1 /* Copyright (C) 2009 Red Hat, Inc. 2 * Copyright (C) 2006 Rusty Russell IBM Corporation 3 * 4 * Author: Michael S. Tsirkin <mst@redhat.com> 5 * 6 * Inspiration, some code, and most witty comments come from 7 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * 11 * Generic code for virtio server in host kernel. 12 */ 13 14 #include <linux/eventfd.h> 15 #include <linux/vhost.h> 16 #include <linux/uio.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_context.h> 19 #include <linux/miscdevice.h> 20 #include <linux/mutex.h> 21 #include <linux/poll.h> 22 #include <linux/file.h> 23 #include <linux/highmem.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 #include <linux/kthread.h> 27 #include <linux/cgroup.h> 28 #include <linux/module.h> 29 #include <linux/sort.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/signal.h> 32 #include <linux/interval_tree_generic.h> 33 #include <linux/nospec.h> 34 35 #include "vhost.h" 36 37 static ushort max_mem_regions = 64; 38 module_param(max_mem_regions, ushort, 0444); 39 MODULE_PARM_DESC(max_mem_regions, 40 "Maximum number of memory regions in memory map. (default: 64)"); 41 static int max_iotlb_entries = 2048; 42 module_param(max_iotlb_entries, int, 0444); 43 MODULE_PARM_DESC(max_iotlb_entries, 44 "Maximum number of iotlb entries. (default: 2048)"); 45 46 enum { 47 VHOST_MEMORY_F_LOG = 0x1, 48 }; 49 50 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 51 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 52 53 INTERVAL_TREE_DEFINE(struct vhost_umem_node, 54 rb, __u64, __subtree_last, 55 START, LAST, static inline, vhost_umem_interval_tree); 56 57 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 58 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 59 { 60 vq->user_be = !virtio_legacy_is_little_endian(); 61 } 62 63 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 64 { 65 vq->user_be = true; 66 } 67 68 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 69 { 70 vq->user_be = false; 71 } 72 73 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 74 { 75 struct vhost_vring_state s; 76 77 if (vq->private_data) 78 return -EBUSY; 79 80 if (copy_from_user(&s, argp, sizeof(s))) 81 return -EFAULT; 82 83 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 84 s.num != VHOST_VRING_BIG_ENDIAN) 85 return -EINVAL; 86 87 if (s.num == VHOST_VRING_BIG_ENDIAN) 88 vhost_enable_cross_endian_big(vq); 89 else 90 vhost_enable_cross_endian_little(vq); 91 92 return 0; 93 } 94 95 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 96 int __user *argp) 97 { 98 struct vhost_vring_state s = { 99 .index = idx, 100 .num = vq->user_be 101 }; 102 103 if (copy_to_user(argp, &s, sizeof(s))) 104 return -EFAULT; 105 106 return 0; 107 } 108 109 static void vhost_init_is_le(struct vhost_virtqueue *vq) 110 { 111 /* Note for legacy virtio: user_be is initialized at reset time 112 * according to the host endianness. If userspace does not set an 113 * explicit endianness, the default behavior is native endian, as 114 * expected by legacy virtio. 115 */ 116 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 117 } 118 #else 119 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 120 { 121 } 122 123 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 124 { 125 return -ENOIOCTLCMD; 126 } 127 128 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 129 int __user *argp) 130 { 131 return -ENOIOCTLCMD; 132 } 133 134 static void vhost_init_is_le(struct vhost_virtqueue *vq) 135 { 136 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 137 || virtio_legacy_is_little_endian(); 138 } 139 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 140 141 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 142 { 143 vhost_init_is_le(vq); 144 } 145 146 struct vhost_flush_struct { 147 struct vhost_work work; 148 struct completion wait_event; 149 }; 150 151 static void vhost_flush_work(struct vhost_work *work) 152 { 153 struct vhost_flush_struct *s; 154 155 s = container_of(work, struct vhost_flush_struct, work); 156 complete(&s->wait_event); 157 } 158 159 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 160 poll_table *pt) 161 { 162 struct vhost_poll *poll; 163 164 poll = container_of(pt, struct vhost_poll, table); 165 poll->wqh = wqh; 166 add_wait_queue(wqh, &poll->wait); 167 } 168 169 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 170 void *key) 171 { 172 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 173 174 if (!(key_to_poll(key) & poll->mask)) 175 return 0; 176 177 vhost_poll_queue(poll); 178 return 0; 179 } 180 181 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 182 { 183 clear_bit(VHOST_WORK_QUEUED, &work->flags); 184 work->fn = fn; 185 } 186 EXPORT_SYMBOL_GPL(vhost_work_init); 187 188 /* Init poll structure */ 189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 190 __poll_t mask, struct vhost_dev *dev) 191 { 192 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 193 init_poll_funcptr(&poll->table, vhost_poll_func); 194 poll->mask = mask; 195 poll->dev = dev; 196 poll->wqh = NULL; 197 198 vhost_work_init(&poll->work, fn); 199 } 200 EXPORT_SYMBOL_GPL(vhost_poll_init); 201 202 /* Start polling a file. We add ourselves to file's wait queue. The caller must 203 * keep a reference to a file until after vhost_poll_stop is called. */ 204 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 205 { 206 __poll_t mask; 207 int ret = 0; 208 209 if (poll->wqh) 210 return 0; 211 212 mask = vfs_poll(file, &poll->table); 213 if (mask) 214 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 215 if (mask & EPOLLERR) { 216 vhost_poll_stop(poll); 217 ret = -EINVAL; 218 } 219 220 return ret; 221 } 222 EXPORT_SYMBOL_GPL(vhost_poll_start); 223 224 /* Stop polling a file. After this function returns, it becomes safe to drop the 225 * file reference. You must also flush afterwards. */ 226 void vhost_poll_stop(struct vhost_poll *poll) 227 { 228 if (poll->wqh) { 229 remove_wait_queue(poll->wqh, &poll->wait); 230 poll->wqh = NULL; 231 } 232 } 233 EXPORT_SYMBOL_GPL(vhost_poll_stop); 234 235 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work) 236 { 237 struct vhost_flush_struct flush; 238 239 if (dev->worker) { 240 init_completion(&flush.wait_event); 241 vhost_work_init(&flush.work, vhost_flush_work); 242 243 vhost_work_queue(dev, &flush.work); 244 wait_for_completion(&flush.wait_event); 245 } 246 } 247 EXPORT_SYMBOL_GPL(vhost_work_flush); 248 249 /* Flush any work that has been scheduled. When calling this, don't hold any 250 * locks that are also used by the callback. */ 251 void vhost_poll_flush(struct vhost_poll *poll) 252 { 253 vhost_work_flush(poll->dev, &poll->work); 254 } 255 EXPORT_SYMBOL_GPL(vhost_poll_flush); 256 257 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work) 258 { 259 if (!dev->worker) 260 return; 261 262 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 263 /* We can only add the work to the list after we're 264 * sure it was not in the list. 265 * test_and_set_bit() implies a memory barrier. 266 */ 267 llist_add(&work->node, &dev->work_list); 268 wake_up_process(dev->worker); 269 } 270 } 271 EXPORT_SYMBOL_GPL(vhost_work_queue); 272 273 /* A lockless hint for busy polling code to exit the loop */ 274 bool vhost_has_work(struct vhost_dev *dev) 275 { 276 return !llist_empty(&dev->work_list); 277 } 278 EXPORT_SYMBOL_GPL(vhost_has_work); 279 280 void vhost_poll_queue(struct vhost_poll *poll) 281 { 282 vhost_work_queue(poll->dev, &poll->work); 283 } 284 EXPORT_SYMBOL_GPL(vhost_poll_queue); 285 286 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 287 { 288 int j; 289 290 for (j = 0; j < VHOST_NUM_ADDRS; j++) 291 vq->meta_iotlb[j] = NULL; 292 } 293 294 static void vhost_vq_meta_reset(struct vhost_dev *d) 295 { 296 int i; 297 298 for (i = 0; i < d->nvqs; ++i) 299 __vhost_vq_meta_reset(d->vqs[i]); 300 } 301 302 static void vhost_vq_reset(struct vhost_dev *dev, 303 struct vhost_virtqueue *vq) 304 { 305 vq->num = 1; 306 vq->desc = NULL; 307 vq->avail = NULL; 308 vq->used = NULL; 309 vq->last_avail_idx = 0; 310 vq->avail_idx = 0; 311 vq->last_used_idx = 0; 312 vq->signalled_used = 0; 313 vq->signalled_used_valid = false; 314 vq->used_flags = 0; 315 vq->log_used = false; 316 vq->log_addr = -1ull; 317 vq->private_data = NULL; 318 vq->acked_features = 0; 319 vq->acked_backend_features = 0; 320 vq->log_base = NULL; 321 vq->error_ctx = NULL; 322 vq->kick = NULL; 323 vq->call_ctx = NULL; 324 vq->log_ctx = NULL; 325 vhost_reset_is_le(vq); 