1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (C) 2009 Red Hat, Inc. 3 * Copyright (C) 2006 Rusty Russell IBM Corporation 4 * 5 * Author: Michael S. Tsirkin <mst@redhat.com> 6 * 7 * Inspiration, some code, and most witty comments come from 8 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 9 * 10 * Generic code for virtio server in host kernel. 11 */ 12 13 #include <linux/eventfd.h> 14 #include <linux/vhost.h> 15 #include <linux/uio.h> 16 #include <linux/mm.h> 17 #include <linux/miscdevice.h> 18 #include <linux/mutex.h> 19 #include <linux/poll.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/kthread.h> 25 #include <linux/module.h> 26 #include <linux/sort.h> 27 #include <linux/sched/mm.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/vhost_task.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/nospec.h> 32 #include <linux/kcov.h> 33 34 #include "vhost.h" 35 36 static ushort max_mem_regions = 64; 37 module_param(max_mem_regions, ushort, 0444); 38 MODULE_PARM_DESC(max_mem_regions, 39 "Maximum number of memory regions in memory map. (default: 64)"); 40 static int max_iotlb_entries = 2048; 41 module_param(max_iotlb_entries, int, 0444); 42 MODULE_PARM_DESC(max_iotlb_entries, 43 "Maximum number of iotlb entries. (default: 2048)"); 44 45 enum { 46 VHOST_MEMORY_F_LOG = 0x1, 47 }; 48 49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 51 52 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 53 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 54 { 55 vq->user_be = !virtio_legacy_is_little_endian(); 56 } 57 58 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 59 { 60 vq->user_be = true; 61 } 62 63 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 64 { 65 vq->user_be = false; 66 } 67 68 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 69 { 70 struct vhost_vring_state s; 71 72 if (vq->private_data) 73 return -EBUSY; 74 75 if (copy_from_user(&s, argp, sizeof(s))) 76 return -EFAULT; 77 78 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 79 s.num != VHOST_VRING_BIG_ENDIAN) 80 return -EINVAL; 81 82 if (s.num == VHOST_VRING_BIG_ENDIAN) 83 vhost_enable_cross_endian_big(vq); 84 else 85 vhost_enable_cross_endian_little(vq); 86 87 return 0; 88 } 89 90 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 91 int __user *argp) 92 { 93 struct vhost_vring_state s = { 94 .index = idx, 95 .num = vq->user_be 96 }; 97 98 if (copy_to_user(argp, &s, sizeof(s))) 99 return -EFAULT; 100 101 return 0; 102 } 103 104 static void vhost_init_is_le(struct vhost_virtqueue *vq) 105 { 106 /* Note for legacy virtio: user_be is initialized at reset time 107 * according to the host endianness. If userspace does not set an 108 * explicit endianness, the default behavior is native endian, as 109 * expected by legacy virtio. 110 */ 111 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 112 } 113 #else 114 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 115 { 116 } 117 118 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 119 { 120 return -ENOIOCTLCMD; 121 } 122 123 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 124 int __user *argp) 125 { 126 return -ENOIOCTLCMD; 127 } 128 129 static void vhost_init_is_le(struct vhost_virtqueue *vq) 130 { 131 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 132 || virtio_legacy_is_little_endian(); 133 } 134 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 135 136 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 137 { 138 vhost_init_is_le(vq); 139 } 140 141 struct vhost_flush_struct { 142 struct vhost_work work; 143 struct completion wait_event; 144 }; 145 146 static void vhost_flush_work(struct vhost_work *work) 147 { 148 struct vhost_flush_struct *s; 149 150 s = container_of(work, struct vhost_flush_struct, work); 151 complete(&s->wait_event); 152 } 153 154 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 155 poll_table *pt) 156 { 157 struct vhost_poll *poll; 158 159 poll = container_of(pt, struct vhost_poll, table); 160 poll->wqh = wqh; 161 add_wait_queue(wqh, &poll->wait); 162 } 163 164 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 165 void *key) 166 { 167 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 168 struct vhost_work *work = &poll->work; 169 170 if (!(key_to_poll(key) & poll->mask)) 171 return 0; 172 173 if (!poll->dev->use_worker) 174 work->fn(work); 175 else 176 vhost_poll_queue(poll); 177 178 return 0; 179 } 180 181 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 182 { 183 clear_bit(VHOST_WORK_QUEUED, &work->flags); 184 work->fn = fn; 185 } 186 EXPORT_SYMBOL_GPL(vhost_work_init); 187 188 /* Init poll structure */ 189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 190 __poll_t mask, struct vhost_dev *dev, 191 struct vhost_virtqueue *vq) 192 { 193 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 194 init_poll_funcptr(&poll->table, vhost_poll_func); 195 poll->mask = mask; 196 poll->dev = dev; 197 poll->wqh = NULL; 198 poll->vq = vq; 199 200 vhost_work_init(&poll->work, fn); 201 } 202 EXPORT_SYMBOL_GPL(vhost_poll_init); 203 204 /* Start polling a file. We add ourselves to file's wait queue. The caller must 205 * keep a reference to a file until after vhost_poll_stop is called. */ 206 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 207 { 208 __poll_t mask; 209 210 if (poll->wqh) 211 return 0; 212 213 mask = vfs_poll(file, &poll->table); 214 if (mask) 215 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 216 if (mask & EPOLLERR) { 217 vhost_poll_stop(poll); 218 return -EINVAL; 219 } 220 221 return 0; 222 } 223 EXPORT_SYMBOL_GPL(vhost_poll_start); 224 225 /* Stop polling a file. After this function returns, it becomes safe to drop the 226 * file reference. You must also flush afterwards. */ 227 void vhost_poll_stop(struct vhost_poll *poll) 228 { 229 if (poll->wqh) { 230 remove_wait_queue(poll->wqh, &poll->wait); 231 poll->wqh = NULL; 232 } 233 } 234 EXPORT_SYMBOL_GPL(vhost_poll_stop); 235 236 static void vhost_worker_queue(struct vhost_worker *worker, 237 struct vhost_work *work) 238 { 239 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 240 /* We can only add the work to the list after we're 241 * sure it was not in the list. 242 * test_and_set_bit() implies a memory barrier. 