1 /* 2 * linux/drivers/video/backlight/pwm_bl.c 3 * 4 * simple PWM based backlight control, board code has to setup 5 * 1) pin configuration so PWM waveforms can output 6 * 2) platform_data being correctly configured 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/delay.h> 14 #include <linux/gpio/consumer.h> 15 #include <linux/gpio.h> 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/init.h> 19 #include <linux/platform_device.h> 20 #include <linux/fb.h> 21 #include <linux/backlight.h> 22 #include <linux/err.h> 23 #include <linux/pwm.h> 24 #include <linux/pwm_backlight.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/slab.h> 27 28 struct pwm_bl_data { 29 struct pwm_device *pwm; 30 struct device *dev; 31 unsigned int lth_brightness; 32 unsigned int *levels; 33 struct regulator *power_supply; 34 struct gpio_desc *enable_gpio; 35 unsigned int scale; 36 bool legacy; 37 unsigned int post_pwm_on_delay; 38 unsigned int pwm_off_delay; 39 int (*notify)(struct device *, 40 int brightness); 41 void (*notify_after)(struct device *, 42 int brightness); 43 int (*check_fb)(struct device *, struct fb_info *); 44 void (*exit)(struct device *); 45 }; 46 47 static void pwm_backlight_power_on(struct pwm_bl_data *pb) 48 { 49 struct pwm_state state; 50 int err; 51 52 pwm_get_state(pb->pwm, &state); 53 if (state.enabled) 54 return; 55 56 err = regulator_enable(pb->power_supply); 57 if (err < 0) 58 dev_err(pb->dev, "failed to enable power supply\n"); 59 60 state.enabled = true; 61 pwm_apply_state(pb->pwm, &state); 62 63 if (pb->post_pwm_on_delay) 64 msleep(pb->post_pwm_on_delay); 65 66 if (pb->enable_gpio) 67 gpiod_set_value_cansleep(pb->enable_gpio, 1); 68 } 69 70 static void pwm_backlight_power_off(struct pwm_bl_data *pb) 71 { 72 struct pwm_state state; 73 74 pwm_get_state(pb->pwm, &state); 75 if (!state.enabled) 76 return; 77 78 if (pb->enable_gpio) 79 gpiod_set_value_cansleep(pb->enable_gpio, 0); 80 81 if (pb->pwm_off_delay) 82 msleep(pb->pwm_off_delay); 83 84 state.enabled = false; 85 state.duty_cycle = 0; 86 pwm_apply_state(pb->pwm, &state); 87 88 regulator_disable(pb->power_supply); 89 } 90 91 static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness) 92 { 93 unsigned int lth = pb->lth_brightness; 94 struct pwm_state state; 95 u64 duty_cycle; 96 97 pwm_get_state(pb->pwm, &state); 98 99 if (pb->levels) 100 duty_cycle = pb->levels[brightness]; 101 else 102 duty_cycle = brightness; 103 104 duty_cycle *= state.period - lth; 105 do_div(duty_cycle, pb->scale); 106 107 return duty_cycle + lth; 108 } 109 110 static int pwm_backlight_update_status(struct backlight_device *bl) 111 { 112 struct pwm_bl_data *pb = bl_get_data(bl); 113 int brightness = bl->props.brightness; 114 struct pwm_state state; 115 116 if (bl->props.power != FB_BLANK_UNBLANK || 117 bl->props.fb_blank != FB_BLANK_UNBLANK || 118 bl->props.state & BL_CORE_FBBLANK) 119 brightness = 0; 120 121 if (pb->notify) 122 brightness = pb->notify(pb->dev, brightness); 123 124 if (brightness > 0) { 125 pwm_get_state(pb->pwm, &state); 126 state.duty_cycle = compute_duty_cycle(pb, brightness); 127 pwm_apply_state(pb->pwm, &state); 128 pwm_backlight_power_on(pb); 129 } else 130 pwm_backlight_power_off(pb); 131 132 if (pb->notify_after) 133 pb->notify_after(pb->dev, brightness); 134 135 return 0; 136 } 137 138 static