164 static u64 cie1931(unsigned int lightness) 165 { 166 u64 retval; 167 168 /* 169 * @lightness is given as a number between 0 and 1, expressed 170 * as a fixed-point number in scale 171 * PWM_LUMINANCE_SCALE. Convert to a percentage, still 172 * expressed as a fixed-point number, so the above formulas 173 * can be applied. 174 */ 175 lightness *= 100; 176 if (lightness <= (8 * PWM_LUMINANCE_SCALE)) { 177 retval = DIV_ROUND_CLOSEST(lightness * 10, 9033); 178 } else { 179 retval = (lightness + (16 * PWM_LUMINANCE_SCALE)) / 116; 180 retval *= retval * retval; 181 retval += 1ULL << (2*PWM_LUMINANCE_SHIFT - 1); 182 retval >>= 2*PWM_LUMINANCE_SHIFT; 183 } 184 185 return retval; 186 } 187 188 /* 189 * Create a default correction table for PWM values to create linear brightness 190 * for LED based backlights using the CIE1931 algorithm. 191 */ 192 static 193 int pwm_backlight_brightness_default(struct device *dev, 194 struct platform_pwm_backlight_data *data, 195 unsigned int period) 196 { 197 unsigned int i; 198 u64 retval; 199 200 /* 201 * Once we have 4096 levels there's little point going much higher... 202 * neither interactive sliders nor animation benefits from having 203 * more values in the table. 204 */ 205 data->max_brightness = 206 min((int)DIV_ROUND_UP(period, fls(period)), 4096); 207 208 data->levels = devm_kcalloc(dev, data->max_brightness, 209 sizeof(*data->levels), GFP_KERNEL); 210 if (!data->levels) 211 return -ENOMEM; 212 213 /* Fill the table using the cie1931 algorithm */ 214 for (i = 0; i < data->max_brightness; i++) { 215 retval = cie1931((i * PWM_LUMINANCE_SCALE) / 216 data->max_brightness) * period; 217 retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE); 218 if (retval > UINT_MAX) 219 return -EINVAL; 220 data->levels[i] = (unsigned int)retval; 221 } 222 223 data->dft_brightness = data->max_brightness / 2; 224 data->max_brightness--; 225 226 return 0; 227 } 228 229 static int pwm_backlight_parse_dt(struct device *dev, 230 struct platform_pwm_backlight_data *data) 231 { 232 struct device_node *node = dev->of_node; 233 unsigned int num_levels; 234 unsigned int num_steps = 0; 235 struct property *prop; 236 unsigned int *table; 237 int length; 238 u32 value; 239 int ret; 240 241 if (!node) 242 return -ENODEV; 243 244 memset(data, 0, sizeof(*data)); 245 246 /* 247 * These values are optional and set as 0 by default, the out values 248 * are modified only if a valid u32 value can be decoded. 249 */ 250 of_property_read_u32(node, "post-pwm-on-delay-ms", 251 &data->post_pwm_on_delay); 252 of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay); 253 254 /* 255 * Determine the number of brightness levels, if this property is not 256 * set a default table of brightness levels will be used. 257 */ 258 prop = of_find_property(node, "brightness-levels", &length); 259 if (!prop) 260 return 0; 261 262 num_levels = length / sizeof(u32); 263 264 /* read brightness levels from DT property */ 265 if (num_levels > 0) { 266 data->levels = devm_kcalloc(dev, num_levels, 267 sizeof(*data->levels), GFP_KERNEL); 268 if (!data->levels) 269 return -ENOMEM; 270 271 ret = of_property_read_u32_array(node, "brightness-levels", 272 data->levels, 273 num_levels); 274 if (ret < 0) 275 return ret; 276 277 ret = of_property_read_u32(node, "default-brightness-level", 278 &value); 279 if (ret < 0) 280 return ret; 281 282 data->dft_brightness = value; 283 284 /* 285 * This property is optional, if is set enables linear 286 * interpolation between each of the values of brightness levels 287 * and creates a new pre-computed table. 288 */ 289 of_property_read_u32(node, "num-interpolated-steps", 290 &num_steps); 291 292 /* 293 * Make sure that there is at least two entries in the 294 * brightness-levels table, otherwise we can't interpolate 295 * between two points. 