xref: /openbmc/linux/drivers/vhost/vhost.c (revision 9376ff9b)
1 /* Copyright (C) 2009 Red Hat, Inc.
2  * Copyright (C) 2006 Rusty Russell IBM Corporation
3  *
4  * Author: Michael S. Tsirkin <mst@redhat.com>
5  *
6  * Inspiration, some code, and most witty comments come from
7  * Documentation/virtual/lguest/lguest.c, by Rusty Russell
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.
10  *
11  * Generic code for virtio server in host kernel.
12  */
13 
14 #include <linux/eventfd.h>
15 #include <linux/vhost.h>
16 #include <linux/uio.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_context.h>
19 #include <linux/miscdevice.h>
20 #include <linux/mutex.h>
21 #include <linux/poll.h>
22 #include <linux/file.h>
23 #include <linux/highmem.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/kthread.h>
27 #include <linux/cgroup.h>
28 #include <linux/module.h>
29 #include <linux/sort.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/signal.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include "vhost.h"
35 
36 static ushort max_mem_regions = 64;
37 module_param(max_mem_regions, ushort, 0444);
38 MODULE_PARM_DESC(max_mem_regions,
39 	"Maximum number of memory regions in memory map. (default: 64)");
40 static int max_iotlb_entries = 2048;
41 module_param(max_iotlb_entries, int, 0444);
42 MODULE_PARM_DESC(max_iotlb_entries,
43 	"Maximum number of iotlb entries. (default: 2048)");
44 
45 enum {
46 	VHOST_MEMORY_F_LOG = 0x1,
47 };
48 
49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num])
50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num])
51 
52 INTERVAL_TREE_DEFINE(struct vhost_umem_node,
53 		     rb, __u64, __subtree_last,
54 		     START, LAST, static inline, vhost_umem_interval_tree);
55 
56 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY
57 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
58 {
59 	vq->user_be = !virtio_legacy_is_little_endian();
60 }
61 
62 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq)
63 {
64 	vq->user_be = true;
65 }
66 
67 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq)
68 {
69 	vq->user_be = false;
70 }
71 
72 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
73 {
74 	struct vhost_vring_state s;
75 
76 	if (vq->private_data)
77 		return -EBUSY;
78 
79 	if (copy_from_user(&s, argp, sizeof(s)))
80 		return -EFAULT;
81 
82 	if (s.num != VHOST_VRING_LITTLE_ENDIAN &&
83 	    s.num != VHOST_VRING_BIG_ENDIAN)
84 		return -EINVAL;
85 
86 	if (s.num == VHOST_VRING_BIG_ENDIAN)
87 		vhost_enable_cross_endian_big(vq);
88 	else
89 		vhost_enable_cross_endian_little(vq);
90 
91 	return 0;
92 }
93 
94 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
95 				   int __user *argp)
96 {
97 	struct vhost_vring_state s = {
98 		.index = idx,
99 		.num = vq->user_be
100 	};
101 
102 	if (copy_to_user(argp, &s, sizeof(s)))
103 		return -EFAULT;
104 
105 	return 0;
106 }
107 
108 static void vhost_init_is_le(struct vhost_virtqueue *vq)
109 {
110 	/* Note for legacy virtio: user_be is initialized at reset time
111 	 * according to the host endianness. If userspace does not set an
112 	 * explicit endianness, the default behavior is native endian, as
113 	 * expected by legacy virtio.
114 	 */
115 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be;
116 }
117 #else
118 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
119 {
120 }
121 
122 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
123 {
124 	return -ENOIOCTLCMD;
125 }
126 
127 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
128 				   int __user *argp)
129 {
130 	return -ENOIOCTLCMD;
131 }
132 
133 static void vhost_init_is_le(struct vhost_virtqueue *vq)
134 {
135 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1)
136 		|| virtio_legacy_is_little_endian();
137 }
138 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */
139 
140 static void vhost_reset_is_le(struct vhost_virtqueue *vq)
141 {
142 	vhost_init_is_le(vq);
143 }
144 
145 struct vhost_flush_struct {
146 	struct vhost_work work;
147 	struct completion wait_event;
148 };
149 
150 static void vhost_flush_work(struct vhost_work *work)
151 {
152 	struct vhost_flush_struct *s;
153 
154 	s = container_of(work, struct vhost_flush_struct, work);
155 	complete(&s->wait_event);
156 }
157 
158 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh,
159 			    poll_table *pt)
160 {
161 	struct vhost_poll *poll;
162 
163 	poll = container_of(pt, struct vhost_poll, table);
164 	poll->wqh = wqh;
165 	add_wait_queue(wqh, &poll->wait);
166 }
167 
168 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync,
169 			     void *key)
170 {
171 	struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait);
172 
173 	if (!(key_to_poll(key) & poll->mask))
174 		return 0;
175 
176 	vhost_poll_queue(poll);
177 	return 0;
178 }
179 
180 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn)
181 {
182 	clear_bit(VHOST_WORK_QUEUED, &work->flags);
183 	work->fn = fn;
184 }
185 EXPORT_SYMBOL_GPL(vhost_work_init);
186 
187 /* Init poll structure */
188 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn,
189 		     __poll_t mask, struct vhost_dev *dev)
190 {
191 	init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup);
192 	init_poll_funcptr(&poll->table, vhost_poll_func);
193 	poll->mask = mask;
194 	poll->dev = dev;
195 	poll->wqh = NULL;
196 
197 	vhost_work_init(&poll->work, fn);
198 }
199 EXPORT_SYMBOL_GPL(vhost_poll_init);
200 
201 /* Start polling a file. We add ourselves to file's wait queue. The caller must
202  * keep a reference to a file until after vhost_poll_stop is called. */
203 int vhost_poll_start(struct vhost_poll *poll, struct file *file)
204 {
205 	__poll_t mask;
206 	int ret = 0;
207 
208 	if (poll->wqh)
209 		return 0;
210 
211 	mask = file->f_op->poll(file, &poll->table);
212 	if (mask)
213 		vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask));
214 	if (mask & EPOLLERR) {
215 		vhost_poll_stop(poll);
216 		ret = -EINVAL;
217 	}
218 
219 	return ret;
220 }
221 EXPORT_SYMBOL_GPL(vhost_poll_start);
222 
223 /* Stop polling a file. After this function returns, it becomes safe to drop the
224  * file reference. You must also flush afterwards. */
225 void vhost_poll_stop(struct vhost_poll *poll)
226 {
227 	if (poll->wqh) {
228 		remove_wait_queue(poll->wqh, &poll->wait);
229 		poll->wqh = NULL;
230 	}
231 }
232 EXPORT_SYMBOL_GPL(vhost_poll_stop);
233 
234 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work)
235 {
236 	struct vhost_flush_struct flush;
237 
238 	if (dev->worker) {
239 		init_completion(&flush.wait_event);
240 		vhost_work_init(&flush.work, vhost_flush_work);
241 
242 		vhost_work_queue(dev, &flush.work);
243 		wait_for_completion(&flush.wait_event);
244 	}
245 }
246 EXPORT_SYMBOL_GPL(vhost_work_flush);
247 
248 /* Flush any work that has been scheduled. When calling this, don't hold any
249  * locks that are also used by the callback. */
250 void vhost_poll_flush(struct vhost_poll *poll)
251 {
252 	vhost_work_flush(poll->dev, &poll->work);
253 }
254 EXPORT_SYMBOL_GPL(vhost_poll_flush);
255 
256 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work)
257 {
258 	if (!dev->worker)
259 		return;
260 
261 	if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) {
262 		/* We can only add the work to the list after we're
263 		 * sure it was not in the list.
264 		 * test_and_set_bit() implies a memory barrier.