243 */ 244 llist_add(&work->node, &worker->work_list); 245 vhost_task_wake(worker->vtsk); 246 } 247 } 248 249 bool vhost_vq_work_queue(struct vhost_virtqueue *vq, struct vhost_work *work) 250 { 251 struct vhost_worker *worker; 252 bool queued = false; 253 254 rcu_read_lock(); 255 worker = rcu_dereference(vq->worker); 256 if (worker) { 257 queued = true; 258 vhost_worker_queue(worker, work); 259 } 260 rcu_read_unlock(); 261 262 return queued; 263 } 264 EXPORT_SYMBOL_GPL(vhost_vq_work_queue); 265 266 void vhost_vq_flush(struct vhost_virtqueue *vq) 267 { 268 struct vhost_flush_struct flush; 269 270 init_completion(&flush.wait_event); 271 vhost_work_init(&flush.work, vhost_flush_work); 272 273 if (vhost_vq_work_queue(vq, &flush.work)) 274 wait_for_completion(&flush.wait_event); 275 } 276 EXPORT_SYMBOL_GPL(vhost_vq_flush); 277 278 /** 279 * vhost_worker_flush - flush a worker 280 * @worker: worker to flush 281 * 282 * This does not use RCU to protect the worker, so the device or worker 283 * mutex must be held. 284 */ 285 static void vhost_worker_flush(struct vhost_worker *worker) 286 { 287 struct vhost_flush_struct flush; 288 289 init_completion(&flush.wait_event); 290 vhost_work_init(&flush.work, vhost_flush_work); 291 292 vhost_worker_queue(worker, &flush.work); 293 wait_for_completion(&flush.wait_event); 294 } 295 296 void vhost_dev_flush(struct vhost_dev *dev) 297 { 298 struct vhost_worker *worker; 299 unsigned long i; 300 301 xa_for_each(&dev->worker_xa, i, worker) { 302 mutex_lock(&worker->mutex); 303 if (!worker->attachment_cnt) { 304 mutex_unlock(&worker->mutex); 305 continue; 306 } 307 vhost_worker_flush(worker); 308 mutex_unlock(&worker->mutex); 309 } 310 } 311 EXPORT_SYMBOL_GPL(vhost_dev_flush); 312 313 /* A lockless hint for busy polling code to exit the loop */ 314 bool vhost_vq_has_work(struct vhost_virtqueue *vq) 315 { 316 struct vhost_worker *worker; 317 bool has_work = false; 318 319 rcu_read_lock(); 320 worker = rcu_dereference(vq->worker); 321 if (worker && !llist_empty(&worker->work_list)) 322 has_work = true; 323 rcu_read_unlock(); 324 325 return has_work; 326 } 327 EXPORT_SYMBOL_GPL(vhost_vq_has_work); 328 329 void vhost_poll_queue(struct vhost_poll *poll) 330 { 331 vhost_vq_work_queue(poll->vq, &poll->work); 332 } 333 EXPORT_SYMBOL_GPL(vhost_poll_queue); 334 335 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 336 { 337 int j; 338 339 for (j = 0; j < VHOST_NUM_ADDRS; j++) 340 vq->meta_iotlb[j] = NULL; 341 } 342 343 static void vhost_vq_meta_reset(struct vhost_dev *d) 344 { 345 int i; 346 347 for (i = 0; i < d->nvqs; ++i) 348 __vhost_vq_meta_reset(d->vqs[i]); 349 } 350 351 static void vhost_vring_call_reset(struct vhost_vring_call *call_ctx) 352 { 353 call_ctx->ctx = NULL; 354 memset(&call_ctx->producer, 0x0, sizeof(struct irq_bypass_producer)); 355 } 356 357 bool vhost_vq_is_setup(struct vhost_virtqueue *vq) 358 { 359 return vq->avail && vq->desc && vq->used && vhost_vq_access_ok(vq); 360 } 361 EXPORT_SYMBOL_GPL(vhost_vq_is_setup); 362 363 static void vhost_vq_reset(struct vhost_dev *dev, 364 struct vhost_virtqueue *vq) 365 { 366 vq->num = 1; 367 vq->desc = NULL; 368 vq->avail = NULL; 369 vq->used = NULL; 370 vq->last_avail_idx = 0; 371 vq->avail_idx = 0; 372 vq->last_used_idx = 0; 373 vq->signalled_used = 0; 374 vq->signalled_used_valid = false; 375 vq->used_flags = 0; 376 vq->log_used = false; 377 vq->log_addr = -1ull; 378 vq->private_data = NULL; 379 vq->acked_features = 0; 380 vq->acked_backend_features = 0; 381 vq->log_base = NULL; 382 vq->error_ctx = NULL; 383 vq->kick = NULL; 384 vq->log_ctx = NULL; 385 vhost_disable_cross_endian(vq); 386 vhost_reset_is_le(vq); 387 vq->busyloop_timeout = 0; 388 vq->umem = NULL; 389 vq->iotlb = NULL; 390 rcu_assign_pointer(vq->worker, NULL); 391 vhost_vring_call_reset(&vq->call_ctx); 392 __vhost_vq_meta_reset(vq); 393 } 394 395 static bool vhost_worker(void *data) 396 { 397 struct vhost_worker *worker = data; 398 struct vhost_work *work, *work_next; 399 struct llist_node *node; 400 401 node = llist_del_all(&worker->work_list); 402 if (node) { 403 __set_current_state(TASK_RUNNING); 404 405 node = llist_reverse_order(node); 406 /* make sure flag is seen after deletion */ 407 smp_wmb(); 408 llist_for_each_entry_safe(work, work_next, node, node) { 409 clear_bit(VHOST_WORK_QUEUED, &work->flags); 410 kcov_remote_start_common(worker->kcov_handle); 411 work->fn(work); 412 kcov_remote_stop(); 413 cond_resched(); 414 } 415 } 416 417 return !!node; 418 } 419 420 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 421 { 422 kfree(vq->indirect); 423 vq->indirect = NULL; 424 kfree(vq->log); 425 vq->log = NULL; 426 kfree(vq->heads); 427 vq->heads = NULL; 428 } 429 430 /* Helper to allocate iovec buffers for all vqs. */ 431 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 432 { 433 struct vhost_virtqueue *vq; 434 int i; 435 436 for (i = 0; i < dev->nvqs; ++i) { 437 vq = dev->vqs[i]; 438 vq->indirect = kmalloc_array(UIO_MAXIOV, 439 sizeof(*vq->indirect), 440 GFP_KERNEL); 441 vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log), 442 GFP_KERNEL); 443 vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads), 444 GFP_KERNEL); 445 if (!vq->indirect || !vq->log || !vq->heads) 446 goto err_nomem; 447 } 448 return 0; 449 450 err_nomem: 451 for (; i >= 0; --i) 452 vhost_vq_free_iovecs(dev->vqs[i]); 453 return -ENOMEM; 454 } 455 456 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 457 { 458 int i; 459 460 for (i = 0; i < dev->nvqs; ++i) 461 vhost_vq_free_iovecs(dev->vqs[i]); 462 } 463 464 bool vhost_exceeds_weight(struct vhost_virtqueue *vq, 465 int pkts, int total_len) 466 { 467 struct vhost_dev *dev = vq->dev; 468 469 if ((dev->byte_weight && total_len >= dev->byte_weight) || 470 pkts >= dev->weight) { 471 vhost_poll_queue(&vq->poll); 472 return true; 473 } 474 475 return false; 476 } 477 EXPORT_SYMBOL_GPL(vhost_exceeds_weight); 478 479 static size_t vhost_get_avail_size(struct vhost_virtqueue *vq, 480 unsigned int num) 481 { 482 size_t event __maybe_unused = 483 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 484 485 return size_add(struct_size(vq->avail, ring, num), event); 486 } 487 488 static size_t vhost_get_used_size(struct vhost_virtqueue *vq, 