1 /* 2 * linux/drivers/video/backlight/pwm_bl.c 3 * 4 * simple PWM based backlight control, board code has to setup 5 * 1) pin configuration so PWM waveforms can output 6 * 2) platform_data being correctly configured 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/delay.h> 14 #include <linux/gpio/consumer.h> 15 #include <linux/gpio.h> 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/init.h> 19 #include <linux/platform_device.h> 20 #include <linux/fb.h> 21 #include <linux/backlight.h> 22 #include <linux/err.h> 23 #include <linux/pwm.h> 24 #include <linux/pwm_backlight.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/slab.h> 27 28 struct pwm_bl_data { 29 struct pwm_device *pwm; 30 struct device *dev; 31 unsigned int lth_brightness; 32 unsigned int *levels; 33 bool enabled; 34 struct regulator *power_supply; 35 struct gpio_desc *enable_gpio; 36 unsigned int scale; 37 bool legacy; 38 unsigned int post_pwm_on_delay; 39 unsigned int pwm_off_delay; 40 int (*notify)(struct device *, 41 int brightness); 42 void (*notify_after)(struct device *, 43 int brightness); 44 int (*check_fb)(struct device *, struct fb_info *); 45 void (*exit)(struct device *); 46 }; 47 48 static void pwm_backlight_power_on(struct pwm_bl_data *pb) 49 { 50 struct pwm_state state; 51 int err; 52 53 pwm_get_state(pb->pwm, &state); 54 if (pb->enabled) 55 return; 56 57 err = regulator_enable(pb->power_supply); 58 if (err < 0) 59 dev_err(pb->dev, "failed to enable power supply\n"); 60 61 state.enabled = true; 62 pwm_apply_state(pb->pwm, &state); 63 64 if (pb->post_pwm_on_delay) 65 msleep(pb->post_pwm_on_delay); 66 67 if (pb->enable_gpio) 68 gpiod_set_value_cansleep(pb->enable_gpio, 1); 69 70 pb->enabled = true; 71 } 72 73 static void pwm_backlight_power_off(struct pwm_bl_data *pb) 74 { 75 struct pwm_state state; 76 77 pwm_get_state(pb->pwm, &state); 78 if (!pb->enabled) 79 return; 80 81 if (pb->enable_gpio) 82 gpiod_set_value_cansleep(pb->enable_gpio, 0); 83 84 if (pb->pwm_off_delay) 85 msleep(pb->pwm_off_delay); 86 87 state.enabled = false; 88 state.duty_cycle = 0; 89 pwm_apply_state(pb->pwm, &state); 90 91 regulator_disable(pb->power_supply); 92 pb->enabled = false; 93 } 94 95 static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness) 96 { 97 unsigned int lth = pb->lth_brightness; 98 struct pwm_state state; 99 u64 duty_cycle; 100 101 pwm_get_state(pb->pwm, &state); 102 103 if (pb->levels) 104 duty_cycle = pb->levels[brightness]; 105 else 106 duty_cycle = brightness; 107 108 duty_cycle *= state.period - lth; 109 do_div(duty_cycle, pb->scale); 110 111 return duty_cycle + lth; 112 } 113 114 static int pwm_backlight_update_status(struct backlight_device *bl) 115 { 116 struct pwm_bl_data *pb = bl_get_data(bl); 117 int brightness = bl->props.brightness; 118 struct pwm_state state; 119 120 if (bl->props.power != FB_BLANK_UNBLANK || 121 bl->props.fb_blank != FB_BLANK_UNBLANK || 122 bl->props.state & BL_CORE_FBBLANK) 123 brightness = 0; 124 125 if (pb->notify) 126 brightness = pb->notify(pb->dev, brightness); 127 128 if (brightness > 0) { 129 pwm_get_state(pb->pwm, &state); 130 state.duty_cycle = compute_duty_cycle(pb, brightness); 131 pwm_apply_state(pb->pwm, &state); 132 pwm_backlight_power_on(pb); 133 } else 134 pwm_backlight_power_off(pb); 135 136 if (pb->notify_after) 137 pb->notify_after(pb->dev, brightness); 