xref: /openbmc/linux/drivers/video/backlight/pwm_bl.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  * linux/drivers/video/backlight/pwm_bl.c
3  *
4  * simple PWM based backlight control, board code has to setup
5  * 1) pin configuration so PWM waveforms can output
6  * 2) platform_data being correctly configured
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/delay.h>
14 #include <linux/gpio/consumer.h>
15 #include <linux/gpio.h>
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/fb.h>
21 #include <linux/backlight.h>
22 #include <linux/err.h>
23 #include <linux/pwm.h>
24 #include <linux/pwm_backlight.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/slab.h>
27 
28 struct pwm_bl_data {
29 	struct pwm_device	*pwm;
30 	struct device		*dev;
31 	unsigned int		lth_brightness;
32 	unsigned int		*levels;
33 	struct regulator	*power_supply;
34 	struct gpio_desc	*enable_gpio;
35 	unsigned int		scale;
36 	bool			legacy;
37 	unsigned int		post_pwm_on_delay;
38 	unsigned int		pwm_off_delay;
39 	int			(*notify)(struct device *,
40 					  int brightness);
41 	void			(*notify_after)(struct device *,
42 					int brightness);
43 	int			(*check_fb)(struct device *, struct fb_info *);
44 	void			(*exit)(struct device *);
45 };
46 
47 static void pwm_backlight_power_on(struct pwm_bl_data *pb)
48 {
49 	struct pwm_state state;
50 	int err;
51 
52 	pwm_get_state(pb->pwm, &state);
53 	if (state.enabled)
54 		return;
55 
56 	err = regulator_enable(pb->power_supply);
57 	if (err < 0)
58 		dev_err(pb->dev, "failed to enable power supply\n");
59 
60 	state.enabled = true;
61 	pwm_apply_state(pb->pwm, &state);
62 
63 	if (pb->post_pwm_on_delay)
64 		msleep(pb->post_pwm_on_delay);
65 
66 	if (pb->enable_gpio)
67 		gpiod_set_value_cansleep(pb->enable_gpio, 1);
68 }
69 
70 static void pwm_backlight_power_off(struct pwm_bl_data *pb)
71 {
72 	struct pwm_state state;
73 
74 	pwm_get_state(pb->pwm, &state);
75 	if (!state.enabled)
76 		return;
77 
78 	if (pb->enable_gpio)
79 		gpiod_set_value_cansleep(pb->enable_gpio, 0);
80 
81 	if (pb->pwm_off_delay)
82 		msleep(pb->pwm_off_delay);
83 
84 	state.enabled = false;
85 	state.duty_cycle = 0;
86 	pwm_apply_state(pb->pwm, &state);
87 
88 	regulator_disable(pb->power_supply);
89 }
90 
91 static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness)
92 {
93 	unsigned int lth = pb->lth_brightness;
94 	struct pwm_state state;
95 	u64 duty_cycle;
96 
97 	pwm_get_state(pb->pwm, &state);
98 
99 	if (pb->levels)
100 		duty_cycle = pb->levels[brightness];
101 	else
102 		duty_cycle = brightness;
103 
104 	duty_cycle *= state.period - lth;
105 	do_div(duty_cycle, pb->scale);
106 
107 	return duty_cycle + lth;
108 }
109 
110 static int pwm_backlight_update_status(struct backlight_device *bl)
111 {
112 	struct pwm_bl_data *pb = bl_get_data(bl);
113 	int brightness = bl->props.brightness;
114 	struct pwm_state state;
115 
116 	if (bl->props.power != FB_BLANK_UNBLANK ||
117 	    bl->props.fb_blank != FB_BLANK_UNBLANK ||
118 	    bl->props.state & BL_CORE_FBBLANK)
119 		brightness = 0;
120 
121 	if (pb->notify)
122 		brightness = pb->notify(pb->dev, brightness);
123 
124 	if (brightness > 0) {
125 		pwm_get_state(pb->pwm, &state);
126 		state.duty_cycle = compute_duty_cycle(pb, brightness);
127 		pwm_apply_state(pb->pwm, &state);
128 		pwm_backlight_power_on(pb);
129 	} else
130 		pwm_backlight_power_off(pb);
131 
132 	if (pb->notify_after)
133 		pb->notify_after(pb->dev, brightness);
134 
135 	return 0;
136 }
137 
138 static int pwm_backlight_check_fb(struct backlight_device *bl,
139 				  struct fb_info *info)
140 {
141 	struct pwm_bl_data *pb = bl_get_data(bl);
142 
143 	return !pb->check_fb || pb->check_fb(pb->dev, info);
144 }
145 
146 static const struct backlight_ops pwm_backlight_ops = {
147 	.update_status	= pwm_backlight_update_status,
148 	.check_fb	= pwm_backlight_check_fb,
149 };
150 
151 #ifdef CONFIG_OF
152 #define PWM_LUMINANCE_SCALE	10000 /* luminance scale */
153 
154 /* An integer based power function */
155 static u64 int_pow(u64 base, int exp)
156 {
157 	u64 result = 1;
158 
159 	while (exp) {
160 		if (exp & 1)
161 			result *= base;
162 		exp >>= 1;
163 		base *= base;
164 	}
165 
166 	return result;
167 }
168 
169 /*
170  * CIE lightness to PWM conversion.