int pwm_backlight_check_fb(struct backlight_device *bl, 139 struct fb_info *info) 140 { 141 struct pwm_bl_data *pb = bl_get_data(bl); 142 143 return !pb->check_fb || pb->check_fb(pb->dev, info); 144 } 145 146 static const struct backlight_ops pwm_backlight_ops = { 147 .update_status = pwm_backlight_update_status, 148 .check_fb = pwm_backlight_check_fb, 149 }; 150 151 #ifdef CONFIG_OF 152 #define PWM_LUMINANCE_SCALE 10000 /* luminance scale */ 153 154 /* An integer based power function */ 155 static u64 int_pow(u64 base, int exp) 156 { 157 u64 result = 1; 158 159 while (exp) { 160 if (exp & 1) 161 result *= base; 162 exp >>= 1; 163 base *= base; 164 } 165 166 return result; 167 } 168 169 /* 170 * CIE lightness to PWM conversion. 171 * 172 * The CIE 1931 lightness formula is what actually describes how we perceive 173 * light: 174 * Y = (L* / 902.3) if L* ≤ 0.08856 175 * Y = ((L* + 16) / 116)^3 if L* > 0.08856 176 * 177 * Where Y is the luminance, the amount of light coming out of the screen, and 178 * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human 179 * perceives the screen to be, and is a number between 0 and 100. 180 * 181 * The following function does the fixed point maths needed to implement the 182 * above formula. 183 */ 184 static u64 cie1931(unsigned int lightness, unsigned int scale) 185 { 186 u64 retval; 187 188 lightness *= 100; 189 if (lightness <= (8 * scale)) { 190 retval = DIV_ROUND_CLOSEST_ULL(lightness * 10, 9023); 191 } else { 192 retval = int_pow((lightness + (16 * scale)) / 116, 3); 193 retval = DIV_ROUND_CLOSEST_ULL(retval, (scale * scale)); 194 } 195 196 return retval; 197 } 198 199 /* 200 * Create a default correction table for PWM values to create linear brightness 201 * for LED based backlights using the CIE1931 algorithm. 202 */ 203 static 204 int pwm_backlight_brightness_default(struct device *dev, 205 struct platform_pwm_backlight_data *data, 206 unsigned int period) 207 { 208 unsigned int counter = 0; 209 unsigned int i, n; 210 u64 retval; 211 212 /* 213 * Count the number of bits needed to represent the period number. The 214 * number of bits is used to calculate the number of levels used for the 215 * brightness-levels table, the purpose of this calculation is have a 216 * pre-computed table with enough levels to get linear brightness 217 * perception. The period is divided by the number of bits so for a 218 * 8-bit PWM we have 255 / 8 = 32 brightness levels or for a 16-bit PWM 219 * we have 65535 / 16 = 4096 brightness levels. 220 * 221 * Note that this method is based on empirical testing on different 222 * devices with PWM of 8 and 16 bits of resolution. 223 */ 224 n = period; 225 while (n) { 226 counter += n % 2; 227 n >>= 1; 228 } 229 230 data->max_brightness = DIV_ROUND_UP(period, counter); 231 data->levels = devm_kcalloc(dev, data->max_brightness, 232 sizeof(*data->levels), GFP_KERNEL); 233 if (!data->levels) 234 return -ENOMEM; 235 236 /* Fill the table using the cie1931 algorithm */ 237 for (i = 0; i < data->max_brightness; i++) { 238 retval = cie1931((i * PWM_LUMINANCE_SCALE) / 239 data->max_brightness, PWM_LUMINANCE_SCALE) * 240 period; 241 retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE); 242 if (retval > UINT_MAX) 243 return -EINVAL; 244 data->levels[i] = (unsigned int)retval; 245 } 246 247 