1 /* 2 * (C) Copyright 2008 3 * Stefano Babic, DENX Software Engineering, sbabic@denx.de. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation; either version 2 of 8 * the License, or (at your option) any later version. 9 * 10 * This driver implements a lcd device for the ILITEK 922x display 11 * controller. The interface to the display is SPI and the display's 12 * memory is cyclically updated over the RGB interface. 13 */ 14 15 #include <linux/fb.h> 16 #include <linux/delay.h> 17 #include <linux/errno.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/lcd.h> 21 #include <linux/module.h> 22 #include <linux/of.h> 23 #include <linux/slab.h> 24 #include <linux/spi/spi.h> 25 #include <linux/string.h> 26 27 /* Register offset, see manual section 8.2 */ 28 #define REG_START_OSCILLATION 0x00 29 #define REG_DRIVER_CODE_READ 0x00 30 #define REG_DRIVER_OUTPUT_CONTROL 0x01 31 #define REG_LCD_AC_DRIVEING_CONTROL 0x02 32 #define REG_ENTRY_MODE 0x03 33 #define REG_COMPARE_1 0x04 34 #define REG_COMPARE_2 0x05 35 #define REG_DISPLAY_CONTROL_1 0x07 36 #define REG_DISPLAY_CONTROL_2 0x08 37 #define REG_DISPLAY_CONTROL_3 0x09 38 #define REG_FRAME_CYCLE_CONTROL 0x0B 39 #define REG_EXT_INTF_CONTROL 0x0C 40 #define REG_POWER_CONTROL_1 0x10 41 #define REG_POWER_CONTROL_2 0x11 42 #define REG_POWER_CONTROL_3 0x12 43 #define REG_POWER_CONTROL_4 0x13 44 #define REG_RAM_ADDRESS_SET 0x21 45 #define REG_WRITE_DATA_TO_GRAM 0x22 46 #define REG_RAM_WRITE_MASK1 0x23 47 #define REG_RAM_WRITE_MASK2 0x24 48 #define REG_GAMMA_CONTROL_1 0x30 49 #define REG_GAMMA_CONTROL_2 0x31 50 #define REG_GAMMA_CONTROL_3 0x32 51 #define REG_GAMMA_CONTROL_4 0x33 52 #define REG_GAMMA_CONTROL_5 0x34 53 #define REG_GAMMA_CONTROL_6 0x35 54 #define REG_GAMMA_CONTROL_7 0x36 55 #define REG_GAMMA_CONTROL_8 0x37 56 #define REG_GAMMA_CONTROL_9 0x38 57 #define REG_GAMMA_CONTROL_10 0x39 58 #define REG_GATE_SCAN_CONTROL 0x40 59 #define REG_VERT_SCROLL_CONTROL 0x41 60 #define REG_FIRST_SCREEN_DRIVE_POS 0x42 61 #define REG_SECOND_SCREEN_DRIVE_POS 0x43 62 #define REG_RAM_ADDR_POS_H 0x44 63 #define REG_RAM_ADDR_POS_V 0x45 64 #define REG_OSCILLATOR_CONTROL 0x4F 65 #define REG_GPIO 0x60 66 #define REG_OTP_VCM_PROGRAMMING 0x61 67 #define REG_OTP_VCM_STATUS_ENABLE 0x62 68 #define REG_OTP_PROGRAMMING_ID_KEY 0x65 69 70 /* 71 * maximum frequency for register access 72 * (not for the GRAM access) 73 */ 74 #define ILITEK_MAX_FREQ_REG 4000000 75 76 /* 77 * Device ID as found in the datasheet (supports 9221 and 9222) 78 */ 79 #define ILITEK_DEVICE_ID 0x9220 80 #define ILITEK_DEVICE_ID_MASK 0xFFF0 81 82 /* Last two bits in the START BYTE */ 83 #define START_RS_INDEX 0 84 #define START_RS_REG 1 85 #define START_RW_WRITE 0 86 #define START_RW_READ 1 87 88 /** 89 * START_BYTE(id, rs, rw) 90 * 91 * Set the start byte according to the required operation. 