489 unsigned int num) 490 { 491 size_t event __maybe_unused = 492 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 493 494 return size_add(struct_size(vq->used, ring, num), event); 495 } 496 497 static size_t vhost_get_desc_size(struct vhost_virtqueue *vq, 498 unsigned int num) 499 { 500 return sizeof(*vq->desc) * num; 501 } 502 503 void vhost_dev_init(struct vhost_dev *dev, 504 struct vhost_virtqueue **vqs, int nvqs, 505 int iov_limit, int weight, int byte_weight, 506 bool use_worker, 507 int (*msg_handler)(struct vhost_dev *dev, u32 asid, 508 struct vhost_iotlb_msg *msg)) 509 { 510 struct vhost_virtqueue *vq; 511 int i; 512 513 dev->vqs = vqs; 514 dev->nvqs = nvqs; 515 mutex_init(&dev->mutex); 516 dev->log_ctx = NULL; 517 dev->umem = NULL; 518 dev->iotlb = NULL; 519 dev->mm = NULL; 520 dev->iov_limit = iov_limit; 521 dev->weight = weight; 522 dev->byte_weight = byte_weight; 523 dev->use_worker = use_worker; 524 dev->msg_handler = msg_handler; 525 init_waitqueue_head(&dev->wait); 526 INIT_LIST_HEAD(&dev->read_list); 527 INIT_LIST_HEAD(&dev->pending_list); 528 spin_lock_init(&dev->iotlb_lock); 529 xa_init_flags(&dev->worker_xa, XA_FLAGS_ALLOC); 530 531 for (i = 0; i < dev->nvqs; ++i) { 532 vq = dev->vqs[i]; 533 vq->log = NULL; 534 vq->indirect = NULL; 535 vq->heads = NULL; 536 vq->dev = dev; 537 mutex_init(&vq->mutex); 538 vhost_vq_reset(dev, vq); 539 if (vq->handle_kick) 540 vhost_poll_init(&vq->poll, vq->handle_kick, 541 EPOLLIN, dev, vq); 542 } 543 } 544 EXPORT_SYMBOL_GPL(vhost_dev_init); 545 546 /* Caller should have device mutex */ 547 long vhost_dev_check_owner(struct vhost_dev *dev) 548 { 549 /* Are you the owner? If not, I don't think you mean to do that */ 550 return dev->mm == current->mm ? 0 : -EPERM; 551 } 552 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 553 554 /* Caller should have device mutex */ 555 bool vhost_dev_has_owner(struct vhost_dev *dev) 556 { 557 return dev->mm; 558 } 559 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 560 561 static void vhost_attach_mm(struct vhost_dev *dev) 562 { 563 /* No owner, become one */ 564 if (dev->use_worker) { 565 dev->mm = get_task_mm(current); 566 } else { 567 /* vDPA device does not use worker thead, so there's 568 * no need to hold the address space for mm. This help 569 * to avoid deadlock in the case of mmap() which may 570 * held the refcnt of the file and depends on release 571 * method to remove vma. 572 */ 573 dev->mm = current->mm; 574 mmgrab(dev->mm); 575 } 576 } 577 578 static void vhost_detach_mm(struct vhost_dev *dev) 579 { 580 if (!dev->mm) 581 return; 582 583 if (dev->use_worker) 584 mmput(dev->mm); 585 else 586 mmdrop(dev->mm); 587 588 dev->mm = NULL; 589 } 590 591 static void vhost_worker_destroy(struct vhost_dev *dev, 592 struct vhost_worker *worker) 593 { 594 if (!worker) 595 return; 596 597 WARN_ON(!llist_empty(&worker->work_list)); 598 xa_erase(&dev->worker_xa, worker->id); 599 vhost_task_stop(worker->vtsk); 600 kfree(worker); 601 } 602 603 static void vhost_workers_free(struct vhost_dev *dev) 604 { 605 struct vhost_worker *worker; 606 unsigned long i; 607 608 if (!dev->use_worker) 609 return; 610 611 for (i = 0; i < dev->nvqs; i++) 612 rcu_assign_pointer(dev->vqs[i]->worker, NULL); 613 /* 614 * Free the default worker we created and cleanup workers userspace 615 * created but couldn't clean up (it forgot or crashed). 616 */ 617 xa_for_each(&dev->worker_xa, i, worker) 618 vhost_worker_destroy(dev, worker); 619 xa_destroy(&dev->worker_xa); 620 } 621 622 static struct vhost_worker *vhost_worker_create(struct vhost_dev *dev) 623 { 624 struct vhost_worker *worker; 625 struct vhost_task *vtsk; 626 char name[TASK_COMM_LEN]; 627 int ret; 628 u32 id; 629 630 worker = kzalloc(sizeof(*worker), GFP_KERNEL_ACCOUNT); 631 if (!worker) 632 return NULL; 633 634 snprintf(name, sizeof(name), "vhost-%d", current->pid); 635 636 vtsk = vhost_task_create(vhost_worker, worker, name); 637 if (!vtsk) 638 goto free_worker; 639 640 mutex_init(&worker->mutex); 641 init_llist_head(&worker->work_list); 642 worker->kcov_handle = kcov_common_handle(); 643 worker->vtsk = vtsk; 644 645 vhost_task_start(vtsk); 646 647 ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL); 648 if (ret < 0) 649 goto stop_worker; 650 worker->id = id; 651 652 return worker; 653 654 stop_worker: 655 vhost_task_stop(vtsk); 656 free_worker: 657 kfree(worker); 658 return NULL; 659 } 660 661 /* Caller must have device mutex */ 662 static void __vhost_vq_attach_worker(struct vhost_virtqueue *vq, 663 struct vhost_worker *worker) 664 { 665 struct vhost_worker *old_worker; 666 667 old_worker = rcu_dereference_check(vq->worker, 668 lockdep_is_held(&vq->dev->mutex)); 669 670 mutex_lock(&worker->mutex); 671 worker->attachment_cnt++; 672 mutex_unlock(&worker->mutex); 673 rcu_assign_pointer(vq->worker, worker); 674 675 if (!old_worker) 676 return; 677 /* 678 * Take the worker mutex to make sure we see the work queued from 679 * device wide flushes which doesn't use RCU for execution. 680 */ 681 mutex_lock(&old_worker->mutex); 682 old_worker->attachment_cnt--; 683 /* 684 * We don't want to call synchronize_rcu for every vq during setup 685 * because it will slow down VM startup. If we haven't done 686 * VHOST_SET_VRING_KICK and not done the driver specific 687 * SET_ENDPOINT/RUNNUNG then we can skip the sync since there will 688 * not be any works queued for scsi and net. 689 */ 690 mutex_lock(&vq->mutex); 691 if (!vhost_vq_get_backend(vq) && !vq->kick) { 692 mutex_unlock(&vq->mutex); 693 mutex_unlock(&old_worker->mutex); 694 /* 695 * vsock can queue anytime after VHOST_VSOCK_SET_GUEST_CID. 696 * Warn if it adds support for multiple workers but forgets to 697 * handle the early queueing case. 698 */ 699 WARN_ON(!old_worker->attachment_cnt && 700 !llist_empty(&old_worker->work_list)); 701 return; 702 } 703 mutex_unlock(&vq->mutex); 704 705 /* Make sure new vq queue/flush/poll calls see the new worker */ 706 synchronize_rcu(); 707 /* Make sure whatever was queued gets run */ 708 vhost_worker_flush(old_worker); 709 mutex_unlock(&old_worker->mutex); 710 } 711 712 /* Caller must have device mutex */ 713 static int vhost_vq_attach_worker(struct vhost_virtqueue *vq, 714 struct