data->dft_brightness = data->max_brightness / 2; 248 data->max_brightness--; 249 250 return 0; 251 } 252 253 static int pwm_backlight_parse_dt(struct device *dev, 254 struct platform_pwm_backlight_data *data) 255 { 256 struct device_node *node = dev->of_node; 257 unsigned int num_levels = 0; 258 unsigned int levels_count; 259 unsigned int num_steps = 0; 260 struct property *prop; 261 unsigned int *table; 262 int length; 263 u32 value; 264 int ret; 265 266 if (!node) 267 return -ENODEV; 268 269 memset(data, 0, sizeof(*data)); 270 271 /* 272 * Determine the number of brightness levels, if this property is not 273 * set a default table of brightness levels will be used. 274 */ 275 prop = of_find_property(node, "brightness-levels", &length); 276 if (!prop) 277 return 0; 278 279 data->max_brightness = length / sizeof(u32); 280 281 /* read brightness levels from DT property */ 282 if (data->max_brightness > 0) { 283 size_t size = sizeof(*data->levels) * data->max_brightness; 284 unsigned int i, j, n = 0; 285 286 data->levels = devm_kzalloc(dev, size, GFP_KERNEL); 287 if (!data->levels) 288 return -ENOMEM; 289 290 ret = of_property_read_u32_array(node, "brightness-levels", 291 data->levels, 292 data->max_brightness); 293 if (ret < 0) 294 return ret; 295 296 ret = of_property_read_u32(node, "default-brightness-level", 297 &value); 298 if (ret < 0) 299 return ret; 300 301 data->dft_brightness = value; 302 303 /* 304 * This property is optional, if is set enables linear 305 * interpolation between each of the values of brightness levels 306 * and creates a new pre-computed table. 307 */ 308 of_property_read_u32(node, "num-interpolated-steps", 309 &num_steps); 310 311 /* 312 * Make sure that there is at least two entries in the 313 * brightness-levels table, otherwise we can't interpolate 314 * between two points. 315 */ 316 if (num_steps) { 317 if (data->max_brightness < 2) { 318 dev_err(dev, "can't interpolate\n"); 319 return -EINVAL; 320 } 321 322 /* 323 * Recalculate the number of brightness levels, now 324 * taking in consideration the number of interpolated 325 * steps between two levels. 326 */ 327 for (i = 0; i < data->max_brightness - 1; i++) { 328 if ((data->levels[i + 1] - data->levels[i]) / 329 num_steps) 330 num_levels += num_steps; 331 else 332 num_levels++; 333 } 334 num_levels++; 335 dev_dbg(dev, "new number of brightness levels: %d\n", 336 num_levels); 337 338 /* 339 * Create a new table of brightness levels with all the 340 * interpolated steps. 341 */ 342 size = sizeof(*table) * num_levels; 343 table = devm_kzalloc(dev, size, GFP_KERNEL); 344 if (!table) 345 return -ENOMEM; 346 347 /* Fill the interpolated table. */ 348 levels_count = 0; 349 for (i = 0; i < data->max_brightness - 1; i++) { 350 value = data->levels[i]; 351 n = (data->levels[i + 1] - value) / num_steps; 352 if (n > 0) { 353 for (j = 0; j < num_steps; j++) { 354 table[levels_count] = value; 355 value += n; 356 levels_count++; 357 } 358 } else { 359 table[levels_count] = data->levels[i]; 360 levels_count++; 361 } 362 } 363 table[levels_count] = data->levels[i]; 364 365 /* 366 * As we use interpolation lets remove current 367 * brightness levels table and replace for the 368 * new interpolated table. 369 */ 370 devm_kfree(dev, data->levels); 371 data->levels = table; 372 373 /* 374 * Reassign max_brightness value to the new total number 375 * of brightness levels. 