xref: /openbmc/linux/drivers/vhost/vhost.c (revision ccb01374)
1 /* Copyright (C) 2009 Red Hat, Inc.
2  * Copyright (C) 2006 Rusty Russell IBM Corporation
3  *
4  * Author: Michael S. Tsirkin <mst@redhat.com>
5  *
6  * Inspiration, some code, and most witty comments come from
7  * Documentation/virtual/lguest/lguest.c, by Rusty Russell
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.
10  *
11  * Generic code for virtio server in host kernel.
12  */
13 
14 #include <linux/eventfd.h>
15 #include <linux/vhost.h>
16 #include <linux/uio.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_context.h>
19 #include <linux/miscdevice.h>
20 #include <linux/mutex.h>
21 #include <linux/poll.h>
22 #include <linux/file.h>
23 #include <linux/highmem.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/kthread.h>
27 #include <linux/cgroup.h>
28 #include <linux/module.h>
29 #include <linux/sort.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/signal.h>
32 #include <linux/interval_tree_generic.h>
33 #include <linux/nospec.h>
34 
35 #include "vhost.h"
36 
37 static ushort max_mem_regions = 64;
38 module_param(max_mem_regions, ushort, 0444);
39 MODULE_PARM_DESC(max_mem_regions,
40 	"Maximum number of memory regions in memory map. (default: 64)");
41 static int max_iotlb_entries = 2048;
42 module_param(max_iotlb_entries, int, 0444);
43 MODULE_PARM_DESC(max_iotlb_entries,
44 	"Maximum number of iotlb entries. (default: 2048)");
45 
46 enum {
47 	VHOST_MEMORY_F_LOG = 0x1,
48 };
49 
50 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num])
51 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num])
52 
53 INTERVAL_TREE_DEFINE(struct vhost_umem_node,
54 		     rb, __u64, __subtree_last,
55 		     START, LAST, static inline, vhost_umem_interval_tree);
56 
57 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY
58 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
59 {
60 	vq->user_be = !virtio_legacy_is_little_endian();
61 }
62 
63 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq)
64 {
65 	vq->user_be = true;
66 }
67 
68 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq)
69 {
70 	vq->user_be = false;
71 }
72 
73 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
74 {
75 	struct vhost_vring_state s;
76 
77 	if (vq->private_data)
78 		return -EBUSY;
79 
80 	if (copy_from_user(&s, argp, sizeof(s)))
81 		return -EFAULT;
82 
83 	if (s.num != VHOST_VRING_LITTLE_ENDIAN &&
84 	    s.num != VHOST_VRING_BIG_ENDIAN)
85 		return -EINVAL;
86 
87 	if (s.num == VHOST_VRING_BIG_ENDIAN)
88 		vhost_enable_cross_endian_big(vq);
89 	else
90 		vhost_enable_cross_endian_little(vq);
91 
92 	return 0;
93 }
94 
95 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
96 				   int __user *argp)
97 {
98 	struct vhost_vring_state s = {
99 		.index = idx,
100 		.num = vq->user_be
101 	};
102 
103 	if (copy_to_user(argp, &s, sizeof(s)))
104 		return -EFAULT;
105 
106 	return 0;
107 }
108 
109 static void vhost_init_is_le(struct vhost_virtqueue *vq)
110 {
111 	/* Note for legacy virtio: user_be is initialized at reset time
112 	 * according to the host endianness. If userspace does not set an
113 	 * explicit endianness, the default behavior is native endian, as
114 	 * expected by legacy virtio.
115 	 */
116 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be;
117 }
118 #else
119 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
120 {
121 }
122 
123 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
124 {
125 	return -ENOIOCTLCMD;
126 }
127 
128 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
129 				   int __user *argp)
130 {
131 	return -ENOIOCTLCMD;
132 }
133 
134 static void vhost_init_is_le(struct vhost_virtqueue *vq)
135 {
136 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1)
137 		|| virtio_legacy_is_little_endian();
138 }
139 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */
140 
141 static void vhost_reset_is_le(struct vhost_virtqueue *vq)
142 {
143 	vhost_init_is_le(vq);
144 }
145 
146 struct vhost_flush_struct {
147 	struct vhost_work work;
148 	struct completion wait_event;
149 };
150 
151 static void vhost_flush_work(struct vhost_work *work)
152 {
153 	struct vhost_flush_struct *s;
154 
155 	s = container_of(work, struct vhost_flush_struct, work);
156 	complete(&s->wait_event);
157 }
158 
159 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh,
160 			    poll_table *pt)
161 {
162 	struct vhost_poll *poll;
163 
164 	poll = container_of(pt, struct vhost_poll, table);
165 	poll->wqh = wqh;
166 	add_wait_queue(wqh, &poll->wait);
167 }
168 
169 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync,
170 			     void *key)
171 {
172 	struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait);
173 
174 	if (!(key_to_poll(key) & poll->mask))
175 		return 0;
176 
177 	vhost_poll_queue(poll);
178 	return 0;
179 }
180 
181 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn)
182 {
183 	clear_bit(VHOST_WORK_QUEUED, &work->flags);
184 	work->fn = fn;
185 }
186 EXPORT_SYMBOL_GPL(vhost_work_init);
187 
188 /* Init poll structure */
189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn,
190 		     __poll_t mask, struct vhost_dev *dev)
191 {
192 	init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup);
193 	init_poll_funcptr(&poll->table, vhost_poll_func);
194 	poll->mask = mask;
195 	poll->dev = dev;
196 	poll->wqh = NULL;
197 
198 	vhost_work_init(&poll->work, fn);
199 }
200 EXPORT_SYMBOL_GPL(vhost_poll_init);
201 
202 /* Start polling a file. We add ourselves to file's wait queue. The caller must
203  * keep a reference to a file until after vhost_poll_stop is called. */
204 int vhost_poll_start(struct vhost_poll *poll, struct file *file)
205 {
206 	__poll_t mask;
207 	int ret = 0;
208 
209 	if (poll->wqh)
210 		return 0;
211 
212 	mask = vfs_poll(file, &poll->table);
213 	if (mask)
214 		vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask));
215 	if (mask & EPOLLERR) {
216 		vhost_poll_stop(poll);
217 		ret = -EINVAL;
218 	}
219 
220 	return ret;
221 }
222 EXPORT_SYMBOL_GPL(vhost_poll_start);
223 
224 /* Stop polling a file. After this function returns, it becomes safe to drop the
225  * file reference. You must also flush afterwards. */
226 void vhost_poll_stop(struct vhost_poll *poll)
227 {
228 	if (poll->wqh) {
229 		remove_wait_queue(poll->wqh, &poll->wait);
230 		poll->wqh = NULL;
231 	}
232 }
233 EXPORT_SYMBOL_GPL(vhost_poll_stop);
234 
235 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work)
236 {
237 	struct vhost_flush_struct flush;
238 
239 	if (dev->worker) {
240 		init_completion(&flush.wait_event);
241 		vhost_work_init(&flush.work, vhost_flush_work);
242 
243 		vhost_work_queue(dev, &flush.work);
244 		wait_for_completion(&flush.wait_event);
245 	}
246 }
247 EXPORT_SYMBOL_GPL(vhost_work_flush);
248 
249 /* Flush any work that has been scheduled. When calling this, don't hold any
250  * locks that are also used by the callback. */
251 void vhost_poll_flush(struct vhost_poll *poll)
252 {
253 	vhost_work_flush(poll->dev, &poll->work);
254 }
255 EXPORT_SYMBOL_GPL(vhost_poll_flush);
256 
257 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work)
258 {
259 	if (!dev->worker)
260 		return;
261 
262 	if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) {
263 		/* We can only add the work to the list after we're
264 		 * sure it was not in the list.
265 		 * test_and_set_bit() implies a memory barrier.