vhost_vring_worker *info) 715 { 716 unsigned long index = info->worker_id; 717 struct vhost_dev *dev = vq->dev; 718 struct vhost_worker *worker; 719 720 if (!dev->use_worker) 721 return -EINVAL; 722 723 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT); 724 if (!worker || worker->id != info->worker_id) 725 return -ENODEV; 726 727 __vhost_vq_attach_worker(vq, worker); 728 return 0; 729 } 730 731 /* Caller must have device mutex */ 732 static int vhost_new_worker(struct vhost_dev *dev, 733 struct vhost_worker_state *info) 734 { 735 struct vhost_worker *worker; 736 737 worker = vhost_worker_create(dev); 738 if (!worker) 739 return -ENOMEM; 740 741 info->worker_id = worker->id; 742 return 0; 743 } 744 745 /* Caller must have device mutex */ 746 static int vhost_free_worker(struct vhost_dev *dev, 747 struct vhost_worker_state *info) 748 { 749 unsigned long index = info->worker_id; 750 struct vhost_worker *worker; 751 752 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT); 753 if (!worker || worker->id != info->worker_id) 754 return -ENODEV; 755 756 mutex_lock(&worker->mutex); 757 if (worker->attachment_cnt) { 758 mutex_unlock(&worker->mutex); 759 return -EBUSY; 760 } 761 mutex_unlock(&worker->mutex); 762 763 vhost_worker_destroy(dev, worker); 764 return 0; 765 } 766 767 static int vhost_get_vq_from_user(struct vhost_dev *dev, void __user *argp, 768 struct vhost_virtqueue **vq, u32 *id) 769 { 770 u32 __user *idxp = argp; 771 u32 idx; 772 long r; 773 774 r = get_user(idx, idxp); 775 if (r < 0) 776 return r; 777 778 if (idx >= dev->nvqs) 779 return -ENOBUFS; 780 781 idx = array_index_nospec(idx, dev->nvqs); 782 783 *vq = dev->vqs[idx]; 784 *id = idx; 785 return 0; 786 } 787 788 /* Caller must have device mutex */ 789 long vhost_worker_ioctl(struct vhost_dev *dev, unsigned int ioctl, 790 void __user *argp) 791 { 792 struct vhost_vring_worker ring_worker; 793 struct vhost_worker_state state; 794 struct vhost_worker *worker; 795 struct vhost_virtqueue *vq; 796 long ret; 797 u32 idx; 798 799 if (!dev->use_worker) 800 return -EINVAL; 801 802 if (!vhost_dev_has_owner(dev)) 803 return -EINVAL; 804 805 ret = vhost_dev_check_owner(dev); 806 if (ret) 807 return ret; 808 809 switch (ioctl) { 810 /* dev worker ioctls */ 811 case VHOST_NEW_WORKER: 812 ret = vhost_new_worker(dev, &state); 813 if (!ret && copy_to_user(argp, &state, sizeof(state))) 814 ret = -EFAULT; 815 return ret; 816 case VHOST_FREE_WORKER: 817 if (copy_from_user(&state, argp, sizeof(state))) 818 return -EFAULT; 819 return vhost_free_worker(dev, &state); 820 /* vring worker ioctls */ 821 case VHOST_ATTACH_VRING_WORKER: 822 case VHOST_GET_VRING_WORKER: 823 break; 824 default: 825 return -ENOIOCTLCMD; 826 } 827 828 ret = vhost_get_vq_from_user(dev, argp, &vq, &idx); 829 if (ret) 830 return ret; 831 832 switch (ioctl) { 833 case VHOST_ATTACH_VRING_WORKER: 834 if (copy_from_user(&ring_worker, argp, sizeof(ring_worker))) { 835 ret = -EFAULT; 836 break; 837 } 838 839 ret = vhost_vq_attach_worker(vq, &ring_worker); 840 break; 841 case VHOST_GET_VRING_WORKER: 842 worker = rcu_dereference_check(vq->worker, 843 lockdep_is_held(&dev->mutex)); 844 if (!worker) { 845 ret = -EINVAL; 846 break; 847 } 848 849 ring_worker.index = idx; 850 ring_worker.worker_id = worker->id; 851 852 if (copy_to_user(argp, &ring_worker, sizeof(ring_worker))) 853 ret = -EFAULT; 854 break; 855 default: 856 ret = -ENOIOCTLCMD; 857 break; 858 } 859 860 return ret; 861 } 862 EXPORT_SYMBOL_GPL(vhost_worker_ioctl); 863 864 /* Caller should have device mutex */ 865 long vhost_dev_set_owner(struct vhost_dev *dev) 866 { 867 struct vhost_worker *worker; 868 int err, i; 869 870 /* Is there an owner already? */ 871 if (vhost_dev_has_owner(dev)) { 872 err = -EBUSY; 873 goto err_mm; 874 } 875 876 vhost_attach_mm(dev); 877 878 err = vhost_dev_alloc_iovecs(dev); 879 if (err) 880 goto err_iovecs; 881 882 if (dev->use_worker) { 883 /* 884 * This should be done last, because vsock can queue work 885 * before VHOST_SET_OWNER so it simplifies the failure path 886 * below since we don't have to worry about vsock queueing 887 * while we free the worker. 888 */ 889 worker = vhost_worker_create(dev); 890 if (!worker) { 891 err = -ENOMEM; 892 goto err_worker; 893 } 894 895 for (i = 0; i < dev->nvqs; i++) 896 __vhost_vq_attach_worker(dev->vqs[i], worker); 897 } 898 899 return 0; 900 901 err_worker: 902 vhost_dev_free_iovecs(dev); 903 err_iovecs: 904 vhost_detach_mm(dev); 905 err_mm: 906 return err; 907 } 908 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 909 910 static struct vhost_iotlb *iotlb_alloc(void) 911 { 912 return vhost_iotlb_alloc(max_iotlb_entries, 913 VHOST_IOTLB_FLAG_RETIRE); 914 } 915 916 struct vhost_iotlb *vhost_dev_reset_owner_prepare(void) 917 { 918 return iotlb_alloc(); 919 } 920 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 921 922 /* Caller should have device mutex */ 923 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_iotlb *umem) 924 { 925 int i; 926 927 vhost_dev_cleanup(dev); 928 929 dev->umem = umem; 930 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 931 * VQs aren't running. 932 */ 933 for (i = 0; i < dev->nvqs; ++i) 934 dev->vqs[i]->umem = umem; 935 } 936 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 937 938 void vhost_dev_stop(struct vhost_dev *dev) 939 { 940 int i; 941 942 for (i = 0; i < dev->nvqs; ++i) { 943 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) 944 vhost_poll_stop(&dev->vqs[i]->poll); 945 } 946 947 vhost_dev_flush(dev); 948 } 949 EXPORT_SYMBOL_GPL(vhost_dev_stop); 950 951 void vhost_clear_msg(struct vhost_dev *dev) 952 { 953 struct vhost_msg_node *node, *n; 954 955 spin_lock(&dev->iotlb_lock); 956 957 list_for_each_entry_safe(node, n, &dev->read_list, node) { 958 list_del(&node->node); 959 kfree(node); 960 } 961 962 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 963 list_del(&node->node); 964 kfree(node); 965 } 966 967 spin_unlock(&dev->iotlb_lock); 968 } 969 EXPORT_SYMBOL_GPL(vhost_clear_msg); 970 971 void vhost_dev_cleanup(struct vhost_dev *dev) 972 { 973 int i; 974 975 for (i = 0; i < dev->nvqs; ++i) { 976 if (dev->vqs[i]->error_ctx) 977 eventfd_ctx_put(dev->vqs[i]->error_ctx); 978 if (dev->vqs[i]->kick) 979 fput(dev->vqs[i]->kick); 