376 */ 377 data->max_brightness = num_levels; 378 } 379 380 data->max_brightness--; 381 } 382 383 /* 384 * These values are optional and set as 0 by default, the out values 385 * are modified only if a valid u32 value can be decoded. 386 */ 387 of_property_read_u32(node, "post-pwm-on-delay-ms", 388 &data->post_pwm_on_delay); 389 of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay); 390 391 data->enable_gpio = -EINVAL; 392 return 0; 393 } 394 395 static const struct of_device_id pwm_backlight_of_match[] = { 396 { .compatible = "pwm-backlight" }, 397 { } 398 }; 399 400 MODULE_DEVICE_TABLE(of, pwm_backlight_of_match); 401 #else 402 static int pwm_backlight_parse_dt(struct device *dev, 403 struct platform_pwm_backlight_data *data) 404 { 405 return -ENODEV; 406 } 407 408 static 409 int pwm_backlight_brightness_default(struct device *dev, 410 struct platform_pwm_backlight_data *data, 411 unsigned int period) 412 { 413 return -ENODEV; 414 } 415 #endif 416 417 static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb) 418 { 419 struct device_node *node = pb->dev->of_node; 420 421 /* Not booted with device tree or no phandle link to the node */ 422 if (!node || !node->phandle) 423 return FB_BLANK_UNBLANK; 424 425 /* 426 * If the driver is probed from the device tree and there is a 427 * phandle link pointing to the backlight node, it is safe to 428 * assume that another driver will enable the backlight at the 429 * appropriate time. Therefore, if it is disabled, keep it so. 430 */ 431 432 /* if the enable GPIO is disabled, do not enable the backlight */ 433 if (pb->enable_gpio && gpiod_get_value(pb->enable_gpio) == 0) 434 return FB_BLANK_POWERDOWN; 435 436 /* The regulator is disabled, do not enable the backlight */ 437 if (!regulator_is_enabled(pb->power_supply)) 438 return FB_BLANK_POWERDOWN; 439 440 /* The PWM is disabled, keep it like this */ 441 if (!pwm_is_enabled(pb->pwm)) 442 return FB_BLANK_POWERDOWN; 443 444 return FB_BLANK_UNBLANK; 445 } 446 447 static int pwm_backlight_probe(struct platform_device *pdev) 448 { 449 struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev); 450 struct platform_pwm_backlight_data defdata; 451 struct backlight_properties props; 452 struct backlight_device *bl; 453 struct device_node *node = pdev->dev.of_node; 454 struct pwm_bl_data *pb; 455 struct pwm_state state; 456 unsigned int i; 457 int ret; 458 459 if (!data) { 460 ret = pwm_backlight_parse_dt(&pdev->dev, &defdata); 461 if (ret < 0) { 462 dev_err(&pdev->dev, "failed to find platform data\n"); 463 return ret; 464 } 465 466 data = &defdata; 467 } 468 469 if (data->init) { 470 ret = data->init(&pdev->dev); 471 if (ret < 0) 472 return ret; 473 } 474 475 pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL); 476 if (!pb) { 477 ret = -ENOMEM; 478 goto err_alloc; 479 } 480 481 pb->notify = data->notify; 482 pb->notify_after = data->notify_after; 483 pb->check_fb = data->check_fb; 484 pb->exit = data->exit; 485 pb->dev = &pdev->dev; 486 pb->post_pwm_on_delay = data->post_pwm_on_delay; 487 pb->pwm_off_delay = data->pwm_off_delay; 488 489 pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable", 490 GPIOD_ASIS); 491 if (IS_ERR(pb->enable_gpio)) { 492 ret = PTR_ERR(pb->enable_gpio); 493 goto err_alloc; 