326 vhost_disable_cross_endian(vq); 327 vq->busyloop_timeout = 0; 328 vq->umem = NULL; 329 vq->iotlb = NULL; 330 __vhost_vq_meta_reset(vq); 331 } 332 333 static int vhost_worker(void *data) 334 { 335 struct vhost_dev *dev = data; 336 struct vhost_work *work, *work_next; 337 struct llist_node *node; 338 mm_segment_t oldfs = get_fs(); 339 340 set_fs(USER_DS); 341 use_mm(dev->mm); 342 343 for (;;) { 344 /* mb paired w/ kthread_stop */ 345 set_current_state(TASK_INTERRUPTIBLE); 346 347 if (kthread_should_stop()) { 348 __set_current_state(TASK_RUNNING); 349 break; 350 } 351 352 node = llist_del_all(&dev->work_list); 353 if (!node) 354 schedule(); 355 356 node = llist_reverse_order(node); 357 /* make sure flag is seen after deletion */ 358 smp_wmb(); 359 llist_for_each_entry_safe(work, work_next, node, node) { 360 clear_bit(VHOST_WORK_QUEUED, &work->flags); 361 __set_current_state(TASK_RUNNING); 362 work->fn(work); 363 if (need_resched()) 364 schedule(); 365 } 366 } 367 unuse_mm(dev->mm); 368 set_fs(oldfs); 369 return 0; 370 } 371 372 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 373 { 374 kfree(vq->indirect); 375 vq->indirect = NULL; 376 kfree(vq->log); 377 vq->log = NULL; 378 kfree(vq->heads); 379 vq->heads = NULL; 380 } 381 382 /* Helper to allocate iovec buffers for all vqs. */ 383 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 384 { 385 struct vhost_virtqueue *vq; 386 int i; 387 388 for (i = 0; i < dev->nvqs; ++i) { 389 vq = dev->vqs[i]; 390 vq->indirect = kmalloc_array(UIO_MAXIOV, 391 sizeof(*vq->indirect), 392 GFP_KERNEL); 393 vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log), 394 GFP_KERNEL); 395 vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads), 396 GFP_KERNEL); 397 if (!vq->indirect || !vq->log || !vq->heads) 398 goto err_nomem; 399 } 400 return 0; 401 402 err_nomem: 403 for (; i >= 0; --i) 404 vhost_vq_free_iovecs(dev->vqs[i]); 405 return -ENOMEM; 406 } 407 408 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 409 { 410 int i; 411 412 for (i = 0; i < dev->nvqs; ++i) 413 vhost_vq_free_iovecs(dev->vqs[i]); 414 } 415 416 void vhost_dev_init(struct vhost_dev *dev, 417 struct vhost_virtqueue **vqs, int nvqs, int iov_limit) 418 { 419 struct vhost_virtqueue *vq; 420 int i; 421 422 dev->vqs = vqs; 423 dev->nvqs = nvqs; 424 mutex_init(&dev->mutex); 425 dev->log_ctx = NULL; 426 dev->umem = NULL; 427 dev->iotlb = NULL; 428 dev->mm = NULL; 429 dev->worker = NULL; 430 dev->iov_limit = iov_limit; 431 init_llist_head(&dev->work_list); 432 init_waitqueue_head(&dev->wait); 433 INIT_LIST_HEAD(&dev->read_list); 434 INIT_LIST_HEAD(&dev->pending_list); 435 spin_lock_init(&dev->iotlb_lock); 436 437 438 for (i = 0; i < dev->nvqs; ++i) { 439 vq = dev->vqs[i]; 440 vq->log = NULL; 441 vq->indirect = NULL; 442 vq->heads = NULL; 443 vq->dev = dev; 444 mutex_init(&vq->mutex); 445 vhost_vq_reset(dev, vq); 446 if (vq->handle_kick) 447 vhost_poll_init(&vq->poll, vq->handle_kick, 448 EPOLLIN, dev); 449 } 450 } 451 EXPORT_SYMBOL_GPL(vhost_dev_init); 452 453 /* Caller should have device mutex */ 454 long vhost_dev_check_owner(struct vhost_dev *dev) 455 { 456 /* Are you the owner? If not, I don't think you mean to do that */ 457 return dev->mm == current->mm ? 0 : -EPERM; 458 } 459 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 460 461 struct vhost_attach_cgroups_struct { 462 struct vhost_work work; 463 struct task_struct *owner; 464 int ret; 465 }; 466 467 static void vhost_attach_cgroups_work(struct vhost_work *work) 468 { 469 struct vhost_attach_cgroups_struct *s; 470 471 s = container_of(work, struct vhost_attach_cgroups_struct, work); 472 s->ret = cgroup_attach_task_all(s->owner, current); 473 } 474 475 static int vhost_attach_cgroups(struct vhost_dev *dev) 476 { 477 struct vhost_attach_cgroups_struct attach; 478 479 attach.owner = current; 480 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 481 vhost_work_queue(dev, &attach.work); 482 vhost_work_flush(dev, &attach.work); 483 return attach.ret; 484 } 485 486 /* Caller should have device mutex */ 487 bool vhost_dev_has_owner(struct vhost_dev *dev) 488 { 489 return dev->mm; 490 } 491 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 492 493 /* Caller should have device mutex */ 494 long vhost_dev_set_owner(struct vhost_dev *dev) 495 { 496 struct task_struct *worker; 497 int err; 498 499 /* Is there an owner already? */ 500 if (vhost_dev_has_owner(dev)) { 501 err = -EBUSY; 502 goto err_mm; 503 } 504 505 /* No owner, become one */ 506 dev->mm = get_task_mm(current); 507 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid); 508 if (IS_ERR(worker)) { 509 err = PTR_ERR(worker); 510 goto err_worker; 511 } 512 513 dev->worker = worker; 514 wake_up_process(worker); /* avoid contributing to loadavg */ 515 516 err = vhost_attach_cgroups(dev); 517 if (err) 518 goto err_cgroup; 519 520 err = vhost_dev_alloc_iovecs(dev); 521 if (err) 522 goto err_cgroup; 523 524 return 0; 525 err_cgroup: 526 kthread_stop(worker); 527 dev->worker = NULL; 528 err_worker: 529 if (dev->mm) 530 mmput(dev->mm); 531 dev->mm = NULL; 532 err_mm: 533 return err; 534 } 535 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 536 537 struct vhost_umem *vhost_dev_reset_owner_prepare(void) 538 { 539 return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL); 540 } 541 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 542 543 /* Caller should have device mutex */ 544 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem) 545 { 546 int i; 547 548 vhost_dev_cleanup(dev); 549 550 /* Restore memory to default empty mapping. */ 551 INIT_LIST_HEAD(&umem->umem_list); 552 dev->umem = umem; 553 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 554 * VQs aren't running. 555 */ 556 for (i = 0; i < dev->nvqs; ++i) 557 dev->vqs[i]->umem = umem; 558 } 559 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 560 561 void vhost_dev_stop(struct vhost_dev *dev) 562 { 563 int i; 564 565 for (i = 0; i < dev->nvqs; ++i) { 566 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) { 567 vhost_poll_stop(&dev->vqs[i]->poll); 568 vhost_poll_flush(&dev->vqs[i]->poll); 569 } 570 } 571 } 572 EXPORT_SYMBOL_GPL(vhost_dev_stop); 573 574 static void vhost_umem_free(struct vhost_umem *umem, 575 struct vhost_umem_node *node) 576 { 577 vhost_umem_interval_tree_remove(node, &umem->umem_tree); 578 list_del(&node->link); 579 kfree(node); 580 umem->numem--; 581 } 582 583 static void vhost_umem_clean(struct vhost_umem *umem) 584 { 585 struct vhost_umem_node *node, *tmp; 586 587 if (!umem) 588 return; 589 590 list_for_each_entry_safe(node, tmp, &umem->umem_list, link) 591 vhost_umem_free(umem, node); 592 593 kvfree(umem); 594 } 595 596 static void vhost_clear_msg(struct vhost_dev *dev) 597 { 598 struct vhost_msg_node *node, *n; 599 600 spin_lock(&dev->iotlb_lock); 601 602 list_for_each_entry_safe(node, n, &dev->read_list, node) { 603 list_del(&node->node); 604 kfree(node); 605 } 606 607 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 608 list_del(&node->node); 609 kfree(node); 610 } 611 612 spin_unlock(&dev->iotlb_lock); 613 } 614 615 void vhost_dev_cleanup(struct vhost_dev *dev) 616 { 617 int i; 618 619 for (i = 0; i < dev->nvqs; ++i) { 620 if (dev->vqs[i]->error_ctx) 621 eventfd_ctx_put(dev->vqs[i]->error_ctx); 622 if (dev->vqs[i]->kick) 623 fput(dev->vqs[i]->kick); 624 if (dev->vqs[i]->call_ctx) 625 eventfd_ctx_put(dev->vqs[i]->call_ctx); 626 vhost_vq_reset(dev, dev->vqs[i]); 627 } 628 vhost_dev_free_iovecs(dev); 629 if (dev->log_ctx) 630 eventfd_ctx_put(dev->log_ctx); 631 dev->log_ctx = NULL; 632 /* No one will access memory at this point */ 633 vhost_umem_clean(dev->umem); 634 dev->umem = NULL; 635 vhost_umem_clean(dev->iotlb); 636 dev->iotlb = NULL; 637 vhost_clear_msg(dev); 638 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 639 WARN_ON(!llist_empty(&dev->work_list)); 640 if (dev->worker) { 641 kthread_stop(dev->worker); 642 dev->worker = NULL; 643 } 644 if (dev->mm) 645 mmput(dev->mm); 646 dev->mm = NULL; 647 } 648 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 649 650 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 651 { 652 u64 a = addr / VHOST_PAGE_SIZE / 8; 653 654 /* Make sure 64 bit math will not overflow. */ 655 if (a > ULONG_MAX - (unsigned long)log_base || 656 a + (unsigned long)log_base > ULONG_MAX) 657 return false; 658 659 return access_ok(log_base + a, 660 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 661 } 662 663 static bool