92 * The start byte is defined as: 93 * ---------------------------------- 94 * | 0 | 1 | 1 | 1 | 0 | ID | RS | RW | 95 * ---------------------------------- 96 * @id: display's id as set by the manufacturer 97 * @rs: operation type bit, one of: 98 * - START_RS_INDEX set the index register 99 * - START_RS_REG write/read registers/GRAM 100 * @rw: read/write operation 101 * - START_RW_WRITE write 102 * - START_RW_READ read 103 */ 104 #define START_BYTE(id, rs, rw) \ 105 (0x70 | (((id) & 0x01) << 2) | (((rs) & 0x01) << 1) | ((rw) & 0x01)) 106 107 /** 108 * CHECK_FREQ_REG(spi_device s, spi_transfer x) - Check the frequency 109 * for the SPI transfer. According to the datasheet, the controller 110 * accept higher frequency for the GRAM transfer, but it requires 111 * lower frequency when the registers are read/written. 112 * The macro sets the frequency in the spi_transfer structure if 113 * the frequency exceeds the maximum value. 114 */ 115 #define CHECK_FREQ_REG(s, x) \ 116 do { \ 117 if (s->max_speed_hz > ILITEK_MAX_FREQ_REG) \ 118 ((struct spi_transfer *)x)->speed_hz = \ 119 ILITEK_MAX_FREQ_REG; \ 120 } while (0) 121 122 #define CMD_BUFSIZE 16 123 124 #define POWER_IS_ON(pwr) ((pwr) <= FB_BLANK_NORMAL) 125 126 #define set_tx_byte(b) (tx_invert ? ~(b) : b) 127 128 /** 129 * ili922x_id - id as set by manufacturer 130 */ 131 static int ili922x_id = 1; 132 module_param(ili922x_id, int, 0); 133 134 static int tx_invert; 135 module_param(tx_invert, int, 0); 136 137 /** 138 * driver's private structure 139 */ 140 struct ili922x { 141 struct spi_device *spi; 142 struct lcd_device *ld; 143 int power; 144 }; 145 146 /** 147 * ili922x_read_status - read status register from display 148 * @spi: spi device 149 * @rs: output value 150 */ 151 static int ili922x_read_status(struct spi_device *spi, u16 *rs) 152 { 153 struct spi_message msg; 154 struct spi_transfer xfer; 155 unsigned char tbuf[CMD_BUFSIZE]; 156 unsigned char rbuf[CMD_BUFSIZE]; 157 int ret, i; 158 159 memset(&xfer, 0, sizeof(struct spi_transfer)); 160 spi_message_init(&msg); 161 xfer.tx_buf = tbuf; 162 xfer.rx_buf = rbuf; 163 xfer.cs_change = 1; 164 CHECK_FREQ_REG(spi, &xfer); 165 166 tbuf[0] = set_tx_byte(START_BYTE(ili922x_id, START_RS_INDEX, 167 START_RW_READ)); 168 /* 169 * we need 4-byte xfer here due to invalid dummy byte 170 * received after start byte 171 */ 172 for (i = 1; i < 4; i++) 173 tbuf[i] = set_tx_byte(0); /* dummy */ 174 175 xfer.bits_per_word = 8; 176 xfer.len = 4; 177 spi_message_add_tail(&xfer, &msg); 178 ret = spi_sync(spi, &msg); 179 if (ret < 0) { 180 dev_dbg(&spi->dev, "Error