138 139 return 0; 140 } 141 142 static int pwm_backlight_check_fb(struct backlight_device *bl, 143 struct fb_info *info) 144 { 145 struct pwm_bl_data *pb = bl_get_data(bl); 146 147 return !pb->check_fb || pb->check_fb(pb->dev, info); 148 } 149 150 static const struct backlight_ops pwm_backlight_ops = { 151 .update_status = pwm_backlight_update_status, 152 .check_fb = pwm_backlight_check_fb, 153 }; 154 155 #ifdef CONFIG_OF 156 #define PWM_LUMINANCE_SCALE 10000 /* luminance scale */ 157 158 /* An integer based power function */ 159 static u64 int_pow(u64 base, int exp) 160 { 161 u64 result = 1; 162 163 while (exp) { 164 if (exp & 1) 165 result *= base; 166 exp >>= 1; 167 base *= base; 168 } 169 170 return result; 171 } 172 173 /* 174 * CIE lightness to PWM conversion. 175 * 176 * The CIE 1931 lightness formula is what actually describes how we perceive 177 * light: 178 * Y = (L* / 902.3) if L* ≤ 0.08856 179 * Y = ((L* + 16) / 116)^3 if L* > 0.08856 180 * 181 * Where Y is the luminance, the amount of light coming out of the screen, and 182 * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human 183 * perceives the screen to be, and is a number between 0 and 100. 184 * 185 * The following function does the fixed point maths needed to implement the 186 * above formula. 187 */ 188 static u64 cie1931(unsigned int lightness, unsigned int scale) 189 { 190 u64 retval; 191 192 lightness *= 100; 193 if (lightness <= (8 * scale)) { 194 retval = DIV_ROUND_CLOSEST_ULL(lightness * 10, 9023); 195 } else { 196 retval = int_pow((lightness + (16 * scale)) / 116, 3); 197 retval = DIV_ROUND_CLOSEST_ULL(retval, (scale * scale)); 198 } 199 200 return retval; 201 } 202 203 /* 204 * Create a default correction table for PWM values to create linear brightness 205 * for LED based backlights using the CIE1931 algorithm. 206 */ 207 static 208 int pwm_backlight_brightness_default(struct device *dev, 209 struct platform_pwm_backlight_data *data, 210 unsigned int period) 211 { 212 unsigned int counter = 0; 213 unsigned int i, n; 214 u64 retval; 215 216 /* 217 * Count the number of bits needed to represent the period number. The 218 * number of bits is used to calculate the number of levels used for the 219 * brightness-levels table, the purpose of this calculation is have a 220 * pre-computed table with enough levels to get linear brightness 221 * perception. The period is divided by the number of bits so for a 222 * 8-bit PWM we have 255 / 8 = 32 brightness levels or for a 16-bit PWM 223 * we have 65535 / 16 = 4096 brightness levels. 224 * 225 * Note that this method is based on empirical testing on different 226 * devices with PWM of 8 and 16 bits of resolution. 227 */ 228 n = period; 229 while (n) { 230 counter += n % 2; 231 n >>= 1; 232 } 233 234 data->max_brightness = DIV_ROUND_UP(period, counter); 235 data->levels = devm_kcalloc(dev, data->max_brightness, 236 sizeof(*data->levels), GFP_KERNEL); 237 if (!data->levels) 238 return -ENOMEM; 239 240 /* Fill the table using the cie1931 algorithm */ 241 for (i = 0; i < data->max_brightness; i++) { 242 retval = cie1931((i * PWM_LUMINANCE_SCALE) / 243 data->max_brightness, PWM_LUMINANCE_SCALE) * 244 period; 245 retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE); 246 if (retval > UINT_MAX) 247 return -EINVAL; 248 data->levels[i] = (unsigned