171  *
172  * The CIE 1931 lightness formula is what actually describes how we perceive
173  * light:
174  *          Y = (L* / 902.3)           if L* ≤ 0.08856
175  *          Y = ((L* + 16) / 116)^3    if L* > 0.08856
176  *
177  * Where Y is the luminance, the amount of light coming out of the screen, and
178  * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human
179  * perceives the screen to be, and is a number between 0 and 100.
180  *
181  * The following function does the fixed point maths needed to implement the
182  * above formula.
183  */
184 static u64 cie1931(unsigned int lightness, unsigned int scale)
185 {
186 	u64 retval;
187 
188 	lightness *= 100;
189 	if (lightness <= (8 * scale)) {
190 		retval = DIV_ROUND_CLOSEST_ULL(lightness * 10, 9023);
191 	} else {
192 		retval = int_pow((lightness + (16 * scale)) / 116, 3);
193 		retval = DIV_ROUND_CLOSEST_ULL(retval, (scale * scale));
194 	}
195 
196 	return retval;
197 }
198 
199 /*
200  * Create a default correction table for PWM values to create linear brightness
201  * for LED based backlights using the CIE1931 algorithm.
202  */
203 static
204 int pwm_backlight_brightness_default(struct device *dev,
205 				     struct platform_pwm_backlight_data *data,
206 				     unsigned int period)
207 {
208 	unsigned int counter = 0;
209 	unsigned int i, n;
210 	u64 retval;
211 
212 	/*
213 	 * Count the number of bits needed to represent the period number. The
214 	 * number of bits is used to calculate the number of levels used for the
215 	 * brightness-levels table, the purpose of this calculation is have a
216 	 * pre-computed table with enough levels to get linear brightness
217 	 * perception. The period is divided by the number of bits so for a
218 	 * 8-bit PWM we have 255 / 8 = 32 brightness levels or for a 16-bit PWM
219 	 * we have 65535 / 16 = 4096 brightness levels.
220 	 *
221 	 * Note that this method is based on empirical testing on different
222 	 * devices with PWM of 8 and 16 bits of resolution.
223 	 */
224 	n = period;
225 	while (n) {
226 		counter += n % 2;
227 		n >>= 1;
228 	}
229 
230 	data->max_brightness = DIV_ROUND_UP(period, counter);
231 	data->levels = devm_kcalloc(dev, data->max_brightness,
232 				    sizeof(*data->levels), GFP_KERNEL);
233 	if (!data->levels)
234 		return -ENOMEM;
235 
236 	/* Fill the table using the cie1931 algorithm */
237 	for (i = 0; i < data->max_brightness; i++) {
238 		retval = cie1931((i * PWM_LUMINANCE_SCALE) /
239 				 data->max_brightness, PWM_LUMINANCE_SCALE) *
240 				 period;
241 		retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE);
242 		if (retval > UINT_MAX)
243 			return -EINVAL;
244 		data->levels[i] = (unsigned int)retval;
245 	}
246 
247 	data->dft_brightness = data->max_brightness / 2;
248 	data->max_brightness--;
249 
250 	return 0;
251 }
252 
253 static int pwm_backlight_parse_dt(struct device *dev,
254 				  struct platform_pwm_backlight_data *data)
255 {
256 	struct device_node *node = dev->of_node;
257 	unsigned int num_levels = 0;
258 	unsigned int levels_count;
259 	unsigned int num_steps = 0;
260 	struct property *prop;
261 	unsigned int *table;
262 	int length;
263 	u32 value;
264 	int ret;
265 
266 	if (!node)
267 		return -ENODEV;
268 
269 	memset(data, 0, sizeof(*data));
270 
271 	/*
272 	 * Determine the number of brightness levels, if this property is not
273 	 * set a default table of brightness levels will be used.