266 		 */
267 		llist_add(&work->node, &dev->work_list);
268 		wake_up_process(dev->worker);
269 	}
270 }
271 EXPORT_SYMBOL_GPL(vhost_work_queue);
272 
273 /* A lockless hint for busy polling code to exit the loop */
274 bool vhost_has_work(struct vhost_dev *dev)
275 {
276 	return !llist_empty(&dev->work_list);
277 }
278 EXPORT_SYMBOL_GPL(vhost_has_work);
279 
280 void vhost_poll_queue(struct vhost_poll *poll)
281 {
282 	vhost_work_queue(poll->dev, &poll->work);
283 }
284 EXPORT_SYMBOL_GPL(vhost_poll_queue);
285 
286 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq)
287 {
288 	int j;
289 
290 	for (j = 0; j < VHOST_NUM_ADDRS; j++)
291 		vq->meta_iotlb[j] = NULL;
292 }
293 
294 static void vhost_vq_meta_reset(struct vhost_dev *d)
295 {
296 	int i;
297 
298 	for (i = 0; i < d->nvqs; ++i)
299 		__vhost_vq_meta_reset(d->vqs[i]);
300 }
301 
302 static void vhost_vq_reset(struct vhost_dev *dev,
303 			   struct vhost_virtqueue *vq)
304 {
305 	vq->num = 1;
306 	vq->desc = NULL;
307 	vq->avail = NULL;
308 	vq->used = NULL;
309 	vq->last_avail_idx = 0;
310 	vq->avail_idx = 0;
311 	vq->last_used_idx = 0;
312 	vq->signalled_used = 0;
313 	vq->signalled_used_valid = false;
314 	vq->used_flags = 0;
315 	vq->log_used = false;
316 	vq->log_addr = -1ull;
317 	vq->private_data = NULL;
318 	vq->acked_features = 0;
319 	vq->acked_backend_features = 0;
320 	vq->log_base = NULL;
321 	vq->error_ctx = NULL;
322 	vq->kick = NULL;
323 	vq->call_ctx = NULL;
324 	vq->log_ctx = NULL;
325 	vhost_reset_is_le(vq);
326 	vhost_disable_cross_endian(vq);
327 	vq->busyloop_timeout = 0;
328 	vq->umem = NULL;
329 	vq->iotlb = NULL;
330 	__vhost_vq_meta_reset(vq);
331 }
332 
333 static int vhost_worker(void *data)
334 {
335 	struct vhost_dev *dev = data;
336 	struct vhost_work *work, *work_next;
337 	struct llist_node *node;
338 	mm_segment_t oldfs = get_fs();
339 
340 	set_fs(USER_DS);
341 	use_mm(dev->mm);
342 
343 	for (;;) {
344 		/* mb paired w/ kthread_stop */
345 		set_current_state(TASK_INTERRUPTIBLE);
346 
347 		if (kthread_should_stop()) {
348 			__set_current_state(TASK_RUNNING);
349 			break;
350 		}
351 
352 		node = llist_del_all(&dev->work_list);
353 		if (!node)
354 			schedule();
355 
356 		node = llist_reverse_order(node);
357 		/* make sure flag is seen after deletion */
358 		smp_wmb();
359 		llist_for_each_entry_safe(work, work_next, node, node) {
360 			clear_bit(VHOST_WORK_QUEUED, &work->flags);
361 			__set_current_state(TASK_RUNNING);
362 			work->fn(work);
363 			if (need_resched())
364 				schedule();
365 		}
366 	}
367 	unuse_mm(dev->mm);
368 	set_fs(oldfs);
369 	return 0;
370 }
371 
372 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq)
373 {
374 	kfree(vq->indirect);
375 	vq->indirect = NULL;
376 	kfree(vq->log);
377 	vq->log = NULL;
378 	kfree(vq->heads);
379 	vq->heads = NULL;
380 }
381 
382 /* Helper to allocate iovec buffers for all vqs. */
383 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev)
384 {
385 	struct vhost_virtqueue *vq;
386 	int i;
387 
388 	for (i = 0; i < dev->nvqs; ++i) {
389 		vq = dev->vqs[i];
390 		vq->indirect = kmalloc_array(UIO_MAXIOV,
391 					     sizeof(*vq->indirect),
392 					     GFP_KERNEL);
393 		vq->log = kmalloc_array(UIO_MAXIOV, sizeof(*vq->log),
394 					GFP_KERNEL);
395 		vq->heads = kmalloc_array(UIO_MAXIOV, sizeof(*vq->heads),
396 					  GFP_KERNEL);
397 		if (!vq->indirect || !vq->log || !vq->heads)
398 			goto err_nomem;
399 	}
400 	return 0;
401 
402 err_nomem:
403 	for (; i >= 0; --i)
404 		vhost_vq_free_iovecs(dev->vqs[i]);
405 	return -ENOMEM;
406 }
407 
408 static void vhost_dev_free_iovecs(struct vhost_dev *dev)
409 {
410 	int i;
411 
412 	for (i = 0; i < dev->nvqs; ++i)
413 		vhost_vq_free_iovecs(dev->vqs[i]);
414 }
415 
416 void vhost_dev_init(struct vhost_dev *dev,
417 		    struct vhost_virtqueue **vqs, int nvqs)
418 {
419 	struct vhost_virtqueue *vq;
420 	int i;
421 
422 	dev->vqs = vqs;
423 	dev->nvqs = nvqs;
424 	mutex_init(&dev->mutex);
425 	dev->log_ctx = NULL;
426 	dev->umem = NULL;
427 	dev->iotlb = NULL;
428 	dev->mm = NULL;
429 	dev->worker = NULL;
430 	init_llist_head(&dev->work_list);
431 	init_waitqueue_head(&dev->wait);
432 	INIT_LIST_HEAD(&dev->read_list);
433 	INIT_LIST_HEAD(&dev->pending_list);
434 	spin_lock_init(&dev->iotlb_lock);
435 
436 
437 	for (i = 0; i < dev->nvqs; ++i) {
438 		vq = dev->vqs[i];
439 		vq->log = NULL;
440 		vq->indirect = NULL;
441 		vq->heads = NULL;
442 		vq->dev = dev;
443 		mutex_init(&vq->mutex);
444 		vhost_vq_reset(dev, vq);
445 		if (vq->handle_kick)
446 			vhost_poll_init(&vq->poll, vq->handle_kick,
447 					EPOLLIN, dev);
448 	}
449 }
450 EXPORT_SYMBOL_GPL(vhost_dev_init);
451 
452 /* Caller should have device mutex */
453 long vhost_dev_check_owner(struct vhost_dev *dev)
454 {
455 	/* Are you the owner? If not, I don't think you mean to do that */
456 	return dev->mm == current->mm ? 0 : -EPERM;
457 }
458 EXPORT_SYMBOL_GPL(vhost_dev_check_owner);
459 
460 struct vhost_attach_cgroups_struct {
461 	struct vhost_work work;
462 	struct task_struct *owner;
463 	int ret;
464 };
465 
466 static void vhost_attach_cgroups_work(struct vhost_work *work)
467 {
468 	struct vhost_attach_cgroups_struct *s;
469 
470 	s = container_of(work, struct vhost_attach_cgroups_struct, work);
471 	s->ret = cgroup_attach_task_all(s->owner, current);
472 }
473 
474 static int vhost_attach_cgroups(struct vhost_dev *dev)
475 {
476 	struct vhost_attach_cgroups_struct attach;
477 
478 	attach.owner = current;
479 	vhost_work_init(&attach.work, vhost_attach_cgroups_work);
480 	vhost_work_queue(dev, &attach.work);
481 	vhost_work_flush(dev, &attach.work);
482 	return attach.ret;
483 }
484 
485 /* Caller should have device mutex */
486 bool vhost_dev_has_owner(struct vhost_dev *dev)
487 {
488 	return dev->mm;
489 }
490 EXPORT_SYMBOL_GPL(vhost_dev_has_owner);
491 
492 /* Caller should have device mutex */
493 long vhost_dev_set_owner(struct vhost_dev *dev)
494 {
495 	struct task_struct *worker;
496 	int err;
497 
498 	/* Is there an owner already? */
499 	if (vhost_dev_has_owner(dev)) {
500 		err = -EBUSY;
501 		goto err_mm;
502 	}
503 
504 	/* No owner, become one */
505 	dev->mm = get_task_mm(current);
506 	worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid);
507 	if (IS_ERR(worker)) {
508 		err = PTR_ERR(worker);
509 		goto err_worker;
510 	}
511 
512 	dev->worker = worker;
513 	wake_up_process(worker);	/* avoid contributing to loadavg */
514 
515 	err = vhost_attach_cgroups(dev);
516 	if (err)
517 		goto err_cgroup;
518 
519 	err = vhost_dev_alloc_iovecs(dev);
520 	if (err)
521 		goto err_cgroup;
522 
523 	return 0;
524 err_cgroup:
525 	kthread_stop(worker);
526 	dev->worker = NULL;
527 err_worker:
528 	if (dev->mm)
529 		mmput(dev->mm);
530 	dev->mm = NULL;
531 err_mm:
532 	return err;
533 }
534 EXPORT_SYMBOL_GPL(vhost_dev_set_owner);
535 
536 struct vhost_umem *vhost_dev_reset_owner_prepare(void)
537 {
538 	return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL);
539 }
540 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare);
541 
542 /* Caller should have device mutex */
543 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem)
544 {
545 	int i;
546 
547 	vhost_dev_cleanup(dev);
548 
549 	/* Restore memory to default empty mapping. */
550 	INIT_LIST_HEAD(&umem->umem_list);
551 	dev->umem = umem;
552 	/* We don't need VQ locks below since vhost_dev_cleanup makes sure
553 	 * VQs aren't running.
554 	 */
555 	for (i = 0; i < dev->nvqs; ++i)
556 		dev->vqs[i]->umem = umem;
557 }
558 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner);
559 
560 void vhost_dev_stop(struct vhost_dev *dev)
561 {
562 	int i;
563 
564 	for (i = 0; i < dev->nvqs; ++i) {
565 		if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) {
566 			vhost_poll_stop(&dev->vqs[i]->poll);
567 			vhost_poll_flush(&dev->vqs[i]->poll);
568 		}
569 	}
570 }
571 EXPORT_SYMBOL_GPL(vhost_dev_stop);
572 
573 static void vhost_umem_free(struct vhost_umem *umem,
574 			    struct vhost_umem_node *node)
575 {
576 	vhost_umem_interval_tree_remove(node, &umem->umem_tree);
577 	list_del(&node->link);
578 	kfree(node);
579 	umem->numem--;
580 }
581 
582 static void vhost_umem_clean(struct vhost_umem *umem)
583 {
584 	struct vhost_umem_node *node, *tmp;
585 
586 	if (!umem)
587 		return;
588 
589 	list_for_each_entry_safe(node, tmp, &umem->umem_list, link)
590 		vhost_umem_free(umem, node);
591 
592 	kvfree(umem);
593 }
594 
595 static void vhost_clear_msg(struct vhost_dev *dev)
596 {
597 	struct vhost_msg_node *node, *n;
598 
599 	spin_lock(&dev->iotlb_lock);
600 
601 	list_for_each_entry_safe(node, n, &dev->read_list, node) {
602 		list_del(&node->node);
603 		kfree(node);
604 	}
605 
606 	list_for_each_entry_safe(node, n, &dev->pending_list, node) {
607 		list_del(&node->node);
608 		kfree(node);
609 	}
610 
611 	spin_unlock(&dev->iotlb_lock);
612 }
613 
614 void vhost_dev_cleanup(struct vhost_dev *dev)
615 {
616 	int i;
617 
618 	for (i = 0; i < dev->nvqs; ++i) {
619 		if (dev->vqs[i]->error_ctx)
620 			eventfd_ctx_put(dev->vqs[i]->error_ctx);
621 		if (dev->vqs[i]->kick)
622 			fput(dev->vqs[i]->kick);
623 		if (dev->vqs[i]->call_ctx)
624 			eventfd_ctx_put(dev->vqs[i]->call_ctx);
625 		vhost_vq_reset(dev, dev->vqs[i]);
626 	}
627 	vhost_dev_free_iovecs(dev);
628 	if (dev->log_ctx)
629 		eventfd_ctx_put(dev->log_ctx);
630 	dev->log_ctx = NULL;
631 	/* No one will access memory at this point */
632 	vhost_umem_clean(dev->umem);
633 	dev->umem = NULL;
634 	vhost_umem_clean(dev->iotlb);
635 	dev->iotlb = NULL;
636 	vhost_clear_msg(dev);
637 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
638 	WARN_ON(!llist_empty(&dev->work_list));
639 	if (dev->worker) {
640 		kthread_stop(dev->worker);
641 		dev->worker = NULL;
642 	}
643 	if (dev->mm)
644 		mmput(dev->mm);
645 	dev->mm = NULL;
646 }
647 EXPORT_SYMBOL_GPL(vhost_dev_cleanup);
648 
649 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz)
650 {
651 	u64 a = addr / VHOST_PAGE_SIZE / 8;
652 
653 	/* Make sure 64 bit math will not overflow. */
654 	if (a > ULONG_MAX - (unsigned long)log_base ||
655 	    a + (unsigned long)log_base > ULONG_MAX)
656 		return false;
657 
658 	return access_ok(log_base + a,
659 			 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8);
660 }
661 
662 static bool vhost_overflow(u64 uaddr, u64 size)
663 {
664 	/* Make sure 64 bit math will not overflow. */
665 	return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size;
666 }
667 
668 /* Caller should have vq mutex and device mutex. */
669 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem,
670 				int log_all)
671 {
672 	struct vhost_umem_node *node;
673 
674 	if (!umem)
675 		return false;
676 
677 	list_for_each_entry(node, &umem->umem_list, link) {
678 		unsigned long a = node->userspace_addr;
679 
680 		if (vhost_overflow(node->userspace_addr, node->size))
681 			return false;
682 
683 
684 		if (!access_ok((void __user *)a,
685 				    node->size))
686 			return false;
687 		else if (log_all && !log_access_ok(log_base,
688 						   node->start,
689 						   node->size))
690 			return false;
691 	}
692 	return true;
693 }
694 
695 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq,
696 					       u64 addr, unsigned int size,
697 					       int type)
698 {
699 	const struct vhost_umem_node *node = vq->meta_iotlb[type];
700 
701 	if (!node)
702 		return NULL;
703 
704 	return (void *)(uintptr_t)(node->userspace_addr + addr - node->start);
705 }
706 
707 /* Can we switch to this memory table? */
708 /* Caller should have device mutex but not vq mutex */
709 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem,
710 			     int log_all)
711 {
712 	int i;
713 
714 	for (i = 0; i < d->nvqs; ++i) {
715 		bool ok;
716 		bool log;
717 
718 		mutex_lock(&d->vqs[i]->mutex);
719 		log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL);
720 		/* If ring is inactive, will check when it's enabled. */
721 		if (d->vqs[i]->private_data)
722 			ok = vq_memory_access_ok(d->vqs[i]->log_base,
723 						 umem, log);
724 		else
725 			ok = true;
726 		mutex_unlock(&d->vqs[i]->mutex);
727 		if (!ok)
728 			return false;
729 	}
730 	return true;
731 }
732 
733 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
734 			  struct iovec iov[], int iov_size, int access);
735 
736 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to,
737 			      const void *from, unsigned size)
738 {
739 	int ret;
740 
741 	if (!vq->iotlb)
742 		return __copy_to_user(to, from, size);
743 	else {
744 		/* This function should be called after iotlb
745 		 * prefetch, which means we're sure that all vq
746 		 * could be access through iotlb. So -EAGAIN should
747 		 * not happen in this case.