494 } 495 496 /* 497 * Compatibility fallback for drivers still using the integer GPIO 498 * platform data. Must go away soon. 499 */ 500 if (!pb->enable_gpio && gpio_is_valid(data->enable_gpio)) { 501 ret = devm_gpio_request_one(&pdev->dev, data->enable_gpio, 502 GPIOF_OUT_INIT_HIGH, "enable"); 503 if (ret < 0) { 504 dev_err(&pdev->dev, "failed to request GPIO#%d: %d\n", 505 data->enable_gpio, ret); 506 goto err_alloc; 507 } 508 509 pb->enable_gpio = gpio_to_desc(data->enable_gpio); 510 } 511 512 /* 513 * If the GPIO is not known to be already configured as output, that 514 * is, if gpiod_get_direction returns either 1 or -EINVAL, change the 515 * direction to output and set the GPIO as active. 516 * Do not force the GPIO to active when it was already output as it 517 * could cause backlight flickering or we would enable the backlight too 518 * early. Leave the decision of the initial backlight state for later. 519 */ 520 if (pb->enable_gpio && 521 gpiod_get_direction(pb->enable_gpio) != 0) 522 gpiod_direction_output(pb->enable_gpio, 1); 523 524 pb->power_supply = devm_regulator_get(&pdev->dev, "power"); 525 if (IS_ERR(pb->power_supply)) { 526 ret = PTR_ERR(pb->power_supply); 527 goto err_alloc; 528 } 529 530 pb->pwm = devm_pwm_get(&pdev->dev, NULL); 531 if (IS_ERR(pb->pwm) && PTR_ERR(pb->pwm) != -EPROBE_DEFER && !node) { 532 dev_err(&pdev->dev, "unable to request PWM, trying legacy API\n"); 533 pb->legacy = true; 534 pb->pwm = pwm_request(data->pwm_id, "pwm-backlight"); 535 } 536 537 if (IS_ERR(pb->pwm)) { 538 ret = PTR_ERR(pb->pwm); 539 if (ret != -EPROBE_DEFER) 540 dev_err(&pdev->dev, "unable to request PWM\n"); 541 goto err_alloc; 542 } 543 544 dev_dbg(&pdev->dev, "got pwm for backlight\n"); 545 546 /* Sync up PWM state. */ 547 pwm_init_state(pb->pwm, &state); 548 549 /* 550 * The DT case will set the pwm_period_ns field to 0 and store the 551 * period, parsed from the DT, in the PWM device. For the non-DT case, 552 * set the period from platform data if it has not already been set 553 * via the PWM lookup table. 554 */ 555 if (!state.period && (data->pwm_period_ns > 0)) 556 state.period = data->pwm_period_ns; 557 558 ret = pwm_apply_state(pb->pwm, &state); 559 if (ret) { 560 dev_err(&pdev->dev, "failed to apply initial PWM state: %d\n", 561 ret); 562 goto err_alloc; 563 } 564 565 if (data->levels) { 566 /* 567 * For the DT case, only when brightness levels is defined 568 * data->levels is filled. For the non-DT case, data->levels 569 * can come from platform data, however is not usual. 570 */ 571 for (i = 0; i <= data->max_brightness; i++) { 572 if (data->levels[i] > pb->scale) 573 pb->scale = data->levels[i]; 574 575 pb->levels = data->levels; 576 } 577 } else if (!data->max_brightness) { 578 /* 579 * If no brightness levels are provided and max_brightness is 580 * not set, use the default brightness table. For the DT case, 581 * max_brightness is set to 0 when brightness levels is not 582 * specified. For the non-DT case, max_brightness is usually 583 * set to some value. 