1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple PWM based backlight control, board code has to setup 4 * 1) pin configuration so PWM waveforms can output 5 * 2) platform_data being correctly configured 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/gpio/consumer.h> 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/platform_device.h> 14 #include <linux/fb.h> 15 #include <linux/backlight.h> 16 #include <linux/err.h> 17 #include <linux/pwm.h> 18 #include <linux/pwm_backlight.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/slab.h> 21 22 struct pwm_bl_data { 23 struct pwm_device *pwm; 24 struct device *dev; 25 unsigned int lth_brightness; 26 unsigned int *levels; 27 bool enabled; 28 struct regulator *power_supply; 29 struct gpio_desc *enable_gpio; 30 unsigned int scale; 31 bool legacy; 32 unsigned int post_pwm_on_delay; 33 unsigned int pwm_off_delay; 34 int (*notify)(struct device *, 35 int brightness); 36 void (*notify_after)(struct device *, 37 int brightness); 38 int (*check_fb)(struct device *, struct fb_info *); 39 void (*exit)(struct device *); 40 }; 41 42 static void pwm_backlight_power_on(struct pwm_bl_data *pb) 43 { 44 struct pwm_state state; 45 int err; 46 47 pwm_get_state(pb->pwm, &state); 48 if (pb->enabled) 49 return; 50 51 err = regulator_enable(pb->power_supply); 52 if (err < 0) 53 dev_err(pb->dev, "failed to enable power supply\n"); 54 55 state.enabled = true; 56 pwm_apply_state(pb->pwm, &state); 57 58 if (pb->post_pwm_on_delay) 59 msleep(pb->post_pwm_on_delay); 60 61 if (pb->enable_gpio) 62 gpiod_set_value_cansleep(pb->enable_gpio, 1); 63 64 pb->enabled = true; 65 } 66 67 static void pwm_backlight_power_off(struct pwm_bl_data *pb) 68 { 69 struct pwm_state state; 70 71 pwm_get_state(pb->pwm, &state); 72 if (!pb->enabled) 73 return; 74 75 if (pb->enable_gpio) 76 gpiod_set_value_cansleep(pb->enable_gpio, 0); 77 78 if (pb->pwm_off_delay) 79 msleep(pb->pwm_off_delay); 80 81 state.enabled = false; 82 state.duty_cycle = 0; 83 pwm_apply_state(pb->pwm, &state); 84 85 regulator_disable(pb->power_supply); 86 pb->enabled = false; 87 } 88 89 static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness) 90 { 91 unsigned int lth = pb->lth_brightness; 92 struct pwm_state state; 93 u64 duty_cycle; 94 95 pwm_get_state(pb->pwm, &state); 96 97 if (pb->levels) 98 duty_cycle = pb->levels[brightness]; 99 else 100 duty_cycle = brightness; 101 102 duty_cycle *= state.period - lth; 103 do_div(duty_cycle, pb->scale); 104 105 return duty_cycle + lth; 106 } 107 108 static int pwm_backlight_update_status(struct backlight_device *bl) 109 { 110 struct pwm_bl_data *pb = bl_get_data(bl); 111 int brightness = bl->props.brightness; 112 struct pwm_state state; 113 114 if (bl->props.power != FB_BLANK_UNBLANK || 115 bl->props.fb_blank != FB_BLANK_UNBLANK || 116 bl->props.state & BL_CORE_FBBLANK) 117 brightness = 0; 118 119 if (pb->notify) 120 brightness = pb->notify(pb->dev, brightness); 121 122 if (brightness > 0) { 123 pwm_get_state(pb->pwm, &state); 124 state.duty_cycle = compute_duty_cycle(pb, brightness); 125 pwm_apply_state(pb->pwm, &state); 126 pwm_backlight_power_on(pb); 127 } else { 128 pwm_backlight_power_off(pb); 129 } 130 131 if (pb->notify_after) 132 pb->notify_after(pb->dev, brightness); 133 134 return 0; 135 } 136 137 static int pwm_backlight_check_fb(struct