748 		 */
749 		struct iov_iter t;
750 		void __user *uaddr = vhost_vq_meta_fetch(vq,
751 				     (u64)(uintptr_t)to, size,
752 				     VHOST_ADDR_USED);
753 
754 		if (uaddr)
755 			return __copy_to_user(uaddr, from, size);
756 
757 		ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov,
758 				     ARRAY_SIZE(vq->iotlb_iov),
759 				     VHOST_ACCESS_WO);
760 		if (ret < 0)
761 			goto out;
762 		iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size);
763 		ret = copy_to_iter(from, size, &t);
764 		if (ret == size)
765 			ret = 0;
766 	}
767 out:
768 	return ret;
769 }
770 
771 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to,
772 				void __user *from, unsigned size)
773 {
774 	int ret;
775 
776 	if (!vq->iotlb)
777 		return __copy_from_user(to, from, size);
778 	else {
779 		/* This function should be called after iotlb
780 		 * prefetch, which means we're sure that vq
781 		 * could be access through iotlb. So -EAGAIN should
782 		 * not happen in this case.
783 		 */
784 		void __user *uaddr = vhost_vq_meta_fetch(vq,
785 				     (u64)(uintptr_t)from, size,
786 				     VHOST_ADDR_DESC);
787 		struct iov_iter f;
788 
789 		if (uaddr)
790 			return __copy_from_user(to, uaddr, size);
791 
792 		ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov,
793 				     ARRAY_SIZE(vq->iotlb_iov),
794 				     VHOST_ACCESS_RO);
795 		if (ret < 0) {
796 			vq_err(vq, "IOTLB translation failure: uaddr "
797 			       "%p size 0x%llx\n", from,
798 			       (unsigned long long) size);
799 			goto out;
800 		}
801 		iov_iter_init(&f, READ, vq->iotlb_iov, ret, size);
802 		ret = copy_from_iter(to, size, &f);
803 		if (ret == size)
804 			ret = 0;
805 	}
806 
807 out:
808 	return ret;
809 }
810 
811 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq,
812 					  void __user *addr, unsigned int size,
813 					  int type)
814 {
815 	int ret;
816 
817 	ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov,
818 			     ARRAY_SIZE(vq->iotlb_iov),
819 			     VHOST_ACCESS_RO);
820 	if (ret < 0) {
821 		vq_err(vq, "IOTLB translation failure: uaddr "
822 			"%p size 0x%llx\n", addr,
823 			(unsigned long long) size);
824 		return NULL;
825 	}
826 
827 	if (ret != 1 || vq->iotlb_iov[0].iov_len != size) {
828 		vq_err(vq, "Non atomic userspace memory access: uaddr "
829 			"%p size 0x%llx\n", addr,
830 			(unsigned long long) size);
831 		return NULL;
832 	}
833 
834 	return vq->iotlb_iov[0].iov_base;
835 }
836 
837 /* This function should be called after iotlb
838  * prefetch, which means we're sure that vq
839  * could be access through iotlb. So -EAGAIN should
840  * not happen in this case.
841  */
842 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq,
843 					    void *addr, unsigned int size,
844 					    int type)
845 {
846 	void __user *uaddr = vhost_vq_meta_fetch(vq,
847 			     (u64)(uintptr_t)addr, size, type);
848 	if (uaddr)
849 		return uaddr;
850 
851 	return __vhost_get_user_slow(vq, addr, size, type);
852 }
853 
854 #define vhost_put_user(vq, x, ptr)		\
855 ({ \
856 	int ret = -EFAULT; \
857 	if (!vq->iotlb) { \
858 		ret = __put_user(x, ptr); \
859 	} else { \
860 		__typeof__(ptr) to = \
861 			(__typeof__(ptr)) __vhost_get_user(vq, ptr,	\
862 					  sizeof(*ptr), VHOST_ADDR_USED); \
863 		if (to != NULL) \
864 			ret = __put_user(x, to); \
865 		else \
866 			ret = -EFAULT;	\
867 	} \
868 	ret; \
869 })
870 
871 #define vhost_get_user(vq, x, ptr, type)		\
872 ({ \
873 	int ret; \
874 	if (!vq->iotlb) { \
875 		ret = __get_user(x, ptr); \
876 	} else { \
877 		__typeof__(ptr) from = \
878 			(__typeof__(ptr)) __vhost_get_user(vq, ptr, \
879 							   sizeof(*ptr), \
880 							   type); \
881 		if (from != NULL) \
882 			ret = __get_user(x, from); \
883 		else \
884 			ret = -EFAULT; \
885 	} \
886 	ret; \
887 })
888 
889 #define vhost_get_avail(vq, x, ptr) \
890 	vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL)
891 
892 #define vhost_get_used(vq, x, ptr) \
893 	vhost_get_user(vq, x, ptr, VHOST_ADDR_USED)
894 
895 static void vhost_dev_lock_vqs(struct vhost_dev *d)
896 {
897 	int i = 0;
898 	for (i = 0; i < d->nvqs; ++i)
899 		mutex_lock_nested(&d->vqs[i]->mutex, i);
900 }
901 
902 static void vhost_dev_unlock_vqs(struct vhost_dev *d)
903 {
904 	int i = 0;
905 	for (i = 0; i < d->nvqs; ++i)
906 		mutex_unlock(&d->vqs[i]->mutex);
907 }
908 
909 static int vhost_new_umem_range(struct vhost_umem *umem,
910 				u64 start, u64 size, u64 end,
911 				u64 userspace_addr, int perm)
912 {
913 	struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC);
914 
915 	if (!node)
916 		return -ENOMEM;
917 
918 	if (umem->numem == max_iotlb_entries) {
919 		tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link);
920 		vhost_umem_free(umem, tmp);
921 	}
922 
923 	node->start = start;
924 	node->size = size;
925 	node->last = end;
926 	node->userspace_addr = userspace_addr;
927 	node->perm = perm;
928 	INIT_LIST_HEAD(&node->link);
929 	list_add_tail(&node->link, &umem->umem_list);
930 	vhost_umem_interval_tree_insert(node, &umem->umem_tree);
931 	umem->numem++;
932 
933 	return 0;
934 }
935 
936 static void vhost_del_umem_range(struct vhost_umem *umem,
937 				 u64 start, u64 end)
938 {
939 	struct vhost_umem_node *node;
940 
941 	while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
942 							   start, end)))
943 		vhost_umem_free(umem, node);
944 }
945 
946 static void vhost_iotlb_notify_vq(struct vhost_dev *d,
947 				  struct vhost_iotlb_msg *msg)
948 {
949 	struct vhost_msg_node *node, *n;
950 
951 	spin_lock(&d->iotlb_lock);
952 
953 	list_for_each_entry_safe(node, n, &d->pending_list, node) {
954 		struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb;
955 		if (msg->iova <= vq_msg->iova &&
956 		    msg->iova + msg->size - 1 >= vq_msg->iova &&
957 		    vq_msg->type == VHOST_IOTLB_MISS) {
958 			vhost_poll_queue(&node->vq->poll);
959 			list_del(&node->node);
960 			kfree(node);
961 		}
962 	}
963 
964 	spin_unlock(&d->iotlb_lock);
965 }
966 
967 static bool umem_access_ok(u64 uaddr, u64 size, int access)
968 {
969 	unsigned long a = uaddr;
970 
971 	/* Make sure 64 bit math will not overflow. */
972 	if (vhost_overflow(uaddr, size))
973 		return false;
974 
975 	if ((access & VHOST_ACCESS_RO) &&
976 	    !access_ok((void __user *)a, size))
977 		return false;
978 	if ((access & VHOST_ACCESS_WO) &&
979 	    !access_ok((void __user *)a, size))
980 		return false;
981 	return true;
982 }
983 
984 static int vhost_process_iotlb_msg(struct vhost_dev *dev,
985 				   struct vhost_iotlb_msg *msg)
986 {
987 	int ret = 0;
988 
989 	mutex_lock(&dev->mutex);
990 	vhost_dev_lock_vqs(dev);
991 	switch (msg->type) {
992 	case VHOST_IOTLB_UPDATE:
993 		if (!dev->iotlb) {
994 			ret = -EFAULT;
995 			break;
996 		}
997 		if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) {
998 			ret = -EFAULT;
999 			break;
1000 		}
1001 		vhost_vq_meta_reset(dev);
1002 		if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size,
1003 					 msg->iova + msg->size - 1,
1004 					 msg->uaddr, msg->perm)) {
1005 			ret = -ENOMEM;
1006 			break;
1007 		}
1008 		vhost_iotlb_notify_vq(dev, msg);
1009 		break;
1010 	case VHOST_IOTLB_INVALIDATE:
1011 		if (!dev->iotlb) {
1012 			ret = -EFAULT;
1013 			break;
1014 		}
1015 		vhost_vq_meta_reset(dev);
1016 		vhost_del_umem_range(dev->iotlb, msg->iova,
1017 				     msg->iova + msg->size - 1);
1018 		break;
1019 	default:
1020 		ret = -EINVAL;
1021 		break;
1022 	}
1023 
1024 	vhost_dev_unlock_vqs(dev);
1025 	mutex_unlock(&dev->mutex);
1026 
1027 	return ret;
1028 }
1029 ssize_t vhost_chr_write_iter(struct vhost_dev *dev,
1030 			     struct iov_iter *from)
1031 {
1032 	struct vhost_iotlb_msg msg;
1033 	size_t offset;
1034 	int type, ret;
1035 
1036 	ret = copy_from_iter(&type, sizeof(type), from);
1037 	if (ret != sizeof(type))
1038 		goto done;
1039 
1040 	switch (type) {
1041 	case VHOST_IOTLB_MSG:
1042 		/* There maybe a hole after type for V1 message type,
1043 		 * so skip it here.