274 	 */
275 	prop = of_find_property(node, "brightness-levels", &length);
276 	if (!prop)
277 		return 0;
278 
279 	data->max_brightness = length / sizeof(u32);
280 
281 	/* read brightness levels from DT property */
282 	if (data->max_brightness > 0) {
283 		size_t size = sizeof(*data->levels) * data->max_brightness;
284 		unsigned int i, j, n = 0;
285 
286 		data->levels = devm_kzalloc(dev, size, GFP_KERNEL);
287 		if (!data->levels)
288 			return -ENOMEM;
289 
290 		ret = of_property_read_u32_array(node, "brightness-levels",
291 						 data->levels,
292 						 data->max_brightness);
293 		if (ret < 0)
294 			return ret;
295 
296 		ret = of_property_read_u32(node, "default-brightness-level",
297 					   &value);
298 		if (ret < 0)
299 			return ret;
300 
301 		data->dft_brightness = value;
302 
303 		/*
304 		 * This property is optional, if is set enables linear
305 		 * interpolation between each of the values of brightness levels
306 		 * and creates a new pre-computed table.
307 		 */
308 		of_property_read_u32(node, "num-interpolated-steps",
309 				     &num_steps);
310 
311 		/*
312 		 * Make sure that there is at least two entries in the
313 		 * brightness-levels table, otherwise we can't interpolate
314 		 * between two points.
315 		 */
316 		if (num_steps) {
317 			if (data->max_brightness < 2) {
318 				dev_err(dev, "can't interpolate\n");
319 				return -EINVAL;
320 			}
321 
322 			/*
323 			 * Recalculate the number of brightness levels, now
324 			 * taking in consideration the number of interpolated
325 			 * steps between two levels.
326 			 */
327 			for (i = 0; i < data->max_brightness - 1; i++) {
328 				if ((data->levels[i + 1] - data->levels[i]) /
329 				   num_steps)
330 					num_levels += num_steps;
331 				else
332 					num_levels++;
333 			}
334 			num_levels++;
335 			dev_dbg(dev, "new number of brightness levels: %d\n",
336 				num_levels);
337 
338 			/*
339 			 * Create a new table of brightness levels with all the
340 			 * interpolated steps.
341 			 */
342 			size = sizeof(*table) * num_levels;
343 			table = devm_kzalloc(dev, size, GFP_KERNEL);
344 			if (!table)
345 				return -ENOMEM;
346 
347 			/* Fill the interpolated table. */
348 			levels_count = 0;
349 			for (i = 0; i < data->max_brightness - 1; i++) {
350 				value = data->levels[i];
351 				n = (data->levels[i + 1] - value) / num_steps;
352 				if (n > 0) {
353 					for (j = 0; j < num_steps; j++) {
354 						table[levels_count] = value;
355 						value += n;
356 						levels_count++;
357 					}
358 				} else {
359 					table[levels_count] = data->levels[i];
360 					levels_count++;
361 				}
362 			}
363 			table[levels_count] = data->levels[i];
364 
365 			/*
366 			 * As we use interpolation lets remove current
367 			 * brightness levels table and replace for the
368 			 * new interpolated table.
369 			 */
370 			devm_kfree(dev, data->levels);
371 			data->levels = table;
372 
373 			/*
374 			 * Reassign max_brightness value to the new total number
375 			 * of brightness levels.