vhost_overflow(u64 uaddr, u64 size) 664 { 665 /* Make sure 64 bit math will not overflow. */ 666 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size; 667 } 668 669 /* Caller should have vq mutex and device mutex. */ 670 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem, 671 int log_all) 672 { 673 struct vhost_umem_node *node; 674 675 if (!umem) 676 return false; 677 678 list_for_each_entry(node, &umem->umem_list, link) { 679 unsigned long a = node->userspace_addr; 680 681 if (vhost_overflow(node->userspace_addr, node->size)) 682 return false; 683 684 685 if (!access_ok((void __user *)a, 686 node->size)) 687 return false; 688 else if (log_all && !log_access_ok(log_base, 689 node->start, 690 node->size)) 691 return false; 692 } 693 return true; 694 } 695 696 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 697 u64 addr, unsigned int size, 698 int type) 699 { 700 const struct vhost_umem_node *node = vq->meta_iotlb[type]; 701 702 if (!node) 703 return NULL; 704 705 return (void *)(uintptr_t)(node->userspace_addr + addr - node->start); 706 } 707 708 /* Can we switch to this memory table? */ 709 /* Caller should have device mutex but not vq mutex */ 710 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem, 711 int log_all) 712 { 713 int i; 714 715 for (i = 0; i < d->nvqs; ++i) { 716 bool ok; 717 bool log; 718 719 mutex_lock(&d->vqs[i]->mutex); 720 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 721 /* If ring is inactive, will check when it's enabled. */ 722 if (d->vqs[i]->private_data) 723 ok = vq_memory_access_ok(d->vqs[i]->log_base, 724 umem, log); 725 else 726 ok = true; 727 mutex_unlock(&d->vqs[i]->mutex); 728 if (!ok) 729 return false; 730 } 731 return true; 732 } 733 734 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 735 struct iovec iov[], int iov_size, int access); 736 737 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 738 const void *from, unsigned size) 739 { 740 int ret; 741 742 if (!vq->iotlb) 743 return __copy_to_user(to, from, size); 744 else { 745 /* This function should be called after iotlb 746 * prefetch, which means we're sure that all vq 747 * could be access through iotlb. So -EAGAIN should 748 * not happen in this case. 749 */ 750 struct iov_iter t; 751 void __user *uaddr = vhost_vq_meta_fetch(vq, 752 (u64)(uintptr_t)to, size, 753 VHOST_ADDR_USED); 754 755 if (uaddr) 756 return __copy_to_user(uaddr, from, size); 757 758 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 759 ARRAY_SIZE(vq->iotlb_iov), 760 VHOST_ACCESS_WO); 761 if (ret < 0) 762 goto out; 763 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size); 764 ret = copy_to_iter(from, size, &t); 765 if (ret == size) 766 ret = 0; 767 } 768 out: 769 return ret; 770 } 771 772 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 773 void __user *from, unsigned size) 774 { 775 int ret; 776 777 if (!vq->iotlb) 778 return __copy_from_user(to, from, size); 779 else { 780 /* This function should be called after iotlb 781 * prefetch, which means we're sure that vq 782 * could be access through iotlb. So -EAGAIN should 783 * not happen in this case. 784 */ 785 void __user *uaddr = vhost_vq_meta_fetch(vq, 786 (u64)(uintptr_t)from, size, 787 VHOST_ADDR_DESC); 788 struct iov_iter f; 789 790 if (uaddr) 791 return __copy_from_user(to, uaddr, size); 792 793 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 794 ARRAY_SIZE(vq->iotlb_iov), 795 VHOST_ACCESS_RO); 796 if (ret < 0) { 797 vq_err(vq, "IOTLB translation failure: uaddr " 798 "%p size 0x%llx\n", from, 799 (unsigned long long) size); 800 goto out; 801 } 802 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size); 803 ret = copy_from_iter(to, size, &f); 804 if (ret == size) 805 ret = 0; 806 } 807 808 out: 809 return ret; 810 } 811 812 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 813 void __user *addr, unsigned int size, 814 int type) 815 { 816 int ret; 817 818 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 819 ARRAY_SIZE(vq->iotlb_iov), 820 VHOST_ACCESS_RO); 821 if (ret < 0) { 822 vq_err(vq, "IOTLB translation failure: uaddr " 823 "%p size 0x%llx\n", addr, 824 (unsigned long long) size); 825 return NULL; 826 } 827 828 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 829 vq_err(vq, "Non atomic userspace memory access: uaddr " 830 "%p size 0x%llx\n", addr, 831 (unsigned long long) size); 832 return NULL; 833 } 834 835 return vq->iotlb_iov[0].iov_base; 836 } 837 838 /* This function should be called after iotlb 839 * prefetch, which means we're sure that vq 840 * could be access through iotlb. So -EAGAIN should 841 * not happen in this case. 842 */ 843 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 844 void *addr, unsigned int size, 845 int type) 846 { 847 void __user *uaddr = vhost_vq_meta_fetch(vq, 848 (u64)(uintptr_t)addr, size, type); 849 if (uaddr) 850 return uaddr; 851 852 return __vhost_get_user_slow(vq, addr, size, type); 853 } 854 855 #define vhost_put_user(vq, x, ptr) \ 856 ({ \ 857 int ret = -EFAULT; \ 858 if (!vq->iotlb) { \ 859 ret = __put_user(x, ptr); \ 860 } else { \ 861 __typeof__(ptr) to = \ 862 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 863 sizeof(*ptr), VHOST_ADDR_USED); \ 864 if (to != NULL) \ 865 ret = __put_user(x, to); \ 866 else \ 867 ret = -EFAULT; \ 868 } \ 869 ret; \ 870 }) 871 872 #define vhost_get_user(vq, x, ptr, type) \ 873 ({ \ 874 int ret; \ 875 if (!vq->iotlb) { \ 876 ret = __get_user(x, ptr); \ 877 } else { \ 878 __typeof__(ptr) from = \ 879 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 880 sizeof(*ptr), \ 881 type); \ 882 if (from != NULL) \ 883 ret = __get_user(x, from); \ 884 else \ 885 ret = -EFAULT; \ 886 } \ 887 ret; \ 888 }) 889 890 #define vhost_get_avail(vq, x, ptr) \ 891 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 892 893 #define vhost_get_used(vq, x, ptr) \ 894 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 895 896 static void vhost_dev_lock_vqs(struct vhost_dev *d) 897 { 898 int i = 0; 899 for (i = 0; i < d->nvqs; ++i) 900 mutex_lock_nested(&d->vqs[i]->mutex, i); 901 } 902 903 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 904 { 905 int i = 0; 906 for (i = 0; i < d->nvqs; ++i) 907 mutex_unlock(&d->vqs[i]->mutex); 908 } 909 910 static int vhost_new_umem_range(struct vhost_umem *umem, 911 u64 start, u64 size, u64 end, 912 u64 userspace_addr, int perm) 913 { 914 struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC); 915 916 if (!node) 917 return -ENOMEM; 918 919 if (umem->numem == max_iotlb_entries) { 920 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link); 921 vhost_umem_free(umem, tmp); 922 } 923 924 node->start = start; 925 node->size = size; 926 node->last = end; 927 node->userspace_addr = userspace_addr; 928 node->perm = perm; 929 INIT_LIST_HEAD(&node->link); 930 list_add_tail(&node->link, &umem->umem_list); 931 vhost_umem_interval_tree_insert(node, &umem->umem_tree); 932 umem->numem++; 933 934 return 0; 935 } 936 937 static void vhost_del_umem_range(struct vhost_umem *umem, 938 u64 start, u64 end) 939 { 940 struct vhost_umem_node *node; 941 942 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 943 start, end))) 944 vhost_umem_free(umem, node); 945 } 946 947 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 948 struct vhost_iotlb_msg *msg) 949 { 950 struct vhost_msg_node *node, *n; 951 952 spin_lock(&d->iotlb_lock); 953 954 list_for_each_entry_safe(node, n, &d->pending_list, node) { 955 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 956 if (msg->iova <= vq_msg->iova && 957 msg->iova + msg->size - 1 >= vq_msg->iova && 958 vq_msg->type == VHOST_IOTLB_MISS) { 959 vhost_poll_queue(&node->vq->poll); 960 list_del(&node->node); 961 kfree(node); 962 } 963 } 964 965 spin_unlock(&d->iotlb_lock); 966 } 967 968 static bool umem_access_ok(u64 uaddr, u64 size, int access) 969 { 970 unsigned long a = uaddr; 971 972 /* Make sure 64 bit math will not overflow. */ 973 if (vhost_overflow(uaddr, size)) 974 return false; 975 976 if ((access & VHOST_ACCESS_RO) && 977 !access_ok((void __user *)a, size)) 978 return false; 979 if ((access & VHOST_ACCESS_WO) && 980 !access_ok((void __user *)a, size)) 981 return false; 982 return true; 983 } 984 985 static int vhost_process_iotlb_msg(struct vhost_dev *dev, 986 struct vhost_iotlb_msg *msg) 987 { 988 int ret = 0; 989 990 mutex_lock(&dev->mutex); 991 vhost_dev_lock_vqs(dev); 992 switch (msg->type) { 993 case VHOST_IOTLB_UPDATE: 994 if (!dev->iotlb) { 995 ret = -EFAULT; 996 break; 