1044 		 */
1045 		offset = offsetof(struct vhost_msg, iotlb) - sizeof(int);
1046 		break;
1047 	case VHOST_IOTLB_MSG_V2:
1048 		offset = sizeof(__u32);
1049 		break;
1050 	default:
1051 		ret = -EINVAL;
1052 		goto done;
1053 	}
1054 
1055 	iov_iter_advance(from, offset);
1056 	ret = copy_from_iter(&msg, sizeof(msg), from);
1057 	if (ret != sizeof(msg))
1058 		goto done;
1059 	if (vhost_process_iotlb_msg(dev, &msg)) {
1060 		ret = -EFAULT;
1061 		goto done;
1062 	}
1063 
1064 	ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) :
1065 	      sizeof(struct vhost_msg_v2);
1066 done:
1067 	return ret;
1068 }
1069 EXPORT_SYMBOL(vhost_chr_write_iter);
1070 
1071 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev,
1072 			    poll_table *wait)
1073 {
1074 	__poll_t mask = 0;
1075 
1076 	poll_wait(file, &dev->wait, wait);
1077 
1078 	if (!list_empty(&dev->read_list))
1079 		mask |= EPOLLIN | EPOLLRDNORM;
1080 
1081 	return mask;
1082 }
1083 EXPORT_SYMBOL(vhost_chr_poll);
1084 
1085 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to,
1086 			    int noblock)
1087 {
1088 	DEFINE_WAIT(wait);
1089 	struct vhost_msg_node *node;
1090 	ssize_t ret = 0;
1091 	unsigned size = sizeof(struct vhost_msg);
1092 
1093 	if (iov_iter_count(to) < size)
1094 		return 0;
1095 
1096 	while (1) {
1097 		if (!noblock)
1098 			prepare_to_wait(&dev->wait, &wait,
1099 					TASK_INTERRUPTIBLE);
1100 
1101 		node = vhost_dequeue_msg(dev, &dev->read_list);
1102 		if (node)
1103 			break;
1104 		if (noblock) {
1105 			ret = -EAGAIN;
1106 			break;
1107 		}
1108 		if (signal_pending(current)) {
1109 			ret = -ERESTARTSYS;
1110 			break;
1111 		}
1112 		if (!dev->iotlb) {
1113 			ret = -EBADFD;
1114 			break;
1115 		}
1116 
1117 		schedule();
1118 	}
1119 
1120 	if (!noblock)
1121 		finish_wait(&dev->wait, &wait);
1122 
1123 	if (node) {
1124 		struct vhost_iotlb_msg *msg;
1125 		void *start = &node->msg;
1126 
1127 		switch (node->msg.type) {
1128 		case VHOST_IOTLB_MSG:
1129 			size = sizeof(node->msg);
1130 			msg = &node->msg.iotlb;
1131 			break;
1132 		case VHOST_IOTLB_MSG_V2:
1133 			size = sizeof(node->msg_v2);
1134 			msg = &node->msg_v2.iotlb;
1135 			break;
1136 		default:
1137 			BUG();
1138 			break;
1139 		}
1140 
1141 		ret = copy_to_iter(start, size, to);
1142 		if (ret != size || msg->type != VHOST_IOTLB_MISS) {
1143 			kfree(node);
1144 			return ret;
1145 		}
1146 		vhost_enqueue_msg(dev, &dev->pending_list, node);
1147 	}
1148 
1149 	return ret;
1150 }
1151 EXPORT_SYMBOL_GPL(vhost_chr_read_iter);
1152 
1153 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access)
1154 {
1155 	struct vhost_dev *dev = vq->dev;
1156 	struct vhost_msg_node *node;
1157 	struct vhost_iotlb_msg *msg;
1158 	bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2);
1159 
1160 	node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG);
1161 	if (!node)
1162 		return -ENOMEM;
1163 
1164 	if (v2) {
1165 		node->msg_v2.type = VHOST_IOTLB_MSG_V2;
1166 		msg = &node->msg_v2.iotlb;
1167 	} else {
1168 		msg = &node->msg.iotlb;
1169 	}
1170 
1171 	msg->type = VHOST_IOTLB_MISS;
1172 	msg->iova = iova;
1173 	msg->perm = access;
1174 
1175 	vhost_enqueue_msg(dev, &dev->read_list, node);
1176 
1177 	return 0;
1178 }
1179 
1180 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num,
1181 			 struct vring_desc __user *desc,
1182 			 struct vring_avail __user *avail,
1183 			 struct vring_used __user *used)
1184 
1185 {
1186 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1187 
1188 	return access_ok(desc, num * sizeof *desc) &&
1189 	       access_ok(avail,
1190 			 sizeof *avail + num * sizeof *avail->ring + s) &&
1191 	       access_ok(used,
1192 			sizeof *used + num * sizeof *used->ring + s);
1193 }
1194 
1195 static void vhost_vq_meta_update(struct vhost_virtqueue *vq,
1196 				 const struct vhost_umem_node *node,
1197 				 int type)
1198 {
1199 	int access = (type == VHOST_ADDR_USED) ?
1200 		     VHOST_ACCESS_WO : VHOST_ACCESS_RO;
1201 
1202 	if (likely(node->perm & access))
1203 		vq->meta_iotlb[type] = node;
1204 }
1205 
1206 static bool iotlb_access_ok(struct vhost_virtqueue *vq,
1207 			    int access, u64 addr, u64 len, int type)
1208 {
1209 	const struct vhost_umem_node *node;
1210 	struct vhost_umem *umem = vq->iotlb;
1211 	u64 s = 0, size, orig_addr = addr, last = addr + len - 1;
1212 
1213 	if (vhost_vq_meta_fetch(vq, addr, len, type))
1214 		return true;
1215 
1216 	while (len > s) {
1217 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1218 							   addr,
1219 							   last);
1220 		if (node == NULL || node->start > addr) {
1221 			vhost_iotlb_miss(vq, addr, access);
1222 			return false;
1223 		} else if (!(node->perm & access)) {
1224 			/* Report the possible access violation by
1225 			 * request another translation from userspace.