int)retval; 249 } 250 251 data->dft_brightness = data->max_brightness / 2; 252 data->max_brightness--; 253 254 return 0; 255 } 256 257 static int pwm_backlight_parse_dt(struct device *dev, 258 struct platform_pwm_backlight_data *data) 259 { 260 struct device_node *node = dev->of_node; 261 unsigned int num_levels = 0; 262 unsigned int levels_count; 263 unsigned int num_steps = 0; 264 struct property *prop; 265 unsigned int *table; 266 int length; 267 u32 value; 268 int ret; 269 270 if (!node) 271 return -ENODEV; 272 273 memset(data, 0, sizeof(*data)); 274 275 /* 276 * These values are optional and set as 0 by default, the out values 277 * are modified only if a valid u32 value can be decoded. 278 */ 279 of_property_read_u32(node, "post-pwm-on-delay-ms", 280 &data->post_pwm_on_delay); 281 of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay); 282 283 data->enable_gpio = -EINVAL; 284 285 /* 286 * Determine the number of brightness levels, if this property is not 287 * set a default table of brightness levels will be used. 288 */ 289 prop = of_find_property(node, "brightness-levels", &length); 290 if (!prop) 291 return 0; 292 293 data->max_brightness = length / sizeof(u32); 294 295 /* read brightness levels from DT property */ 296 if (data->max_brightness > 0) { 297 size_t size = sizeof(*data->levels) * data->max_brightness; 298 unsigned int i, j, n = 0; 299 300 data->levels = devm_kzalloc(dev, size, GFP_KERNEL); 301 if (!data->levels) 302 return -ENOMEM; 303 304 ret = of_property_read_u32_array(node, "brightness-levels", 305 data->levels, 306 data->max_brightness); 307 if (ret < 0) 308 return ret; 309 310 ret = of_property_read_u32(node, "default-brightness-level", 311 &value); 312 if (ret < 0) 313 return ret; 314 315 data->dft_brightness = value; 316 317 /* 318 * This property is optional, if is set enables linear 319 * interpolation between each of the values of brightness levels 320 * and creates a new pre-computed table. 321 */ 322 of_property_read_u32(node, "num-interpolated-steps", 323 &num_steps); 324 325 /* 326 * Make sure that there is at least two entries in the 327 * brightness-levels table, otherwise we can't interpolate 328 * between two points. 329 */ 330 if (num_steps) { 331 if (data->max_brightness < 2) { 332 dev_err(dev, "can't interpolate\n"); 333 return -EINVAL; 334 } 335 336 /* 337 * Recalculate the number of brightness levels, now 338 * taking in consideration the number of interpolated 339 * steps between two levels. 340 */ 341 for (i = 0; i < data->max_brightness - 1; i++) { 342 if ((data->levels[i + 1] - data->levels[i]) / 343 num_steps) 344 num_levels += num_steps; 345 else 346 num_levels++; 347 } 348 num_levels++; 349 dev_dbg(dev, "new number of brightness levels: %d\n", 350 num_levels); 351 352 /* 353 * Create a new table of brightness levels with all the 354 * interpolated steps. 355 */ 356 size = sizeof(*table) * num_levels; 357 table = devm_kzalloc(dev, size, GFP_KERNEL); 358 if (!table) 359 return -ENOMEM; 360 361 /* Fill the interpolated table. */ 362 levels_count = 0; 363 for (i = 0; i < data->max_brightness - 1; i++) { 364 value = data->levels[i]; 365 n = (data->levels[i + 1] - value) / num_steps; 366 if (n > 0) { 367 for (j = 0; j < num_steps; j++) { 368 table[levels_count] = value; 369 value += n; 370 levels_count++; 371 } 372 } else { 373 table[levels_count] = data->levels[i]; 374 levels_count++; 375 } 376 } 377 table[levels_count] = data->levels[i]; 378 379 /* 380 * As we use interpolation lets remove current 381 * brightness levels table and replace for the 382 * new interpolated table. 