296 */ 297 if (num_steps) { 298 unsigned int num_input_levels = num_levels; 299 unsigned int i; 300 u32 x1, x2, x, dx; 301 u32 y1, y2; 302 s64 dy; 303 304 if (num_input_levels < 2) { 305 dev_err(dev, "can't interpolate\n"); 306 return -EINVAL; 307 } 308 309 /* 310 * Recalculate the number of brightness levels, now 311 * taking in consideration the number of interpolated 312 * steps between two levels. 313 */ 314 num_levels = (num_input_levels - 1) * num_steps + 1; 315 dev_dbg(dev, "new number of brightness levels: %d\n", 316 num_levels); 317 318 /* 319 * Create a new table of brightness levels with all the 320 * interpolated steps. 321 */ 322 table = devm_kcalloc(dev, num_levels, sizeof(*table), 323 GFP_KERNEL); 324 if (!table) 325 return -ENOMEM; 326 /* 327 * Fill the interpolated table[x] = y 328 * by draw lines between each (x1, y1) to (x2, y2). 329 */ 330 dx = num_steps; 331 for (i = 0; i < num_input_levels - 1; i++) { 332 x1 = i * dx; 333 x2 = x1 + dx; 334 y1 = data->levels[i]; 335 y2 = data->levels[i + 1]; 336 dy = (s64)y2 - y1; 337 338 for (x = x1; x < x2; x++) { 339 table[x] = y1 + 340 div_s64(dy * (x - x1), dx); 341 } 342 } 343 /* Fill in the last point, since no line starts here. */ 344 table[x2] = y2; 345 346 /* 347 * As we use interpolation lets remove current 348 * brightness levels table and replace for the 349 * new interpolated table. 350 */ 351 devm_kfree(dev, data->levels); 352 data->levels = table; 353 } 354 355 data->max_brightness = num_levels - 1; 356 } 357 358 return 0; 359 } 360 361 static const struct of_device_id pwm_backlight_of_match[] = { 362 { .compatible = "pwm-backlight" }, 363 { } 364 }; 365 366 MODULE_DEVICE_TABLE(of, pwm_backlight_of_match); 367 #else 368 static int pwm_backlight_parse_dt(struct device *dev, 369 struct platform_pwm_backlight_data *data) 370 { 371 return -ENODEV; 372 } 373 374 static 375 int pwm_backlight_brightness_default(struct device *dev, 376 struct platform_pwm_backlight_data *data, 377 unsigned int period) 378 { 379 return -ENODEV; 380 } 381 #endif 382 383 static bool pwm_backlight_is_linear(struct platform_pwm_backlight_data *data) 384 { 385 unsigned int nlevels = data->max_brightness + 1; 386 unsigned int min_val = data->levels[0]; 387 unsigned int max_val = data->levels[nlevels - 1]; 388 /* 389 * Multiplying by 128 means that even in pathological cases such 390 * as (max_val - min_val) == nlevels the error at max_val is less 391 * than 1%. 392 */ 393 unsigned int slope = (128 * (max_val - min_val)) / nlevels; 394 unsigned int margin = (max_val - min_val) / 20; /* 5% */ 395 int i; 396 397 for (i = 1; i < nlevels; i++) { 398 unsigned int linear_value = min_val + ((i * slope) / 128); 399 unsigned int delta = abs(linear_value - data->levels[i]); 400 401 if (delta > margin) 402 return false; 403 } 404 405 return true; 406 } 407 408 static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb) 409 { 410 struct device_node *node = pb->dev->of_node; 411 bool active = true; 412 413 /* 414 * If the enable GPIO is present, observable (either as input 415 * or output) and off then the backlight is not currently active. 416 * */ 417 if (pb->enable_gpio && gpiod_get_value_cansleep(pb->enable_gpio) == 0) 418 active = false; 419 420 if (!regulator_is_enabled(pb->power_supply)) 421 active = false; 422 423 if (!pwm_is_enabled(pb->pwm)) 424 active = false; 425 426 /* 427 * Synchronize the enable_gpio with the observed state of the 428 * hardware. 