980 if (dev->vqs[i]->call_ctx.ctx) 981 eventfd_ctx_put(dev->vqs[i]->call_ctx.ctx); 982 vhost_vq_reset(dev, dev->vqs[i]); 983 } 984 vhost_dev_free_iovecs(dev); 985 if (dev->log_ctx) 986 eventfd_ctx_put(dev->log_ctx); 987 dev->log_ctx = NULL; 988 /* No one will access memory at this point */ 989 vhost_iotlb_free(dev->umem); 990 dev->umem = NULL; 991 vhost_iotlb_free(dev->iotlb); 992 dev->iotlb = NULL; 993 vhost_clear_msg(dev); 994 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 995 vhost_workers_free(dev); 996 vhost_detach_mm(dev); 997 } 998 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 999 1000 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 1001 { 1002 u64 a = addr / VHOST_PAGE_SIZE / 8; 1003 1004 /* Make sure 64 bit math will not overflow. */ 1005 if (a > ULONG_MAX - (unsigned long)log_base || 1006 a + (unsigned long)log_base > ULONG_MAX) 1007 return false; 1008 1009 return access_ok(log_base + a, 1010 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 1011 } 1012 1013 /* Make sure 64 bit math will not overflow. */ 1014 static bool vhost_overflow(u64 uaddr, u64 size) 1015 { 1016 if (uaddr > ULONG_MAX || size > ULONG_MAX) 1017 return true; 1018 1019 if (!size) 1020 return false; 1021 1022 return uaddr > ULONG_MAX - size + 1; 1023 } 1024 1025 /* Caller should have vq mutex and device mutex. */ 1026 static bool vq_memory_access_ok(void __user *log_base, struct vhost_iotlb *umem, 1027 int log_all) 1028 { 1029 struct vhost_iotlb_map *map; 1030 1031 if (!umem) 1032 return false; 1033 1034 list_for_each_entry(map, &umem->list, link) { 1035 unsigned long a = map->addr; 1036 1037 if (vhost_overflow(map->addr, map->size)) 1038 return false; 1039 1040 1041 if (!access_ok((void __user *)a, map->size)) 1042 return false; 1043 else if (log_all && !log_access_ok(log_base, 1044 map->start, 1045 map->size)) 1046 return false; 1047 } 1048 return true; 1049 } 1050 1051 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 1052 u64 addr, unsigned int size, 1053 int type) 1054 { 1055 const struct vhost_iotlb_map *map = vq->meta_iotlb[type]; 1056 1057 if (!map) 1058 return NULL; 1059 1060 return (void __user *)(uintptr_t)(map->addr + addr - map->start); 1061 } 1062 1063 /* Can we switch to this memory table? */ 1064 /* Caller should have device mutex but not vq mutex */ 1065 static bool memory_access_ok(struct vhost_dev *d, struct vhost_iotlb *umem, 1066 int log_all) 1067 { 1068 int i; 1069 1070 for (i = 0; i < d->nvqs; ++i) { 1071 bool ok; 1072 bool log; 1073 1074 mutex_lock(&d->vqs[i]->mutex); 1075 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 1076 /* If ring is inactive, will check when it's enabled. */ 1077 if (d->vqs[i]->private_data) 1078 ok = vq_memory_access_ok(d->vqs[i]->log_base, 1079 umem, log); 1080 else 1081 ok = true; 1082 mutex_unlock(&d->vqs[i]->mutex); 1083 if (!ok) 1084 return false; 1085 } 1086 return true; 1087 } 1088 1089 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1090 struct iovec iov[], int iov_size, int access); 1091 1092 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 1093 const void *from, unsigned size) 1094 { 1095 int ret; 1096 1097 if (!vq->iotlb) 1098 return __copy_to_user(to, from, size); 1099 else { 1100 /* This function should be called after iotlb 1101 * prefetch, which means we're sure that all vq 1102 * could be access through iotlb. So -EAGAIN should 1103 * not happen in this case. 1104 */ 1105 struct iov_iter t; 1106 void __user *uaddr = vhost_vq_meta_fetch(vq, 1107 (u64)(uintptr_t)to, size, 1108 VHOST_ADDR_USED); 1109 1110 if (uaddr) 1111 return __copy_to_user(uaddr, from, size); 1112 1113 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 1114 ARRAY_SIZE(vq->iotlb_iov), 1115 VHOST_ACCESS_WO); 1116 if (ret < 0) 1117 goto out; 1118 iov_iter_init(&t, ITER_DEST, vq->iotlb_iov, ret, size); 1119 ret = copy_to_iter(from, size, &t); 1120 if (ret == size) 1121 ret = 0; 1122 } 1123 out: 1124 return ret; 1125 } 1126 1127 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 1128 void __user *from, unsigned size) 1129 { 1130 int ret; 1131 1132 if (!vq->iotlb) 1133 return __copy_from_user(to, from, size); 1134 else { 1135 /* This function should be called after iotlb 1136 * prefetch, which means we're sure that vq 1137 * could be access through iotlb. So -EAGAIN should 1138 * not happen in this case. 1139 */ 1140 void __user *uaddr = vhost_vq_meta_fetch(vq, 1141 (u64)(uintptr_t)from, size, 1142 VHOST_ADDR_DESC); 1143 struct iov_iter f; 1144 1145 if (uaddr) 1146 return __copy_from_user(to, uaddr, size); 1147 1148 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 1149 ARRAY_SIZE(vq->iotlb_iov), 1150 VHOST_ACCESS_RO); 1151 if (ret < 0) { 1152 vq_err(vq, "IOTLB translation failure: uaddr " 1153 "%p size 0x%llx\n", from, 1154 (unsigned long long) size); 1155 goto out; 1156 } 1157 iov_iter_init(&f, ITER_SOURCE, vq->iotlb_iov, ret, size); 1158 ret = copy_from_iter(to, size, &f); 1159 if (ret == size) 1160 ret = 0; 1161 } 1162 1163 out: 1164 return ret; 1165 } 1166 1167 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 1168 void __user *addr, unsigned int size, 1169 int type) 1170 { 1171 int ret; 1172 1173 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 1174 ARRAY_SIZE(vq->iotlb_iov), 1175 VHOST_ACCESS_RO); 1176 if (ret < 0) { 1177 vq_err(vq, "IOTLB translation failure: uaddr " 1178 "%p size 0x%llx\n", addr, 1179 (unsigned long long) size); 1180 return NULL; 1181 } 1182 1183 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 1184 vq_err(vq, "Non atomic userspace memory access: uaddr " 1185 "%p size 0x%llx\n", addr, 1186 (unsigned long long) size); 1187 return NULL; 1188 } 1189 1190 return vq->iotlb_iov[0].iov_base; 1191 } 1192 1193 /* This function should be called after iotlb 1194 * prefetch, which means we're sure that vq 1195 * could be access through iotlb. So -EAGAIN should 1196 * not happen in this case. 1197 */ 1198 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 1199 void __user *addr, unsigned int size, 1200 int type) 1201 { 1202 void __user *uaddr = vhost_vq_meta_fetch(vq, 1203 (u64)(uintptr_t)addr, size, type); 1204 if (uaddr) 1205 return uaddr; 1206 1207 return __vhost_get_user_slow(vq, addr, size, type); 1208 } 1209 1210 #define vhost_put_user(vq, x, ptr) \ 1211 ({ \ 1212 int ret; \ 1213 if (!vq->iotlb) { \ 1214 ret = __put_user(x, ptr); \ 1215 } else { \ 1216 __typeof__(ptr) to = \ 1217 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 1218 sizeof(*ptr), VHOST_ADDR_USED); \ 1219 if (to != NULL) \ 1220 ret = __put_user(x, to); \ 1221 else \ 1222 ret = -EFAULT; \ 1223 } \ 1224 ret; \ 1225 }) 1226 1227 static inline int vhost_put_avail_event(struct vhost_virtqueue *vq) 1228 { 1229 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1230 vhost_avail_event(vq)); 1231 } 1232 1233 static inline int vhost_put_used(struct vhost_virtqueue *vq, 1234 struct vring_used_elem *head, int idx, 1235 int count) 1236 { 1237 return vhost_copy_to_user(vq, vq->used->ring + idx, head, 1238 count * sizeof(*head)); 1239 } 1240 1241 static inline int vhost_put_used_flags(struct vhost_virtqueue *vq) 1242 1243 { 1244 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1245 &vq->used->flags); 1246 } 1247 1248 static inline int vhost_put_used_idx(struct vhost_virtqueue *vq) 1249 1250 { 1251 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 1252 &vq->used->idx); 1253 } 1254 1255 #define vhost_get_user(vq, x, ptr, type) \ 1256 ({ \ 1257 int ret; \ 1258 if (!vq->iotlb) { \ 1259 ret = __get_user(x, ptr); \ 1260 } else { \ 1261 __typeof__(ptr) from = \ 1262 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 1263 sizeof(*ptr), \ 1264 type); \ 1265 if (from != NULL) \ 1266 ret = __get_user(x, from); \ 1267 else \ 1268 ret = -EFAULT; \ 1269 } \ 1270 ret; \ 1271 }) 1272 1273 #define vhost_get_avail(vq, x, ptr) \ 1274 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 1275 1276 #define vhost_get_used(vq, x, ptr) \ 1277 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 1278 1279 static void vhost_dev_lock_vqs(struct vhost_dev *d) 1280 { 1281 int i = 0; 1282 for (i = 0; i < d->nvqs; ++i) 1283 mutex_lock_nested(&d->vqs[i]->mutex, i); 1284 } 1285 1286 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 1287 { 1288 int i = 0; 1289 for (i = 0; i < d->nvqs; ++i) 1290 mutex_unlock(&d->vqs[i]->mutex); 1291 } 1292 1293 static inline int vhost_get_avail_idx(struct vhost_virtqueue *vq, 1294 __virtio16 *idx) 1295 { 1296 return vhost_get_avail(vq, *idx, &vq->avail->idx); 1297 } 1298 1299 static inline int vhost_get_avail_head(struct vhost_virtqueue *vq, 1300 __virtio16 *head, int idx) 1301 { 1302 return vhost_get_avail(vq, *head, 1303 &vq->avail->ring[idx & (vq->num - 1)]); 1304 } 1305 1306 static inline int vhost_get_avail_flags(struct vhost_virtqueue *vq, 1307 __virtio16 *flags) 1308 { 1309 return vhost_get_avail(vq, *flags, &vq->avail->flags); 1310 } 1311 1312 static inline int vhost_get_used_event(struct vhost_virtqueue *vq, 1313 __virtio16 *event) 1314 { 1315 return vhost_get_avail(vq, *event, vhost_used_event(vq)); 1316 } 1317 1318 static inline int vhost_get_used_idx(struct vhost_virtqueue *vq, 1319 __virtio16 *idx) 1320 { 1321 return vhost_get_used(vq, *idx, &vq->used->idx); 1322 } 1323 1324 static inline int vhost_get_desc(struct vhost_virtqueue *vq, 1325 struct vring_desc *desc, int idx) 1326 { 1327 return vhost_copy_from_user(vq, desc, vq->desc + idx, sizeof(*desc)); 1328 } 1329 1330 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 1331 struct vhost_iotlb_msg *msg) 1332 { 1333 struct vhost_msg_node *node, *n; 1334 1335 spin_lock(&d->iotlb_lock); 1336 1337 list_for_each_entry_safe(node, n, &d->pending_list, node) { 1338 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 1339 if (msg->iova <= vq_msg->iova && 1340 msg->iova + msg->size - 1 >= vq_msg->iova && 1341 vq_msg->type == VHOST_IOTLB_MISS) { 1342 vhost_poll_queue(&node->vq->poll); 1343 list_del(&node->node); 1344 kfree(node); 1345 } 1346 } 1347 1348 spin_unlock(&d->iotlb_lock); 1349 } 1350 1351 static bool umem_access_ok(u64 uaddr, u64 size, int access) 1352 { 1353 unsigned long a = uaddr; 1354 1355 /* Make sure 64 bit math will not overflow. */ 1356 if (vhost_overflow(uaddr, size)) 1357 return false; 1358 1359 if ((access & VHOST_ACCESS_RO) && 1360 !access_ok((void __user *)a, size)) 1361 return false; 1362 if ((access & VHOST_ACCESS_WO) && 1363 !access_ok((void __user *)a, size)) 1364 return false; 1365 return true; 1366 } 1367 1368 static int vhost_process_iotlb_msg(struct vhost_dev *dev, u32 asid, 1369 struct vhost_iotlb_msg *msg) 1370 { 1371 int ret = 0; 1372 1373 if (asid != 0) 1374 return -EINVAL; 1375 1376 mutex_lock(&dev->mutex); 1377 vhost_dev_lock_vqs(dev); 1378 switch (msg->type) { 1379 case VHOST_IOTLB_UPDATE: 1380 if (!dev->iotlb) { 1381 ret = -EFAULT; 1382 break; 1383 } 1384 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 1385 ret = -EFAULT; 1386 break; 1387 } 1388 vhost_vq_meta_reset(dev); 1389 if (vhost_iotlb_add_range(dev->iotlb, msg->iova, 1390 msg->iova + msg->size - 1, 1391 msg->uaddr, msg->perm)) { 1392 ret = -ENOMEM; 1393 break; 1394 } 1395 vhost_iotlb_notify_vq(dev, msg); 1396 break; 1397 case VHOST_IOTLB_INVALIDATE: 1398 if (!dev->iotlb) { 1399 ret = -EFAULT; 1400 break; 1401 } 1402 vhost_vq_meta_reset(dev); 1403 vhost_iotlb_del_range(dev->iotlb, msg->iova, 1404 msg->iova + msg->size - 1); 1405 break; 1406 default: 1407 ret = -EINVAL; 1408 break; 1409 } 1410 1411 vhost_dev_unlock_vqs(dev); 1412 mutex_unlock(&dev->mutex); 1413 1414 return ret; 1415 } 1416 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1417 struct iov_iter *from) 1418 { 1419 struct vhost_iotlb_msg msg; 1420 size_t offset; 1421 int type, ret; 1422 u32 asid = 0; 1423 1424 ret = copy_from_iter(&type, sizeof(type), from); 1425 if (ret != sizeof(type)) { 1426 ret = -EINVAL; 1427 goto done; 1428 } 1429 1430 switch (type) { 1431 case VHOST_IOTLB_MSG: 1432 /* There maybe a hole after type for V1 message type, 1433 * so skip it here. 1434 */ 1435 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int); 1436 break; 1437 case VHOST_IOTLB_MSG_V2: 1438 if (vhost_backend_has_feature(dev->vqs[0], 1439 VHOST_BACKEND_F_IOTLB_ASID)) { 1440 ret = copy_from_iter(&asid, sizeof(asid), from); 1441 if (ret != sizeof(asid)) { 1442 ret = -EINVAL; 1443 goto done; 1444 } 1445 offset = 0; 1446 } else 1447 offset = sizeof(__u32); 1448 break; 1449 default: 1450 ret = -EINVAL; 1451 goto done; 1452 } 1453 1454 