383 */ 384 devm_kfree(dev, data->levels); 385 data->levels = table; 386 387 /* 388 * Reassign max_brightness value to the new total number 389 * of brightness levels. 390 */ 391 data->max_brightness = num_levels; 392 } 393 394 data->max_brightness--; 395 } 396 397 return 0; 398 } 399 400 static const struct of_device_id pwm_backlight_of_match[] = { 401 { .compatible = "pwm-backlight" }, 402 { } 403 }; 404 405 MODULE_DEVICE_TABLE(of, pwm_backlight_of_match); 406 #else 407 static int pwm_backlight_parse_dt(struct device *dev, 408 struct platform_pwm_backlight_data *data) 409 { 410 return -ENODEV; 411 } 412 413 static 414 int pwm_backlight_brightness_default(struct device *dev, 415 struct platform_pwm_backlight_data *data, 416 unsigned int period) 417 { 418 return -ENODEV; 419 } 420 #endif 421 422 static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb) 423 { 424 struct device_node *node = pb->dev->of_node; 425 426 /* Not booted with device tree or no phandle link to the node */ 427 if (!node || !node->phandle) 428 return FB_BLANK_UNBLANK; 429 430 /* 431 * If the driver is probed from the device tree and there is a 432 * phandle link pointing to the backlight node, it is safe to 433 * assume that another driver will enable the backlight at the 434 * appropriate time. Therefore, if it is disabled, keep it so. 435 */ 436 437 /* if the enable GPIO is disabled, do not enable the backlight */ 438 if (pb->enable_gpio && gpiod_get_value(pb->enable_gpio) == 0) 439 return FB_BLANK_POWERDOWN; 440 441 /* The regulator is disabled, do not enable the backlight */ 442 if (!regulator_is_enabled(pb->power_supply)) 443 return FB_BLANK_POWERDOWN; 444 445 /* The PWM is disabled, keep it like this */ 446 if (!pwm_is_enabled(pb->pwm)) 447 return FB_BLANK_POWERDOWN; 448 449 return FB_BLANK_UNBLANK; 450 } 451 452 static int pwm_backlight_probe(struct platform_device *pdev) 453 { 454 struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev); 455 struct platform_pwm_backlight_data defdata; 456 struct backlight_properties props; 457 struct backlight_device *bl; 458 struct device_node *node = pdev->dev.of_node; 459 struct pwm_bl_data *pb; 460 struct pwm_state state; 461 unsigned int i; 462 int ret; 463 464 if (!data) { 465 ret = pwm_backlight_parse_dt(&pdev->dev, &defdata); 466 if (ret < 0) { 467 dev_err(&pdev->dev, "failed to find platform data\n"); 468 return ret; 469 } 470 471 data = &defdata; 472 } 473 474 if (data->init) { 475 ret = data->init(&pdev->dev); 476 if (ret < 0) 477 return ret; 478 } 479 480 pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL); 481 if (!pb) { 482 ret = -ENOMEM; 483 goto err_alloc; 484 } 485 486 pb->notify = data->notify; 487 pb->notify_after = data->notify_after; 488 pb->check_fb = data->check_fb; 489 pb->exit = data->exit; 490 pb->dev = &pdev->dev; 491 pb->enabled = false; 492 pb->post_pwm_on_delay = data->post_pwm_on_delay; 493 pb->pwm_off_delay = data->pwm_off_delay; 494 495 pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable", 496 GPIOD_ASIS); 497 if (IS_ERR(pb->enable_gpio)) { 498 ret = PTR_ERR(pb->enable_gpio); 499 goto err_alloc; 500 } 501 502 /* 503 * Compatibility fallback for drivers still using the integer GPIO 504 * platform data. Must go away soon. 505 */ 506 if (!pb->enable_gpio && gpio_is_valid(data->enable_gpio)) { 507 ret = devm_gpio_request_one(&pdev->dev, data->enable_gpio, 508 GPIOF_OUT_INIT_HIGH, "enable"); 509 if (ret < 0) { 510 dev_err(&pdev->dev, "failed to request GPIO#%d: %d\n", 511 data->enable_gpio, ret); 512 goto err_alloc; 513 } 514 515 pb->enable_gpio = gpio_to_desc(data->enable_gpio); 516 } 517 518 /* 519 * If the GPIO is not known to be already configured as output, that 520 * is, if gpiod_get_direction returns either 1 or -EINVAL, change the 521 * direction to output and set the GPIO as active. 522 * Do not force the GPIO to active when it was already output as it 523 * could cause backlight flickering or we would enable the backlight too 524 * early. Leave the decision of the initial backlight state for later. 525 */ 526 if (pb->enable_gpio && 527 gpiod_get_direction(pb->enable_gpio) != 0) 528 gpiod_direction_output(pb->enable_gpio, 1); 529 530 pb->power_supply = devm_regulator_get(&pdev->dev, "power"); 531 if (IS_ERR(pb->power_supply)) { 532 ret = PTR_ERR(pb->power_supply); 533 goto err_alloc; 534 } 535 536 pb->pwm = devm_pwm_get(&pdev->dev, NULL); 537 if (IS_ERR(pb->pwm) && PTR_ERR(pb->pwm) != -EPROBE_DEFER && !node) { 538 dev_err(&pdev->dev, "unable to request PWM, trying legacy API\n"); 539 pb->legacy = true; 540 pb->pwm = pwm_request(data->pwm_id, "pwm-backlight"); 541 } 542 543 if (IS_ERR(pb->pwm)) { 544 ret = PTR_ERR(pb->pwm); 545 if (ret != -EPROBE_DEFER) 546 dev_err(&pdev->dev, "unable to request PWM\n"); 547 goto err_alloc; 548 } 549 550 dev_dbg(&pdev->dev, "got pwm for backlight\n"); 551 552 /* Sync up PWM state. */ 553 pwm_init_state(pb->pwm, &state); 554 555 /* 556 * The DT case will set the pwm_period_ns field to 0 and store the 557 * period, parsed from the DT, in the PWM device. For the non-DT case, 558 * set the period from platform data if it has not already been set 559 * via the PWM lookup table. 560 */ 561 if (!state.period && (data->pwm_period_ns > 0)) 562 state.period = data->pwm_period_ns; 563 564 ret = pwm_apply_state(pb->pwm, &state); 565 if (ret) { 566 dev_err(&pdev->dev, "failed to apply initial PWM state: %d\n", 567 ret); 568 goto err_alloc; 569 } 570 571 if (data->levels) { 572 /* 573 * For the DT case, only when brightness levels is defined 574 * data->levels is filled. For the non-DT case, data->levels 575 * can come from platform data, however is not usual. 576 */ 577 for (i = 0; i <= data->max_brightness; i++) { 578 if (data->levels[i] > pb->scale) 579 pb->scale = data->levels[i]; 580 581 pb->levels = data->levels; 582 } 583 } else if (!data->max_brightness) { 584 /* 585 * If no brightness levels are provided and max_brightness is 586 * not set, use the default brightness table. For the DT case, 587 * max_brightness is set to 0 when brightness levels is not 588 * specified. For the non-DT case, max_brightness is usually 589 * set to some value. 