1226 			 */
1227 			return false;
1228 		}
1229 
1230 		size = node->size - addr + node->start;
1231 
1232 		if (orig_addr == addr && size >= len)
1233 			vhost_vq_meta_update(vq, node, type);
1234 
1235 		s += size;
1236 		addr += size;
1237 	}
1238 
1239 	return true;
1240 }
1241 
1242 int vq_iotlb_prefetch(struct vhost_virtqueue *vq)
1243 {
1244 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1245 	unsigned int num = vq->num;
1246 
1247 	if (!vq->iotlb)
1248 		return 1;
1249 
1250 	return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc,
1251 			       num * sizeof(*vq->desc), VHOST_ADDR_DESC) &&
1252 	       iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail,
1253 			       sizeof *vq->avail +
1254 			       num * sizeof(*vq->avail->ring) + s,
1255 			       VHOST_ADDR_AVAIL) &&
1256 	       iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used,
1257 			       sizeof *vq->used +
1258 			       num * sizeof(*vq->used->ring) + s,
1259 			       VHOST_ADDR_USED);
1260 }
1261 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch);
1262 
1263 /* Can we log writes? */
1264 /* Caller should have device mutex but not vq mutex */
1265 bool vhost_log_access_ok(struct vhost_dev *dev)
1266 {
1267 	return memory_access_ok(dev, dev->umem, 1);
1268 }
1269 EXPORT_SYMBOL_GPL(vhost_log_access_ok);
1270 
1271 /* Verify access for write logging. */
1272 /* Caller should have vq mutex and device mutex */
1273 static bool vq_log_access_ok(struct vhost_virtqueue *vq,
1274 			     void __user *log_base)
1275 {
1276 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1277 
1278 	return vq_memory_access_ok(log_base, vq->umem,
1279 				   vhost_has_feature(vq, VHOST_F_LOG_ALL)) &&
1280 		(!vq->log_used || log_access_ok(log_base, vq->log_addr,
1281 					sizeof *vq->used +
1282 					vq->num * sizeof *vq->used->ring + s));
1283 }
1284 
1285 /* Can we start vq? */
1286 /* Caller should have vq mutex and device mutex */
1287 bool vhost_vq_access_ok(struct vhost_virtqueue *vq)
1288 {
1289 	if (!vq_log_access_ok(vq, vq->log_base))
1290 		return false;
1291 
1292 	/* Access validation occurs at prefetch time with IOTLB */
1293 	if (vq->iotlb)
1294 		return true;
1295 
1296 	return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used);
1297 }
1298 EXPORT_SYMBOL_GPL(vhost_vq_access_ok);
1299 
1300 static struct vhost_umem *vhost_umem_alloc(void)
1301 {
1302 	struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL);
1303 
1304 	if (!umem)
1305 		return NULL;
1306 
1307 	umem->umem_tree = RB_ROOT_CACHED;
1308 	umem->numem = 0;
1309 	INIT_LIST_HEAD(&umem->umem_list);
1310 
1311 	return umem;
1312 }
1313 
1314 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
1315 {
1316 	struct vhost_memory mem, *newmem;
1317 	struct vhost_memory_region *region;
1318 	struct vhost_umem *newumem, *oldumem;
1319 	unsigned long size = offsetof(struct vhost_memory, regions);
1320 	int i;
1321 
1322 	if (copy_from_user(&mem, m, size))
1323 		return -EFAULT;
1324 	if (mem.padding)
1325 		return -EOPNOTSUPP;
1326 	if (mem.nregions > max_mem_regions)
1327 		return -E2BIG;
1328 	newmem = kvzalloc(struct_size(newmem, regions, mem.nregions),
1329 			GFP_KERNEL);
1330 	if (!newmem)
1331 		return -ENOMEM;
1332 
1333 	memcpy(newmem, &mem, size);
1334 	if (copy_from_user(newmem->regions, m->regions,
1335 			   mem.nregions * sizeof *m->regions)) {
1336 		kvfree(newmem);
1337 		return -EFAULT;
1338 	}
1339 
1340 	newumem = vhost_umem_alloc();
1341 	if (!newumem) {
1342 		kvfree(newmem);
1343 		return -ENOMEM;
1344 	}
1345 
1346 	for (region = newmem->regions;
1347 	     region < newmem->regions + mem.nregions;
1348 	     region++) {
1349 		if (vhost_new_umem_range(newumem,
1350 					 region->guest_phys_addr,
1351 					 region->memory_size,
1352 					 region->guest_phys_addr +
1353 					 region->memory_size - 1,
1354 					 region->userspace_addr,
1355 					 VHOST_ACCESS_RW))
1356 			goto err;
1357 	}
1358 
1359 	if (!memory_access_ok(d, newumem, 0))
1360 		goto err;
1361 
1362 	oldumem = d->umem;
1363 	d->umem = newumem;
1364 
1365 	/* All memory accesses are done under some VQ mutex. */
1366 	for (i = 0; i < d->nvqs; ++i) {
1367 		mutex_lock(&d->vqs[i]->mutex);
1368 		d->vqs[i]->umem = newumem;
1369 		mutex_unlock(&d->vqs[i]->mutex);
1370 	}
1371 
1372 	kvfree(newmem);
1373 	vhost_umem_clean(oldumem);
1374 	return 0;
1375 
1376 err:
1377 	vhost_umem_clean(newumem);
1378 	kvfree(newmem);
1379 	return -EFAULT;
1380 }
1381 
1382 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1383 {
1384 	struct file *eventfp, *filep = NULL;
1385 	bool pollstart = false, pollstop = false;
1386 	struct eventfd_ctx *ctx = NULL;
1387 	u32 __user *idxp = argp;
1388 	struct vhost_virtqueue *vq;
1389 	struct vhost_vring_state s;
1390 	struct vhost_vring_file f;
1391 	struct vhost_vring_addr a;
1392 	u32 idx;
1393 	long r;
1394 
1395 	r = get_user(idx, idxp);
1396 	if (r < 0)
1397 		return r;
1398 	if (idx >= d->nvqs)
1399 		return -ENOBUFS;
1400 
1401 	idx = array_index_nospec(idx, d->nvqs);
1402 	vq = d->vqs[idx];
1403 
1404 	mutex_lock(&vq->mutex);
1405 
1406 	switch (ioctl) {
1407 	case VHOST_SET_VRING_NUM:
1408 		/* Resizing ring with an active backend?
1409 		 * You don't want to do that. */
1410 		if (vq->private_data) {
1411 			r = -EBUSY;
1412 			break;
1413 		}
1414 		if (copy_from_user(&s, argp, sizeof s)) {
1415 			r = -EFAULT;
1416 			break;
1417 		}
1418 		if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) {
1419 			r = -EINVAL;
1420 			break;
1421 		}
1422 		vq->num = s.num;
1423 		break;
1424 	case VHOST_SET_VRING_BASE:
1425 		/* Moving base with an active backend?
1426 		 * You don't want to do that. */
1427 		if (vq->private_data) {
1428 			r = -EBUSY;
1429 			break;
1430 		}
1431 		if (copy_from_user(&s, argp, sizeof s)) {
1432 			r = -EFAULT;
1433 			break;
1434 		}
1435 		if (s.num > 0xffff) {
1436 			r = -EINVAL;
1437 			break;
1438 		}
1439 		vq->last_avail_idx = s.num;
1440 		/* Forget the cached index value. */
1441 		vq->avail_idx = vq->last_avail_idx;
1442 		break;
1443 	case VHOST_GET_VRING_BASE:
1444 		s.index = idx;
1445 		s.num = vq->last_avail_idx;
1446 		if (copy_to_user(argp, &s, sizeof s))
1447 			r = -EFAULT;
1448 		break;
1449 	case VHOST_SET_VRING_ADDR:
1450 		if (copy_from_user(&a, argp, sizeof a)) {
1451 			r = -EFAULT;
1452 			break;
1453 		}
1454 		if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) {
1455 			r = -EOPNOTSUPP;
1456 			break;
1457 		}
1458 		/* For 32bit, verify that the top 32bits of the user
1459 		   data are set to zero. */
1460 		if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr ||
1461 		    (u64)(unsigned long)a.used_user_addr != a.used_user_addr ||
1462 		    (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) {
1463 			r = -EFAULT;
1464 			break;
1465 		}
1466 
1467 		/* Make sure it's safe to cast pointers to vring types. */
1468 		BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE);
1469 		BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE);
1470 		if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) ||
1471 		    (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) ||
1472 		    (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) {
1473 			r = -EINVAL;
1474 			break;
1475 		}
1476 
1477 		/* We only verify access here if backend is configured.
1478 		 * If it is not, we don't as size might not have been setup.
1479 		 * We will verify when backend is configured. */
1480 		if (vq->private_data) {
1481 			if (!vq_access_ok(vq, vq->num,
1482 				(void __user *)(unsigned long)a.desc_user_addr,
1483 				(void __user *)(unsigned long)a.avail_user_addr,
1484 				(void __user *)(unsigned long)a.used_user_addr)) {
1485 				r = -EINVAL;
1486 				break;
1487 			}
1488 
1489 			/* Also validate log access for used ring if enabled. */
1490 			if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) &&
1491 			    !log_access_ok(vq->log_base, a.log_guest_addr,
1492 					   sizeof *vq->used +
1493 					   vq->num * sizeof *vq->used->ring)) {
1494 				r = -EINVAL;
1495 				break;
1496 			}
1497 		}
1498 
1499 		vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG));
1500 		vq->desc = (void __user *)(unsigned long)a.desc_user_addr;
1501 		vq->avail = (void __user *)(unsigned long)a.avail_user_addr;
1502 		vq->log_addr = a.log_guest_addr;
1503 		vq->used = (void __user *)(unsigned long)a.used_user_addr;
1504 		break;
1505 	case VHOST_SET_VRING_KICK:
1506 		if (copy_from_user(&f, argp, sizeof f)) {
1507 			r = -EFAULT;
1508 			break;
1509 		}
1510 		eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd);
1511 		if (IS_ERR(eventfp)) {
1512 			r = PTR_ERR(eventfp);
1513 			break;
1514 		}
1515 		if (eventfp != vq->kick) {
1516 			pollstop = (filep = vq->kick) != NULL;
1517 			pollstart = (vq->kick = eventfp) != NULL;
1518 		} else
1519 			filep = eventfp;
1520 		break;
1521 	case VHOST_SET_VRING_CALL:
1522 		if (copy_from_user(&f, argp, sizeof f)) {
1523 			r = -EFAULT;
1524 			break;
1525 		}
1526 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1527 		if (IS_ERR(ctx)) {
1528 			r = PTR_ERR(ctx);
1529 			break;
1530 		}
1531 		swap(ctx, vq->call_ctx);
1532 		break;
1533 	case VHOST_SET_VRING_ERR:
1534 		if (copy_from_user(&f, argp, sizeof f)) {
1535 			r = -EFAULT;
1536 			break;
1537 		}