265 		 */
266 		llist_add(&work->node, &dev->work_list);
267 		wake_up_process(dev->worker);
268 	}
269 }
270 EXPORT_SYMBOL_GPL(vhost_work_queue);
271 
272 /* A lockless hint for busy polling code to exit the loop */
273 bool vhost_has_work(struct vhost_dev *dev)
274 {
275 	return !llist_empty(&dev->work_list);
276 }
277 EXPORT_SYMBOL_GPL(vhost_has_work);
278 
279 void vhost_poll_queue(struct vhost_poll *poll)
280 {
281 	vhost_work_queue(poll->dev, &poll->work);
282 }
283 EXPORT_SYMBOL_GPL(vhost_poll_queue);
284 
285 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq)
286 {
287 	int j;
288 
289 	for (j = 0; j < VHOST_NUM_ADDRS; j++)
290 		vq->meta_iotlb[j] = NULL;
291 }
292 
293 static void vhost_vq_meta_reset(struct vhost_dev *d)
294 {
295 	int i;
296 
297 	for (i = 0; i < d->nvqs; ++i)
298 		__vhost_vq_meta_reset(d->vqs[i]);
299 }
300 
301 static void vhost_vq_reset(struct vhost_dev *dev,
302 			   struct vhost_virtqueue *vq)
303 {
304 	vq->num = 1;
305 	vq->desc = NULL;
306 	vq->avail = NULL;
307 	vq->used = NULL;
308 	vq->last_avail_idx = 0;
309 	vq->avail_idx = 0;
310 	vq->last_used_idx = 0;
311 	vq->signalled_used = 0;
312 	vq->signalled_used_valid = false;
313 	vq->used_flags = 0;
314 	vq->log_used = false;
315 	vq->log_addr = -1ull;
316 	vq->private_data = NULL;
317 	vq->acked_features = 0;
318 	vq->log_base = NULL;
319 	vq->error_ctx = NULL;
320 	vq->kick = NULL;
321 	vq->call_ctx = NULL;
322 	vq->log_ctx = NULL;
323 	vhost_reset_is_le(vq);
324 	vhost_disable_cross_endian(vq);
325 	vq->busyloop_timeout = 0;
326 	vq->umem = NULL;
327 	vq->iotlb = NULL;
328 	__vhost_vq_meta_reset(vq);
329 }
330 
331 static int vhost_worker(void *data)
332 {
333 	struct vhost_dev *dev = data;
334 	struct vhost_work *work, *work_next;
335 	struct llist_node *node;
336 	mm_segment_t oldfs = get_fs();
337 
338 	set_fs(USER_DS);
339 	use_mm(dev->mm);
340 
341 	for (;;) {
342 		/* mb paired w/ kthread_stop */
343 		set_current_state(TASK_INTERRUPTIBLE);
344 
345 		if (kthread_should_stop()) {
346 			__set_current_state(TASK_RUNNING);
347 			break;
348 		}
349 
350 		node = llist_del_all(&dev->work_list);
351 		if (!node)
352 			schedule();
353 
354 		node = llist_reverse_order(node);
355 		/* make sure flag is seen after deletion */
356 		smp_wmb();
357 		llist_for_each_entry_safe(work, work_next, node, node) {
358 			clear_bit(VHOST_WORK_QUEUED, &work->flags);
359 			__set_current_state(TASK_RUNNING);
360 			work->fn(work);
361 			if (need_resched())
362 				schedule();
363 		}
364 	}
365 	unuse_mm(dev->mm);
366 	set_fs(oldfs);
367 	return 0;
368 }
369 
370 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq)
371 {
372 	kfree(vq->indirect);
373 	vq->indirect = NULL;
374 	kfree(vq->log);
375 	vq->log = NULL;
376 	kfree(vq->heads);
377 	vq->heads = NULL;
378 }
379 
380 /* Helper to allocate iovec buffers for all vqs. */
381 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev)
382 {
383 	struct vhost_virtqueue *vq;
384 	int i;
385 
386 	for (i = 0; i < dev->nvqs; ++i) {
387 		vq = dev->vqs[i];
388 		vq->indirect = kmalloc(sizeof *vq->indirect * UIO_MAXIOV,
389 				       GFP_KERNEL);
390 		vq->log = kmalloc(sizeof *vq->log * UIO_MAXIOV, GFP_KERNEL);
391 		vq->heads = kmalloc(sizeof *vq->heads * UIO_MAXIOV, GFP_KERNEL);
392 		if (!vq->indirect || !vq->log || !vq->heads)
393 			goto err_nomem;
394 	}
395 	return 0;
396 
397 err_nomem:
398 	for (; i >= 0; --i)
399 		vhost_vq_free_iovecs(dev->vqs[i]);
400 	return -ENOMEM;
401 }
402 
403 static void vhost_dev_free_iovecs(struct vhost_dev *dev)
404 {
405 	int i;
406 
407 	for (i = 0; i < dev->nvqs; ++i)
408 		vhost_vq_free_iovecs(dev->vqs[i]);
409 }
410 
411 void vhost_dev_init(struct vhost_dev *dev,
412 		    struct vhost_virtqueue **vqs, int nvqs)
413 {
414 	struct vhost_virtqueue *vq;
415 	int i;
416 
417 	dev->vqs = vqs;
418 	dev->nvqs = nvqs;
419 	mutex_init(&dev->mutex);
420 	dev->log_ctx = NULL;
421 	dev->umem = NULL;
422 	dev->iotlb = NULL;
423 	dev->mm = NULL;
424 	dev->worker = NULL;
425 	init_llist_head(&dev->work_list);
426 	init_waitqueue_head(&dev->wait);
427 	INIT_LIST_HEAD(&dev->read_list);
428 	INIT_LIST_HEAD(&dev->pending_list);
429 	spin_lock_init(&dev->iotlb_lock);
430 
431 
432 	for (i = 0; i < dev->nvqs; ++i) {
433 		vq = dev->vqs[i];
434 		vq->log = NULL;
435 		vq->indirect = NULL;
436 		vq->heads = NULL;
437 		vq->dev = dev;
438 		mutex_init(&vq->mutex);
439 		vhost_vq_reset(dev, vq);
440 		if (vq->handle_kick)
441 			vhost_poll_init(&vq->poll, vq->handle_kick,
442 					EPOLLIN, dev);
443 	}
444 }
445 EXPORT_SYMBOL_GPL(vhost_dev_init);
446 
447 /* Caller should have device mutex */
448 long vhost_dev_check_owner(struct vhost_dev *dev)
449 {
450 	/* Are you the owner? If not, I don't think you mean to do that */
451 	return dev->mm == current->mm ? 0 : -EPERM;
452 }
453 EXPORT_SYMBOL_GPL(vhost_dev_check_owner);
454 
455 struct vhost_attach_cgroups_struct {
456 	struct vhost_work work;
457 	struct task_struct *owner;
458 	int ret;
459 };
460 
461 static void vhost_attach_cgroups_work(struct vhost_work *work)
462 {
463 	struct vhost_attach_cgroups_struct *s;
464 
465 	s = container_of(work, struct vhost_attach_cgroups_struct, work);
466 	s->ret = cgroup_attach_task_all(s->owner, current);
467 }
468 
469 static int vhost_attach_cgroups(struct vhost_dev *dev)
470 {
471 	struct vhost_attach_cgroups_struct attach;
472 
473 	attach.owner = current;
474 	vhost_work_init(&attach.work, vhost_attach_cgroups_work);
475 	vhost_work_queue(dev, &attach.work);
476 	vhost_work_flush(dev, &attach.work);
477 	return attach.ret;
478 }
479 
480 /* Caller should have device mutex */
481 bool vhost_dev_has_owner(struct vhost_dev *dev)
482 {
483 	return dev->mm;
484 }
485 EXPORT_SYMBOL_GPL(vhost_dev_has_owner);
486 
487 /* Caller should have device mutex */
488 long vhost_dev_set_owner(struct vhost_dev *dev)
489 {
490 	struct task_struct *worker;
491 	int err;
492 
493 	/* Is there an owner already? */
494 	if (vhost_dev_has_owner(dev)) {
495 		err = -EBUSY;
496 		goto err_mm;
497 	}
498 
499 	/* No owner, become one */
500 	dev->mm = get_task_mm(current);
501 	worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid);
502 	if (IS_ERR(worker)) {
503 		err = PTR_ERR(worker);
504 		goto err_worker;
505 	}
506 
507 	dev->worker = worker;
508 	wake_up_process(worker);	/* avoid contributing to loadavg */
509 
510 	err = vhost_attach_cgroups(dev);
511 	if (err)
512 		goto err_cgroup;
513 
514 	err = vhost_dev_alloc_iovecs(dev);
515 	if (err)
516 		goto err_cgroup;
517 
518 	return 0;
519 err_cgroup:
520 	kthread_stop(worker);
521 	dev->worker = NULL;
522 err_worker:
523 	if (dev->mm)
524 		mmput(dev->mm);
525 	dev->mm = NULL;
526 err_mm:
527 	return err;
528 }
529 EXPORT_SYMBOL_GPL(vhost_dev_set_owner);
530 
531 struct vhost_umem *vhost_dev_reset_owner_prepare(void)
532 {
533 	return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL);
534 }
535 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare);
536 
537 /* Caller should have device mutex */
538 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem)
539 {
540 	int i;
541 
542 	vhost_dev_cleanup(dev);
543 
544 	/* Restore memory to default empty mapping. */
545 	INIT_LIST_HEAD(&umem->umem_list);
546 	dev->umem = umem;
547 	/* We don't need VQ locks below since vhost_dev_cleanup makes sure
548 	 * VQs aren't running.