backlight_device *bl, 138 struct fb_info *info) 139 { 140 struct pwm_bl_data *pb = bl_get_data(bl); 141 142 return !pb->check_fb || pb->check_fb(pb->dev, info); 143 } 144 145 static const struct backlight_ops pwm_backlight_ops = { 146 .update_status = pwm_backlight_update_status, 147 .check_fb = pwm_backlight_check_fb, 148 }; 149 150 #ifdef CONFIG_OF 151 #define PWM_LUMINANCE_SHIFT 16 152 #define PWM_LUMINANCE_SCALE (1 << PWM_LUMINANCE_SHIFT) /* luminance scale */ 153 154 /* 155 * CIE lightness to PWM conversion. 156 * 157 * The CIE 1931 lightness formula is what actually describes how we perceive 158 * light: 159 * Y = (L* / 903.3) if L* ≤ 8 160 * Y = ((L* + 16) / 116)^3 if L* > 8 161 * 162 * Where Y is the luminance, the amount of light coming out of the screen, and 163 * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human 164 * perceives the screen to be, and is a number between 0 and 100. 165 * 166 * The following function does the fixed point maths needed to implement the 167 * above formula. 168 */ 169 static u64 cie1931(unsigned int lightness) 170 { 171 u64 retval; 172 173 /* 174 * @lightness is given as a number between 0 and 1, expressed 175 * as a fixed-point number in scale 176 * PWM_LUMINANCE_SCALE. Convert to a percentage, still 177 * expressed as a fixed-point number, so the above formulas 178 * can be applied. 179 */ 180 lightness *= 100; 181 if (lightness <= (8 * PWM_LUMINANCE_SCALE)) { 182 retval = DIV_ROUND_CLOSEST(lightness * 10, 9033); 183 } else { 184 retval = (lightness + (16 * PWM_LUMINANCE_SCALE)) / 116; 185 retval *= retval * retval; 186 retval += 1ULL << (2*PWM_LUMINANCE_SHIFT - 1); 187 retval >>= 2*PWM_LUMINANCE_SHIFT; 188 } 189 190 return retval; 191 } 192 193 /* 194 * Create a default correction table for PWM values to create linear brightness 195 * for LED based backlights using the CIE1931 algorithm. 196 */ 197 static 198 int pwm_backlight_brightness_default(struct device *dev, 199 struct platform_pwm_backlight_data *data, 200 unsigned int period) 201 { 202 unsigned int i; 203 u64 retval; 204 205 /* 206 * Once we have 4096 levels there's little point going much higher... 207 * neither interactive sliders nor animation benefits from having 208 * more values in the table. 209 */ 210 data->max_brightness = 211 min((int)DIV_ROUND_UP(period, fls(period)), 4096); 212 213 data->levels = devm_kcalloc(dev, data->max_brightness, 214 sizeof(*data->levels), GFP_KERNEL); 215 if (!data->levels) 216 return -ENOMEM; 217 218 /* Fill the table using the cie1931 algorithm */ 219 for (i = 0; i < data->max_brightness; i++) { 220 retval = cie1931((i * PWM_LUMINANCE_SCALE) / 221 data->max_brightness) * period; 222 retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE); 223 if (retval > UINT_MAX) 224 return -EINVAL; 225 data->levels[i] = (unsigned int)retval; 226 } 227 228 data->dft_brightness = data->max_brightness / 2; 229 data->max_brightness--; 230 231 return 0; 232 } 233 234 static int pwm_backlight_parse_dt(struct device *dev, 235 struct platform_pwm_backlight_data *data) 236 { 237 struct device_node *node = dev->of_node; 238 unsigned int num_levels = 0; 239 unsigned int levels_count; 240 unsigned int num_steps = 0; 241 struct property *prop; 242 unsigned int *table; 243 int length; 244 u32 value; 245 int ret; 246 247 if (!node) 248 return -ENODEV; 249 250 memset(data, 0, sizeof(*data)); 251 252 /* 253 * These values are optional and set as 0 by default, the out values 254 * are modified only if a valid u32 value can be decoded. 