1538 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1539 		if (IS_ERR(ctx)) {
1540 			r = PTR_ERR(ctx);
1541 			break;
1542 		}
1543 		swap(ctx, vq->error_ctx);
1544 		break;
1545 	case VHOST_SET_VRING_ENDIAN:
1546 		r = vhost_set_vring_endian(vq, argp);
1547 		break;
1548 	case VHOST_GET_VRING_ENDIAN:
1549 		r = vhost_get_vring_endian(vq, idx, argp);
1550 		break;
1551 	case VHOST_SET_VRING_BUSYLOOP_TIMEOUT:
1552 		if (copy_from_user(&s, argp, sizeof(s))) {
1553 			r = -EFAULT;
1554 			break;
1555 		}
1556 		vq->busyloop_timeout = s.num;
1557 		break;
1558 	case VHOST_GET_VRING_BUSYLOOP_TIMEOUT:
1559 		s.index = idx;
1560 		s.num = vq->busyloop_timeout;
1561 		if (copy_to_user(argp, &s, sizeof(s)))
1562 			r = -EFAULT;
1563 		break;
1564 	default:
1565 		r = -ENOIOCTLCMD;
1566 	}
1567 
1568 	if (pollstop && vq->handle_kick)
1569 		vhost_poll_stop(&vq->poll);
1570 
1571 	if (!IS_ERR_OR_NULL(ctx))
1572 		eventfd_ctx_put(ctx);
1573 	if (filep)
1574 		fput(filep);
1575 
1576 	if (pollstart && vq->handle_kick)
1577 		r = vhost_poll_start(&vq->poll, vq->kick);
1578 
1579 	mutex_unlock(&vq->mutex);
1580 
1581 	if (pollstop && vq->handle_kick)
1582 		vhost_poll_flush(&vq->poll);
1583 	return r;
1584 }
1585 EXPORT_SYMBOL_GPL(vhost_vring_ioctl);
1586 
1587 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled)
1588 {
1589 	struct vhost_umem *niotlb, *oiotlb;
1590 	int i;
1591 
1592 	niotlb = vhost_umem_alloc();
1593 	if (!niotlb)
1594 		return -ENOMEM;
1595 
1596 	oiotlb = d->iotlb;
1597 	d->iotlb = niotlb;
1598 
1599 	for (i = 0; i < d->nvqs; ++i) {
1600 		struct vhost_virtqueue *vq = d->vqs[i];
1601 
1602 		mutex_lock(&vq->mutex);
1603 		vq->iotlb = niotlb;
1604 		__vhost_vq_meta_reset(vq);
1605 		mutex_unlock(&vq->mutex);
1606 	}
1607 
1608 	vhost_umem_clean(oiotlb);
1609 
1610 	return 0;
1611 }
1612 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb);
1613 
1614 /* Caller must have device mutex */
1615 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1616 {
1617 	struct eventfd_ctx *ctx;
1618 	u64 p;
1619 	long r;
1620 	int i, fd;
1621 
1622 	/* If you are not the owner, you can become one */
1623 	if (ioctl == VHOST_SET_OWNER) {
1624 		r = vhost_dev_set_owner(d);
1625 		goto done;
1626 	}
1627 
1628 	/* You must be the owner to do anything else */
1629 	r = vhost_dev_check_owner(d);
1630 	if (r)
1631 		goto done;
1632 
1633 	switch (ioctl) {
1634 	case VHOST_SET_MEM_TABLE:
1635 		r = vhost_set_memory(d, argp);
1636 		break;
1637 	case VHOST_SET_LOG_BASE:
1638 		if (copy_from_user(&p, argp, sizeof p)) {
1639 			r = -EFAULT;
1640 			break;
1641 		}
1642 		if ((u64)(unsigned long)p != p) {
1643 			r = -EFAULT;
1644 			break;
1645 		}
1646 		for (i = 0; i < d->nvqs; ++i) {
1647 			struct vhost_virtqueue *vq;
1648 			void __user *base = (void __user *)(unsigned long)p;
1649 			vq = d->vqs[i];
1650 			mutex_lock(&vq->mutex);
1651 			/* If ring is inactive, will check when it's enabled. */
1652 			if (vq->private_data && !vq_log_access_ok(vq, base))
1653 				r = -EFAULT;
1654 			else
1655 				vq->log_base = base;
1656 			mutex_unlock(&vq->mutex);
1657 		}
1658 		break;
1659 	case VHOST_SET_LOG_FD:
1660 		r = get_user(fd, (int __user *)argp);
1661 		if (r < 0)
1662 			break;
1663 		ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd);
1664 		if (IS_ERR(ctx)) {
1665 			r = PTR_ERR(ctx);
1666 			break;
1667 		}
1668 		swap(ctx, d->log_ctx);
1669 		for (i = 0; i < d->nvqs; ++i) {
1670 			mutex_lock(&d->vqs[i]->mutex);
1671 			d->vqs[i]->log_ctx = d->log_ctx;
1672 			mutex_unlock(&d->vqs[i]->mutex);
1673 		}
1674 		if (ctx)
1675 			eventfd_ctx_put(ctx);
1676 		break;
1677 	default:
1678 		r = -ENOIOCTLCMD;
1679 		break;
1680 	}
1681 done:
1682 	return r;
1683 }
1684 EXPORT_SYMBOL_GPL(vhost_dev_ioctl);
1685 
1686 /* TODO: This is really inefficient.  We need something like get_user()
1687  * (instruction directly accesses the data, with an exception table entry
1688  * returning -EFAULT). See Documentation/x86/exception-tables.txt.
1689  */
1690 static int set_bit_to_user(int nr, void __user *addr)
1691 {
1692 	unsigned long log = (unsigned long)addr;
1693 	struct page *page;
1694 	void *base;
1695 	int bit = nr + (log % PAGE_SIZE) * 8;
1696 	int r;
1697 
1698 	r = get_user_pages_fast(log, 1, 1, &page);
1699 	if (r < 0)
1700 		return r;
1701 	BUG_ON(r != 1);
1702 	base = kmap_atomic(page);
1703 	set_bit(bit, base);
1704 	kunmap_atomic(base);
1705 	set_page_dirty_lock(page);
1706 	put_page(page);
1707 	return 0;
1708 }
1709 
1710 static int log_write(void __user *log_base,
1711 		     u64 write_address, u64 write_length)
1712 {
1713 	u64 write_page = write_address / VHOST_PAGE_SIZE;
1714 	int r;
1715 
1716 	if (!write_length)
1717 		return 0;
1718 	write_length += write_address % VHOST_PAGE_SIZE;
1719 	for (;;) {
1720 		u64 base = (u64)(unsigned long)log_base;
1721 		u64 log = base + write_page / 8;
1722 		int bit = write_page % 8;
1723 		if ((u64)(unsigned long)log != log)
1724 			return -EFAULT;
1725 		r = set_bit_to_user(bit, (void __user *)(unsigned long)log);
1726 		if (r < 0)
1727 			return r;
1728 		if (write_length <= VHOST_PAGE_SIZE)
1729 			break;
1730 		write_length -= VHOST_PAGE_SIZE;
1731 		write_page += 1;
1732 	}
1733 	return r;
1734 }
1735 
1736 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log,
1737 		    unsigned int log_num, u64 len)
1738 {
1739 	int i, r;
1740 
1741 	/* Make sure data written is seen before log. */
1742 	smp_wmb();
1743 	for (i = 0; i < log_num; ++i) {
1744 		u64 l = min(log[i].len, len);
1745 		r = log_write(vq->log_base, log[i].addr, l);
1746 		if (r < 0)
1747 			return r;
1748 		len -= l;
1749 		if (!len) {
1750 			if (vq->log_ctx)
1751 				eventfd_signal(vq->log_ctx, 1);
1752 			return 0;
1753 		}
1754 	}
1755 	/* Length written exceeds what we have stored. This is a bug. */
1756 	BUG();
1757 	return 0;
1758 }
1759 EXPORT_SYMBOL_GPL(vhost_log_write);
1760 
1761 static int vhost_update_used_flags(struct vhost_virtqueue *vq)
1762 {
1763 	void __user *used;
1764 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags),
1765 			   &vq->used->flags) < 0)
1766 		return -EFAULT;
1767 	if (unlikely(vq->log_used)) {
1768 		/* Make sure the flag is seen before log. */
1769 		smp_wmb();
1770 		/* Log used flag write. */
1771 		used = &vq->used->flags;
1772 		log_write(vq->log_base, vq->log_addr +
1773 			  (used - (void __user *)vq->used),
1774 			  sizeof vq->used->flags);
1775 		if (vq->log_ctx)
1776 			eventfd_signal(vq->log_ctx, 1);
1777 	}
1778 	return 0;
1779 }
1780 
1781 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event)
1782 {
1783 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx),
1784 			   vhost_avail_event(vq)))
1785 		return -EFAULT;
1786 	if (unlikely(vq->log_used)) {
1787 		void __user *used;
1788 		/* Make sure the event is seen before log. */
1789 		smp_wmb();
1790 		/* Log avail event write */
1791 		used = vhost_avail_event(vq);
1792 		log_write(vq->log_base, vq->log_addr +
1793 			  (used - (void __user *)vq->used),
1794 			  sizeof *vhost_avail_event(vq));
1795 		if (vq->log_ctx)
1796 			eventfd_signal(vq->log_ctx, 1);
1797 	}
1798 	return 0;
1799 }
1800 
1801 int vhost_vq_init_access(struct vhost_virtqueue *vq)
1802 {
1803 	__virtio16 last_used_idx;
1804 	int r;
1805 	bool is_le = vq->is_le;
1806 
1807 	if (!vq->private_data)
1808 		return 0;
1809 
1810 	vhost_init_is_le(vq);
1811 
1812 	r = vhost_update_used_flags(vq);
1813 	if (r)
1814 		goto err;
1815 	vq->signalled_used_valid = false;
1816 	if (!vq->iotlb &&
1817 	    !access_ok(&vq->used->idx, sizeof vq->used->idx)) {
1818 		r = -EFAULT;
1819 		goto err;
1820 	}
1821 	r = vhost_get_used(vq, last_used_idx, &vq->used->idx);
1822 	if (r) {
1823 		vq_err(vq, "Can't access used idx at %p\n",
1824 		       &vq->used->idx);
1825 		goto err;
1826 	}
1827 	vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx);
1828 	return 0;
1829 
1830 err:
1831 	vq->is_le = is_le;
1832 	return r;
1833 }
1834 EXPORT_SYMBOL_GPL(vhost_vq_init_access);
1835 
1836 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
1837 			  struct iovec iov[], int iov_size, int access)
1838 {
1839 	const struct vhost_umem_node *node;
1840 	struct vhost_dev *dev = vq->dev;
1841 	struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem;
1842 	struct iovec *_iov;
1843 	u64 s = 0;
1844 	int ret = 0;
1845 
1846 	while ((u64)len > s) {
1847 		u64 size;
1848 		if (unlikely(ret >= iov_size)) {
1849 			ret = -ENOBUFS;
1850 			break;
1851 		}
1852 
1853 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1854 							addr, addr + len - 1);
1855 		if (node == NULL || node->start > addr) {
1856 			if (umem != dev->iotlb) {
1857 				ret = -EFAULT;
1858 				break;
1859 			}
1860 			ret = -EAGAIN;
1861 			break;
1862 		} else if (!(node->perm & access)) {
1863 			ret = -EPERM;
1864 			break;
1865 		}
1866 
1867 		_iov = iov + ret;
1868 		size = node->size - addr + node->start;
1869 		_iov->iov_len = min((u64)len - s, size);
1870 		_iov->iov_base = (void __user *)(unsigned long)
1871 			(node->userspace_addr + addr - node->start);
1872 		s += size;
1873 		addr += size;
1874 		++ret;
1875 	}
1876 
1877 	if (ret == -EAGAIN)
1878 		vhost_iotlb_miss(vq, addr, access);
1879 	return ret;
1880 }
1881 
1882 /* Each buffer in the virtqueues is actually a chain of descriptors.  This
1883  * function returns the next descriptor in the chain,