429 */ 430 if (pb->enable_gpio) 431 gpiod_direction_output(pb->enable_gpio, active); 432 433 /* 434 * Do not change pb->enabled here! pb->enabled essentially 435 * tells us if we own one of the regulator's use counts and 436 * right now we do not. 437 */ 438 439 /* Not booted with device tree or no phandle link to the node */ 440 if (!node || !node->phandle) 441 return FB_BLANK_UNBLANK; 442 443 /* 444 * If the driver is probed from the device tree and there is a 445 * phandle link pointing to the backlight node, it is safe to 446 * assume that another driver will enable the backlight at the 447 * appropriate time. Therefore, if it is disabled, keep it so. 448 */ 449 return active ? FB_BLANK_UNBLANK: FB_BLANK_POWERDOWN; 450 } 451 452 static int pwm_backlight_probe(struct platform_device *pdev) 453 { 454 struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev); 455 struct platform_pwm_backlight_data defdata; 456 struct backlight_properties props; 457 struct backlight_device *bl; 458 struct device_node *node = pdev->dev.of_node; 459 struct pwm_bl_data *pb; 460 struct pwm_state state; 461 unsigned int i; 462 int ret; 463 464 if (!data) { 465 ret = pwm_backlight_parse_dt(&pdev->dev, &defdata); 466 if (ret < 0) { 467 dev_err(&pdev->dev, "failed to find platform data\n"); 468 return ret; 469 } 470 471 data = &defdata; 472 } 473 474 if (data->init) { 475 ret = data->init(&pdev->dev); 476 if (ret < 0) 477 return ret; 478 } 479 480 pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL); 481 if (!pb) { 482 ret = -ENOMEM; 483 goto err_alloc; 484 } 485 486 pb->notify = data->notify; 487 pb->notify_after = data->notify_after; 488 pb->check_fb = data->check_fb; 489 pb->exit = data->exit; 490 pb->dev = &pdev->dev; 491 pb->enabled = false; 492 pb->post_pwm_on_delay = data->post_pwm_on_delay; 493 pb->pwm_off_delay = data->pwm_off_delay; 494 495 pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable", 496 GPIOD_ASIS); 497 if (IS_ERR(pb->enable_gpio)) { 498 ret = PTR_ERR(pb->enable_gpio); 499 goto err_alloc; 500 } 501 502 pb->power_supply = devm_regulator_get(&pdev->dev, "power"); 503 if (IS_ERR(pb->power_supply)) { 504 ret = PTR_ERR(pb->power_supply); 505 goto err_alloc; 506 } 507 508 pb->pwm = devm_pwm_get(&pdev->dev, NULL); 509 if (IS_ERR(pb->pwm) && PTR_ERR(pb->pwm) != -EPROBE_DEFER && !node) { 510 dev_err(&pdev->dev, "unable to request PWM, trying legacy API\n"); 511 pb->legacy = true; 512 pb->pwm = pwm_request(data->pwm_id, "pwm-backlight"); 513 } 514 515 if (IS_ERR(pb->pwm)) { 516 ret = PTR_ERR(pb->pwm); 517 if (ret != -EPROBE_DEFER) 518 dev_err(&pdev->dev, "unable to request PWM\n"); 519 goto err_alloc; 520 } 521 522 dev_dbg(&pdev->dev, "got pwm for backlight\n"); 523 524 /* Sync up PWM state. */ 525 pwm_init_state(pb->pwm, &state); 526 527 /* 528 * The DT case will set the pwm_period_ns field to 0 and store the 529 * period, parsed from the DT, in the PWM device. For the non-DT case, 530 * set the period from platform data if it has not already been set 531 * via the PWM lookup table. 532 */ 533 if (!state.period && (data->pwm_period_ns > 0)) 534 state.period = data->pwm_period_ns; 535 536 ret = pwm_apply_state(pb->pwm, &state); 537 if (ret) { 538 dev_err(&pdev->dev, "failed to apply initial PWM state: %d\n", 539 ret); 540 goto err_alloc; 541 } 542 543 memset(&props, 0, sizeof(struct backlight_properties)); 544 545 if (data->levels) { 546 pb->levels = data->levels; 547 548 /* 549 * For the DT case, only when brightness levels is defined 550 * data->levels is filled. For the non-DT case, data->levels 551 * can come from platform data, however is not usual. 552 */ 553 for (i = 0; i <= data->max_brightness; i++) 554 if (data->levels[i] > pb->scale) 555 pb->scale = data->levels[i]; 556 557 if (pwm_backlight_is_linear(data)) 558 props.scale = BACKLIGHT_SCALE_LINEAR; 559 else 560 props.scale = BACKLIGHT_SCALE_NON_LINEAR; 561 } else if (!data->max_brightness) { 562 /* 563 * If no brightness levels are provided and max_brightness is 564 * not set, use the default brightness table. For the DT case, 565 * max_brightness is set to 0 when brightness levels is not 566 * specified. For the non-DT case, max_brightness is usually 567 * set to some value. 