255 */ 256 of_property_read_u32(node, "post-pwm-on-delay-ms", 257 &data->post_pwm_on_delay); 258 of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay); 259 260 /* 261 * Determine the number of brightness levels, if this property is not 262 * set a default table of brightness levels will be used. 263 */ 264 prop = of_find_property(node, "brightness-levels", &length); 265 if (!prop) 266 return 0; 267 268 data->max_brightness = length / sizeof(u32); 269 270 /* read brightness levels from DT property */ 271 if (data->max_brightness > 0) { 272 size_t size = sizeof(*data->levels) * data->max_brightness; 273 unsigned int i, j, n = 0; 274 275 data->levels = devm_kzalloc(dev, size, GFP_KERNEL); 276 if (!data->levels) 277 return -ENOMEM; 278 279 ret = of_property_read_u32_array(node, "brightness-levels", 280 data->levels, 281 data->max_brightness); 282 if (ret < 0) 283 return ret; 284 285 ret = of_property_read_u32(node, "default-brightness-level", 286 &value); 287 if (ret < 0) 288 return ret; 289 290 data->dft_brightness = value; 291 292 /* 293 * This property is optional, if is set enables linear 294 * interpolation between each of the values of brightness levels 295 * and creates a new pre-computed table. 296 */ 297 of_property_read_u32(node, "num-interpolated-steps", 298 &num_steps); 299 300 /* 301 * Make sure that there is at least two entries in the 302 * brightness-levels table, otherwise we can't interpolate 303 * between two points. 304 */ 305 if (num_steps) { 306 if (data->max_brightness < 2) { 307 dev_err(dev, "can't interpolate\n"); 308 return -EINVAL; 309 } 310 311 /* 312 * Recalculate the number of brightness levels, now 313 * taking in consideration the number of interpolated 314 * steps between two levels. 315 */ 316 for (i = 0; i < data->max_brightness - 1; i++) { 317 if ((data->levels[i + 1] - data->levels[i]) / 318 num_steps) 319 num_levels += num_steps; 320 else 321 num_levels++; 322 } 323 num_levels++; 324 dev_dbg(dev, "new number of brightness levels: %d\n", 325 num_levels); 326 327 /* 328 * Create a new table of brightness levels with all the 329 * interpolated steps. 330 */ 331 size = sizeof(*table) * num_levels; 332 table = devm_kzalloc(dev, size, GFP_KERNEL); 333 if (!table) 334 return -ENOMEM; 335 336 /* Fill the interpolated table. */ 337 levels_count = 0; 338 for (i = 0; i < data->max_brightness - 1; i++) { 339 value = data->levels[i]; 340 n = (data->levels[i + 1] - value) / num_steps; 341 if (n > 0) { 342 for (j = 0; j < num_steps; j++) { 343 table[levels_count] = value; 344 value += n; 345 levels_count++; 346 } 347 } else { 348 table[levels_count] = data->levels[i]; 349 levels_count++; 350 } 351 } 352 table[levels_count] = data->levels[i]; 353 354 /* 355 * As we use interpolation lets remove current 356 * brightness levels table and replace for the 357 * new interpolated table. 358 */ 359 devm_kfree(dev, data->levels); 360 data->levels = table; 361 362 /* 363 * Reassign max_brightness value to the new total number 364 * of brightness levels. 