1884  * or -1U if we're at the end. */
1885 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc)
1886 {
1887 	unsigned int next;
1888 
1889 	/* If this descriptor says it doesn't chain, we're done. */
1890 	if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT)))
1891 		return -1U;
1892 
1893 	/* Check they're not leading us off end of descriptors. */
1894 	next = vhost16_to_cpu(vq, READ_ONCE(desc->next));
1895 	return next;
1896 }
1897 
1898 static int get_indirect(struct vhost_virtqueue *vq,
1899 			struct iovec iov[], unsigned int iov_size,
1900 			unsigned int *out_num, unsigned int *in_num,
1901 			struct vhost_log *log, unsigned int *log_num,
1902 			struct vring_desc *indirect)
1903 {
1904 	struct vring_desc desc;
1905 	unsigned int i = 0, count, found = 0;
1906 	u32 len = vhost32_to_cpu(vq, indirect->len);
1907 	struct iov_iter from;
1908 	int ret, access;
1909 
1910 	/* Sanity check */
1911 	if (unlikely(len % sizeof desc)) {
1912 		vq_err(vq, "Invalid length in indirect descriptor: "
1913 		       "len 0x%llx not multiple of 0x%zx\n",
1914 		       (unsigned long long)len,
1915 		       sizeof desc);
1916 		return -EINVAL;
1917 	}
1918 
1919 	ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect,
1920 			     UIO_MAXIOV, VHOST_ACCESS_RO);
1921 	if (unlikely(ret < 0)) {
1922 		if (ret != -EAGAIN)
1923 			vq_err(vq, "Translation failure %d in indirect.\n", ret);
1924 		return ret;
1925 	}
1926 	iov_iter_init(&from, READ, vq->indirect, ret, len);
1927 
1928 	/* We will use the result as an address to read from, so most
1929 	 * architectures only need a compiler barrier here. */
1930 	read_barrier_depends();
1931 
1932 	count = len / sizeof desc;
1933 	/* Buffers are chained via a 16 bit next field, so
1934 	 * we can have at most 2^16 of these. */
1935 	if (unlikely(count > USHRT_MAX + 1)) {
1936 		vq_err(vq, "Indirect buffer length too big: %d\n",
1937 		       indirect->len);
1938 		return -E2BIG;
1939 	}
1940 
1941 	do {
1942 		unsigned iov_count = *in_num + *out_num;
1943 		if (unlikely(++found > count)) {
1944 			vq_err(vq, "Loop detected: last one at %u "
1945 			       "indirect size %u\n",
1946 			       i, count);
1947 			return -EINVAL;
1948 		}
1949 		if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) {
1950 			vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n",
1951 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
1952 			return -EINVAL;
1953 		}
1954 		if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) {
1955 			vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n",
1956 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
1957 			return -EINVAL;
1958 		}
1959 
1960 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
1961 			access = VHOST_ACCESS_WO;
1962 		else
1963 			access = VHOST_ACCESS_RO;
1964 
1965 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
1966 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
1967 				     iov_size - iov_count, access);
1968 		if (unlikely(ret < 0)) {
1969 			if (ret != -EAGAIN)
1970 				vq_err(vq, "Translation failure %d indirect idx %d\n",
1971 					ret, i);
1972 			return ret;
1973 		}
1974 		/* If this is an input descriptor, increment that count. */
1975 		if (access == VHOST_ACCESS_WO) {
1976 			*in_num += ret;
1977 			if (unlikely(log)) {
1978 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
1979 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
1980 				++*log_num;
1981 			}
1982 		} else {
1983 			/* If it's an output descriptor, they're all supposed
1984 			 * to come before any input descriptors. */
1985 			if (unlikely(*in_num)) {
1986 				vq_err(vq, "Indirect descriptor "
1987 				       "has out after in: idx %d\n", i);
1988 				return -EINVAL;
1989 			}
1990 			*out_num += ret;
1991 		}
1992 	} while ((i = next_desc(vq, &desc)) != -1);
1993 	return 0;
1994 }
1995 
1996 /* This looks in the virtqueue and for the first available buffer, and converts
1997  * it to an iovec for convenient access.  Since descriptors consist of some
1998  * number of output then some number of input descriptors, it's actually two
1999  * iovecs, but we pack them into one and note how many of each there were.
2000  *
2001  * This function returns the descriptor number found, or vq->num (which is
2002  * never a valid descriptor number) if none was found.  A negative code is
2003  * returned on error. */
2004 int vhost_get_vq_desc(struct vhost_virtqueue *vq,
2005 		      struct iovec iov[], unsigned int iov_size,
2006 		      unsigned int *out_num, unsigned int *in_num,
2007 		      struct vhost_log *log, unsigned int *log_num)
2008 {
2009 	struct vring_desc desc;
2010 	unsigned int i, head, found = 0;
2011 	u16 last_avail_idx;
2012 	__virtio16 avail_idx;
2013 	__virtio16 ring_head;
2014 	int ret, access;
2015 
2016 	/* Check it isn't doing very strange things with descriptor numbers. */
2017 	last_avail_idx = vq->last_avail_idx;
2018 
2019 	if (vq->avail_idx == vq->last_avail_idx) {
2020 		if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) {
2021 			vq_err(vq, "Failed to access avail idx at %p\n",
2022 				&vq->avail->idx);
2023 			return -EFAULT;
2024 		}
2025 		vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2026 
2027 		if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) {
2028 			vq_err(vq, "Guest moved used index from %u to %u",
2029 				last_avail_idx, vq->avail_idx);
2030 			return -EFAULT;
2031 		}
2032 
2033 		/* If there's nothing new since last we looked, return
2034 		 * invalid.
2035 		 */
2036 		if (vq->avail_idx == last_avail_idx)
2037 			return vq->num;
2038 
2039 		/* Only get avail ring entries after they have been
2040 		 * exposed by guest.
2041 		 */
2042 		smp_rmb();
2043 	}
2044 
2045 	/* Grab the next descriptor number they're advertising, and increment
2046 	 * the index we've seen. */
2047 	if (unlikely(vhost_get_avail(vq, ring_head,
2048 		     &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) {
2049 		vq_err(vq, "Failed to read head: idx %d address %p\n",
2050 		       last_avail_idx,
2051 		       &vq->avail->ring[last_avail_idx % vq->num]);
2052 		return -EFAULT;
2053 	}
2054 
2055 	head = vhost16_to_cpu(vq, ring_head);
2056 
2057 	/* If their number is silly, that's an error. */
2058 	if (unlikely(head >= vq->num)) {
2059 		vq_err(vq, "Guest says index %u > %u is available",
2060 		       head, vq->num);
2061 		return -EINVAL;
2062 	}
2063 
2064 	/* When we start there are none of either input nor output. */
2065 	*out_num = *in_num = 0;
2066 	if (unlikely(log))
2067 		*log_num = 0;
2068 
2069 	i = head;
2070 	do {
2071 		unsigned iov_count = *in_num + *out_num;
2072 		if (unlikely(i >= vq->num)) {
2073 			vq_err(vq, "Desc index is %u > %u, head = %u",
2074 			       i, vq->num, head);
2075 			return -EINVAL;
2076 		}
2077 		if (unlikely(++found > vq->num)) {
2078 			vq_err(vq, "Loop detected: last one at %u "
2079 			       "vq size %u head %u\n",
2080 			       i, vq->num, head);
2081 			return -EINVAL;
2082 		}
2083 		ret = vhost_copy_from_user(vq, &desc, vq->desc + i,
2084 					   sizeof desc);
2085 		if (unlikely(ret)) {
2086 			vq_err(vq, "Failed to get descriptor: idx %d addr %p\n",
2087 			       i, vq->desc + i);
2088 			return -EFAULT;
2089 		}
2090 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) {
2091 			ret = get_indirect(vq, iov, iov_size,
2092 					   out_num, in_num,
2093 					   log, log_num, &desc);
2094 			if (unlikely(ret < 0)) {
2095 				if (ret != -EAGAIN)
2096 					vq_err(vq, "Failure detected "
2097 						"in indirect descriptor at idx %d\n", i);
2098 				return ret;
2099 			}
2100 			continue;
2101 		}
2102 
2103 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2104 			access = VHOST_ACCESS_WO;
2105 		else
2106 			access = VHOST_ACCESS_RO;
2107 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2108 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
2109 				     iov_size - iov_count, access);
2110 		if (unlikely(ret < 0)) {
2111 			if (ret != -EAGAIN)
2112 				vq_err(vq, "Translation failure %d descriptor idx %d\n",
2113 					ret, i);
2114 			return ret;
2115 		}
2116 		if (access == VHOST_ACCESS_WO) {
2117 			/* If this is an input descriptor,
2118 			 * increment that count. */
2119 			*in_num += ret;
2120 			if (unlikely(log)) {
2121 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2122 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2123 				++*log_num;
2124 			}
2125 		} else {
2126 			/* If it's an output descriptor, they're all supposed
2127 			 * to come before any input descriptors. */
2128 			if (unlikely(*in_num)) {
2129 				vq_err(vq, "Descriptor has out after in: "
2130 				       "idx %d\n", i);
2131 				return -EINVAL;
2132 			}
2133 			*out_num += ret;
2134 		}
2135 	} while ((i = next_desc(vq, &desc)) != -1);
2136 
2137 	/* On success, increment avail index. */
2138 	vq->last_avail_idx++;
2139 
2140 	/* Assume notifications from guest are disabled at this point,
2141 	 * if they aren't we would need to update avail_event index. */
2142 	BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY));
2143 	return head;
2144 }
2145 EXPORT_SYMBOL_GPL(vhost_get_vq_desc);
2146 
2147 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */
2148 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n)
2149 {
2150 	vq->last_avail_idx -= n;
2151 }