997 } 998 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 999 ret = -EFAULT; 1000 break; 1001 } 1002 vhost_vq_meta_reset(dev); 1003 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size, 1004 msg->iova + msg->size - 1, 1005 msg->uaddr, msg->perm)) { 1006 ret = -ENOMEM; 1007 break; 1008 } 1009 vhost_iotlb_notify_vq(dev, msg); 1010 break; 1011 case VHOST_IOTLB_INVALIDATE: 1012 if (!dev->iotlb) { 1013 ret = -EFAULT; 1014 break; 1015 } 1016 vhost_vq_meta_reset(dev); 1017 vhost_del_umem_range(dev->iotlb, msg->iova, 1018 msg->iova + msg->size - 1); 1019 break; 1020 default: 1021 ret = -EINVAL; 1022 break; 1023 } 1024 1025 vhost_dev_unlock_vqs(dev); 1026 mutex_unlock(&dev->mutex); 1027 1028 return ret; 1029 } 1030 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1031 struct iov_iter *from) 1032 { 1033 struct vhost_iotlb_msg msg; 1034 size_t offset; 1035 int type, ret; 1036 1037 ret = copy_from_iter(&type, sizeof(type), from); 1038 if (ret != sizeof(type)) { 1039 ret = -EINVAL; 1040 goto done; 1041 } 1042 1043 switch (type) { 1044 case VHOST_IOTLB_MSG: 1045 /* There maybe a hole after type for V1 message type, 1046 * so skip it here. 1047 */ 1048 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int); 1049 break; 1050 case VHOST_IOTLB_MSG_V2: 1051 offset = sizeof(__u32); 1052 break; 1053 default: 1054 ret = -EINVAL; 1055 goto done; 1056 } 1057 1058 iov_iter_advance(from, offset); 1059 ret = copy_from_iter(&msg, sizeof(msg), from); 1060 if (ret != sizeof(msg)) { 1061 ret = -EINVAL; 1062 goto done; 1063 } 1064 if (vhost_process_iotlb_msg(dev, &msg)) { 1065 ret = -EFAULT; 1066 goto done; 1067 } 1068 1069 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) : 1070 sizeof(struct vhost_msg_v2); 1071 done: 1072 return ret; 1073 } 1074 EXPORT_SYMBOL(vhost_chr_write_iter); 1075 1076 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1077 poll_table *wait) 1078 { 1079 __poll_t mask = 0; 1080 1081 poll_wait(file, &dev->wait, wait); 1082 1083 if (!list_empty(&dev->read_list)) 1084 mask |= EPOLLIN | EPOLLRDNORM; 1085 1086 return mask; 1087 } 1088 EXPORT_SYMBOL(vhost_chr_poll); 1089 1090 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1091 int noblock) 1092 { 1093 DEFINE_WAIT(wait); 1094 struct vhost_msg_node *node; 1095 ssize_t ret = 0; 1096 unsigned size = sizeof(struct vhost_msg); 1097 1098 if (iov_iter_count(to) < size) 1099 return 0; 1100 1101 while (1) { 1102 if (!noblock) 1103 prepare_to_wait(&dev->wait, &wait, 1104 TASK_INTERRUPTIBLE); 1105 1106 node = vhost_dequeue_msg(dev, &dev->read_list); 1107 if (node) 1108 break; 1109 if (noblock) { 1110 ret = -EAGAIN; 1111 break; 1112 } 1113 if (signal_pending(current)) { 1114 ret = -ERESTARTSYS; 1115 break; 1116 } 1117 if (!dev->iotlb) { 1118 ret = -EBADFD; 1119 break; 1120 } 1121 1122 schedule(); 1123 } 1124 1125 if (!noblock) 1126 finish_wait(&dev->wait, &wait); 1127 1128 if (node) { 1129 struct vhost_iotlb_msg *msg; 1130 void *start = &node->msg; 1131 1132 switch (node->msg.type) { 1133 case VHOST_IOTLB_MSG: 1134 size = sizeof(node->msg); 1135 msg = &node->msg.iotlb; 1136 break; 1137 case VHOST_IOTLB_MSG_V2: 1138 size = sizeof(node->msg_v2); 1139 msg = &node->msg_v2.iotlb; 1140 break; 1141 default: 1142 BUG(); 1143 break; 1144 } 1145 1146 ret = copy_to_iter(start, size, to); 1147 if (ret != size || msg->type != VHOST_IOTLB_MISS) { 1148 kfree(node); 1149 return ret; 1150 } 1151 vhost_enqueue_msg(dev, &dev->pending_list, node); 1152 } 1153 1154 return ret; 1155 } 1156 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1157 1158 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1159 { 1160 struct vhost_dev *dev = vq->dev; 1161 struct vhost_msg_node *node; 1162 struct vhost_iotlb_msg *msg; 1163 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2); 1164 1165 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG); 1166 if (!node) 1167 return -ENOMEM; 1168 1169 if (v2) { 1170 node->msg_v2.type = VHOST_IOTLB_MSG_V2; 1171 msg = &node->msg_v2.iotlb; 1172 } else { 1173 msg = &node->msg.iotlb; 1174 } 1175 1176 msg->type = VHOST_IOTLB_MISS; 1177 msg->iova = iova; 1178 msg->perm = access; 1179 1180 vhost_enqueue_msg(dev, &dev->read_list, node); 1181 1182 return 0; 1183 } 1184 1185 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1186 struct vring_desc __user *desc, 1187 struct vring_avail __user *avail, 1188 struct vring_used __user *used) 1189 1190 { 1191 size_t s __maybe_unused = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1192 1193 return access_ok(desc, num * sizeof *desc) && 1194 access_ok(avail, 1195 sizeof *avail + num * sizeof *avail->ring + s) && 1196 access_ok(used, 1197 sizeof *used + num * sizeof *used->ring + s); 1198 } 1199 1200 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1201 const struct vhost_umem_node *node, 1202 int type) 1203 { 1204 int access = (type == VHOST_ADDR_USED) ? 1205 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1206 1207 if (likely(node->perm & access)) 1208 vq->meta_iotlb[type] = node; 1209 } 1210 1211 static bool iotlb_access_ok(struct vhost_virtqueue *vq, 1212 int access, u64 addr, u64 len, int type) 1213 { 1214 const struct vhost_umem_node *node; 1215 struct vhost_umem *umem = vq->iotlb; 1216 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1217 1218 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1219 return true; 1220 1221 while (len > s) { 1222 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1223 addr, 1224 last); 1225 if (node == NULL || node->start > addr) { 1226 vhost_iotlb_miss(vq, addr, access); 1227 return false; 1228 } else if (!(node->perm & access)) { 1229 /* Report the possible access violation by 1230 * request another translation from userspace. 1231 */ 1232 return false; 1233 } 1234 1235 size = node->size - addr + node->start; 1236 1237 if (orig_addr == addr && size >= len) 1238 vhost_vq_meta_update(vq, node, type); 1239 1240 s += size; 1241 addr += size; 1242 } 1243 1244 return true; 1245 } 1246 1247 int vq_iotlb_prefetch(struct vhost_virtqueue *vq) 1248 { 1249 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1250 unsigned int num = vq->num; 1251 1252 if (!vq->iotlb) 1253 return 1; 1254 1255 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc, 1256 num * sizeof(*vq->desc), VHOST_ADDR_DESC) && 1257 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail, 1258 sizeof *vq->avail + 1259 num * sizeof(*vq->avail->ring) + s, 1260 VHOST_ADDR_AVAIL) && 1261 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used, 1262 sizeof *vq->used + 1263 num * sizeof(*vq->used->ring) + s, 1264 VHOST_ADDR_USED); 1265 } 1266 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch); 1267 1268 /* Can we log writes? */ 1269 /* Caller should have device mutex but not vq mutex */ 1270 bool vhost_log_access_ok(struct vhost_dev *dev) 1271 { 1272 return memory_access_ok(dev, dev->umem, 1); 1273 } 1274 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1275 1276 /* Verify access for write logging. */ 1277 /* Caller should have vq mutex and device mutex */ 1278 static bool vq_log_access_ok(struct vhost_virtqueue *vq, 1279 void __user *log_base) 1280 { 1281 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1282 1283 return vq_memory_access_ok(log_base, vq->umem, 1284 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1285 (!vq->log_used || log_access_ok(log_base, vq->log_addr, 1286 sizeof *vq->used + 1287 vq->num * sizeof *vq->used->ring + s)); 1288 } 1289 1290 /* Can we start vq? */ 1291 /* Caller should have vq mutex and device mutex */ 1292 bool vhost_vq_access_ok(struct vhost_virtqueue *vq) 1293 { 1294 if (!vq_log_access_ok(vq, vq->log_base)) 1295 return false; 1296 1297 /* Access validation occurs at prefetch time with IOTLB */ 1298 if (vq->iotlb) 1299 return true; 1300 1301 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1302 } 1303 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1304 1305 static struct vhost_umem *vhost_umem_alloc(void) 1306 { 1307 struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL); 1308 1309 if (!umem) 1310 return NULL; 1311 1312 umem->umem_tree = RB_ROOT_CACHED; 1313 umem->numem = 0; 1314 INIT_LIST_HEAD(&umem->umem_list); 1315 1316 return umem; 1317 } 1318 1319 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1320 { 1321 struct vhost_memory mem, *newmem; 1322 struct vhost_memory_region *region; 1323 struct vhost_umem *newumem, *oldumem; 1324 unsigned long size = offsetof(struct vhost_memory, regions); 1325 int i; 1326 