549 	 */
550 	for (i = 0; i < dev->nvqs; ++i)
551 		dev->vqs[i]->umem = umem;
552 }
553 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner);
554 
555 void vhost_dev_stop(struct vhost_dev *dev)
556 {
557 	int i;
558 
559 	for (i = 0; i < dev->nvqs; ++i) {
560 		if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) {
561 			vhost_poll_stop(&dev->vqs[i]->poll);
562 			vhost_poll_flush(&dev->vqs[i]->poll);
563 		}
564 	}
565 }
566 EXPORT_SYMBOL_GPL(vhost_dev_stop);
567 
568 static void vhost_umem_free(struct vhost_umem *umem,
569 			    struct vhost_umem_node *node)
570 {
571 	vhost_umem_interval_tree_remove(node, &umem->umem_tree);
572 	list_del(&node->link);
573 	kfree(node);
574 	umem->numem--;
575 }
576 
577 static void vhost_umem_clean(struct vhost_umem *umem)
578 {
579 	struct vhost_umem_node *node, *tmp;
580 
581 	if (!umem)
582 		return;
583 
584 	list_for_each_entry_safe(node, tmp, &umem->umem_list, link)
585 		vhost_umem_free(umem, node);
586 
587 	kvfree(umem);
588 }
589 
590 static void vhost_clear_msg(struct vhost_dev *dev)
591 {
592 	struct vhost_msg_node *node, *n;
593 
594 	spin_lock(&dev->iotlb_lock);
595 
596 	list_for_each_entry_safe(node, n, &dev->read_list, node) {
597 		list_del(&node->node);
598 		kfree(node);
599 	}
600 
601 	list_for_each_entry_safe(node, n, &dev->pending_list, node) {
602 		list_del(&node->node);
603 		kfree(node);
604 	}
605 
606 	spin_unlock(&dev->iotlb_lock);
607 }
608 
609 void vhost_dev_cleanup(struct vhost_dev *dev)
610 {
611 	int i;
612 
613 	for (i = 0; i < dev->nvqs; ++i) {
614 		if (dev->vqs[i]->error_ctx)
615 			eventfd_ctx_put(dev->vqs[i]->error_ctx);
616 		if (dev->vqs[i]->kick)
617 			fput(dev->vqs[i]->kick);
618 		if (dev->vqs[i]->call_ctx)
619 			eventfd_ctx_put(dev->vqs[i]->call_ctx);
620 		vhost_vq_reset(dev, dev->vqs[i]);
621 	}
622 	vhost_dev_free_iovecs(dev);
623 	if (dev->log_ctx)
624 		eventfd_ctx_put(dev->log_ctx);
625 	dev->log_ctx = NULL;
626 	/* No one will access memory at this point */
627 	vhost_umem_clean(dev->umem);
628 	dev->umem = NULL;
629 	vhost_umem_clean(dev->iotlb);
630 	dev->iotlb = NULL;
631 	vhost_clear_msg(dev);
632 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
633 	WARN_ON(!llist_empty(&dev->work_list));
634 	if (dev->worker) {
635 		kthread_stop(dev->worker);
636 		dev->worker = NULL;
637 	}
638 	if (dev->mm)
639 		mmput(dev->mm);
640 	dev->mm = NULL;
641 }
642 EXPORT_SYMBOL_GPL(vhost_dev_cleanup);
643 
644 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz)
645 {
646 	u64 a = addr / VHOST_PAGE_SIZE / 8;
647 
648 	/* Make sure 64 bit math will not overflow. */
649 	if (a > ULONG_MAX - (unsigned long)log_base ||
650 	    a + (unsigned long)log_base > ULONG_MAX)
651 		return false;
652 
653 	return access_ok(VERIFY_WRITE, log_base + a,
654 			 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8);
655 }
656 
657 static bool vhost_overflow(u64 uaddr, u64 size)
658 {
659 	/* Make sure 64 bit math will not overflow. */
660 	return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size;
661 }
662 
663 /* Caller should have vq mutex and device mutex. */
664 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem,
665 				int log_all)
666 {
667 	struct vhost_umem_node *node;
668 
669 	if (!umem)
670 		return false;
671 
672 	list_for_each_entry(node, &umem->umem_list, link) {
673 		unsigned long a = node->userspace_addr;
674 
675 		if (vhost_overflow(node->userspace_addr, node->size))
676 			return false;
677 
678 
679 		if (!access_ok(VERIFY_WRITE, (void __user *)a,
680 				    node->size))
681 			return false;
682 		else if (log_all && !log_access_ok(log_base,
683 						   node->start,
684 						   node->size))
685 			return false;
686 	}
687 	return true;
688 }
689 
690 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq,
691 					       u64 addr, unsigned int size,
692 					       int type)
693 {
694 	const struct vhost_umem_node *node = vq->meta_iotlb[type];
695 
696 	if (!node)
697 		return NULL;
698 
699 	return (void *)(uintptr_t)(node->userspace_addr + addr - node->start);
700 }
701 
702 /* Can we switch to this memory table? */
703 /* Caller should have device mutex but not vq mutex */
704 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem,
705 			     int log_all)
706 {
707 	int i;
708 
709 	for (i = 0; i < d->nvqs; ++i) {
710 		bool ok;
711 		bool log;
712 
713 		mutex_lock(&d->vqs[i]->mutex);
714 		log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL);
715 		/* If ring is inactive, will check when it's enabled. */
716 		if (d->vqs[i]->private_data)
717 			ok = vq_memory_access_ok(d->vqs[i]->log_base,
718 						 umem, log);
719 		else
720 			ok = true;
721 		mutex_unlock(&d->vqs[i]->mutex);
722 		if (!ok)
723 			return false;
724 	}
725 	return true;
726 }
727 
728 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
729 			  struct iovec iov[], int iov_size, int access);
730 
731 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to,
732 			      const void *from, unsigned size)
733 {
734 	int ret;
735 
736 	if (!vq->iotlb)
737 		return __copy_to_user(to, from, size);
738 	else {
739 		/* This function should be called after iotlb
740 		 * prefetch, which means we're sure that all vq
741 		 * could be access through iotlb. So -EAGAIN should
742 		 * not happen in this case.
743 		 */
744 		struct iov_iter t;
745 		void __user *uaddr = vhost_vq_meta_fetch(vq,
746 				     (u64)(uintptr_t)to, size,
747 				     VHOST_ADDR_USED);
748 
749 		if (uaddr)
750 			return __copy_to_user(uaddr, from, size);
751 
752 		ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov,
753 				     ARRAY_SIZE(vq->iotlb_iov),
754 				     VHOST_ACCESS_WO);
755 		if (ret < 0)
756 			goto out;
757 		iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size);
758 		ret = copy_to_iter(from, size, &t);
759 		if (ret == size)
760 			ret = 0;
761 	}
762 out:
763 	return ret;
764 }
765 
766 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to,
767 				void __user *from, unsigned size)
768 {
769 	int ret;
770 
771 	if (!vq->iotlb)
772 		return __copy_from_user(to, from, size);
773 	else {
774 		/* This function should be called after iotlb
775 		 * prefetch, which means we're sure that vq
776 		 * could be access through iotlb. So -EAGAIN should
777 		 * not happen in this case.
778 		 */
779 		void __user *uaddr = vhost_vq_meta_fetch(vq,
780 				     (u64)(uintptr_t)from, size,
781 				     VHOST_ADDR_DESC);
782 		struct iov_iter f;
783 
784 		if (uaddr)
785 			return __copy_from_user(to, uaddr, size);
786 
787 		ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov,
788 				     ARRAY_SIZE(vq->iotlb_iov),
789 				     VHOST_ACCESS_RO);
790 		if (ret < 0) {
791 			vq_err(vq, "IOTLB translation failure: uaddr "
792 			       "%p size 0x%llx\n", from,
793 			       (unsigned long long) size);
794 			goto out;
795 		}
796 		iov_iter_init(&f, READ, vq->iotlb_iov, ret, size);
797 		ret = copy_from_iter(to, size, &f);
798 		if (ret == size)
799 			ret = 0;
800 	}
801 
802 out:
803 	return ret;
804 }
805 
806 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq,
807 					  void __user *addr, unsigned int size,
808 					  int type)
809 {
810 	int ret;
811 
812 	ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov,
813 			     ARRAY_SIZE(vq->iotlb_iov),
814 			     VHOST_ACCESS_RO);
815 	if (ret < 0) {
816 		vq_err(vq, "IOTLB translation failure: uaddr "
817 			"%p size 0x%llx\n", addr,
818 			(unsigned long long) size);
819 		return NULL;
820 	}
821 
822 	if (ret != 1 || vq->iotlb_iov[0].iov_len != size) {
823 		vq_err(vq, "Non atomic userspace memory access: uaddr "
824 			"%p size 0x%llx\n", addr,
825 			(unsigned long long) size);
826 		return NULL;
827 	}
828 
829 	return vq->iotlb_iov[0].iov_base;
830 }
831 
832 /* This function should be called after iotlb
833  * prefetch, which means we're sure that vq
834  * could be access through iotlb. So -EAGAIN should
835  * not happen in this case.
836  */
837 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq,
838 					    void *addr, unsigned int size,
839 					    int type)
840 {
841 	void __user *uaddr = vhost_vq_meta_fetch(vq,
842 			     (u64)(uintptr_t)addr, size, type);
843 	if (uaddr)
844 		return uaddr;
845 
846 	return __vhost_get_user_slow(vq, addr, size, type);
847 }
848 
849 #define vhost_put_user(vq, x, ptr)		\
850 ({ \
851 	int ret = -EFAULT; \
852 	if (!vq->iotlb) { \
853 		ret = __put_user(x, ptr); \
854 	} else { \
855 		__typeof__(ptr) to = \
856 			(__typeof__(ptr)) __vhost_get_user(vq, ptr,	\
857 					  sizeof(*ptr), VHOST_ADDR_USED); \