568 */ 569 570 /* Get the PWM period (in nanoseconds) */ 571 pwm_get_state(pb->pwm, &state); 572 573 ret = pwm_backlight_brightness_default(&pdev->dev, data, 574 state.period); 575 if (ret < 0) { 576 dev_err(&pdev->dev, 577 "failed to setup default brightness table\n"); 578 goto err_alloc; 579 } 580 581 for (i = 0; i <= data->max_brightness; i++) { 582 if (data->levels[i] > pb->scale) 583 pb->scale = data->levels[i]; 584 585 pb->levels = data->levels; 586 } 587 588 props.scale = BACKLIGHT_SCALE_NON_LINEAR; 589 } else { 590 /* 591 * That only happens for the non-DT case, where platform data 592 * sets the max_brightness value. 593 */ 594 pb->scale = data->max_brightness; 595 } 596 597 pb->lth_brightness = data->lth_brightness * (div_u64(state.period, 598 pb->scale)); 599 600 props.type = BACKLIGHT_RAW; 601 props.max_brightness = data->max_brightness; 602 bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb, 603 &pwm_backlight_ops, &props); 604 if (IS_ERR(bl)) { 605 dev_err(&pdev->dev, "failed to register backlight\n"); 606 ret = PTR_ERR(bl); 607 if (pb->legacy) 608 pwm_free(pb->pwm); 609 goto err_alloc; 610 } 611 612 if (data->dft_brightness > data->max_brightness) { 613 dev_warn(&pdev->dev, 614 "invalid default brightness level: %u, using %u\n", 615 data->dft_brightness, data->max_brightness); 616 data->dft_brightness = data->max_brightness; 617 } 618 619 bl->props.brightness = data->dft_brightness; 620 bl->props.power = pwm_backlight_initial_power_state(pb); 621 backlight_update_status(bl); 622 623 platform_set_drvdata(pdev, bl); 624 return 0; 625 626 err_alloc: 627 if (data->exit) 628 data->exit(&pdev->dev); 629 return ret; 630 } 631 632 static int pwm_backlight_remove(struct platform_device *pdev) 633 { 634 struct backlight_device *bl = platform_get_drvdata(pdev); 635 struct pwm_bl_data *pb = bl_get_data(bl); 636 637 backlight_device_unregister(bl); 638 pwm_backlight_power_off(pb); 639 640 if (pb->exit) 641 pb->exit(&pdev->dev); 642 if (pb->legacy) 643 pwm_free(pb->pwm); 644 645 return 0; 646 } 647 648 static void pwm_backlight_shutdown(struct platform_device *pdev) 649 { 650 struct backlight_device *bl = platform_get_drvdata(pdev); 651 struct pwm_bl_data *pb = bl_get_data(bl); 652 653 pwm_backlight_power_off(pb); 654 } 655 656 #ifdef CONFIG_PM_SLEEP 657 static int pwm_backlight_suspend(struct device *dev) 658 { 659 struct backlight_device *bl = dev_get_drvdata(dev); 660 struct pwm_bl_data *pb = bl_get_data(bl); 661 662 if (pb->notify) 663 pb->notify(pb->dev, 0); 664 665 pwm_backlight_power_off(pb); 666 667 if (pb->notify_after) 668 pb->notify_after(pb->dev, 0); 669 670 return 0; 671 } 672 673 static int pwm_backlight_resume(struct device *dev) 674 { 675 struct backlight_device *bl = dev_get_drvdata(dev); 676 677 backlight_update_status(bl); 678 679 return 0; 680 } 681 #endif 682 683 static const struct dev_pm_ops pwm_backlight_pm_ops = { 684 #ifdef CONFIG_PM_SLEEP 685 .suspend = pwm_backlight_suspend, 686 .resume = pwm_backlight_resume, 687 .poweroff = pwm_backlight_suspend, 688 .restore = pwm_backlight_resume, 689 #endif 690 }; 691 692 static struct platform_driver pwm_backlight_driver = { 693 .driver = { 694 .name = "pwm-backlight", 695 .pm = &pwm_backlight_pm_ops, 696 .of_match_table = of_match_ptr(pwm_backlight_of_match), 697 }, 698 .probe = pwm_backlight_probe, 699 .remove = pwm_backlight_remove, 700 .shutdown = pwm_backlight_shutdown, 701 }; 702 703 module_platform_driver(pwm_backlight_driver); 704 705 MODULE_DESCRIPTION("PWM based Backlight Driver"); 706 MODULE_LICENSE("GPL v2"); 707 MODULE_ALIAS("platform:pwm-backlight"); 708