sending SPI message 0x%x", ret); 181 return ret; 182 } 183 184 *rs = (rbuf[2] << 8) + rbuf[3]; 185 return 0; 186 } 187 188 /** 189 * ili922x_read - read register from display 190 * @spi: spi device 191 * @reg: offset of the register to be read 192 * @rx: output value 193 */ 194 static int ili922x_read(struct spi_device *spi, u8 reg, u16 *rx) 195 { 196 struct spi_message msg; 197 struct spi_transfer xfer_regindex, xfer_regvalue; 198 unsigned char tbuf[CMD_BUFSIZE]; 199 unsigned char rbuf[CMD_BUFSIZE]; 200 int ret, len = 0, send_bytes; 201 202 memset(&xfer_regindex, 0, sizeof(struct spi_transfer)); 203 memset(&xfer_regvalue, 0, sizeof(struct spi_transfer)); 204 spi_message_init(&msg); 205 xfer_regindex.tx_buf = tbuf; 206 xfer_regindex.rx_buf = rbuf; 207 xfer_regindex.cs_change = 1; 208 CHECK_FREQ_REG(spi, &xfer_regindex); 209 210 tbuf[0] = set_tx_byte(START_BYTE(ili922x_id, START_RS_INDEX, 211 START_RW_WRITE)); 212 tbuf[1] = set_tx_byte(0); 213 tbuf[2] = set_tx_byte(reg); 214 xfer_regindex.bits_per_word = 8; 215 len = xfer_regindex.len = 3; 216 spi_message_add_tail(&xfer_regindex, &msg); 217 218 send_bytes = len; 219 220 tbuf[len++] = set_tx_byte(START_BYTE(ili922x_id, START_RS_REG, 221 START_RW_READ)); 222 tbuf[len++] = set_tx_byte(0); 223 tbuf[len] = set_tx_byte(0); 224 225 xfer_regvalue.cs_change = 1; 226 xfer_regvalue.len = 3; 227 xfer_regvalue.tx_buf = &tbuf[send_bytes]; 228 xfer_regvalue.rx_buf = &rbuf[send_bytes]; 229 CHECK_FREQ_REG(spi, &xfer_regvalue); 230 231 spi_message_add_tail(&xfer_regvalue, &msg); 232 ret = spi_sync(spi, &msg); 233 if (ret < 0) { 234 dev_dbg(&spi->dev, "Error sending SPI message 0x%x", ret); 235 return ret; 236 } 237 238 *rx = (rbuf[1 + send_bytes] << 8) + rbuf[2 + send_bytes]; 239 return 0; 240 } 241 242 /** 243 * ili922x_write - write a controller register 244 * @spi: struct spi_device * 245 * @reg: offset of the register to be written 246 * @value: value to be written 247 */ 248 static int ili922x_write(struct spi_device *spi, u8 reg, u16 value) 249 { 250 struct spi_message msg; 251 struct spi_transfer xfer_regindex, xfer_regvalue; 252 unsigned char tbuf[CMD_BUFSIZE]; 253 unsigned char rbuf[CMD_BUFSIZE]; 254 int ret, len = 0; 255 256 memset(&xfer_regindex, 0, sizeof(struct spi_transfer)); 257 memset(&xfer_regvalue, 0, sizeof(struct spi_transfer)); 258 259 spi_message_init(&msg); 260 xfer_regindex.tx_buf = tbuf; 261 xfer_regindex.rx_buf = rbuf; 262 xfer_regindex.cs_change = 1; 263 CHECK_FREQ_REG(spi, &xfer_regindex); 264 265 tbuf[0] = set_tx_byte(START_BYTE(ili922x_id, START_RS_INDEX, 266 START_RW_WRITE)); 267 tbuf[1] = set_tx_byte(0); 268 tbuf[2] = set_tx_byte(reg); 269 xfer_regindex.bits_per_word = 8; 270 