1327 if (copy_from_user(&mem, m, size)) 1328 return -EFAULT; 1329 if (mem.padding) 1330 return -EOPNOTSUPP; 1331 if (mem.nregions > max_mem_regions) 1332 return -E2BIG; 1333 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), 1334 GFP_KERNEL); 1335 if (!newmem) 1336 return -ENOMEM; 1337 1338 memcpy(newmem, &mem, size); 1339 if (copy_from_user(newmem->regions, m->regions, 1340 mem.nregions * sizeof *m->regions)) { 1341 kvfree(newmem); 1342 return -EFAULT; 1343 } 1344 1345 newumem = vhost_umem_alloc(); 1346 if (!newumem) { 1347 kvfree(newmem); 1348 return -ENOMEM; 1349 } 1350 1351 for (region = newmem->regions; 1352 region < newmem->regions + mem.nregions; 1353 region++) { 1354 if (vhost_new_umem_range(newumem, 1355 region->guest_phys_addr, 1356 region->memory_size, 1357 region->guest_phys_addr + 1358 region->memory_size - 1, 1359 region->userspace_addr, 1360 VHOST_ACCESS_RW)) 1361 goto err; 1362 } 1363 1364 if (!memory_access_ok(d, newumem, 0)) 1365 goto err; 1366 1367 oldumem = d->umem; 1368 d->umem = newumem; 1369 1370 /* All memory accesses are done under some VQ mutex. */ 1371 for (i = 0; i < d->nvqs; ++i) { 1372 mutex_lock(&d->vqs[i]->mutex); 1373 d->vqs[i]->umem = newumem; 1374 mutex_unlock(&d->vqs[i]->mutex); 1375 } 1376 1377 kvfree(newmem); 1378 vhost_umem_clean(oldumem); 1379 return 0; 1380 1381 err: 1382 vhost_umem_clean(newumem); 1383 kvfree(newmem); 1384 return -EFAULT; 1385 } 1386 1387 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1388 { 1389 struct file *eventfp, *filep = NULL; 1390 bool pollstart = false, pollstop = false; 1391 struct eventfd_ctx *ctx = NULL; 1392 u32 __user *idxp = argp; 1393 struct vhost_virtqueue *vq; 1394 struct vhost_vring_state s; 1395 struct vhost_vring_file f; 1396 struct vhost_vring_addr a; 1397 u32 idx; 1398 long r; 1399 1400 r = get_user(idx, idxp); 1401 if (r < 0) 1402 return r; 1403 if (idx >= d->nvqs) 1404 return -ENOBUFS; 1405 1406 idx = array_index_nospec(idx, d->nvqs); 1407 vq = d->vqs[idx]; 1408 1409 mutex_lock(&vq->mutex); 1410 1411 switch (ioctl) { 1412 case VHOST_SET_VRING_NUM: 1413 /* Resizing ring with an active backend? 1414 * You don't want to do that. */ 1415 if (vq->private_data) { 1416 r = -EBUSY; 1417 break; 1418 } 1419 if (copy_from_user(&s, argp, sizeof s)) { 1420 r = -EFAULT; 1421 break; 1422 } 1423 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) { 1424 r = -EINVAL; 1425 break; 1426 } 1427 vq->num = s.num; 1428 break; 1429 case VHOST_SET_VRING_BASE: 1430 /* Moving base with an active backend? 1431 * You don't want to do that. */ 1432 if (vq->private_data) { 1433 r = -EBUSY; 1434 break; 1435 } 1436 if (copy_from_user(&s, argp, sizeof s)) { 1437 r = -EFAULT; 1438 break; 1439 } 1440 if (s.num > 0xffff) { 1441 r = -EINVAL; 1442 break; 1443 } 1444 vq->last_avail_idx = s.num; 1445 /* Forget the cached index value. */ 1446 vq->avail_idx = vq->last_avail_idx; 1447 break; 1448 case VHOST_GET_VRING_BASE: 1449 s.index = idx; 1450 s.num = vq->last_avail_idx; 1451 if (copy_to_user(argp, &s, sizeof s)) 1452 r = -EFAULT; 1453 break; 1454 case VHOST_SET_VRING_ADDR: 1455 if (copy_from_user(&a, argp, sizeof a)) { 1456 r = -EFAULT; 1457 break; 1458 } 1459 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) { 1460 r = -EOPNOTSUPP; 1461 break; 1462 } 1463 /* For 32bit, verify that the top 32bits of the user 1464 data are set to zero. */ 1465 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1466 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1467 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) { 1468 r = -EFAULT; 1469 break; 1470 } 1471 1472 /* Make sure it's safe to cast pointers to vring types. */ 1473 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1474 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1475 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1476 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1477 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) { 1478 r = -EINVAL; 1479 break; 1480 } 1481 1482 /* We only verify access here if backend is configured. 1483 * If it is not, we don't as size might not have been setup. 1484 * We will verify when backend is configured. */ 1485 if (vq->private_data) { 1486 if (!vq_access_ok(vq, vq->num, 1487 (void __user *)(unsigned long)a.desc_user_addr, 1488 (void __user *)(unsigned long)a.avail_user_addr, 1489 (void __user *)(unsigned long)a.used_user_addr)) { 1490 r = -EINVAL; 1491 break; 1492 } 1493 1494 /* Also validate log access for used ring if enabled. */ 1495 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) && 1496 !log_access_ok(vq->log_base, a.log_guest_addr, 1497 sizeof *vq->used + 1498 vq->num * sizeof *vq->used->ring)) { 1499 r = -EINVAL; 1500 break; 1501 } 1502 } 1503 1504 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1505 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1506 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1507 vq->log_addr = a.log_guest_addr; 1508 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1509 break; 1510 case VHOST_SET_VRING_KICK: 1511 if (copy_from_user(&f, argp, sizeof f)) { 1512 r = -EFAULT; 1513 break; 1514 } 1515 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1516 if (IS_ERR(eventfp)) { 1517 r = PTR_ERR(eventfp); 1518 break; 1519 } 1520 if (eventfp != vq->kick) { 1521 pollstop = (filep = vq->kick) != NULL; 1522 pollstart = (vq->kick = eventfp) != NULL; 1523 } else 1524 filep = eventfp; 1525 break; 1526 case VHOST_SET_VRING_CALL: 1527 if (copy_from_user(&f, argp, sizeof f)) { 1528 r = -EFAULT; 1529 break; 1530 } 1531 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1532 if (IS_ERR(ctx)) { 1533 r = PTR_ERR(ctx); 1534 break; 1535 } 1536 swap(ctx, vq->call_ctx); 1537 break; 1538 case VHOST_SET_VRING_ERR: 1539 if (copy_from_user(&f, argp, sizeof f)) { 1540 r = -EFAULT; 1541 break; 1542 } 1543 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1544 if (IS_ERR(ctx)) { 1545 r = PTR_ERR(ctx); 1546 break; 1547 } 1548 swap(ctx, vq->error_ctx); 1549 break; 1550 case VHOST_SET_VRING_ENDIAN: 1551 r = vhost_set_vring_endian(vq, argp); 1552 break; 1553 case VHOST_GET_VRING_ENDIAN: 1554 r = vhost_get_vring_endian(vq, idx, argp); 1555 break; 1556 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1557 if (copy_from_user(&s, argp, sizeof(s))) { 1558 r = -EFAULT; 1559 break; 1560 } 1561 vq->busyloop_timeout = s.num; 1562 break; 1563 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1564 s.index = idx; 1565 s.num = vq->busyloop_timeout; 1566 if (copy_to_user(argp, &s, sizeof(s))) 1567 r = -EFAULT; 1568 break; 1569 default: 1570 r = -ENOIOCTLCMD; 1571 } 1572 1573 if (pollstop && vq->handle_kick) 1574 vhost_poll_stop(&vq->poll); 1575 1576 if (!IS_ERR_OR_NULL(ctx)) 1577 eventfd_ctx_put(ctx); 1578 if (filep) 1579 fput(filep); 1580 1581 if (pollstart && vq->handle_kick) 1582 r = vhost_poll_start(&vq->poll, vq->kick); 1583 1584 mutex_unlock(&vq->mutex); 1585 1586 if (pollstop && vq->handle_kick) 1587 vhost_poll_flush(&vq->poll); 1588 return r; 1589 } 1590 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 1591 1592 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled) 1593 { 1594 struct vhost_umem *niotlb, *oiotlb; 1595 int i; 1596 1597 niotlb = vhost_umem_alloc(); 1598 if (!niotlb) 1599 return -ENOMEM; 1600 1601 oiotlb = d->iotlb; 1602 d->iotlb = niotlb; 1603 1604 for (i = 0; i < d->nvqs; ++i) { 1605 struct vhost_virtqueue *vq = d->vqs[i]; 1606 1607 mutex_lock(&vq->mutex); 1608 vq->iotlb = niotlb; 1609 __vhost_vq_meta_reset(vq); 1610 mutex_unlock(&vq->mutex); 1611 } 1612 1613 vhost_umem_clean(oiotlb); 1614 1615 return 0; 1616 } 1617 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 1618 1619 /* Caller must have device mutex */ 1620 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1621 { 1622 struct eventfd_ctx *ctx; 1623 u64 p; 1624 long r; 1625 int i, fd; 1626 1627 /* If you are not the owner, you can become one */ 1628 if (ioctl == VHOST_SET_OWNER) { 1629 r = vhost_dev_set_owner(d); 1630 goto done; 1631 } 1632 1633 /* You must be the owner to do anything else */ 1634 r = vhost_dev_check_owner(d); 1635 if (r) 1636 goto done; 1637 1638 switch (ioctl) { 1639 case VHOST_SET_MEM_TABLE: 1640 r = vhost_set_memory(d, argp); 1641 break; 1642 case VHOST_SET_LOG_BASE: 1643 if (copy_from_user(&p, argp, sizeof p)) { 1644 r = -EFAULT; 1645 break; 1646 } 1647 if ((u64)(unsigned long)p != p) { 1648 r = -EFAULT; 1649 break; 1650 } 1651 for (i = 0; i < d->nvqs; ++i) { 1652 struct vhost_virtqueue *vq; 1653 void __user *base = (void __user *)(unsigned long)p; 1654 vq = d->vqs[i]; 1655 mutex_lock(&vq->mutex); 1656 /* If ring is inactive, will check when it's enabled. */ 1657 if (vq->private_data && !vq_log_access_ok(vq, base)) 1658 r = -EFAULT; 1659 else 1660 vq->log_base = base; 1661 mutex_unlock(&vq->mutex); 1662 } 1663 break; 1664 case VHOST_SET_LOG_FD: 1665 r = get_user(fd, (int __user *)argp); 1666 if (r < 0) 1667 break; 1668 ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd); 1669 if (IS_ERR(ctx)) { 1670 r = PTR_ERR(ctx); 1671 break; 1672 } 1673 swap(ctx, d->log_ctx); 1674 for (i = 0; i < d->nvqs; ++i) { 1675 mutex_lock(&d->vqs[i]->mutex); 1676 d->vqs[i]->log_ctx = d->log_ctx; 1677 mutex_unlock(&d->vqs[i]->mutex); 1678 } 1679 if (ctx) 1680 eventfd_ctx_put(ctx); 1681 break; 1682 default: 1683 r = -ENOIOCTLCMD; 1684 break; 1685 } 1686 done: 1687 return r; 1688 } 1689 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 1690 1691 /* TODO: This is really inefficient. We need something like get_user() 1692 * (instruction directly accesses the data, with an exception table entry 1693 * returning -EFAULT). See Documentation/x86/exception-tables.txt. 1694 */ 1695 static int set_bit_to_user(int nr, void __user *addr) 1696 { 1697 unsigned long log = (unsigned long)addr; 1698 struct page *page; 1699 void *base; 1700 int bit = nr + (log % PAGE_SIZE) * 8; 1701 int r; 1702 1703 r = get_user_pages_fast(log, 1, 1, &page); 1704 if (r < 0) 1705 return r; 1706 BUG_ON(r != 1); 1707 base = kmap_atomic(page); 1708 set_bit(bit, base); 1709 kunmap_atomic(base); 1710 set_page_dirty_lock(page); 1711 put_page(page); 1712 return 0; 1713 } 1714 1715 static int log_write(void __user *log_base, 1716 u64 write_address, u64 write_length) 1717 { 1718 u64 write_page = write_address / VHOST_PAGE_SIZE; 1719 int r; 1720 1721 if (!write_length) 1722 return 0; 1723 write_length += write_address % VHOST_PAGE_SIZE; 1724 for (;;) { 1725 u64 base = (u64)(unsigned long)log_base; 1726 u64 log = base + write_page / 8; 1727 int bit = write_page % 8; 1728 if ((u64)(unsigned long)log != log) 1729 return -EFAULT; 1730 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 1731 if (r < 0) 1732 return r; 1733 if (write_length <= VHOST_PAGE_SIZE) 1734 break; 1735 write_length -= VHOST_PAGE_SIZE; 1736 write_page += 1; 1737 } 1738 return r; 1739 } 1740 1741 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len) 1742 { 1743 struct vhost_umem *umem = vq->umem; 1744 struct vhost_umem_node *u; 1745 u64 start, end, l, min; 1746 int r; 1747 bool hit = false; 1748 1749 while (len) { 1750 min = len; 1751 /* More than one GPAs can be mapped into a single HVA. So 1752 * iterate all possible umems here to be safe. 1753 */ 1754 list_for_each_entry(u, &umem->umem_list, link) { 1755 if (u->userspace_addr > hva - 1 + len || 1756 u->userspace_addr - 1 + u->size < hva) 1757 continue; 1758 start = max(u->userspace_addr, hva); 1759 end = min(u->userspace_addr - 1 + u->size, 1760 hva - 1 + len); 1761 l = end - start + 1; 1762 r = log_write(vq->log_base, 1763 u->start + start - u->userspace_addr, 1764 l); 1765 if (r < 0) 1766 return r; 1767 hit = true; 1768 min = min(l, min); 1769 } 1770 1771 if (!hit) 1772 return -EFAULT; 1773 1774 len -= min; 1775 hva += min; 1776 } 1777 1778 return 0; 1779 } 1780 1781 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len) 1782 { 1783 struct iovec iov[64]; 1784 int i, ret; 1785 1786 if (!vq->iotlb) 1787 return log_write(vq->log_base, vq->log_addr + used_offset, len); 1788 1789 ret = translate_desc(vq, (uintptr_t)vq->used + used_offset, 1790 len, iov, 64, VHOST_ACCESS_WO); 1791 if (ret < 0) 1792 return ret; 1793 1794 for (i = 0; i < ret; i++) { 1795 ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 1796 iov[i].iov_len); 1797 if (ret) 1798 return ret; 1799 } 1800 1801 return 0; 1802 } 1803 1804 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 1805 unsigned int log_num, u64 len, struct iovec *iov, int count) 1806 { 1807 int i, r; 1808 1809 /* Make sure data written is seen before log. */ 1810 smp_wmb(); 1811 1812 if (vq->iotlb) { 1813 for (i = 0; i < count; i++) { 1814 r = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 1815 iov[i].iov_len); 1816 if (r < 0) 1817 return r; 1818 } 1819 return 0; 1820 } 1821 1822 for (i = 0; i < log_num; ++i) { 1823 u64 l = min(log[i].len, len); 1824 r = log_write(vq->log_base, log[i].addr, l); 1825 if (r < 0) 1826 return r; 1827 len -= l; 1828 if (!len) { 1829 if (vq->log_ctx) 1830 eventfd_signal(vq->log_ctx, 1); 1831 return 0; 1832 } 1833 } 1834 /* Length written exceeds what we have stored. This is a bug. */ 1835 BUG(); 1836 return 0; 1837 } 1838 EXPORT_SYMBOL_GPL(vhost_log_write); 1839 1840 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 1841 { 1842 void __user *used; 1843 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1844 &vq->used->flags) < 0) 1845 return -EFAULT; 1846 if (unlikely(vq->log_used)) { 1847 /* Make sure the flag is seen before log. */ 1848 smp_wmb(); 1849 /* Log used flag write. */ 1850 used = &vq->used->flags; 1851 log_used(vq, (used - (void __user *)vq->used), 1852 sizeof vq->used->flags); 1853 if (vq->log_ctx) 1854 eventfd_signal(vq->log_ctx, 1); 1855 } 1856 return 0; 1857 } 1858 1859 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event) 1860 { 1861 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1862 vhost_avail_event(vq))) 1863 return -EFAULT; 1864 if (unlikely(vq->log_used)) { 1865 void __user *used; 1866 /* Make sure the event is seen before log. */ 1867 smp_wmb(); 1868 /* Log avail event write */ 1869 used = vhost_avail_event(vq); 1870 log_used(vq, (used - (void __user *)vq->used), 1871 sizeof *vhost_avail_event(vq)); 1872 if (vq->log_ctx) 1873 eventfd_signal(vq->log_ctx, 1); 1874 } 1875 return 0; 1876 } 1877 1878 int vhost_vq_init_access(struct vhost_virtqueue *vq) 1879 { 1880 __virtio16 last_used_idx; 1881 int r; 1882 bool is_le = vq->is_le; 1883 1884 if (!vq->private_data) 1885 return 0; 1886 1887 vhost_init_is_le(vq); 1888 1889 r = vhost_update_used_flags(vq); 1890 if (r) 1891 goto err; 1892 vq->signalled_used_valid = false; 1893 if (!vq->iotlb && 1894 !access_ok(&vq->used->idx, sizeof vq->used->idx)) { 1895 r = -EFAULT; 1896 goto err; 1897 } 1898 r = vhost_get_used(vq, last_used_idx, &vq->used->idx); 1899 if (r) { 1900 vq_err(vq, "Can't access used idx at %p\n", 1901 &vq->used->idx); 1902 goto err; 1903 } 1904 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 1905 return 0; 1906 1907 err: 1908 vq->is_le = is_le; 1909 return r; 1910 } 1911 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 1912 1913 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1914 struct iovec iov[], int iov_size, int access) 1915 { 1916 const struct vhost_umem_node *node; 1917 struct vhost_dev *dev = vq->dev; 1918 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem; 1919 struct iovec *_iov; 1920 u64 s = 0; 1921 int ret = 0; 1922 1923 while ((u64)len > s) { 1924 u64 size; 1925 if (unlikely(ret >= iov_size)) { 1926 ret = -ENOBUFS; 1927 break; 1928 } 1929 1930 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1931 addr, addr + len - 1); 1932 if (node == NULL || node->start > addr) { 1933 if (umem != dev->iotlb) { 1934 ret = -EFAULT; 1935 break; 1936 } 1937 ret = -EAGAIN; 1938 break; 1939 } else if (!(node->perm & access)) { 1940 ret = -EPERM; 1941 break; 1942 } 1943 1944 _iov = iov + ret; 1945 size = node->size - addr + node->start; 1946 _iov->iov_len = min((u64)len - s, size); 1947 _iov->iov_base = (void __user *)(unsigned long) 1948 (node->userspace_addr + addr - node->start); 1949 s += size; 1950 addr += size; 1951 ++ret; 1952 } 1953 1954 if (ret == -EAGAIN) 1955 vhost_iotlb_miss(vq, addr, access); 1956 return ret; 1957 } 1958 1959 /* Each buffer in the virtqueues is actually a chain of descriptors. This 1960 * function returns the next descriptor in the chain, 1961 * or -1U if we're at the end. */ 1962 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 1963 { 1964 unsigned int next; 1965 1966 /* If this descriptor says it doesn't chain, we're done. */ 1967 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 1968 return -1U; 1969 1970 /* Check they're not leading us off end of descriptors. */ 1971 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 1972 return next; 1973 } 1974 1975 static int get_indirect(struct vhost_virtqueue *vq, 1976 struct iovec iov[], unsigned int iov_size, 1977 unsigned int *out_num, unsigned int *in_num, 1978 struct vhost_log *log, unsigned int *log_num, 1979 struct vring_desc *indirect) 1980 { 1981 struct vring_desc desc; 1982 unsigned int i = 0, count, found = 0; 1983 u32 len = vhost32_to_cpu(vq, indirect->len); 1984 struct iov_iter from; 1985 int ret, access; 1986 1987 /* Sanity check */ 1988 if (unlikely(len % sizeof desc)) { 1989 vq_err(vq, "Invalid length in indirect descriptor: " 1990 "len 0x%llx not multiple of 0x%zx\n", 1991 (unsigned long long)len, 1992 sizeof desc); 1993 return -EINVAL; 1994 } 1995 1996 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 1997 UIO_MAXIOV, VHOST_ACCESS_RO); 1998 if (unlikely(ret < 0)) { 1999 if (ret != -EAGAIN) 2000 vq_err(vq, "Translation failure %d in indirect.