590 */ 591 592 /* Get the PWM period (in nanoseconds) */ 593 pwm_get_state(pb->pwm, &state); 594 595 ret = pwm_backlight_brightness_default(&pdev->dev, data, 596 state.period); 597 if (ret < 0) { 598 dev_err(&pdev->dev, 599 "failed to setup default brightness table\n"); 600 goto err_alloc; 601 } 602 603 for (i = 0; i <= data->max_brightness; i++) { 604 if (data->levels[i] > pb->scale) 605 pb->scale = data->levels[i]; 606 607 pb->levels = data->levels; 608 } 609 } else { 610 /* 611 * That only happens for the non-DT case, where platform data 612 * sets the max_brightness value. 613 */ 614 pb->scale = data->max_brightness; 615 } 616 617 pb->lth_brightness = data->lth_brightness * (state.period / pb->scale); 618 619 memset(&props, 0, sizeof(struct backlight_properties)); 620 props.type = BACKLIGHT_RAW; 621 props.max_brightness = data->max_brightness; 622 bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb, 623 &pwm_backlight_ops, &props); 624 if (IS_ERR(bl)) { 625 dev_err(&pdev->dev, "failed to register backlight\n"); 626 ret = PTR_ERR(bl); 627 if (pb->legacy) 628 pwm_free(pb->pwm); 629 goto err_alloc; 630 } 631 632 if (data->dft_brightness > data->max_brightness) { 633 dev_warn(&pdev->dev, 634 "invalid default brightness level: %u, using %u\n", 635 data->dft_brightness, data->max_brightness); 636 data->dft_brightness = data->max_brightness; 637 } 638 639 bl->props.brightness = data->dft_brightness; 640 bl->props.power = pwm_backlight_initial_power_state(pb); 641 backlight_update_status(bl); 642 643 platform_set_drvdata(pdev, bl); 644 return 0; 645 646 err_alloc: 647 if (data->exit) 648 data->exit(&pdev->dev); 649 return ret; 650 } 651 652 static int pwm_backlight_remove(struct platform_device *pdev) 653 { 654 struct backlight_device *bl = platform_get_drvdata(pdev); 655 struct pwm_bl_data *pb = bl_get_data(bl); 656 657 backlight_device_unregister(bl); 658 pwm_backlight_power_off(pb); 659 660 if (pb->exit) 661 pb->exit(&pdev->dev); 662 if (pb->legacy) 663 pwm_free(pb->pwm); 664 665 return 0; 666 } 667 668 static void pwm_backlight_shutdown(struct platform_device *pdev) 669 { 670 struct backlight_device *bl = platform_get_drvdata(pdev); 671 struct pwm_bl_data *pb = bl_get_data(bl); 672 673 pwm_backlight_power_off(pb); 674 } 675 676 #ifdef CONFIG_PM_SLEEP 677 static int pwm_backlight_suspend(struct device *dev) 678 { 679 struct backlight_device *bl = dev_get_drvdata(dev); 680 struct pwm_bl_data *pb = bl_get_data(bl); 681 682 if (pb->notify) 683 pb->notify(pb->dev, 0); 684 685 pwm_backlight_power_off(pb); 686 687 if (pb->notify_after) 688 pb->notify_after(pb->dev, 0); 689 690 return 0; 691 } 692 693 static int pwm_backlight_resume(struct device *dev) 694 { 695 struct backlight_device *bl = dev_get_drvdata(dev); 696 697 backlight_update_status(bl); 698 699 return 0; 700 } 701 #endif 702 703 static const struct dev_pm_ops pwm_backlight_pm_ops = { 704 #ifdef CONFIG_PM_SLEEP 705 .suspend = pwm_backlight_suspend, 706 .resume = pwm_backlight_resume, 707 .poweroff = pwm_backlight_suspend, 708 .restore = pwm_backlight_resume, 709 #endif 710 }; 711 712 static struct platform_driver pwm_backlight_driver = { 713 .driver = { 714 .name = "pwm-backlight", 715 .pm = &pwm_backlight_pm_ops, 716 .of_match_table = of_match_ptr(pwm_backlight_of_match), 717 }, 718 .probe = pwm_backlight_probe, 719 .remove = pwm_backlight_remove, 720 .shutdown = pwm_backlight_shutdown, 721 }; 722 723 module_platform_driver(pwm_backlight_driver); 724 725 MODULE_DESCRIPTION("PWM based Backlight Driver"); 726 MODULE_LICENSE("GPL"); 727 MODULE_ALIAS("platform:pwm-backlight"); 728