858 		if (to != NULL) \
859 			ret = __put_user(x, to); \
860 		else \
861 			ret = -EFAULT;	\
862 	} \
863 	ret; \
864 })
865 
866 #define vhost_get_user(vq, x, ptr, type)		\
867 ({ \
868 	int ret; \
869 	if (!vq->iotlb) { \
870 		ret = __get_user(x, ptr); \
871 	} else { \
872 		__typeof__(ptr) from = \
873 			(__typeof__(ptr)) __vhost_get_user(vq, ptr, \
874 							   sizeof(*ptr), \
875 							   type); \
876 		if (from != NULL) \
877 			ret = __get_user(x, from); \
878 		else \
879 			ret = -EFAULT; \
880 	} \
881 	ret; \
882 })
883 
884 #define vhost_get_avail(vq, x, ptr) \
885 	vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL)
886 
887 #define vhost_get_used(vq, x, ptr) \
888 	vhost_get_user(vq, x, ptr, VHOST_ADDR_USED)
889 
890 static void vhost_dev_lock_vqs(struct vhost_dev *d)
891 {
892 	int i = 0;
893 	for (i = 0; i < d->nvqs; ++i)
894 		mutex_lock_nested(&d->vqs[i]->mutex, i);
895 }
896 
897 static void vhost_dev_unlock_vqs(struct vhost_dev *d)
898 {
899 	int i = 0;
900 	for (i = 0; i < d->nvqs; ++i)
901 		mutex_unlock(&d->vqs[i]->mutex);
902 }
903 
904 static int vhost_new_umem_range(struct vhost_umem *umem,
905 				u64 start, u64 size, u64 end,
906 				u64 userspace_addr, int perm)
907 {
908 	struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC);
909 
910 	if (!node)
911 		return -ENOMEM;
912 
913 	if (umem->numem == max_iotlb_entries) {
914 		tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link);
915 		vhost_umem_free(umem, tmp);
916 	}
917 
918 	node->start = start;
919 	node->size = size;
920 	node->last = end;
921 	node->userspace_addr = userspace_addr;
922 	node->perm = perm;
923 	INIT_LIST_HEAD(&node->link);
924 	list_add_tail(&node->link, &umem->umem_list);
925 	vhost_umem_interval_tree_insert(node, &umem->umem_tree);
926 	umem->numem++;
927 
928 	return 0;
929 }
930 
931 static void vhost_del_umem_range(struct vhost_umem *umem,
932 				 u64 start, u64 end)
933 {
934 	struct vhost_umem_node *node;
935 
936 	while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
937 							   start, end)))
938 		vhost_umem_free(umem, node);
939 }
940 
941 static void vhost_iotlb_notify_vq(struct vhost_dev *d,
942 				  struct vhost_iotlb_msg *msg)
943 {
944 	struct vhost_msg_node *node, *n;
945 
946 	spin_lock(&d->iotlb_lock);
947 
948 	list_for_each_entry_safe(node, n, &d->pending_list, node) {
949 		struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb;
950 		if (msg->iova <= vq_msg->iova &&
951 		    msg->iova + msg->size - 1 > vq_msg->iova &&
952 		    vq_msg->type == VHOST_IOTLB_MISS) {
953 			vhost_poll_queue(&node->vq->poll);
954 			list_del(&node->node);
955 			kfree(node);
956 		}
957 	}
958 
959 	spin_unlock(&d->iotlb_lock);
960 }
961 
962 static bool umem_access_ok(u64 uaddr, u64 size, int access)
963 {
964 	unsigned long a = uaddr;
965 
966 	/* Make sure 64 bit math will not overflow. */
967 	if (vhost_overflow(uaddr, size))
968 		return false;
969 
970 	if ((access & VHOST_ACCESS_RO) &&
971 	    !access_ok(VERIFY_READ, (void __user *)a, size))
972 		return false;
973 	if ((access & VHOST_ACCESS_WO) &&
974 	    !access_ok(VERIFY_WRITE, (void __user *)a, size))
975 		return false;
976 	return true;
977 }
978 
979 static int vhost_process_iotlb_msg(struct vhost_dev *dev,
980 				   struct vhost_iotlb_msg *msg)
981 {
982 	int ret = 0;
983 
984 	vhost_dev_lock_vqs(dev);
985 	switch (msg->type) {
986 	case VHOST_IOTLB_UPDATE:
987 		if (!dev->iotlb) {
988 			ret = -EFAULT;
989 			break;
990 		}
991 		if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) {
992 			ret = -EFAULT;
993 			break;
994 		}
995 		vhost_vq_meta_reset(dev);
996 		if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size,
997 					 msg->iova + msg->size - 1,
998 					 msg->uaddr, msg->perm)) {
999 			ret = -ENOMEM;
1000 			break;
1001 		}
1002 		vhost_iotlb_notify_vq(dev, msg);
1003 		break;
1004 	case VHOST_IOTLB_INVALIDATE:
1005 		if (!dev->iotlb) {
1006 			ret = -EFAULT;
1007 			break;
1008 		}
1009 		vhost_vq_meta_reset(dev);
1010 		vhost_del_umem_range(dev->iotlb, msg->iova,
1011 				     msg->iova + msg->size - 1);
1012 		break;
1013 	default:
1014 		ret = -EINVAL;
1015 		break;
1016 	}
1017 
1018 	vhost_dev_unlock_vqs(dev);
1019 	return ret;
1020 }
1021 ssize_t vhost_chr_write_iter(struct vhost_dev *dev,
1022 			     struct iov_iter *from)
1023 {
1024 	struct vhost_msg_node node;
1025 	unsigned size = sizeof(struct vhost_msg);
1026 	size_t ret;
1027 	int err;
1028 
1029 	if (iov_iter_count(from) < size)
1030 		return 0;
1031 	ret = copy_from_iter(&node.msg, size, from);
1032 	if (ret != size)
1033 		goto done;
1034 
1035 	switch (node.msg.type) {
1036 	case VHOST_IOTLB_MSG:
1037 		err = vhost_process_iotlb_msg(dev, &node.msg.iotlb);
1038 		if (err)
1039 			ret = err;
1040 		break;
1041 	default:
1042 		ret = -EINVAL;
1043 		break;
1044 	}
1045 
1046 done:
1047 	return ret;
1048 }
1049 EXPORT_SYMBOL(vhost_chr_write_iter);
1050 
1051 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev,
1052 			    poll_table *wait)
1053 {
1054 	__poll_t mask = 0;
1055 
1056 	poll_wait(file, &dev->wait, wait);
1057 
1058 	if (!list_empty(&dev->read_list))
1059 		mask |= EPOLLIN | EPOLLRDNORM;
1060 
1061 	return mask;
1062 }
1063 EXPORT_SYMBOL(vhost_chr_poll);
1064 
1065 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to,
1066 			    int noblock)
1067 {
1068 	DEFINE_WAIT(wait);
1069 	struct vhost_msg_node *node;
1070 	ssize_t ret = 0;
1071 	unsigned size = sizeof(struct vhost_msg);
1072 
1073 	if (iov_iter_count(to) < size)
1074 		return 0;
1075 
1076 	while (1) {
1077 		if (!noblock)
1078 			prepare_to_wait(&dev->wait, &wait,
1079 					TASK_INTERRUPTIBLE);
1080 
1081 		node = vhost_dequeue_msg(dev, &dev->read_list);
1082 		if (node)
1083 			break;
1084 		if (noblock) {
1085 			ret = -EAGAIN;
1086 			break;
1087 		}
1088 		if (signal_pending(current)) {
1089 			ret = -ERESTARTSYS;
1090 			break;
1091 		}
1092 		if (!dev->iotlb) {
1093 			ret = -EBADFD;
1094 			break;
1095 		}
1096 
1097 		schedule();
1098 	}
1099 
1100 	if (!noblock)
1101 		finish_wait(&dev->wait, &wait);
1102 
1103 	if (node) {
1104 		ret = copy_to_iter(&node->msg, size, to);
1105 
1106 		if (ret != size || node->msg.type != VHOST_IOTLB_MISS) {
1107 			kfree(node);
1108 			return ret;
1109 		}
1110 
1111 		vhost_enqueue_msg(dev, &dev->pending_list, node);
1112 	}
1113 
1114 	return ret;
1115 }
1116 EXPORT_SYMBOL_GPL(vhost_chr_read_iter);
1117 
1118 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access)
1119 {
1120 	struct vhost_dev *dev = vq->dev;
1121 	struct vhost_msg_node *node;
1122 	struct vhost_iotlb_msg *msg;
1123 
1124 	node = vhost_new_msg(vq, VHOST_IOTLB_MISS);
1125 	if (!node)
1126 		return -ENOMEM;
1127 
1128 	msg = &node->msg.iotlb;
1129 	msg->type = VHOST_IOTLB_MISS;
1130 	msg->iova = iova;
1131 	msg->perm = access;
1132 
1133 	vhost_enqueue_msg(dev, &dev->read_list, node);
1134 
1135 	return 0;
1136 }
1137 
1138 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num,
1139 			 struct vring_desc __user *desc,
1140 			 struct vring_avail __user *avail,
1141 			 struct vring_used __user *used)
1142 
1143 {
1144 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1145 
1146 	return access_ok(VERIFY_READ, desc, num * sizeof *desc) &&
1147 	       access_ok(VERIFY_READ, avail,
1148 			 sizeof *avail + num * sizeof *avail->ring + s) &&
1149 	       access_ok(VERIFY_WRITE, used,
1150 			sizeof *used + num * sizeof *used->ring + s);
1151 }
1152 
1153 static void vhost_vq_meta_update(struct vhost_virtqueue *vq,
1154 				 const struct vhost_umem_node *node,
1155 				 int type)
1156 {
1157 	int access = (type == VHOST_ADDR_USED) ?
1158 		     VHOST_ACCESS_WO : VHOST_ACCESS_RO;
1159 
1160 	if (likely(node->perm & access))
1161 		vq->meta_iotlb[type] = node;
1162 }
1163 
1164 static bool iotlb_access_ok(struct vhost_virtqueue *vq,
1165 			    int access, u64 addr, u64 len, int type)
1166 {
1167 	const struct vhost_umem_node *node;
1168 	struct vhost_umem *umem = vq->iotlb;
1169 	u64 s = 0, size, orig_addr = addr, last = addr + len - 1;
1170 
1171 	if (vhost_vq_meta_fetch(vq, addr, len, type))
1172 		return true;
1173 
1174 	while (len > s) {
1175 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1176 							   addr,
1177 							   last);
1178 		if (node == NULL || node->start > addr) {
1179 			vhost_iotlb_miss(vq, addr, access);
1180 			return false;
1181 		} else if (!(node->perm & access)) {
1182 			/* Report the possible access violation by
1183 			 * request another translation from userspace.