\n", ret); 2001 return ret; 2002 } 2003 iov_iter_init(&from, READ, vq->indirect, ret, len); 2004 2005 /* We will use the result as an address to read from, so most 2006 * architectures only need a compiler barrier here. */ 2007 read_barrier_depends(); 2008 2009 count = len / sizeof desc; 2010 /* Buffers are chained via a 16 bit next field, so 2011 * we can have at most 2^16 of these. */ 2012 if (unlikely(count > USHRT_MAX + 1)) { 2013 vq_err(vq, "Indirect buffer length too big: %d\n", 2014 indirect->len); 2015 return -E2BIG; 2016 } 2017 2018 do { 2019 unsigned iov_count = *in_num + *out_num; 2020 if (unlikely(++found > count)) { 2021 vq_err(vq, "Loop detected: last one at %u " 2022 "indirect size %u\n", 2023 i, count); 2024 return -EINVAL; 2025 } 2026 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 2027 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 2028 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2029 return -EINVAL; 2030 } 2031 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 2032 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 2033 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2034 return -EINVAL; 2035 } 2036 2037 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2038 access = VHOST_ACCESS_WO; 2039 else 2040 access = VHOST_ACCESS_RO; 2041 2042 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2043 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2044 iov_size - iov_count, access); 2045 if (unlikely(ret < 0)) { 2046 if (ret != -EAGAIN) 2047 vq_err(vq, "Translation failure %d indirect idx %d\n", 2048 ret, i); 2049 return ret; 2050 } 2051 /* If this is an input descriptor, increment that count. */ 2052 if (access == VHOST_ACCESS_WO) { 2053 *in_num += ret; 2054 if (unlikely(log)) { 2055 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2056 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2057 ++*log_num; 2058 } 2059 } else { 2060 /* If it's an output descriptor, they're all supposed 2061 * to come before any input descriptors. */ 2062 if (unlikely(*in_num)) { 2063 vq_err(vq, "Indirect descriptor " 2064 "has out after in: idx %d\n", i); 2065 return -EINVAL; 2066 } 2067 *out_num += ret; 2068 } 2069 } while ((i = next_desc(vq, &desc)) != -1); 2070 return 0; 2071 } 2072 2073 /* This looks in the virtqueue and for the first available buffer, and converts 2074 * it to an iovec for convenient access. Since descriptors consist of some 2075 * number of output then some number of input descriptors, it's actually two 2076 * iovecs, but we pack them into one and note how many of each there were. 2077 * 2078 * This function returns the descriptor number found, or vq->num (which is 2079 * never a valid descriptor number) if none was found. A negative code is 2080 * returned on error. */ 2081 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 2082 struct iovec iov[], unsigned int iov_size, 2083 unsigned int *out_num, unsigned int *in_num, 2084 struct vhost_log *log, unsigned int *log_num) 2085 { 2086 struct vring_desc desc; 2087 unsigned int i, head, found = 0; 2088 u16 last_avail_idx; 2089 __virtio16 avail_idx; 2090 __virtio16 ring_head; 2091 int ret, access; 2092 2093 /* Check it isn't doing very strange things with descriptor numbers. */ 2094 last_avail_idx = vq->last_avail_idx; 2095 2096 if (vq->avail_idx == vq->last_avail_idx) { 2097 if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) { 2098 vq_err(vq, "Failed to access avail idx at %p\n", 2099 &vq->avail->idx); 2100 return -EFAULT; 2101 } 2102 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2103 2104 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 2105 vq_err(vq, "Guest moved used index from %u to %u", 2106 last_avail_idx, vq->avail_idx); 2107 return -EFAULT; 2108 } 2109 2110 /* If there's nothing new since last we looked, return 2111 * invalid. 2112 */ 2113 if (vq->avail_idx == last_avail_idx) 2114 return vq->num; 2115 2116 /* Only get avail ring entries after they have been 2117 * exposed by guest. 2118 */ 2119 smp_rmb(); 2120 } 2121 2122 /* Grab the next descriptor number they're advertising, and increment 2123 * the index we've seen. */ 2124 if (unlikely(vhost_get_avail(vq, ring_head, 2125 &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) { 2126 vq_err(vq, "Failed to read head: idx %d address %p\n", 2127 last_avail_idx, 2128 &vq->avail->ring[last_avail_idx % vq->num]); 2129 return -EFAULT; 2130 } 2131 2132 head = vhost16_to_cpu(vq, ring_head); 2133 2134 /* If their number is silly, that's an error. */ 2135 if (unlikely(head >= vq->num)) { 2136 vq_err(vq, "Guest says index %u > %u is available", 2137 head, vq->num); 2138 return -EINVAL; 2139 } 2140 2141 /* When we start there are none of either input nor output. */ 2142 *out_num = *in_num = 0; 2143 if (unlikely(log)) 2144 *log_num = 0; 2145 2146 i = head; 2147 do { 2148 unsigned iov_count = *in_num + *out_num; 2149 if (unlikely(i >= vq->num)) { 2150 vq_err(vq, "Desc index is %u > %u, head = %u", 2151 i, vq->num, head); 2152 return -EINVAL; 2153 } 2154 if (unlikely(++found > vq->num)) { 2155 vq_err(vq, "Loop detected: last one at %u " 2156 "vq size %u head %u\n", 2157 i, vq->num, head); 2158 return -EINVAL; 2159 } 2160 ret = vhost_copy_from_user(vq, &desc, vq->desc + i, 2161 sizeof desc); 2162 if (unlikely(ret)) { 2163 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2164 i, vq->desc + i); 2165 return -EFAULT; 2166 } 2167 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2168 ret = get_indirect(vq, iov, iov_size, 2169 out_num, in_num, 2170 log, log_num, &desc); 2171 if (unlikely(ret < 0)) { 2172 if (ret != -EAGAIN) 2173 vq_err(vq, "Failure detected " 2174 "in indirect descriptor at idx %d\n", i); 2175 return ret; 2176 } 2177 continue; 2178 } 2179 2180 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2181 access = VHOST_ACCESS_WO; 2182 else 2183 access = VHOST_ACCESS_RO; 2184 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2185 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2186 iov_size - iov_count, access); 2187 if (unlikely(ret < 0)) { 2188 if (ret != -EAGAIN) 2189 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2190 ret, i); 2191 return ret; 2192 } 2193 if (access == VHOST_ACCESS_WO) { 2194 /* If this is an input descriptor, 2195 * increment that count. */ 2196 *in_num += ret; 2197 if (unlikely(log)) { 2198 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2199 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2200 ++*log_num; 2201 } 2202 } else { 2203 /* If it's an output descriptor, they're all supposed 2204 * to come before any input descriptors. */ 2205 if (unlikely(*in_num)) { 2206 vq_err(vq, "Descriptor has out after in: " 2207 "idx %d\n", i); 2208 return -EINVAL; 2209 } 2210 *out_num += ret; 2211 } 2212 } while ((i = next_desc(vq, &desc)) != -1); 2213 2214 /* On success, increment avail index. */ 2215 vq->last_avail_idx++; 2216 2217 /* Assume notifications from guest are disabled at this point, 2218 * if they aren't we would need to update avail_event index. */ 2219 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2220 return head; 2221 } 2222 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2223 2224 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2225 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2226 { 2227 vq->last_avail_idx -= n; 2228 } 2229 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2230 2231 /* After we've used one of their buffers, we tell them about it. We'll then 2232 * want to notify the guest, using eventfd. */ 2233 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2234 { 2235 struct vring_used_elem heads = { 2236 cpu_to_vhost32(vq, head), 2237 cpu_to_vhost32(vq, len) 2238 }; 2239 2240 return vhost_add_used_n(vq, &heads, 1); 