365 */ 366 data->max_brightness = num_levels; 367 } 368 369 data->max_brightness--; 370 } 371 372 return 0; 373 } 374 375 static const struct of_device_id pwm_backlight_of_match[] = { 376 { .compatible = "pwm-backlight" }, 377 { } 378 }; 379 380 MODULE_DEVICE_TABLE(of, pwm_backlight_of_match); 381 #else 382 static int pwm_backlight_parse_dt(struct device *dev, 383 struct platform_pwm_backlight_data *data) 384 { 385 return -ENODEV; 386 } 387 388 static 389 int pwm_backlight_brightness_default(struct device *dev, 390 struct platform_pwm_backlight_data *data, 391 unsigned int period) 392 { 393 return -ENODEV; 394 } 395 #endif 396 397 static bool pwm_backlight_is_linear(struct platform_pwm_backlight_data *data) 398 { 399 unsigned int nlevels = data->max_brightness + 1; 400 unsigned int min_val = data->levels[0]; 401 unsigned int max_val = data->levels[nlevels - 1]; 402 /* 403 * Multiplying by 128 means that even in pathological cases such 404 * as (max_val - min_val) == nlevels the error at max_val is less 405 * than 1%. 406 */ 407 unsigned int slope = (128 * (max_val - min_val)) / nlevels; 408 unsigned int margin = (max_val - min_val) / 20; /* 5% */ 409 int i; 410 411 for (i = 1; i < nlevels; i++) { 412 unsigned int linear_value = min_val + ((i * slope) / 128); 413 unsigned int delta = abs(linear_value - data->levels[i]); 414 415 if (delta > margin) 416 return false; 417 } 418 419 return true; 420 } 421 422 static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb) 423 { 424 struct device_node *node = pb->dev->of_node; 425 426 /* Not booted with device tree or no phandle link to the node */ 427 if (!node || !node->phandle) 428 return FB_BLANK_UNBLANK; 429 430 /* 431 * If the driver is probed from the device tree and there is a 432 * phandle link pointing to the backlight node, it is safe to 433 * assume that another driver will enable the backlight at the 434 * appropriate time. Therefore, if it is disabled, keep it so. 435 */ 436 437 /* if the enable GPIO is disabled, do not enable the backlight */ 438 if (pb->enable_gpio && gpiod_get_value_cansleep(pb->enable_gpio) == 0) 439 return FB_BLANK_POWERDOWN; 440 441 /* The regulator is disabled, do not enable the backlight */ 442 if (!regulator_is_enabled(pb->power_supply)) 443 return FB_BLANK_POWERDOWN; 444 445 /* The PWM is disabled, keep it like this */ 446 if (!pwm_is_enabled(pb->pwm)) 447 return FB_BLANK_POWERDOWN; 448 449 return FB_BLANK_UNBLANK; 450 } 451 452 static int pwm_backlight_probe(struct platform_device *pdev) 453 { 454 struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev); 455 struct platform_pwm_backlight_data defdata; 456 struct backlight_properties props; 457 struct backlight_device *bl; 458 struct device_node *node = pdev->dev.of_node; 459 struct pwm_bl_data *pb; 460 struct pwm_state state; 461 unsigned int i; 462 int ret; 463 464 if (!data) { 465 ret = pwm_backlight_parse_dt(&pdev->dev, &defdata); 466 if (ret < 0) { 467 dev_err(&pdev->dev, "failed to find platform data\n"); 468 return ret; 469 } 470 471 data = &defdata; 472 } 473 474 if (data->init) { 475 ret = data->init(&pdev->dev); 476 if (ret < 0) 477 return ret; 478 } 479 480 pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL); 481 if (!pb) { 482 ret = -ENOMEM; 483 goto err_alloc; 484 } 485 486 pb->notify = data->notify; 487 pb->notify_after = data->notify_after; 488 pb->check_fb = data->check_fb; 489 pb->exit = data->exit; 490 pb->dev = &pdev->dev; 491 pb->enabled = false; 492 pb->post_pwm_on_delay = data->post_pwm_on_delay; 493 pb->pwm_off_delay = data->pwm_off_delay; 494 495 pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable", 496 GPIOD_ASIS); 497 if (IS_ERR(pb->enable_gpio)) { 498 ret = PTR_ERR(pb->enable_gpio); 499 goto err_alloc; 500 } 501 502 /* 503 * If the GPIO is not known to be already configured as output, that 504 * is, if gpiod_get_direction returns either 1 or -EINVAL, change the 505 * direction to output and set the GPIO as active. 506 * Do not force the GPIO to active when it was already output as it 507 * could cause backlight flickering or we would enable the backlight too 508 * early. Leave the decision of the initial backlight state for later. 509 */ 510 if (pb->enable_gpio && 511 gpiod_get_direction(pb->enable_gpio) != 0) 512 gpiod_direction_output(pb->enable_gpio, 1); 513 514 pb->power_supply = devm_regulator_get(&pdev->dev, "power"); 515 if (IS_ERR(pb->power_supply)) { 516 ret = PTR_ERR(pb->power_supply); 517 goto err_alloc; 518 } 519 520 pb->pwm = devm_pwm_get(&pdev->dev, NULL); 521 if (IS_ERR(pb->pwm) && PTR_ERR(pb->pwm) != -EPROBE_DEFER && !node) { 522 dev_err(&pdev->dev, "unable to request PWM, trying legacy API\n"); 523 pb->legacy = true; 524 pb->pwm = pwm_request(data->pwm_id, "pwm-backlight"); 525 } 526 527 if (IS_ERR(pb->pwm)) { 528 ret = PTR_ERR(pb->pwm); 529 if (ret != -EPROBE_DEFER) 530 dev_err(&pdev->dev, "unable to request PWM\n"); 531 goto err_alloc; 532 } 533 534 dev_dbg(&pdev->dev, "got pwm for backlight\n"); 535 536 /* Sync up PWM state. */ 537 pwm_init_state(pb->pwm, &state); 538 539 /* 540 * The DT case will set the pwm_period_ns field to 0 and store the 541 * period, parsed from the DT, in the PWM device. For the non-DT case, 542 * set the period from platform data if it has not already been set 543 * via the PWM lookup table. 544 */ 545 if (!state.period && (data->pwm_period_ns > 0)) 546 state.period = data->pwm_period_ns; 547 548 ret = pwm_apply_state(pb->pwm, &state); 549 if (ret) { 550 dev_err(&pdev->dev, "failed to apply initial PWM state: %d\n", 551 ret); 552 goto err_alloc; 553 } 554 555 memset(&props, 0, sizeof(struct backlight_properties)); 556 557 if (data->levels) { 558 pb->levels = data->levels; 559 560 /* 561 * For the DT case, only when brightness levels is defined 562 * data->levels is filled. For the non-DT case, data->levels 563 * can come from platform data, however is not usual. 564 */ 565 for (i = 0; i <= data->max_brightness; i++) 566 if (data->levels[i] > pb->scale) 567 pb->scale = data->levels[i]; 568 569 if (pwm_backlight_is_linear(data)) 570 props.scale = BACKLIGHT_SCALE_LINEAR; 571 else 572 props.scale = BACKLIGHT_SCALE_NON_LINEAR; 573 } else if (!data->max_brightness) { 574 /* 575 * If no brightness levels are provided and max_brightness is 576 * not set, use the default brightness table. For the DT case, 577 * max_brightness is set to 0 when brightness levels is not 578 * specified. For the non-DT case, max_brightness is usually 579 * set to some value. 