1184 			 */
1185 			return false;
1186 		}
1187 
1188 		size = node->size - addr + node->start;
1189 
1190 		if (orig_addr == addr && size >= len)
1191 			vhost_vq_meta_update(vq, node, type);
1192 
1193 		s += size;
1194 		addr += size;
1195 	}
1196 
1197 	return true;
1198 }
1199 
1200 int vq_iotlb_prefetch(struct vhost_virtqueue *vq)
1201 {
1202 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1203 	unsigned int num = vq->num;
1204 
1205 	if (!vq->iotlb)
1206 		return 1;
1207 
1208 	return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc,
1209 			       num * sizeof(*vq->desc), VHOST_ADDR_DESC) &&
1210 	       iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail,
1211 			       sizeof *vq->avail +
1212 			       num * sizeof(*vq->avail->ring) + s,
1213 			       VHOST_ADDR_AVAIL) &&
1214 	       iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used,
1215 			       sizeof *vq->used +
1216 			       num * sizeof(*vq->used->ring) + s,
1217 			       VHOST_ADDR_USED);
1218 }
1219 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch);
1220 
1221 /* Can we log writes? */
1222 /* Caller should have device mutex but not vq mutex */
1223 bool vhost_log_access_ok(struct vhost_dev *dev)
1224 {
1225 	return memory_access_ok(dev, dev->umem, 1);
1226 }
1227 EXPORT_SYMBOL_GPL(vhost_log_access_ok);
1228 
1229 /* Verify access for write logging. */
1230 /* Caller should have vq mutex and device mutex */
1231 static bool vq_log_access_ok(struct vhost_virtqueue *vq,
1232 			     void __user *log_base)
1233 {
1234 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1235 
1236 	return vq_memory_access_ok(log_base, vq->umem,
1237 				   vhost_has_feature(vq, VHOST_F_LOG_ALL)) &&
1238 		(!vq->log_used || log_access_ok(log_base, vq->log_addr,
1239 					sizeof *vq->used +
1240 					vq->num * sizeof *vq->used->ring + s));
1241 }
1242 
1243 /* Can we start vq? */
1244 /* Caller should have vq mutex and device mutex */
1245 bool vhost_vq_access_ok(struct vhost_virtqueue *vq)
1246 {
1247 	if (!vq_log_access_ok(vq, vq->log_base))
1248 		return false;
1249 
1250 	/* Access validation occurs at prefetch time with IOTLB */
1251 	if (vq->iotlb)
1252 		return true;
1253 
1254 	return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used);
1255 }
1256 EXPORT_SYMBOL_GPL(vhost_vq_access_ok);
1257 
1258 static struct vhost_umem *vhost_umem_alloc(void)
1259 {
1260 	struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL);
1261 
1262 	if (!umem)
1263 		return NULL;
1264 
1265 	umem->umem_tree = RB_ROOT_CACHED;
1266 	umem->numem = 0;
1267 	INIT_LIST_HEAD(&umem->umem_list);
1268 
1269 	return umem;
1270 }
1271 
1272 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
1273 {
1274 	struct vhost_memory mem, *newmem;
1275 	struct vhost_memory_region *region;
1276 	struct vhost_umem *newumem, *oldumem;
1277 	unsigned long size = offsetof(struct vhost_memory, regions);
1278 	int i;
1279 
1280 	if (copy_from_user(&mem, m, size))
1281 		return -EFAULT;
1282 	if (mem.padding)
1283 		return -EOPNOTSUPP;
1284 	if (mem.nregions > max_mem_regions)
1285 		return -E2BIG;
1286 	newmem = kvzalloc(size + mem.nregions * sizeof(*m->regions), GFP_KERNEL);
1287 	if (!newmem)
1288 		return -ENOMEM;
1289 
1290 	memcpy(newmem, &mem, size);
1291 	if (copy_from_user(newmem->regions, m->regions,
1292 			   mem.nregions * sizeof *m->regions)) {
1293 		kvfree(newmem);
1294 		return -EFAULT;
1295 	}
1296 
1297 	newumem = vhost_umem_alloc();
1298 	if (!newumem) {
1299 		kvfree(newmem);
1300 		return -ENOMEM;
1301 	}
1302 
1303 	for (region = newmem->regions;
1304 	     region < newmem->regions + mem.nregions;
1305 	     region++) {
1306 		if (vhost_new_umem_range(newumem,
1307 					 region->guest_phys_addr,
1308 					 region->memory_size,
1309 					 region->guest_phys_addr +
1310 					 region->memory_size - 1,
1311 					 region->userspace_addr,
1312 					 VHOST_ACCESS_RW))
1313 			goto err;
1314 	}
1315 
1316 	if (!memory_access_ok(d, newumem, 0))
1317 		goto err;
1318 
1319 	oldumem = d->umem;
1320 	d->umem = newumem;
1321 
1322 	/* All memory accesses are done under some VQ mutex. */
1323 	for (i = 0; i < d->nvqs; ++i) {
1324 		mutex_lock(&d->vqs[i]->mutex);
1325 		d->vqs[i]->umem = newumem;
1326 		mutex_unlock(&d->vqs[i]->mutex);
1327 	}
1328 
1329 	kvfree(newmem);
1330 	vhost_umem_clean(oldumem);
1331 	return 0;
1332 
1333 err:
1334 	vhost_umem_clean(newumem);
1335 	kvfree(newmem);
1336 	return -EFAULT;
1337 }
1338 
1339 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1340 {
1341 	struct file *eventfp, *filep = NULL;
1342 	bool pollstart = false, pollstop = false;
1343 	struct eventfd_ctx *ctx = NULL;
1344 	u32 __user *idxp = argp;
1345 	struct vhost_virtqueue *vq;
1346 	struct vhost_vring_state s;
1347 	struct vhost_vring_file f;
1348 	struct vhost_vring_addr a;
1349 	u32 idx;
1350 	long r;
1351 
1352 	r = get_user(idx, idxp);
1353 	if (r < 0)
1354 		return r;
1355 	if (idx >= d->nvqs)
1356 		return -ENOBUFS;
1357 
1358 	vq = d->vqs[idx];
1359 
1360 	mutex_lock(&vq->mutex);
1361 
1362 	switch (ioctl) {
1363 	case VHOST_SET_VRING_NUM:
1364 		/* Resizing ring with an active backend?
1365 		 * You don't want to do that. */
1366 		if (vq->private_data) {
1367 			r = -EBUSY;
1368 			break;
1369 		}
1370 		if (copy_from_user(&s, argp, sizeof s)) {
1371 			r = -EFAULT;
1372 			break;
1373 		}
1374 		if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) {
1375 			r = -EINVAL;
1376 			break;
1377 		}
1378 		vq->num = s.num;
1379 		break;
1380 	case VHOST_SET_VRING_BASE:
1381 		/* Moving base with an active backend?
1382 		 * You don't want to do that. */
1383 		if (vq->private_data) {
1384 			r = -EBUSY;
1385 			break;
1386 		}
1387 		if (copy_from_user(&s, argp, sizeof s)) {
1388 			r = -EFAULT;
1389 			break;
1390 		}
1391 		if (s.num > 0xffff) {
1392 			r = -EINVAL;
1393 			break;
1394 		}
1395 		vq->last_avail_idx = s.num;
1396 		/* Forget the cached index value. */
1397 		vq->avail_idx = vq->last_avail_idx;
1398 		break;
1399 	case VHOST_GET_VRING_BASE:
1400 		s.index = idx;
1401 		s.num = vq->last_avail_idx;
1402 		if (copy_to_user(argp, &s, sizeof s))
1403 			r = -EFAULT;
1404 		break;
1405 	case VHOST_SET_VRING_ADDR:
1406 		if (copy_from_user(&a, argp, sizeof a)) {
1407 			r = -EFAULT;
1408 			break;
1409 		}
1410 		if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) {
1411 			r = -EOPNOTSUPP;
1412 			break;
1413 		}
1414 		/* For 32bit, verify that the top 32bits of the user
1415 		   data are set to zero. */
1416 		if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr ||
1417 		    (u64)(unsigned long)a.used_user_addr != a.used_user_addr ||
1418 		    (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) {
1419 			r = -EFAULT;
1420 			break;
1421 		}
1422 
1423 		/* Make sure it's safe to cast pointers to vring types. */
1424 		BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE);
1425 		BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE);
1426 		if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) ||
1427 		    (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) ||
1428 		    (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) {
1429 			r = -EINVAL;
1430 			break;
1431 		}
1432 
1433 		/* We only verify access here if backend is configured.
1434 		 * If it is not, we don't as size might not have been setup.
1435 		 * We will verify when backend is configured. */
1436 		if (vq->private_data) {
1437 			if (!vq_access_ok(vq, vq->num,
1438 				(void __user *)(unsigned long)a.desc_user_addr,
1439 				(void __user *)(unsigned long)a.avail_user_addr,
1440 				(void __user *)(unsigned long)a.used_user_addr)) {
1441 				r = -EINVAL;
1442 				break;
1443 			}
1444 
1445 			/* Also validate log access for used ring if enabled. */
1446 			if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) &&
1447 			    !log_access_ok(vq->log_base, a.log_guest_addr,
1448 					   sizeof *vq->used +
1449 					   vq->num * sizeof *vq->used->ring)) {
1450 				r = -EINVAL;
1451 				break;
1452 			}
1453 		}
1454 
1455 		vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG));
1456 		vq->desc = (void __user *)(unsigned long)a.desc_user_addr;
1457 		vq->avail = (void __user *)(unsigned long)a.avail_user_addr;
1458 		vq->log_addr = a.log_guest_addr;
1459 		vq->used = (void __user *)(unsigned long)a.used_user_addr;
1460 		break;
1461 	case VHOST_SET_VRING_KICK:
1462 		if (copy_from_user(&f, argp, sizeof f)) {
1463 			r = -EFAULT;
1464 			break;
1465 		}
1466 		eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd);
1467 		if (IS_ERR(eventfp)) {
1468 			r = PTR_ERR(eventfp);
1469 			break;
1470 		}
1471 		if (eventfp != vq->kick) {
1472 			pollstop = (filep = vq->kick) != NULL;
1473 			pollstart = (vq->kick = eventfp) != NULL;
1474 		} else
1475 			filep = eventfp;
1476 		break;
1477 	case VHOST_SET_VRING_CALL:
1478 		if (copy_from_user(&f, argp, sizeof f)) {
1479 			r = -EFAULT;
1480 			break;
1481 		}
1482 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1483 		if (IS_ERR(ctx)) {
1484 			r = PTR_ERR(ctx);
1485 			break;
1486 		}
1487 		swap(ctx, vq->call_ctx);
1488 		break;
1489 	case VHOST_SET_VRING_ERR:
1490 		if (copy_from_user(&f, argp, sizeof f)) {
1491 			r = -EFAULT;
1492 			break;
1493 		}