2241 } 2242 EXPORT_SYMBOL_GPL(vhost_add_used); 2243 2244 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2245 struct vring_used_elem *heads, 2246 unsigned count) 2247 { 2248 struct vring_used_elem __user *used; 2249 u16 old, new; 2250 int start; 2251 2252 start = vq->last_used_idx & (vq->num - 1); 2253 used = vq->used->ring + start; 2254 if (count == 1) { 2255 if (vhost_put_user(vq, heads[0].id, &used->id)) { 2256 vq_err(vq, "Failed to write used id"); 2257 return -EFAULT; 2258 } 2259 if (vhost_put_user(vq, heads[0].len, &used->len)) { 2260 vq_err(vq, "Failed to write used len"); 2261 return -EFAULT; 2262 } 2263 } else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) { 2264 vq_err(vq, "Failed to write used"); 2265 return -EFAULT; 2266 } 2267 if (unlikely(vq->log_used)) { 2268 /* Make sure data is seen before log. */ 2269 smp_wmb(); 2270 /* Log used ring entry write. */ 2271 log_used(vq, ((void __user *)used - (void __user *)vq->used), 2272 count * sizeof *used); 2273 } 2274 old = vq->last_used_idx; 2275 new = (vq->last_used_idx += count); 2276 /* If the driver never bothers to signal in a very long while, 2277 * used index might wrap around. If that happens, invalidate 2278 * signalled_used index we stored. TODO: make sure driver 2279 * signals at least once in 2^16 and remove this. */ 2280 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2281 vq->signalled_used_valid = false; 2282 return 0; 2283 } 2284 2285 /* After we've used one of their buffers, we tell them about it. We'll then 2286 * want to notify the guest, using eventfd. */ 2287 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2288 unsigned count) 2289 { 2290 int start, n, r; 2291 2292 start = vq->last_used_idx & (vq->num - 1); 2293 n = vq->num - start; 2294 if (n < count) { 2295 r = __vhost_add_used_n(vq, heads, n); 2296 if (r < 0) 2297 return r; 2298 heads += n; 2299 count -= n; 2300 } 2301 r = __vhost_add_used_n(vq, heads, count); 2302 2303 /* Make sure buffer is written before we update index. */ 2304 smp_wmb(); 2305 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 2306 &vq->used->idx)) { 2307 vq_err(vq, "Failed to increment used idx"); 2308 return -EFAULT; 2309 } 2310 if (unlikely(vq->log_used)) { 2311 /* Make sure used idx is seen before log. */ 2312 smp_wmb(); 2313 /* Log used index update. */ 2314 log_used(vq, offsetof(struct vring_used, idx), 2315 sizeof vq->used->idx); 2316 if (vq->log_ctx) 2317 eventfd_signal(vq->log_ctx, 1); 2318 } 2319 return r; 2320 } 2321 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2322 2323 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2324 { 2325 __u16 old, new; 2326 __virtio16 event; 2327 bool v; 2328 /* Flush out used index updates. This is paired 2329 * with the barrier that the Guest executes when enabling 2330 * interrupts. */ 2331 smp_mb(); 2332 2333 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2334 unlikely(vq->avail_idx == vq->last_avail_idx)) 2335 return true; 2336 2337 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2338 __virtio16 flags; 2339 if (vhost_get_avail(vq, flags, &vq->avail->flags)) { 2340 vq_err(vq, "Failed to get flags"); 2341 return true; 2342 } 2343 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2344 } 2345 old = vq->signalled_used; 2346 v = vq->signalled_used_valid; 2347 new = vq->signalled_used = vq->last_used_idx; 2348 vq->signalled_used_valid = true; 2349 2350 if (unlikely(!v)) 2351 return true; 2352 2353 if (vhost_get_avail(vq, event, vhost_used_event(vq))) { 2354 vq_err(vq, "Failed to get used event idx"); 2355 return true; 2356 } 2357 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2358 } 2359 2360 /* This actually signals the guest, using eventfd. */ 2361 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2362 { 2363 /* Signal the Guest tell them we used something up. */ 2364 if (vq->call_ctx && vhost_notify(dev, vq)) 2365 eventfd_signal(vq->call_ctx, 1); 2366 } 2367 EXPORT_SYMBOL_GPL(vhost_signal); 2368 2369 /* And here's the combo meal deal. Supersize me! */ 2370 void vhost_add_used_and_signal(struct vhost_dev *dev, 2371 struct vhost_virtqueue *vq, 2372 unsigned int head, int len) 2373 { 2374 vhost_add_used(vq, head, len); 2375 vhost_signal(dev, vq); 2376 } 2377 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2378 2379 /* multi-buffer version of vhost_add_used_and_signal */ 2380 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2381 struct vhost_virtqueue *vq, 2382 struct vring_used_elem *heads, unsigned count) 2383 { 2384 vhost_add_used_n(vq, heads, count); 2385 vhost_signal(dev, vq); 2386 } 2387 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2388 2389 /* return true if we're sure that avaiable ring is empty */ 2390 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2391 { 2392 __virtio16 avail_idx; 2393 int r; 2394 2395 if (vq->avail_idx != vq->last_avail_idx) 2396 return false; 2397 2398 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2399 if (unlikely(r)) 2400 return false; 2401 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2402 2403 return vq->avail_idx == vq->last_avail_idx; 2404 } 2405 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2406 2407 /* OK, now we need to know about added descriptors. */ 2408 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2409 { 2410 __virtio16 avail_idx; 2411 int r; 2412 2413 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2414 return false; 2415 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2416 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2417 r = vhost_update_used_flags(vq); 2418 if (r) { 2419 vq_err(vq, "Failed to enable notification at %p: %d\n", 2420 &vq->used->flags, r); 2421 return false; 2422 } 2423 } else { 2424 r = vhost_update_avail_event(vq, vq->avail_idx); 2425 if (r) { 2426 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2427 vhost_avail_event(vq), r); 2428 return false; 2429 } 2430 } 2431 /* They could have slipped one in as we were doing that: make 2432 * sure it's written, then check again. */ 2433 smp_mb(); 2434 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2435 if (r) { 2436 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2437 &vq->avail->idx, r); 2438 return false; 2439 } 2440 2441 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx; 2442 } 2443 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2444 2445 /* We don't need to be notified again. */ 2446 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2447 { 2448 int r; 2449 2450 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2451 return; 2452 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2453 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2454 r = vhost_update_used_flags(vq); 2455 if (r) 2456 vq_err(vq, "Failed to enable notification at %p: %d\n", 2457 &vq->used->flags, r); 2458 } 2459 } 2460 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2461 2462 /* Create a new message. */ 2463 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2464 { 2465 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL); 2466 if (!node) 2467 return NULL; 2468 2469 /* Make sure all padding within the structure is initialized. */ 2470 memset(&node->msg, 0, sizeof node->msg); 2471 node->vq = vq; 2472 node->msg.type = type; 2473 return node; 2474 } 2475 EXPORT_SYMBOL_GPL(vhost_new_msg); 2476 2477 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2478 struct vhost_msg_node *node) 2479 { 2480 spin_lock(&dev->iotlb_lock); 2481 list_add_tail(&node->node, head); 2482 spin_unlock(&dev->iotlb_lock); 2483 2484 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 2485 } 2486 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2487 2488 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2489 struct list_head *head) 2490 { 2491 struct vhost_msg_node *node = NULL; 2492 2493 spin_lock(&dev->iotlb_lock); 2494 if (!list_empty(head)) { 2495 node = list_first_entry(head, struct vhost_msg_node, 2496 node); 2497 list_del(&node->node); 2498 } 2499 spin_unlock(&dev->iotlb_lock); 2500 2501 return node; 2502 } 2503 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2504 2505 2506 static int __init vhost_init(void) 2507 { 2508 return 0; 2509 } 2510 2511 static void __exit vhost_exit(void) 2512 { 2513 } 2514 2515 module_init(vhost_init); 2516 module_exit(vhost_exit); 2517 2518 MODULE_VERSION("0.0.1"); 2519 MODULE_LICENSE("GPL v2"); 2520 MODULE_AUTHOR("Michael S. Tsirkin"); 2521 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2522