580 */ 581 582 /* Get the PWM period (in nanoseconds) */ 583 pwm_get_state(pb->pwm, &state); 584 585 ret = pwm_backlight_brightness_default(&pdev->dev, data, 586 state.period); 587 if (ret < 0) { 588 dev_err(&pdev->dev, 589 "failed to setup default brightness table\n"); 590 goto err_alloc; 591 } 592 593 for (i = 0; i <= data->max_brightness; i++) { 594 if (data->levels[i] > pb->scale) 595 pb->scale = data->levels[i]; 596 597 pb->levels = data->levels; 598 } 599 600 props.scale = BACKLIGHT_SCALE_NON_LINEAR; 601 } else { 602 /* 603 * That only happens for the non-DT case, where platform data 604 * sets the max_brightness value. 605 */ 606 pb->scale = data->max_brightness; 607 } 608 609 pb->lth_brightness = data->lth_brightness * (state.period / pb->scale); 610 611 props.type = BACKLIGHT_RAW; 612 props.max_brightness = data->max_brightness; 613 bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb, 614 &pwm_backlight_ops, &props); 615 if (IS_ERR(bl)) { 616 dev_err(&pdev->dev, "failed to register backlight\n"); 617 ret = PTR_ERR(bl); 618 if (pb->legacy) 619 pwm_free(pb->pwm); 620 goto err_alloc; 621 } 622 623 if (data->dft_brightness > data->max_brightness) { 624 dev_warn(&pdev->dev, 625 "invalid default brightness level: %u, using %u\n", 626 data->dft_brightness, data->max_brightness); 627 data->dft_brightness = data->max_brightness; 628 } 629 630 bl->props.brightness = data->dft_brightness; 631 bl->props.power = pwm_backlight_initial_power_state(pb); 632 backlight_update_status(bl); 633 634 platform_set_drvdata(pdev, bl); 635 return 0; 636 637 err_alloc: 638 if (data->exit) 639 data->exit(&pdev->dev); 640 return ret; 641 } 642 643 static int pwm_backlight_remove(struct platform_device *pdev) 644 { 645 struct backlight_device *bl = platform_get_drvdata(pdev); 646 struct pwm_bl_data *pb = bl_get_data(bl); 647 648 backlight_device_unregister(bl); 649 pwm_backlight_power_off(pb); 650 651 if (pb->exit) 652 pb->exit(&pdev->dev); 653 if (pb->legacy) 654 pwm_free(pb->pwm); 655 656 return 0; 657 } 658 659 static void pwm_backlight_shutdown(struct platform_device *pdev) 660 { 661 struct backlight_device *bl = platform_get_drvdata(pdev); 662 struct pwm_bl_data *pb = bl_get_data(bl); 663 664 pwm_backlight_power_off(pb); 665 } 666 667 #ifdef CONFIG_PM_SLEEP 668 static int pwm_backlight_suspend(struct device *dev) 669 { 670 struct backlight_device *bl = dev_get_drvdata(dev); 671 struct pwm_bl_data *pb = bl_get_data(bl); 672 673 if (pb->notify) 674 pb->notify(pb->dev, 0); 675 676 pwm_backlight_power_off(pb); 677 678 if (pb->notify_after) 679 pb->notify_after(pb->dev, 0); 680 681 return 0; 682 } 683 684 static int pwm_backlight_resume(struct device *dev) 685 { 686 struct backlight_device *bl = dev_get_drvdata(dev); 687 688 backlight_update_status(bl); 689 690 return 0; 691 } 692 #endif 693 694 static const struct dev_pm_ops pwm_backlight_pm_ops = { 695 #ifdef CONFIG_PM_SLEEP 696 .suspend = pwm_backlight_suspend, 697 .resume = pwm_backlight_resume, 698 .poweroff = pwm_backlight_suspend, 699 .restore = pwm_backlight_resume, 700 #endif 701 }; 702 703 static struct platform_driver pwm_backlight_driver = { 704 .driver = { 705 .name = "pwm-backlight", 706 .pm = &pwm_backlight_pm_ops, 707 .of_match_table = of_match_ptr(pwm_backlight_of_match), 708 }, 709 .probe = pwm_backlight_probe, 710 .remove = pwm_backlight_remove, 711 .shutdown = pwm_backlight_shutdown, 712 }; 713 714 module_platform_driver(pwm_backlight_driver); 715 716 MODULE_DESCRIPTION("PWM based Backlight Driver"); 717 MODULE_LICENSE("GPL v2"); 718 MODULE_ALIAS("platform:pwm-backlight"); 719