1494 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1495 		if (IS_ERR(ctx)) {
1496 			r = PTR_ERR(ctx);
1497 			break;
1498 		}
1499 		swap(ctx, vq->error_ctx);
1500 		break;
1501 	case VHOST_SET_VRING_ENDIAN:
1502 		r = vhost_set_vring_endian(vq, argp);
1503 		break;
1504 	case VHOST_GET_VRING_ENDIAN:
1505 		r = vhost_get_vring_endian(vq, idx, argp);
1506 		break;
1507 	case VHOST_SET_VRING_BUSYLOOP_TIMEOUT:
1508 		if (copy_from_user(&s, argp, sizeof(s))) {
1509 			r = -EFAULT;
1510 			break;
1511 		}
1512 		vq->busyloop_timeout = s.num;
1513 		break;
1514 	case VHOST_GET_VRING_BUSYLOOP_TIMEOUT:
1515 		s.index = idx;
1516 		s.num = vq->busyloop_timeout;
1517 		if (copy_to_user(argp, &s, sizeof(s)))
1518 			r = -EFAULT;
1519 		break;
1520 	default:
1521 		r = -ENOIOCTLCMD;
1522 	}
1523 
1524 	if (pollstop && vq->handle_kick)
1525 		vhost_poll_stop(&vq->poll);
1526 
1527 	if (!IS_ERR_OR_NULL(ctx))
1528 		eventfd_ctx_put(ctx);
1529 	if (filep)
1530 		fput(filep);
1531 
1532 	if (pollstart && vq->handle_kick)
1533 		r = vhost_poll_start(&vq->poll, vq->kick);
1534 
1535 	mutex_unlock(&vq->mutex);
1536 
1537 	if (pollstop && vq->handle_kick)
1538 		vhost_poll_flush(&vq->poll);
1539 	return r;
1540 }
1541 EXPORT_SYMBOL_GPL(vhost_vring_ioctl);
1542 
1543 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled)
1544 {
1545 	struct vhost_umem *niotlb, *oiotlb;
1546 	int i;
1547 
1548 	niotlb = vhost_umem_alloc();
1549 	if (!niotlb)
1550 		return -ENOMEM;
1551 
1552 	oiotlb = d->iotlb;
1553 	d->iotlb = niotlb;
1554 
1555 	for (i = 0; i < d->nvqs; ++i) {
1556 		mutex_lock(&d->vqs[i]->mutex);
1557 		d->vqs[i]->iotlb = niotlb;
1558 		mutex_unlock(&d->vqs[i]->mutex);
1559 	}
1560 
1561 	vhost_umem_clean(oiotlb);
1562 
1563 	return 0;
1564 }
1565 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb);
1566 
1567 /* Caller must have device mutex */
1568 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1569 {
1570 	struct eventfd_ctx *ctx;
1571 	u64 p;
1572 	long r;
1573 	int i, fd;
1574 
1575 	/* If you are not the owner, you can become one */
1576 	if (ioctl == VHOST_SET_OWNER) {
1577 		r = vhost_dev_set_owner(d);
1578 		goto done;
1579 	}
1580 
1581 	/* You must be the owner to do anything else */
1582 	r = vhost_dev_check_owner(d);
1583 	if (r)
1584 		goto done;
1585 
1586 	switch (ioctl) {
1587 	case VHOST_SET_MEM_TABLE:
1588 		r = vhost_set_memory(d, argp);
1589 		break;
1590 	case VHOST_SET_LOG_BASE:
1591 		if (copy_from_user(&p, argp, sizeof p)) {
1592 			r = -EFAULT;
1593 			break;
1594 		}
1595 		if ((u64)(unsigned long)p != p) {
1596 			r = -EFAULT;
1597 			break;
1598 		}
1599 		for (i = 0; i < d->nvqs; ++i) {
1600 			struct vhost_virtqueue *vq;
1601 			void __user *base = (void __user *)(unsigned long)p;
1602 			vq = d->vqs[i];
1603 			mutex_lock(&vq->mutex);
1604 			/* If ring is inactive, will check when it's enabled. */
1605 			if (vq->private_data && !vq_log_access_ok(vq, base))
1606 				r = -EFAULT;
1607 			else
1608 				vq->log_base = base;
1609 			mutex_unlock(&vq->mutex);
1610 		}
1611 		break;
1612 	case VHOST_SET_LOG_FD:
1613 		r = get_user(fd, (int __user *)argp);
1614 		if (r < 0)
1615 			break;
1616 		ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd);
1617 		if (IS_ERR(ctx)) {
1618 			r = PTR_ERR(ctx);
1619 			break;
1620 		}
1621 		swap(ctx, d->log_ctx);
1622 		for (i = 0; i < d->nvqs; ++i) {
1623 			mutex_lock(&d->vqs[i]->mutex);
1624 			d->vqs[i]->log_ctx = d->log_ctx;
1625 			mutex_unlock(&d->vqs[i]->mutex);
1626 		}
1627 		if (ctx)
1628 			eventfd_ctx_put(ctx);
1629 		break;
1630 	default:
1631 		r = -ENOIOCTLCMD;
1632 		break;
1633 	}
1634 done:
1635 	return r;
1636 }
1637 EXPORT_SYMBOL_GPL(vhost_dev_ioctl);
1638 
1639 /* TODO: This is really inefficient.  We need something like get_user()
1640  * (instruction directly accesses the data, with an exception table entry
1641  * returning -EFAULT). See Documentation/x86/exception-tables.txt.
1642  */
1643 static int set_bit_to_user(int nr, void __user *addr)
1644 {
1645 	unsigned long log = (unsigned long)addr;
1646 	struct page *page;
1647 	void *base;
1648 	int bit = nr + (log % PAGE_SIZE) * 8;
1649 	int r;
1650 
1651 	r = get_user_pages_fast(log, 1, 1, &page);
1652 	if (r < 0)
1653 		return r;
1654 	BUG_ON(r != 1);
1655 	base = kmap_atomic(page);
1656 	set_bit(bit, base);
1657 	kunmap_atomic(base);
1658 	set_page_dirty_lock(page);
1659 	put_page(page);
1660 	return 0;
1661 }
1662 
1663 static int log_write(void __user *log_base,
1664 		     u64 write_address, u64 write_length)
1665 {
1666 	u64 write_page = write_address / VHOST_PAGE_SIZE;
1667 	int r;
1668 
1669 	if (!write_length)
1670 		return 0;
1671 	write_length += write_address % VHOST_PAGE_SIZE;
1672 	for (;;) {
1673 		u64 base = (u64)(unsigned long)log_base;
1674 		u64 log = base + write_page / 8;
1675 		int bit = write_page % 8;
1676 		if ((u64)(unsigned long)log != log)
1677 			return -EFAULT;
1678 		r = set_bit_to_user(bit, (void __user *)(unsigned long)log);
1679 		if (r < 0)
1680 			return r;
1681 		if (write_length <= VHOST_PAGE_SIZE)
1682 			break;
1683 		write_length -= VHOST_PAGE_SIZE;
1684 		write_page += 1;
1685 	}
1686 	return r;
1687 }
1688 
1689 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log,
1690 		    unsigned int log_num, u64 len)
1691 {
1692 	int i, r;
1693 
1694 	/* Make sure data written is seen before log. */
1695 	smp_wmb();
1696 	for (i = 0; i < log_num; ++i) {
1697 		u64 l = min(log[i].len, len);
1698 		r = log_write(vq->log_base, log[i].addr, l);
1699 		if (r < 0)
1700 			return r;
1701 		len -= l;
1702 		if (!len) {
1703 			if (vq->log_ctx)
1704 				eventfd_signal(vq->log_ctx, 1);
1705 			return 0;
1706 		}
1707 	}
1708 	/* Length written exceeds what we have stored. This is a bug. */
1709 	BUG();
1710 	return 0;
1711 }
1712 EXPORT_SYMBOL_GPL(vhost_log_write);
1713 
1714 static int vhost_update_used_flags(struct vhost_virtqueue *vq)
1715 {
1716 	void __user *used;
1717 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags),
1718 			   &vq->used->flags) < 0)
1719 		return -EFAULT;
1720 	if (unlikely(vq->log_used)) {
1721 		/* Make sure the flag is seen before log. */
1722 		smp_wmb();
1723 		/* Log used flag write. */
1724 		used = &vq->used->flags;
1725 		log_write(vq->log_base, vq->log_addr +
1726 			  (used - (void __user *)vq->used),
1727 			  sizeof vq->used->flags);
1728 		if (vq->log_ctx)
1729 			eventfd_signal(vq->log_ctx, 1);
1730 	}
1731 	return 0;
1732 }
1733 
1734 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event)
1735 {
1736 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx),
1737 			   vhost_avail_event(vq)))
1738 		return -EFAULT;
1739 	if (unlikely(vq->log_used)) {
1740 		void __user *used;
1741 		/* Make sure the event is seen before log. */
1742 		smp_wmb();
1743 		/* Log avail event write */
1744 		used = vhost_avail_event(vq);
1745 		log_write(vq->log_base, vq->log_addr +
1746 			  (used - (void __user *)vq->used),
1747 			  sizeof *vhost_avail_event(vq));
1748 		if (vq->log_ctx)
1749 			eventfd_signal(vq->log_ctx, 1);
1750 	}
1751 	return 0;
1752 }
1753 
1754 int vhost_vq_init_access(struct vhost_virtqueue *vq)
1755 {
1756 	__virtio16 last_used_idx;
1757 	int r;
1758 	bool is_le = vq->is_le;
1759 
1760 	if (!vq->private_data)
1761 		return 0;
1762 
1763 	vhost_init_is_le(vq);
1764 
1765 	r = vhost_update_used_flags(vq);
1766 	if (r)
1767 		goto err;
1768 	vq->signalled_used_valid = false;
1769 	if (!vq->iotlb &&
1770 	    !access_ok(VERIFY_READ, &vq->used->idx, sizeof vq->used->idx)) {
1771 		r = -EFAULT;
1772 		goto err;
1773 	}
1774 	r = vhost_get_used(vq, last_used_idx, &vq->used->idx);
1775 	if (r) {
1776 		vq_err(vq, "Can't access used idx at %p\n",
1777 		       &vq->used->idx);
1778 		goto err;
1779 	}
1780 	vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx);
1781 	return 0;
1782 
1783 err:
1784 	vq->is_le = is_le;
1785 	return r;
1786 }
1787 EXPORT_SYMBOL_GPL(vhost_vq_init_access);
1788 
1789 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
1790 			  struct iovec iov[], int iov_size, int access)
1791 {
1792 	const struct vhost_umem_node *node;
1793 	struct vhost_dev *dev = vq->dev;
1794 	struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem;
1795 	struct iovec *_iov;
1796 	u64 s = 0;
1797 	int ret = 0;
1798 
1799 	while ((u64)len > s) {
1800 		u64 size;
1801 		if (unlikely(ret >= iov_size)) {
1802 			ret = -ENOBUFS;
1803 			break;
1804 		}
1805 
1806 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1807 							addr, addr + len - 1);
1808 		if (node == NULL || node->start > addr) {
1809 			if (umem != dev->iotlb) {
1810 				ret = -EFAULT;
1811 				break;
1812 			}
1813 			ret = -EAGAIN;
1814 			break;
1815 		} else if (!(node->perm & access)) {
1816 			ret = -EPERM;
1817 			break;
1818 		}
1819 
1820 		_iov = iov + ret;
1821 		size = node->size - addr + node->start;
1822 		_iov->iov_len = min((u64)len - s, size);
1823 		_iov->iov_base = (void __user *)(unsigned long)
1824 			(node->userspace_addr + addr - node->start);
1825 		s += size;
1826 		addr += size;
1827 		++ret;
1828 	}
1829 
1830 	if (ret == -EAGAIN)
1831 		vhost_iotlb_miss(vq, addr, access);
1832 	return ret;
1833 }
1834 
1835 /* Each buffer in the virtqueues is actually a chain of descriptors.  This