376 			 */
377 			data->max_brightness = num_levels;
378 		}
379 
380 		data->max_brightness--;
381 	}
382 
383 	/*
384 	 * These values are optional and set as 0 by default, the out values
385 	 * are modified only if a valid u32 value can be decoded.
386 	 */
387 	of_property_read_u32(node, "post-pwm-on-delay-ms",
388 			     &data->post_pwm_on_delay);
389 	of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay);
390 
391 	data->enable_gpio = -EINVAL;
392 	return 0;
393 }
394 
395 static const struct of_device_id pwm_backlight_of_match[] = {
396 	{ .compatible = "pwm-backlight" },
397 	{ }
398 };
399 
400 MODULE_DEVICE_TABLE(of, pwm_backlight_of_match);
401 #else
402 static int pwm_backlight_parse_dt(struct device *dev,
403 				  struct platform_pwm_backlight_data *data)
404 {
405 	return -ENODEV;
406 }
407 
408 static
409 int pwm_backlight_brightness_default(struct device *dev,
410 				     struct platform_pwm_backlight_data *data,
411 				     unsigned int period)
412 {
413 	return -ENODEV;
414 }
415 #endif
416 
417 static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb)
418 {
419 	struct device_node *node = pb->dev->of_node;
420 
421 	/* Not booted with device tree or no phandle link to the node */
422 	if (!node || !node->phandle)
423 		return FB_BLANK_UNBLANK;
424 
425 	/*
426 	 * If the driver is probed from the device tree and there is a
427 	 * phandle link pointing to the backlight node, it is safe to
428 	 * assume that another driver will enable the backlight at the
429 	 * appropriate time. Therefore, if it is disabled, keep it so.
430 	 */
431 
432 	/* if the enable GPIO is disabled, do not enable the backlight */
433 	if (pb->enable_gpio && gpiod_get_value(pb->enable_gpio) == 0)
434 		return FB_BLANK_POWERDOWN;
435 
436 	/* The regulator is disabled, do not enable the backlight */
437 	if (!regulator_is_enabled(pb->power_supply))
438 		return FB_BLANK_POWERDOWN;
439 
440 	/* The PWM is disabled, keep it like this */
441 	if (!pwm_is_enabled(pb->pwm))
442 		return FB_BLANK_POWERDOWN;
443 
444 	return FB_BLANK_UNBLANK;
445 }
446 
447 static int pwm_backlight_probe(struct platform_device *pdev)
448 {
449 	struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev);
450 	struct platform_pwm_backlight_data defdata;
451 	struct backlight_properties props;
452 	struct backlight_device *bl;
453 	struct device_node *node = pdev->dev.of_node;
454 	struct pwm_bl_data *pb;
455 	struct pwm_state state;
456 	unsigned int i;
457 	int ret;
458 
459 	if (!data) {
460 		ret = pwm_backlight_parse_dt(&pdev->dev, &defdata);
461 		if (ret < 0) {
462 			dev_err(&pdev->dev, "failed to find platform data\n");
463 			return ret;
464 		}
465 
466 		data = &defdata;
467 	}
468 
469 	if (data->init) {
470 		ret = data->init(&pdev->dev);
471 		if (ret < 0)
472 			return ret;
473 	}
474 
475 	pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL);
476 	if (!pb) {
477 		ret = -ENOMEM;
478 		goto err_alloc;
479 	}
480 
481 	pb->notify = data->notify;
482 	pb->notify_after = data->notify_after;
483 	pb->check_fb = data->check_fb;
484 	pb->exit = data->exit;
485 	pb->dev = &pdev->dev;
486 	pb->post_pwm_on_delay = data->post_pwm_on_delay;
487 	pb->pwm_off_delay = data->pwm_off_delay;
488 
489 	pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable",
490 						  GPIOD_ASIS);
491 	if (IS_ERR(pb->enable_gpio)) {
492 		ret = PTR_ERR(pb->enable_gpio);
493 		goto err_alloc;
494 	}
495 
496 	/*
497 	 * Compatibility fallback for drivers still using the integer GPIO
498 	 * platform data. Must go away soon.