2152 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc);
2153 
2154 /* After we've used one of their buffers, we tell them about it.  We'll then
2155  * want to notify the guest, using eventfd. */
2156 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len)
2157 {
2158 	struct vring_used_elem heads = {
2159 		cpu_to_vhost32(vq, head),
2160 		cpu_to_vhost32(vq, len)
2161 	};
2162 
2163 	return vhost_add_used_n(vq, &heads, 1);
2164 }
2165 EXPORT_SYMBOL_GPL(vhost_add_used);
2166 
2167 static int __vhost_add_used_n(struct vhost_virtqueue *vq,
2168 			    struct vring_used_elem *heads,
2169 			    unsigned count)
2170 {
2171 	struct vring_used_elem __user *used;
2172 	u16 old, new;
2173 	int start;
2174 
2175 	start = vq->last_used_idx & (vq->num - 1);
2176 	used = vq->used->ring + start;
2177 	if (count == 1) {
2178 		if (vhost_put_user(vq, heads[0].id, &used->id)) {
2179 			vq_err(vq, "Failed to write used id");
2180 			return -EFAULT;
2181 		}
2182 		if (vhost_put_user(vq, heads[0].len, &used->len)) {
2183 			vq_err(vq, "Failed to write used len");
2184 			return -EFAULT;
2185 		}
2186 	} else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) {
2187 		vq_err(vq, "Failed to write used");
2188 		return -EFAULT;
2189 	}
2190 	if (unlikely(vq->log_used)) {
2191 		/* Make sure data is seen before log. */
2192 		smp_wmb();
2193 		/* Log used ring entry write. */
2194 		log_write(vq->log_base,
2195 			  vq->log_addr +
2196 			   ((void __user *)used - (void __user *)vq->used),
2197 			  count * sizeof *used);
2198 	}
2199 	old = vq->last_used_idx;
2200 	new = (vq->last_used_idx += count);
2201 	/* If the driver never bothers to signal in a very long while,
2202 	 * used index might wrap around. If that happens, invalidate
2203 	 * signalled_used index we stored. TODO: make sure driver
2204 	 * signals at least once in 2^16 and remove this. */
2205 	if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
2206 		vq->signalled_used_valid = false;
2207 	return 0;
2208 }
2209 
2210 /* After we've used one of their buffers, we tell them about it.  We'll then
2211  * want to notify the guest, using eventfd. */
2212 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads,
2213 		     unsigned count)
2214 {
2215 	int start, n, r;
2216 
2217 	start = vq->last_used_idx & (vq->num - 1);
2218 	n = vq->num - start;
2219 	if (n < count) {
2220 		r = __vhost_add_used_n(vq, heads, n);
2221 		if (r < 0)
2222 			return r;
2223 		heads += n;
2224 		count -= n;
2225 	}
2226 	r = __vhost_add_used_n(vq, heads, count);
2227 
2228 	/* Make sure buffer is written before we update index. */
2229 	smp_wmb();
2230 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx),
2231 			   &vq->used->idx)) {
2232 		vq_err(vq, "Failed to increment used idx");
2233 		return -EFAULT;
2234 	}
2235 	if (unlikely(vq->log_used)) {
2236 		/* Make sure used idx is seen before log. */
2237 		smp_wmb();
2238 		/* Log used index update. */
2239 		log_write(vq->log_base,
2240 			  vq->log_addr + offsetof(struct vring_used, idx),
2241 			  sizeof vq->used->idx);
2242 		if (vq->log_ctx)
2243 			eventfd_signal(vq->log_ctx, 1);
2244 	}
2245 	return r;
2246 }
2247 EXPORT_SYMBOL_GPL(vhost_add_used_n);
2248 
2249 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2250 {
2251 	__u16 old, new;
2252 	__virtio16 event;
2253 	bool v;
2254 	/* Flush out used index updates. This is paired
2255 	 * with the barrier that the Guest executes when enabling
2256 	 * interrupts. */
2257 	smp_mb();
2258 
2259 	if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) &&
2260 	    unlikely(vq->avail_idx == vq->last_avail_idx))
2261 		return true;
2262 
2263 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2264 		__virtio16 flags;
2265 		if (vhost_get_avail(vq, flags, &vq->avail->flags)) {
2266 			vq_err(vq, "Failed to get flags");
2267 			return true;
2268 		}
2269 		return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT));
2270 	}
2271 	old = vq->signalled_used;
2272 	v = vq->signalled_used_valid;
2273 	new = vq->signalled_used = vq->last_used_idx;
2274 	vq->signalled_used_valid = true;
2275 
2276 	if (unlikely(!v))
2277 		return true;
2278 
2279 	if (vhost_get_avail(vq, event, vhost_used_event(vq))) {
2280 		vq_err(vq, "Failed to get used event idx");
2281 		return true;
2282 	}
2283 	return vring_need_event(vhost16_to_cpu(vq, event), new, old);
2284 }
2285 
2286 /* This actually signals the guest, using eventfd. */
2287 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2288 {
2289 	/* Signal the Guest tell them we used something up. */
2290 	if (vq->call_ctx && vhost_notify(dev, vq))
2291 		eventfd_signal(vq->call_ctx, 1);
2292 }
2293 EXPORT_SYMBOL_GPL(vhost_signal);
2294 
2295 /* And here's the combo meal deal.  Supersize me! */
2296 void vhost_add_used_and_signal(struct vhost_dev *dev,
2297 			       struct vhost_virtqueue *vq,
2298 			       unsigned int head, int len)
2299 {
2300 	vhost_add_used(vq, head, len);
2301 	vhost_signal(dev, vq);
2302 }
2303 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal);
2304 
2305 /* multi-buffer version of vhost_add_used_and_signal */
2306 void vhost_add_used_and_signal_n(struct vhost_dev *dev,
2307 				 struct vhost_virtqueue *vq,
2308 				 struct vring_used_elem *heads, unsigned count)
2309 {
2310 	vhost_add_used_n(vq, heads, count);
2311 	vhost_signal(dev, vq);
2312 }
2313 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n);
2314 
2315 /* return true if we're sure that avaiable ring is empty */
2316 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2317 {
2318 	__virtio16 avail_idx;
2319 	int r;
2320 
2321 	if (vq->avail_idx != vq->last_avail_idx)
2322 		return false;
2323 
2324 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2325 	if (unlikely(r))
2326 		return false;
2327 	vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2328 
2329 	return vq->avail_idx == vq->last_avail_idx;
2330 }
2331 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty);
2332 
2333 /* OK, now we need to know about added descriptors. */
2334 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2335 {
2336 	__virtio16 avail_idx;
2337 	int r;
2338 
2339 	if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY))
2340 		return false;
2341 	vq->used_flags &= ~VRING_USED_F_NO_NOTIFY;
2342 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2343 		r = vhost_update_used_flags(vq);
2344 		if (r) {
2345 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2346 			       &vq->used->flags, r);
2347 			return false;
2348 		}
2349 	} else {
2350 		r = vhost_update_avail_event(vq, vq->avail_idx);
2351 		if (r) {
2352 			vq_err(vq, "Failed to update avail event index at %p: %d\n",
2353 			       vhost_avail_event(vq), r);
2354 			return false;
2355 		}
2356 	}
2357 	/* They could have slipped one in as we were doing that: make
2358 	 * sure it's written, then check again. */
2359 	smp_mb();
2360 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2361 	if (r) {
2362 		vq_err(vq, "Failed to check avail idx at %p: %d\n",
2363 		       &vq->avail->idx, r);
2364 		return false;
2365 	}
2366 
2367 	return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx;
2368 }
2369 EXPORT_SYMBOL_GPL(vhost_enable_notify);
2370 
2371 /* We don't need to be notified again. */
2372 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2373 {
2374 	int r;
2375 
2376 	if (vq->used_flags & VRING_USED_F_NO_NOTIFY)
2377 		return;
2378 	vq->used_flags |= VRING_USED_F_NO_NOTIFY;
2379 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2380 		r = vhost_update_used_flags(vq);
2381 		if (r)
2382 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2383 			       &vq->used->flags, r);
2384 	}
2385 }
2386 EXPORT_SYMBOL_GPL(vhost_disable_notify);
2387 
2388 /* Create a new message. */
2389 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type)
2390 {
2391 	struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL);
2392 	if (!node)
2393 		return NULL;
2394 
2395 	/* Make sure all padding within the structure is initialized. */
2396 	memset(&node->msg, 0, sizeof node->msg);
2397 	node->vq = vq;
2398 	node->msg.type = type;
2399 	return node;
2400 }
2401 EXPORT_SYMBOL_GPL(vhost_new_msg);
2402 
2403 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head,
2404 		       struct vhost_msg_node *node)
2405 {
2406 	spin_lock(&dev->iotlb_lock);
2407 	list_add_tail(&node->node, head);
2408 	spin_unlock(&dev->iotlb_lock);
2409 
2410 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
2411 }
2412 EXPORT_SYMBOL_GPL(vhost_enqueue_msg);
2413 
2414 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev,
2415 					 struct list_head *head)
2416 {
2417 	struct vhost_msg_node *node = NULL;
2418 
2419 	spin_lock(&dev->iotlb_lock);
2420 	if (!list_empty(head)) {
2421 		node = list_first_entry(head, struct vhost_msg_node,
2422 					node);
2423 		list_del(&node->node);
2424 	}
2425 	spin_unlock(&dev->iotlb_lock);
2426 
2427 	return node;
2428 }
2429 EXPORT_SYMBOL_GPL(vhost_dequeue_msg);
2430 
2431 
2432 static int __init vhost_init(void)
2433 {
2434 	return 0;
2435 }
2436 
2437 static void __exit vhost_exit(void)
2438 {
2439 }
2440 
2441 module_init(vhost_init);
2442 module_exit(vhost_exit);
2443 
2444 MODULE_VERSION("0.0.1");
2445 MODULE_LICENSE("GPL v2");
2446 MODULE_AUTHOR("Michael S. Tsirkin");
2447 MODULE_DESCRIPTION("Host kernel accelerator for virtio");
2448