xfer_regindex.len = 3; 271 spi_message_add_tail(&xfer_regindex, &msg); 272 273 ret = spi_sync(spi, &msg); 274 275 spi_message_init(&msg); 276 len = 0; 277 tbuf[0] = set_tx_byte(START_BYTE(ili922x_id, START_RS_REG, 278 START_RW_WRITE)); 279 tbuf[1] = set_tx_byte((value & 0xFF00) >> 8); 280 tbuf[2] = set_tx_byte(value & 0x00FF); 281 282 xfer_regvalue.cs_change = 1; 283 xfer_regvalue.len = 3; 284 xfer_regvalue.tx_buf = tbuf; 285 xfer_regvalue.rx_buf = rbuf; 286 CHECK_FREQ_REG(spi, &xfer_regvalue); 287 288 spi_message_add_tail(&xfer_regvalue, &msg); 289 290 ret = spi_sync(spi, &msg); 291 if (ret < 0) { 292 dev_err(&spi->dev, "Error sending SPI message 0x%x", ret); 293 return ret; 294 } 295 return 0; 296 } 297 298 #ifdef DEBUG 299 /** 300 * ili922x_reg_dump - dump all registers 301 */ 302 static void ili922x_reg_dump(struct spi_device *spi) 303 { 304 u8 reg; 305 u16 rx; 306 307 dev_dbg(&spi->dev, "ILI922x configuration registers:\n"); 308 for (reg = REG_START_OSCILLATION; 309 reg <= REG_OTP_PROGRAMMING_ID_KEY; reg++) { 310 ili922x_read(spi, reg, &rx); 311 dev_dbg(&spi->dev, "reg @ 0x%02X: 0x%04X\n", reg, rx); 312 } 313 } 314 #else 315 static inline void ili922x_reg_dump(struct spi_device *spi) {} 316 #endif 317 318 /** 319 * set_write_to_gram_reg - initialize the display to write the GRAM 320 * @spi: spi device 321 */ 322 static void set_write_to_gram_reg(struct spi_device *spi) 323 { 324 struct spi_message msg; 325 struct spi_transfer xfer; 326 unsigned char tbuf[CMD_BUFSIZE]; 327 328 memset(&xfer, 0, sizeof(struct spi_transfer)); 329 330 spi_message_init(&msg); 331 xfer.tx_buf = tbuf; 332 xfer.rx_buf = NULL; 333 xfer.cs_change = 1; 334 335 tbuf[0] = START_BYTE(ili922x_id, START_RS_INDEX, START_RW_WRITE); 336 tbuf[1] = 0; 337 tbuf[2] = REG_WRITE_DATA_TO_GRAM; 338 339 xfer.bits_per_word = 8; 340 xfer.len = 3; 341 spi_message_add_tail(&xfer, &msg); 342 spi_sync(spi, &msg); 343 } 344 345 /** 346 * ili922x_poweron - turn the display on 347 * @spi: spi device 348 * 349 * The sequence to turn on the display is taken from 350 * the datasheet and/or the example code provided by the 351 * manufacturer. 352 */ 353 static int ili922x_poweron(struct spi_device *spi) 354 { 355 int ret; 356 357 /* Power on */ 358 ret = ili922x_write(spi, REG_POWER_CONTROL_1, 0x0000); 359 usleep_range(10000, 10500); 360 ret += ili922x_write(spi, REG_POWER_CONTROL_2, 0x0000); 361 ret += ili922x_write(spi, REG_POWER_CONTROL_3, 0x0000); 362 msleep(40); 363 ret += ili922x_write(spi, REG_POWER_CONTROL_4, 0x0000); 364 msleep(40); 365 /* register 0x56 is not documented in the datasheet */ 366 ret += ili922x_write(spi, 0x56, 0x080F); 367 ret += ili922x_write(spi, REG_POWER_CONTROL_1, 0x4240); 368 