499 	 */
500 	if (!pb->enable_gpio && gpio_is_valid(data->enable_gpio)) {
501 		ret = devm_gpio_request_one(&pdev->dev, data->enable_gpio,
502 					    GPIOF_OUT_INIT_HIGH, "enable");
503 		if (ret < 0) {
504 			dev_err(&pdev->dev, "failed to request GPIO#%d: %d\n",
505 				data->enable_gpio, ret);
506 			goto err_alloc;
507 		}
508 
509 		pb->enable_gpio = gpio_to_desc(data->enable_gpio);
510 	}
511 
512 	/*
513 	 * If the GPIO is not known to be already configured as output, that
514 	 * is, if gpiod_get_direction returns either 1 or -EINVAL, change the
515 	 * direction to output and set the GPIO as active.
516 	 * Do not force the GPIO to active when it was already output as it
517 	 * could cause backlight flickering or we would enable the backlight too
518 	 * early. Leave the decision of the initial backlight state for later.
519 	 */
520 	if (pb->enable_gpio &&
521 	    gpiod_get_direction(pb->enable_gpio) != 0)
522 		gpiod_direction_output(pb->enable_gpio, 1);
523 
524 	pb->power_supply = devm_regulator_get(&pdev->dev, "power");
525 	if (IS_ERR(pb->power_supply)) {
526 		ret = PTR_ERR(pb->power_supply);
527 		goto err_alloc;
528 	}
529 
530 	pb->pwm = devm_pwm_get(&pdev->dev, NULL);
531 	if (IS_ERR(pb->pwm) && PTR_ERR(pb->pwm) != -EPROBE_DEFER && !node) {
532 		dev_err(&pdev->dev, "unable to request PWM, trying legacy API\n");
533 		pb->legacy = true;
534 		pb->pwm = pwm_request(data->pwm_id, "pwm-backlight");
535 	}
536 
537 	if (IS_ERR(pb->pwm)) {
538 		ret = PTR_ERR(pb->pwm);
539 		if (ret != -EPROBE_DEFER)
540 			dev_err(&pdev->dev, "unable to request PWM\n");
541 		goto err_alloc;
542 	}
543 
544 	dev_dbg(&pdev->dev, "got pwm for backlight\n");
545 
546 	/* Sync up PWM state. */
547 	pwm_init_state(pb->pwm, &state);
548 
549 	/*
550 	 * The DT case will set the pwm_period_ns field to 0 and store the
551 	 * period, parsed from the DT, in the PWM device. For the non-DT case,
552 	 * set the period from platform data if it has not already been set
553 	 * via the PWM lookup table.
554 	 */
555 	if (!state.period && (data->pwm_period_ns > 0))
556 		state.period = data->pwm_period_ns;
557 
558 	ret = pwm_apply_state(pb->pwm, &state);
559 	if (ret) {
560 		dev_err(&pdev->dev, "failed to apply initial PWM state: %d\n",
561 			ret);
562 		goto err_alloc;
563 	}
564 
565 	if (data->levels) {
566 		/*
567 		 * For the DT case, only when brightness levels is defined
568 		 * data->levels is filled. For the non-DT case, data->levels
569 		 * can come from platform data, however is not usual.
570 		 */
571 		for (i = 0; i <= data->max_brightness; i++) {
572 			if (data->levels[i] > pb->scale)
573 				pb->scale = data->levels[i];
574 
575 			pb->levels = data->levels;
576 		}
577 	} else if (!data->max_brightness) {
578 		/*
579 		 * If no brightness levels are provided and max_brightness is
580 		 * not set, use the default brightness table. For the DT case,
581 		 * max_brightness is set to 0 when brightness levels is not
582 		 * specified. For the non-DT case, max_brightness is usually
583 		 * set to some value.
584 		 */
585 
586 		/* Get the PWM period (in nanoseconds) */
587 		pwm_get_state(pb->pwm, &state);
588 
589 		ret = pwm_backlight_brightness_default(&pdev->dev, data,
590 						       state.period);
591 		if (ret < 0) {
592 			dev_err(&pdev->dev,
593 				"failed to setup default brightness table\n");
594 			goto err_alloc;
595 		}
596 
597 		for (i = 0; i <= data->max_brightness; i++) {
598 			if (data->levels[i] > pb->scale)
599 				pb->scale = data->levels[i];
600 
601 			pb->levels = data->levels;
602 		}
603 	} else {
604 		/*
605 		 * That only happens for the non-DT case, where platform data
606 		 * sets the max_brightness value.