584 */ 585 586 /* Get the PWM period (in nanoseconds) */ 587 pwm_get_state(pb->pwm, &state); 588 589 ret = pwm_backlight_brightness_default(&pdev->dev, data, 590 state.period); 591 if (ret < 0) { 592 dev_err(&pdev->dev, 593 "failed to setup default brightness table\n"); 594 goto err_alloc; 595 } 596 597 for (i = 0; i <= data->max_brightness; i++) { 598 if (data->levels[i] > pb->scale) 599 pb->scale = data->levels[i]; 600 601 pb->levels = data->levels; 602 } 603 } else { 604 /* 605 * That only happens for the non-DT case, where platform data 606 * sets the max_brightness value. 607 */ 608 pb->scale = data->max_brightness; 609 } 610 611 pb->lth_brightness = data->lth_brightness * (state.period / pb->scale); 612 613 memset(&props, 0, sizeof(struct backlight_properties)); 614 props.type = BACKLIGHT_RAW; 615 props.max_brightness = data->max_brightness; 616 bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb, 617 &pwm_backlight_ops, &props); 618 if (IS_ERR(bl)) { 619 dev_err(&pdev->dev, "failed to register backlight\n"); 620 ret = PTR_ERR(bl); 621 if (pb->legacy) 622 pwm_free(pb->pwm); 623 goto err_alloc; 624 } 625 626 if (data->dft_brightness > data->max_brightness) { 627 dev_warn(&pdev->dev, 628 "invalid default brightness level: %u, using %u\n", 629 data->dft_brightness, data->max_brightness); 630 data->dft_brightness = data->max_brightness; 631 } 632 633 bl->props.brightness = data->dft_brightness; 634 bl->props.power = pwm_backlight_initial_power_state(pb); 635 backlight_update_status(bl); 636 637 platform_set_drvdata(pdev, bl); 638 return 0; 639 640 err_alloc: 641 if (data->exit) 642 data->exit(&pdev->dev); 643 return ret; 644 } 645 646 static int pwm_backlight_remove(struct platform_device *pdev) 647 { 648 struct backlight_device *bl = platform_get_drvdata(pdev); 649 struct pwm_bl_data *pb = bl_get_data(bl); 650 651 backlight_device_unregister(bl); 652 pwm_backlight_power_off(pb); 653 654 if (pb->exit) 655 pb->exit(&pdev->dev); 656 if (pb->legacy) 657 pwm_free(pb->pwm); 658 659 return 0; 660 } 661 662 static void pwm_backlight_shutdown(struct platform_device *pdev) 663 { 664 struct backlight_device *bl = platform_get_drvdata(pdev); 665 struct pwm_bl_data *pb = bl_get_data(bl); 666 667 pwm_backlight_power_off(pb); 668 } 669 670 #ifdef CONFIG_PM_SLEEP 671 static int pwm_backlight_suspend(struct device *dev) 672 { 673 struct backlight_device *bl = dev_get_drvdata(dev); 674 struct pwm_bl_data *pb = bl_get_data(bl); 675 676 if (pb->notify) 677 pb->notify(pb->dev, 0); 678 679 pwm_backlight_power_off(pb); 680 681 if (pb->notify_after) 682 pb->notify_after(pb->dev, 0); 683 684 return 0; 685 } 686 687 static int pwm_backlight_resume(struct device *dev) 688 { 689 struct backlight_device *bl = dev_get_drvdata(dev); 690 691 backlight_update_status(bl); 692 693 return 0; 694 } 695 #endif 696 697 static const struct dev_pm_ops pwm_backlight_pm_ops = { 698 #ifdef CONFIG_PM_SLEEP 699 .suspend = pwm_backlight_suspend, 700 .resume = pwm_backlight_resume, 701 .poweroff = pwm_backlight_suspend, 702 .restore = pwm_backlight_resume, 703 #endif 704 }; 705 706 static struct platform_driver pwm_backlight_driver = { 707 .driver = { 708 .name = "pwm-backlight", 709 .pm = &pwm_backlight_pm_ops, 710 .of_match_table = of_match_ptr(pwm_backlight_of_match), 711 }, 712 .probe = pwm_backlight_probe, 713 .remove = pwm_backlight_remove, 714 .shutdown = pwm_backlight_shutdown, 715 }; 716 717 module_platform_driver(pwm_backlight_driver); 718 719 MODULE_DESCRIPTION("PWM based Backlight Driver"); 720 MODULE_LICENSE("GPL"); 721 MODULE_ALIAS("platform:pwm-backlight"); 722