usleep_range(10000, 10500); 369 ret += ili922x_write(spi, REG_POWER_CONTROL_2, 0x0000); 370 ret += ili922x_write(spi, REG_POWER_CONTROL_3, 0x0014); 371 msleep(40); 372 ret += ili922x_write(spi, REG_POWER_CONTROL_4, 0x1319); 373 msleep(40); 374 375 return ret; 376 } 377 378 /** 379 * ili922x_poweroff - turn the display off 380 * @spi: spi device 381 */ 382 static int ili922x_poweroff(struct spi_device *spi) 383 { 384 int ret; 385 386 /* Power off */ 387 ret = ili922x_write(spi, REG_POWER_CONTROL_1, 0x0000); 388 usleep_range(10000, 10500); 389 ret += ili922x_write(spi, REG_POWER_CONTROL_2, 0x0000); 390 ret += ili922x_write(spi, REG_POWER_CONTROL_3, 0x0000); 391 msleep(40); 392 ret += ili922x_write(spi, REG_POWER_CONTROL_4, 0x0000); 393 msleep(40); 394 395 return ret; 396 } 397 398 /** 399 * ili922x_display_init - initialize the display by setting 400 * the configuration registers 401 * @spi: spi device 402 */ 403 static void ili922x_display_init(struct spi_device *spi) 404 { 405 ili922x_write(spi, REG_START_OSCILLATION, 1); 406 usleep_range(10000, 10500); 407 ili922x_write(spi, REG_DRIVER_OUTPUT_CONTROL, 0x691B); 408 ili922x_write(spi, REG_LCD_AC_DRIVEING_CONTROL, 0x0700); 409 ili922x_write(spi, REG_ENTRY_MODE, 0x1030); 410 ili922x_write(spi, REG_COMPARE_1, 0x0000); 411 ili922x_write(spi, REG_COMPARE_2, 0x0000); 412 ili922x_write(spi, REG_DISPLAY_CONTROL_1, 0x0037); 413 ili922x_write(spi, REG_DISPLAY_CONTROL_2, 0x0202); 414 ili922x_write(spi, REG_DISPLAY_CONTROL_3, 0x0000); 415 ili922x_write(spi, REG_FRAME_CYCLE_CONTROL, 0x0000); 416 417 /* Set RGB interface */ 418 ili922x_write(spi, REG_EXT_INTF_CONTROL, 0x0110); 419 420 ili922x_poweron(spi); 421 422 ili922x_write(spi, REG_GAMMA_CONTROL_1, 0x0302); 423 ili922x_write(spi, REG_GAMMA_CONTROL_2, 0x0407); 424 ili922x_write(spi, REG_GAMMA_CONTROL_3, 0x0304); 425 ili922x_write(spi, REG_GAMMA_CONTROL_4, 0x0203); 426 ili922x_write(spi, REG_GAMMA_CONTROL_5, 0x0706); 427 ili922x_write(spi, REG_GAMMA_CONTROL_6, 0x0407); 428 ili922x_write(spi, REG_GAMMA_CONTROL_7, 0x0706); 429 ili922x_write(spi, REG_GAMMA_CONTROL_8, 0x0000); 430 ili922x_write(spi, REG_GAMMA_CONTROL_9, 0x0C06); 431 ili922x_write(spi, REG_GAMMA_CONTROL_10, 0x0F00); 432 ili922x_write(spi, REG_RAM_ADDRESS_SET, 0x0000); 433 ili922x_write(spi, REG_GATE_SCAN_CONTROL, 0x0000); 434 ili922x_write(spi, REG_VERT_SCROLL_CONTROL, 0x0000); 435 ili922x_write(spi, REG_FIRST_SCREEN_DRIVE_POS, 0xDB00); 436 ili922x_write(spi, REG_SECOND_SCREEN_DRIVE_POS, 0xDB00); 437 ili922x_write(spi, REG_RAM_ADDR_POS_H, 0xAF00); 438 ili922x_write(spi, REG_RAM_ADDR_POS_V, 0xDB00); 439 ili922x_reg_dump(spi); 440 set_write_to_gram_reg(spi); 441 } 442 443 static int ili922x_lcd_power(struct ili922x *lcd, int power) 444 { 445 int ret = 0; 446 447 if (POWER_IS_ON(power) && !POWER_IS_ON(lcd->power)) 448 ret = ili922x_poweron(lcd->spi); 449 else if (!POWER_IS_ON(power) && POWER_IS_ON(lcd->power)) 450 ret = ili922x_poweroff(lcd->spi); 451 452 if (!ret) 453 lcd->power = power; 454 455 return ret; 456 } 457 458 static int ili922x_set_power(struct lcd_device *ld, int power) 459 { 460 struct ili922x *ili = lcd_get_data(ld); 461 462 return ili922x_lcd_power(ili, power); 463 } 464 465 static int ili922x_get_power(struct lcd_device *ld) 466 { 467 struct ili922x *ili = lcd_get_data(ld); 468 469 return ili->power; 470 } 471 472 static struct lcd_ops ili922x_ops = { 473 .get_power = ili922x_get_power, 474 .set_power = ili922x_set_power, 475 }; 476 477 static int ili922x_probe(struct spi_device *spi) 478 { 479 struct ili922x *ili; 480 struct lcd_device *lcd; 481 int ret; 482 u16 reg = 0; 483 484 ili = devm_kzalloc(&spi->dev, sizeof(*ili), GFP_KERNEL); 485 if (!ili) { 486 dev_err(&spi->dev, "cannot alloc priv data\n"); 487 return -ENOMEM; 488 } 489 490 ili->spi = spi; 491 spi_set_drvdata(spi, ili); 492 493 /* check if the device is connected */ 494 ret = ili922x_read(spi, REG_DRIVER_CODE_READ, ®); 495 if (ret || ((reg & ILITEK_DEVICE_ID_MASK) != ILITEK_DEVICE_ID)) { 496 dev_err(&spi->dev, 497 "no LCD found: Chip ID 0x%x, ret %d\n", 498 reg, ret); 499 return -ENODEV; 500 } else { 501 dev_info(&spi->dev, "ILI%x found, SPI freq %d, mode %d\n", 502 reg, spi->max_speed_hz, spi->mode); 503 } 504 505 ret = ili922x_read_status(spi, ®); 506 if (ret) { 507 dev_err(&spi->dev, "reading RS failed...\n"); 508 return ret; 509 } else 510 dev_dbg(&spi->dev, "status: 0x%x\n", reg); 511 512 ili922x_display_init(spi); 513 514 ili->power = FB_BLANK_POWERDOWN; 515 516 lcd = devm_lcd_device_register(&spi->dev, "ili922xlcd", &spi->dev, ili, 517 &ili922x_ops); 518 if (IS_ERR(lcd)) { 519 dev_err(&spi->dev, "cannot register LCD\n"); 520 return PTR_ERR(lcd); 521 } 522 523 ili->ld = lcd; 524 spi_set_drvdata(spi, ili); 525 526 ili922x_lcd_power(ili, FB_BLANK_UNBLANK); 527 528 return 0; 529 } 530 531 static int ili922x_remove(struct spi_device *spi) 532 { 533 ili922x_poweroff(spi); 534 return 0; 535 } 536 537 static struct spi_driver ili922x_driver = { 538 .driver = { 539 .name = "ili922x", 540 .owner = THIS_MODULE, 541 }, 542 .probe = ili922x_probe, 543 .remove = ili922x_remove, 544 }; 545 546 module_spi_driver(ili922x_driver); 547 548 MODULE_AUTHOR("Stefano Babic <sbabic@denx.de>"); 549 MODULE_DESCRIPTION("ILI9221/9222 LCD driver"); 550 MODULE_LICENSE("GPL"); 551 MODULE_PARM_DESC(ili922x_id, "set controller identifier (default=1)"); 552 MODULE_PARM_DESC(tx_invert, "invert bytes before sending"); 553