607 		 */
608 		pb->scale = data->max_brightness;
609 	}
610 
611 	pb->lth_brightness = data->lth_brightness * (state.period / pb->scale);
612 
613 	memset(&props, 0, sizeof(struct backlight_properties));
614 	props.type = BACKLIGHT_RAW;
615 	props.max_brightness = data->max_brightness;
616 	bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb,
617 				       &pwm_backlight_ops, &props);
618 	if (IS_ERR(bl)) {
619 		dev_err(&pdev->dev, "failed to register backlight\n");
620 		ret = PTR_ERR(bl);
621 		if (pb->legacy)
622 			pwm_free(pb->pwm);
623 		goto err_alloc;
624 	}
625 
626 	if (data->dft_brightness > data->max_brightness) {
627 		dev_warn(&pdev->dev,
628 			 "invalid default brightness level: %u, using %u\n",
629 			 data->dft_brightness, data->max_brightness);
630 		data->dft_brightness = data->max_brightness;
631 	}
632 
633 	bl->props.brightness = data->dft_brightness;
634 	bl->props.power = pwm_backlight_initial_power_state(pb);
635 	backlight_update_status(bl);
636 
637 	platform_set_drvdata(pdev, bl);
638 	return 0;
639 
640 err_alloc:
641 	if (data->exit)
642 		data->exit(&pdev->dev);
643 	return ret;
644 }
645 
646 static int pwm_backlight_remove(struct platform_device *pdev)
647 {
648 	struct backlight_device *bl = platform_get_drvdata(pdev);
649 	struct pwm_bl_data *pb = bl_get_data(bl);
650 
651 	backlight_device_unregister(bl);
652 	pwm_backlight_power_off(pb);
653 
654 	if (pb->exit)
655 		pb->exit(&pdev->dev);
656 	if (pb->legacy)
657 		pwm_free(pb->pwm);
658 
659 	return 0;
660 }
661 
662 static void pwm_backlight_shutdown(struct platform_device *pdev)
663 {
664 	struct backlight_device *bl = platform_get_drvdata(pdev);
665 	struct pwm_bl_data *pb = bl_get_data(bl);
666 
667 	pwm_backlight_power_off(pb);
668 }
669 
670 #ifdef CONFIG_PM_SLEEP
671 static int pwm_backlight_suspend(struct device *dev)
672 {
673 	struct backlight_device *bl = dev_get_drvdata(dev);
674 	struct pwm_bl_data *pb = bl_get_data(bl);
675 
676 	if (pb->notify)
677 		pb->notify(pb->dev, 0);
678 
679 	pwm_backlight_power_off(pb);
680 
681 	if (pb->notify_after)
682 		pb->notify_after(pb->dev, 0);
683 
684 	return 0;
685 }
686 
687 static int pwm_backlight_resume(struct device *dev)
688 {
689 	struct backlight_device *bl = dev_get_drvdata(dev);
690 
691 	backlight_update_status(bl);
692 
693 	return 0;
694 }
695 #endif
696 
697 static const struct dev_pm_ops pwm_backlight_pm_ops = {
698 #ifdef CONFIG_PM_SLEEP
699 	.suspend = pwm_backlight_suspend,
700 	.resume = pwm_backlight_resume,
701 	.poweroff = pwm_backlight_suspend,
702 	.restore = pwm_backlight_resume,
703 #endif
704 };
705 
706 static struct platform_driver pwm_backlight_driver = {
707 	.driver		= {
708 		.name		= "pwm-backlight",
709 		.pm		= &pwm_backlight_pm_ops,
710 		.of_match_table	= of_match_ptr(pwm_backlight_of_match),
711 	},
712 	.probe		= pwm_backlight_probe,
713 	.remove		= pwm_backlight_remove,
714 	.shutdown	= pwm_backlight_shutdown,
715 };
716 
717 module_platform_driver(pwm_backlight_driver);
718 
719 MODULE_DESCRIPTION("PWM based Backlight Driver");
720 MODULE_LICENSE("GPL");
721 MODULE_ALIAS("platform:pwm-backlight");
722