1836  * function returns the next descriptor in the chain,
1837  * or -1U if we're at the end. */
1838 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc)
1839 {
1840 	unsigned int next;
1841 
1842 	/* If this descriptor says it doesn't chain, we're done. */
1843 	if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT)))
1844 		return -1U;
1845 
1846 	/* Check they're not leading us off end of descriptors. */
1847 	next = vhost16_to_cpu(vq, READ_ONCE(desc->next));
1848 	return next;
1849 }
1850 
1851 static int get_indirect(struct vhost_virtqueue *vq,
1852 			struct iovec iov[], unsigned int iov_size,
1853 			unsigned int *out_num, unsigned int *in_num,
1854 			struct vhost_log *log, unsigned int *log_num,
1855 			struct vring_desc *indirect)
1856 {
1857 	struct vring_desc desc;
1858 	unsigned int i = 0, count, found = 0;
1859 	u32 len = vhost32_to_cpu(vq, indirect->len);
1860 	struct iov_iter from;
1861 	int ret, access;
1862 
1863 	/* Sanity check */
1864 	if (unlikely(len % sizeof desc)) {
1865 		vq_err(vq, "Invalid length in indirect descriptor: "
1866 		       "len 0x%llx not multiple of 0x%zx\n",
1867 		       (unsigned long long)len,
1868 		       sizeof desc);
1869 		return -EINVAL;
1870 	}
1871 
1872 	ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect,
1873 			     UIO_MAXIOV, VHOST_ACCESS_RO);
1874 	if (unlikely(ret < 0)) {
1875 		if (ret != -EAGAIN)
1876 			vq_err(vq, "Translation failure %d in indirect.\n", ret);
1877 		return ret;
1878 	}
1879 	iov_iter_init(&from, READ, vq->indirect, ret, len);
1880 
1881 	/* We will use the result as an address to read from, so most
1882 	 * architectures only need a compiler barrier here. */
1883 	read_barrier_depends();
1884 
1885 	count = len / sizeof desc;
1886 	/* Buffers are chained via a 16 bit next field, so
1887 	 * we can have at most 2^16 of these. */
1888 	if (unlikely(count > USHRT_MAX + 1)) {
1889 		vq_err(vq, "Indirect buffer length too big: %d\n",
1890 		       indirect->len);
1891 		return -E2BIG;
1892 	}
1893 
1894 	do {
1895 		unsigned iov_count = *in_num + *out_num;
1896 		if (unlikely(++found > count)) {
1897 			vq_err(vq, "Loop detected: last one at %u "
1898 			       "indirect size %u\n",
1899 			       i, count);
1900 			return -EINVAL;
1901 		}
1902 		if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) {
1903 			vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n",
1904 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
1905 			return -EINVAL;
1906 		}
1907 		if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) {
1908 			vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n",
1909 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
1910 			return -EINVAL;
1911 		}
1912 
1913 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
1914 			access = VHOST_ACCESS_WO;
1915 		else
1916 			access = VHOST_ACCESS_RO;
1917 
1918 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
1919 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
1920 				     iov_size - iov_count, access);
1921 		if (unlikely(ret < 0)) {
1922 			if (ret != -EAGAIN)
1923 				vq_err(vq, "Translation failure %d indirect idx %d\n",
1924 					ret, i);
1925 			return ret;
1926 		}
1927 		/* If this is an input descriptor, increment that count. */
1928 		if (access == VHOST_ACCESS_WO) {
1929 			*in_num += ret;
1930 			if (unlikely(log)) {
1931 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
1932 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
1933 				++*log_num;
1934 			}
1935 		} else {
1936 			/* If it's an output descriptor, they're all supposed
1937 			 * to come before any input descriptors. */
1938 			if (unlikely(*in_num)) {
1939 				vq_err(vq, "Indirect descriptor "
1940 				       "has out after in: idx %d\n", i);
1941 				return -EINVAL;
1942 			}
1943 			*out_num += ret;
1944 		}
1945 	} while ((i = next_desc(vq, &desc)) != -1);
1946 	return 0;
1947 }
1948 
1949 /* This looks in the virtqueue and for the first available buffer, and converts
1950  * it to an iovec for convenient access.  Since descriptors consist of some
1951  * number of output then some number of input descriptors, it's actually two
1952  * iovecs, but we pack them into one and note how many of each there were.
1953  *
1954  * This function returns the descriptor number found, or vq->num (which is
1955  * never a valid descriptor number) if none was found.  A negative code is
1956  * returned on error. */
1957 int vhost_get_vq_desc(struct vhost_virtqueue *vq,
1958 		      struct iovec iov[], unsigned int iov_size,
1959 		      unsigned int *out_num, unsigned int *in_num,
1960 		      struct vhost_log *log, unsigned int *log_num)
1961 {
1962 	struct vring_desc desc;
1963 	unsigned int i, head, found = 0;
1964 	u16 last_avail_idx;
1965 	__virtio16 avail_idx;
1966 	__virtio16 ring_head;
1967 	int ret, access;
1968 
1969 	/* Check it isn't doing very strange things with descriptor numbers. */
1970 	last_avail_idx = vq->last_avail_idx;
1971 
1972 	if (vq->avail_idx == vq->last_avail_idx) {
1973 		if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) {
1974 			vq_err(vq, "Failed to access avail idx at %p\n",
1975 				&vq->avail->idx);
1976 			return -EFAULT;
1977 		}
1978 		vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
1979 
1980 		if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) {
1981 			vq_err(vq, "Guest moved used index from %u to %u",
1982 				last_avail_idx, vq->avail_idx);
1983 			return -EFAULT;
1984 		}
1985 
1986 		/* If there's nothing new since last we looked, return
1987 		 * invalid.
1988 		 */
1989 		if (vq->avail_idx == last_avail_idx)
1990 			return vq->num;
1991 
1992 		/* Only get avail ring entries after they have been
1993 		 * exposed by guest.
1994 		 */
1995 		smp_rmb();
1996 	}
1997 
1998 	/* Grab the next descriptor number they're advertising, and increment
1999 	 * the index we've seen. */
2000 	if (unlikely(vhost_get_avail(vq, ring_head,
2001 		     &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) {
2002 		vq_err(vq, "Failed to read head: idx %d address %p\n",
2003 		       last_avail_idx,
2004 		       &vq->avail->ring[last_avail_idx % vq->num]);
2005 		return -EFAULT;
2006 	}
2007 
2008 	head = vhost16_to_cpu(vq, ring_head);
2009 
2010 	/* If their number is silly, that's an error. */
2011 	if (unlikely(head >= vq->num)) {
2012 		vq_err(vq, "Guest says index %u > %u is available",
2013 		       head, vq->num);
2014 		return -EINVAL;
2015 	}
2016 
2017 	/* When we start there are none of either input nor output. */
2018 	*out_num = *in_num = 0;
2019 	if (unlikely(log))
2020 		*log_num = 0;
2021 
2022 	i = head;
2023 	do {
2024 		unsigned iov_count = *in_num + *out_num;
2025 		if (unlikely(i >= vq->num)) {
2026 			vq_err(vq, "Desc index is %u > %u, head = %u",
2027 			       i, vq->num, head);
2028 			return -EINVAL;
2029 		}
2030 		if (unlikely(++found > vq->num)) {
2031 			vq_err(vq, "Loop detected: last one at %u "
2032 			       "vq size %u head %u\n",
2033 			       i, vq->num, head);
2034 			return -EINVAL;
2035 		}
2036 		ret = vhost_copy_from_user(vq, &desc, vq->desc + i,
2037 					   sizeof desc);
2038 		if (unlikely(ret)) {
2039 			vq_err(vq, "Failed to get descriptor: idx %d addr %p\n",
2040 			       i, vq->desc + i);
2041 			return -EFAULT;
2042 		}
2043 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) {
2044 			ret = get_indirect(vq, iov, iov_size,
2045 					   out_num, in_num,
2046 					   log, log_num, &desc);
2047 			if (unlikely(ret < 0)) {
2048 				if (ret != -EAGAIN)
2049 					vq_err(vq, "Failure detected "
2050 						"in indirect descriptor at idx %d\n", i);
2051 				return ret;
2052 			}
2053 			continue;
2054 		}
2055 
2056 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2057 			access = VHOST_ACCESS_WO;
2058 		else
2059 			access = VHOST_ACCESS_RO;
2060 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2061 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
2062 				     iov_size - iov_count, access);
2063 		if (unlikely(ret < 0)) {
2064 			if (ret != -EAGAIN)
2065 				vq_err(vq, "Translation failure %d descriptor idx %d\n",
2066 					ret, i);
2067 			return ret;
2068 		}
2069 		if (access == VHOST_ACCESS_WO) {
2070 			/* If this is an input descriptor,
2071 			 * increment that count. */
2072 			*in_num += ret;
2073 			if (unlikely(log)) {
2074 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2075 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2076 				++*log_num;
2077 			}
2078 		} else {
2079 			/* If it's an output descriptor, they're all supposed
2080 			 * to come before any input descriptors. */
2081 			if (unlikely(*in_num)) {
2082 				vq_err(vq, "Descriptor has out after in: "
2083 				       "idx %d\n", i);
2084 				return -EINVAL;
2085 			}
2086 			*out_num += ret;
2087 		}
2088 	} while ((i = next_desc(vq, &desc)) != -1);
2089 
2090 	/* On success, increment avail index. */
2091 	vq->last_avail_idx++;
2092 
2093 	/* Assume notifications from guest are disabled at this point,
2094 	 * if they aren't we would need to update avail_event index. */
2095 	BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY));
2096 	return head;
2097 }
2098 EXPORT_SYMBOL_GPL(vhost_get_vq_desc);
2099 
2100 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */
2101 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n)
2102 {
2103 	vq->last_avail_idx -= n;
2104 }
2105 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc);
2106 
2107 /* After we've used one of their buffers, we tell them about it.  We'll then
2108  * want to notify the guest, using eventfd. */
2109 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len)
2110 {
2111 	struct vring_used_elem heads = {
2112 		cpu_to_vhost32(vq, head),
2113 		cpu_to_vhost32(vq, len)
2114 	};
2115 
2116 	return vhost_add_used_n(vq, &heads, 1);
2117 }
2118 EXPORT_SYMBOL_GPL(vhost_add_used);
2119 
2120 static int __vhost_add_used_n(struct vhost_virtqueue *vq,
2121 			    struct vring_used_elem *heads,
2122 			    unsigned count)
2123 {
2124 	struct vring_used_elem __user *used;
2125 	u16 old, new;
2126 	int start;
2127 
2128 	start = vq->last_used_idx & (vq->num - 1);
2129 	used = vq->used->ring + start;
2130 	if (count == 1) {
2131 		if (vhost_put_user(vq, heads[0].id, &used->id)) {
2132 			vq_err(vq, "Failed to write used id");
2133 			return -EFAULT;
2134 		}
2135 		if (vhost_put_user(vq, heads[0].len, &used->len)) {
2136 			vq_err(vq, "Failed to write used len");
2137 			return -EFAULT;
2138 		}
2139 	} else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) {
2140 		vq_err(vq, "Failed to write used");
2141 		return -EFAULT;
2142 	}
2143 	if (unlikely(vq->log_used)) {
2144 		/* Make sure data is seen before log. */
2145 		smp_wmb();
2146 		/* Log used ring entry write. */
2147 		log_write(vq->log_base,
2148 			  vq->log_addr +
2149 			   ((void __user *)used - (void __user *)vq->used),
2150 			  count * sizeof *used);
2151 	}
2152 	old = vq->last_used_idx;
2153 	new = (vq->last_used_idx += count);
2154 	/* If the driver never bothers to signal in a very long while,
2155 	 * used index might wrap around. If that happens, invalidate
2156 	 * signalled_used index we stored. TODO: make sure driver
2157 	 * signals at least once in 2^16 and remove this. */
2158 	if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
2159 		vq->signalled_used_valid = false;
2160 	return 0;
2161 }
2162 
2163 /* After we've used one of their buffers, we tell them about it.  We'll then
2164  * want to notify the guest, using eventfd. */
2165 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads,
2166 		     unsigned count)
2167 {
2168 	int start, n, r;
2169 
2170 	start = vq->last_used_idx & (vq->num - 1);
2171 	n = vq->num - start;
2172 	if (n < count) {
2173 		r = __vhost_add_used_n(vq, heads, n);
2174 		if (r < 0)
2175 			return r;
2176 		heads += n;
2177 		count -= n;
2178 	}
2179 	r = __vhost_add_used_n(vq, heads, count);
2180 
2181 	/* Make sure buffer is written before we update index. */
2182 	smp_wmb();
2183 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx),
2184 			   &vq->used->idx)) {
2185 		vq_err(vq, "Failed to increment used idx");
2186 		return -EFAULT;
2187 	}
2188 	if (unlikely(vq->log_used)) {
2189 		/* Log used index update. */
2190 		log_write(vq->log_base,
2191 			  vq->log_addr + offsetof(struct vring_used, idx),
2192 			  sizeof vq->used->idx);
2193 		if (vq->log_ctx)
2194 			eventfd_signal(vq->log_ctx, 1);
2195 	}
2196 	return r;
2197 }
2198 EXPORT_SYMBOL_GPL(vhost_add_used_n);
2199 
2200 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2201 {
2202 	__u16 old, new;
2203 	__virtio16 event;
2204 	bool v;
2205 	/* Flush out used index updates. This is paired
2206 	 * with the barrier that the Guest executes when enabling
2207 	 * interrupts. */
2208 	smp_mb();
2209 
2210 	if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) &&
2211 	    unlikely(vq->avail_idx == vq->last_avail_idx))
2212 		return true;
2213 
2214 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2215 		__virtio16 flags;
2216 		if (vhost_get_avail(vq, flags, &vq->avail->flags)) {
2217 			vq_err(vq, "Failed to get flags");
2218 			return true;
2219 		}
2220 		return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT));
2221 	}
2222 	old = vq->signalled_used;
2223 	v = vq->signalled_used_valid;
2224 	new = vq->signalled_used = vq->last_used_idx;
2225 	vq->signalled_used_valid = true;
2226 
2227 	if (unlikely(!v))
2228 		return true;
2229 
2230 	if (vhost_get_avail(vq, event, vhost_used_event(vq))) {
2231 		vq_err(vq, "Failed to get used event idx");
2232 		return true;
2233 	}
2234 	return vring_need_event(vhost16_to_cpu(vq, event), new, old);
2235 }
2236 
2237 /* This actually signals the guest, using eventfd. */
2238 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2239 {
2240 	/* Signal the Guest tell them we used something up. */
2241 	if (vq->call_ctx && vhost_notify(dev, vq))
2242 		eventfd_signal(vq->call_ctx, 1);
2243 }
2244 EXPORT_SYMBOL_GPL(vhost_signal);
2245 
2246 /* And here's the combo meal deal.  Supersize me! */
2247 void vhost_add_used_and_signal(struct vhost_dev *dev,
2248 			       struct vhost_virtqueue *vq,
2249 			       unsigned int head, int len)
2250 {
2251 	vhost_add_used(vq, head, len);
2252 	vhost_signal(dev, vq);
2253 }
2254 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal);
2255 
2256 /* multi-buffer version of vhost_add_used_and_signal */
2257 void vhost_add_used_and_signal_n(struct vhost_dev *dev,
2258 				 struct vhost_virtqueue *vq,
2259 				 struct vring_used_elem *heads, unsigned count)
2260 {
2261 	vhost_add_used_n(vq, heads, count);
2262 	vhost_signal(dev, vq);
2263 }
2264 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n);
2265 
2266 /* return true if we're sure that avaiable ring is empty */
2267 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2268 {
2269 	__virtio16 avail_idx;
2270 	int r;
2271 
2272 	if (vq->avail_idx != vq->last_avail_idx)
2273 		return false;
2274 
2275 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2276 	if (unlikely(r))
2277 		return false;
2278 	vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2279 
2280 	return vq->avail_idx == vq->last_avail_idx;
2281 }
2282 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty);
2283 
2284 /* OK, now we need to know about added descriptors. */
2285 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2286 {
2287 	__virtio16 avail_idx;
2288 	int r;
2289 
2290 	if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY))
2291 		return false;
2292 	vq->used_flags &= ~VRING_USED_F_NO_NOTIFY;
2293 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2294 		r = vhost_update_used_flags(vq);
2295 		if (r) {
2296 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2297 			       &vq->used->flags, r);
2298 			return false;
2299 		}
2300 	} else {
2301 		r = vhost_update_avail_event(vq, vq->avail_idx);
2302 		if (r) {
2303 			vq_err(vq, "Failed to update avail event index at %p: %d\n",
2304 			       vhost_avail_event(vq), r);
2305 			return false;
2306 		}
2307 	}
2308 	/* They could have slipped one in as we were doing that: make
2309 	 * sure it's written, then check again. */
2310 	smp_mb();
2311 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2312 	if (r) {
2313 		vq_err(vq, "Failed to check avail idx at %p: %d\n",
2314 		       &vq->avail->idx, r);
2315 		return false;
2316 	}
2317 
2318 	return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx;
2319 }
2320 EXPORT_SYMBOL_GPL(vhost_enable_notify);
2321 
2322 /* We don't need to be notified again. */
2323 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2324 {
2325 	int r;
2326 
2327 	if (vq->used_flags & VRING_USED_F_NO_NOTIFY)
2328 		return;
2329 	vq->used_flags |= VRING_USED_F_NO_NOTIFY;
2330 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2331 		r = vhost_update_used_flags(vq);
2332 		if (r)
2333 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2334 			       &vq->used->flags, r);
2335 	}
2336 }
2337 EXPORT_SYMBOL_GPL(vhost_disable_notify);
2338 
2339 /* Create a new message. */
2340 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type)
2341 {
2342 	struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL);
2343 	if (!node)
2344 		return NULL;
2345 	node->vq = vq;
2346 	node->msg.type = type;
2347 	return node;
2348 }
2349 EXPORT_SYMBOL_GPL(vhost_new_msg);
2350 
2351 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head,
2352 		       struct vhost_msg_node *node)
2353 {
2354 	spin_lock(&dev->iotlb_lock);
2355 	list_add_tail(&node->node, head);
2356 	spin_unlock(&dev->iotlb_lock);
2357 
2358 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
2359 }
2360 EXPORT_SYMBOL_GPL(vhost_enqueue_msg);
2361 
2362 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev,
2363 					 struct list_head *head)
2364 {
2365 	struct vhost_msg_node *node = NULL;
2366 
2367 	spin_lock(&dev->iotlb_lock);
2368 	if (!list_empty(head)) {
2369 		node = list_first_entry(head, struct vhost_msg_node,
2370 					node);
2371 		list_del(&node->node);
2372 	}
2373 	spin_unlock(&dev->iotlb_lock);
2374 
2375 	return node;
2376 }
2377 EXPORT_SYMBOL_GPL(vhost_dequeue_msg);
2378 
2379 
2380 static int __init vhost_init(void)
2381 {
2382 	return 0;
2383 }
2384 
2385 static void __exit vhost_exit(void)
2386 {
2387 }
2388 
2389 module_init(vhost_init);
2390 module_exit(vhost_exit);
2391 
2392 MODULE_VERSION("0.0.1");
2393 MODULE_LICENSE("GPL v2");
2394 MODULE_AUTHOR("Michael S. Tsirkin");
2395 MODULE_DESCRIPTION("Host kernel accelerator for virtio");
2396