iov_iter_advance(from, offset); 1455 ret = copy_from_iter(&msg, sizeof(msg), from); 1456 if (ret != sizeof(msg)) { 1457 ret = -EINVAL; 1458 goto done; 1459 } 1460 1461 if ((msg.type == VHOST_IOTLB_UPDATE || 1462 msg.type == VHOST_IOTLB_INVALIDATE) && 1463 msg.size == 0) { 1464 ret = -EINVAL; 1465 goto done; 1466 } 1467 1468 if (dev->msg_handler) 1469 ret = dev->msg_handler(dev, asid, &msg); 1470 else 1471 ret = vhost_process_iotlb_msg(dev, asid, &msg); 1472 if (ret) { 1473 ret = -EFAULT; 1474 goto done; 1475 } 1476 1477 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) : 1478 sizeof(struct vhost_msg_v2); 1479 done: 1480 return ret; 1481 } 1482 EXPORT_SYMBOL(vhost_chr_write_iter); 1483 1484 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1485 poll_table *wait) 1486 { 1487 __poll_t mask = 0; 1488 1489 poll_wait(file, &dev->wait, wait); 1490 1491 if (!list_empty(&dev->read_list)) 1492 mask |= EPOLLIN | EPOLLRDNORM; 1493 1494 return mask; 1495 } 1496 EXPORT_SYMBOL(vhost_chr_poll); 1497 1498 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1499 int noblock) 1500 { 1501 DEFINE_WAIT(wait); 1502 struct vhost_msg_node *node; 1503 ssize_t ret = 0; 1504 unsigned size = sizeof(struct vhost_msg); 1505 1506 if (iov_iter_count(to) < size) 1507 return 0; 1508 1509 while (1) { 1510 if (!noblock) 1511 prepare_to_wait(&dev->wait, &wait, 1512 TASK_INTERRUPTIBLE); 1513 1514 node = vhost_dequeue_msg(dev, &dev->read_list); 1515 if (node) 1516 break; 1517 if (noblock) { 1518 ret = -EAGAIN; 1519 break; 1520 } 1521 if (signal_pending(current)) { 1522 ret = -ERESTARTSYS; 1523 break; 1524 } 1525 if (!dev->iotlb) { 1526 ret = -EBADFD; 1527 break; 1528 } 1529 1530 schedule(); 1531 } 1532 1533 if (!noblock) 1534 finish_wait(&dev->wait, &wait); 1535 1536 if (node) { 1537 struct vhost_iotlb_msg *msg; 1538 void *start = &node->msg; 1539 1540 switch (node->msg.type) { 1541 case VHOST_IOTLB_MSG: 1542 size = sizeof(node->msg); 1543 msg = &node->msg.iotlb; 1544 break; 1545 case VHOST_IOTLB_MSG_V2: 1546 size = sizeof(node->msg_v2); 1547 msg = &node->msg_v2.iotlb; 1548 break; 1549 default: 1550 BUG(); 1551 break; 1552 } 1553 1554 ret = copy_to_iter(start, size, to); 1555 if (ret != size || msg->type != VHOST_IOTLB_MISS) { 1556 kfree(node); 1557 return ret; 1558 } 1559 vhost_enqueue_msg(dev, &dev->pending_list, node); 1560 } 1561 1562 return ret; 1563 } 1564 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1565 1566 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1567 { 1568 struct vhost_dev *dev = vq->dev; 1569 struct vhost_msg_node *node; 1570 struct vhost_iotlb_msg *msg; 1571 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2); 1572 1573 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG); 1574 if (!node) 1575 return -ENOMEM; 1576 1577 if (v2) { 1578 node->msg_v2.type = VHOST_IOTLB_MSG_V2; 1579 msg = &node->msg_v2.iotlb; 1580 } else { 1581 msg = &node->msg.iotlb; 1582 } 1583 1584 msg->type = VHOST_IOTLB_MISS; 1585 msg->iova = iova; 1586 msg->perm = access; 1587 1588 vhost_enqueue_msg(dev, &dev->read_list, node); 1589 1590 return 0; 1591 } 1592 1593 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1594 vring_desc_t __user *desc, 1595 vring_avail_t __user *avail, 1596 vring_used_t __user *used) 1597 1598 { 1599 /* If an IOTLB device is present, the vring addresses are 1600 * GIOVAs. Access validation occurs at prefetch time. */ 1601 if (vq->iotlb) 1602 return true; 1603 1604 return access_ok(desc, vhost_get_desc_size(vq, num)) && 1605 access_ok(avail, vhost_get_avail_size(vq, num)) && 1606 access_ok(used, vhost_get_used_size(vq, num)); 1607 } 1608 1609 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1610 const struct vhost_iotlb_map *map, 1611 int type) 1612 { 1613 int access = (type == VHOST_ADDR_USED) ? 1614 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1615 1616 if (likely(map->perm & access)) 1617 vq->meta_iotlb[type] = map; 1618 } 1619 1620 static bool iotlb_access_ok(struct vhost_virtqueue *vq, 1621 int access, u64 addr, u64 len, int type) 1622 { 1623 const struct vhost_iotlb_map *map; 1624 struct vhost_iotlb *umem = vq->iotlb; 1625 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1626 1627 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1628 return true; 1629 1630 while (len > s) { 1631 map = vhost_iotlb_itree_first(umem, addr, last); 1632 if (map == NULL || map->start > addr) { 1633 vhost_iotlb_miss(vq, addr, access); 1634 return false; 1635 } else if (!(map->perm & access)) { 1636 /* Report the possible access violation by 1637 * request another translation from userspace. 1638 */ 1639 return false; 1640 } 1641 1642 size = map->size - addr + map->start; 1643 1644 if (orig_addr == addr && size >= len) 1645 vhost_vq_meta_update(vq, map, type); 1646 1647 s += size; 1648 addr += size; 1649 } 1650 1651 return true; 1652 } 1653 1654 int vq_meta_prefetch(struct vhost_virtqueue *vq) 1655 { 1656 unsigned int num = vq->num; 1657 1658 if (!vq->iotlb) 1659 return 1; 1660 1661 return iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->desc, 1662 vhost_get_desc_size(vq, num), VHOST_ADDR_DESC) && 1663 iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->avail, 1664 vhost_get_avail_size(vq, num), 1665 VHOST_ADDR_AVAIL) && 1666 iotlb_access_ok(vq, VHOST_MAP_WO, (u64)(uintptr_t)vq->used, 1667 vhost_get_used_size(vq, num), VHOST_ADDR_USED); 1668 } 1669 EXPORT_SYMBOL_GPL(vq_meta_prefetch); 1670 1671 /* Can we log writes? */ 1672 /* Caller should have device mutex but not vq mutex */ 1673 bool vhost_log_access_ok(struct vhost_dev *dev) 1674 { 1675 return memory_access_ok(dev, dev->umem, 1); 1676 } 1677 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1678 1679 static bool vq_log_used_access_ok(struct vhost_virtqueue *vq, 1680 void __user *log_base, 1681 bool log_used, 1682 u64 log_addr) 1683 { 1684 /* If an IOTLB device is present, log_addr is a GIOVA that 1685 * will never be logged by log_used(). */ 1686 if (vq->iotlb) 1687 return true; 1688 1689 return !log_used || log_access_ok(log_base, log_addr, 1690 vhost_get_used_size(vq, vq->num)); 1691 } 1692 1693 /* Verify access for write logging. */ 1694 /* Caller should have vq mutex and device mutex */ 1695 static bool vq_log_access_ok(struct vhost_virtqueue *vq, 1696 void __user *log_base) 1697 { 1698 return vq_memory_access_ok(log_base, vq->umem, 1699 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1700 vq_log_used_access_ok(vq, log_base, vq->log_used, vq->log_addr); 1701 } 1702 1703 /* Can we start vq? */ 1704 /* Caller should have vq mutex and device mutex */ 1705 bool vhost_vq_access_ok(struct vhost_virtqueue *vq) 1706 { 1707 if (!vq_log_access_ok(vq, vq->log_base)) 1708 return false; 1709 1710 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1711 } 1712 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1713 1714 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1715 { 1716 struct vhost_memory mem, *newmem; 1717 struct vhost_memory_region *region; 1718 struct vhost_iotlb *newumem, *oldumem; 1719 unsigned long size = offsetof(struct vhost_memory, regions); 1720 int i; 1721 1722 if (copy_from_user(&mem, m, size)) 1723 return -EFAULT; 1724 if (mem.padding) 1725 return -EOPNOTSUPP; 1726 if (mem.nregions > max_mem_regions) 1727 return -E2BIG; 1728 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), 1729 GFP_KERNEL); 1730 if (!newmem) 1731 return -ENOMEM; 1732 1733 memcpy(newmem, &mem, size); 1734 if (copy_from_user(newmem->regions, m->regions, 1735 flex_array_size(newmem, regions, mem.nregions))) { 1736 kvfree(newmem); 1737 return -EFAULT; 1738 } 1739 1740 newumem = iotlb_alloc(); 1741 if (!newumem) { 1742 kvfree(newmem); 1743 return -ENOMEM; 1744 } 1745 1746 for (region = newmem->regions; 1747 region < newmem->regions + mem.nregions; 1748 region++) { 1749 if (vhost_iotlb_add_range(newumem, 1750 region->guest_phys_addr, 1751 region->guest_phys_addr + 1752 region->memory_size - 1, 1753 region->userspace_addr, 1754 VHOST_MAP_RW)) 1755 goto err; 1756 } 1757 1758 if (!memory_access_ok(d, newumem, 0)) 1759 goto err; 1760 1761 oldumem = d->umem; 1762 d->umem = newumem; 1763 1764 /* All memory accesses are done under some VQ mutex. */ 1765 for (i = 0; i < d->nvqs; ++i) { 1766 mutex_lock(&d->vqs[i]->mutex); 1767 d->vqs[i]->umem = newumem; 1768 mutex_unlock(&d->vqs[i]->mutex); 1769 } 1770 1771 kvfree(newmem); 1772 vhost_iotlb_free(oldumem); 1773 return 0; 1774 1775 err: 1776 vhost_iotlb_free(newumem); 1777 kvfree(newmem); 1778 return -EFAULT; 1779 } 1780 1781 static long vhost_vring_set_num(struct vhost_dev *d, 1782 struct vhost_virtqueue *vq, 1783 void __user *argp) 1784 { 1785 struct vhost_vring_state s; 1786 1787 /* Resizing ring with an active backend? 1788 * You don't want to do that. */ 1789 if (vq->private_data) 1790 return -EBUSY; 1791 1792 if (copy_from_user(&s, argp, sizeof s)) 1793 return -EFAULT; 1794 1795 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) 1796 return -EINVAL; 1797 vq->num = s.num; 1798 1799 return 0; 1800 } 1801 1802 static long vhost_vring_set_addr(struct vhost_dev *d, 1803 struct vhost_virtqueue *vq, 1804 void __user *argp) 1805 { 1806 struct vhost_vring_addr a; 1807 1808 if (copy_from_user(&a, argp, sizeof a)) 1809 return -EFAULT; 1810 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) 1811 return -EOPNOTSUPP; 1812 1813 /* For 32bit, verify that the top 32bits of the user 1814 data are set to zero. */ 1815 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1816 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1817 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) 1818 return -EFAULT; 1819 1820 /* Make sure it's safe to cast pointers to vring types. */ 1821 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1822 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1823 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1824 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1825 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) 1826 return -EINVAL; 1827 1828 /* We only verify access here if backend is configured. 1829 * If it is not, we don't as size might not have been setup. 1830 * We will verify when backend is configured. */ 1831 if (vq->private_data) { 1832 if (!vq_access_ok(vq, vq->num, 1833 (void __user *)(unsigned long)a.desc_user_addr, 1834 (void __user *)(unsigned long)a.avail_user_addr, 1835 (void __user *)(unsigned long)a.used_user_addr)) 1836 return -EINVAL; 1837 1838 /* Also validate log access for used ring if enabled. */ 1839 if (!vq_log_used_access_ok(vq, vq->log_base, 1840 a.flags & (0x1 << VHOST_VRING_F_LOG), 1841 a.log_guest_addr)) 1842 return -EINVAL; 1843 } 1844 1845 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1846 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1847 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1848 vq->log_addr = a.log_guest_addr; 1849 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1850 1851 return 0; 1852 } 1853 1854 static long vhost_vring_set_num_addr(struct vhost_dev *d, 1855 struct vhost_virtqueue *vq, 1856 unsigned int ioctl, 1857 void __user *argp) 1858 { 1859 long r; 1860 1861 mutex_lock(&vq->mutex); 1862 1863 switch (ioctl) { 1864 case VHOST_SET_VRING_NUM: 1865 r = vhost_vring_set_num(d, vq, argp); 1866 break; 1867 case VHOST_SET_VRING_ADDR: 1868 r = vhost_vring_set_addr(d, vq, argp); 1869 break; 1870 default: 1871 BUG(); 1872 } 1873 1874 mutex_unlock(&vq->mutex); 1875 1876 return r; 1877 } 1878 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1879 { 1880 struct file *eventfp, *filep = NULL; 1881 bool pollstart = false, pollstop = false; 1882 struct eventfd_ctx *ctx = NULL; 1883 struct vhost_virtqueue *vq; 1884 struct vhost_vring_state s; 1885 struct vhost_vring_file f; 1886 u32 idx; 1887 long r; 1888 1889 r = vhost_get_vq_from_user(d, argp, &vq, &idx); 1890 if (r < 0) 1891 return r; 1892 1893 if (ioctl == VHOST_SET_VRING_NUM || 1894 ioctl == VHOST_SET_VRING_ADDR) { 1895 return vhost_vring_set_num_addr(d, vq, ioctl, argp); 1896 } 1897 1898 mutex_lock(&vq->mutex); 1899 1900 switch (ioctl) { 1901 case VHOST_SET_VRING_BASE: 1902 /* Moving base with an active backend? 1903 * You don't want to do that. */ 1904 if (vq->private_data) { 1905 r = -EBUSY; 1906 break; 1907 } 1908 if (copy_from_user(&s, argp, sizeof s)) { 1909 r = -EFAULT; 1910 break; 1911 } 1912 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) { 1913 vq->last_avail_idx = s.num & 0xffff; 1914 vq->last_used_idx = (s.num >> 16) & 0xffff; 1915 } else { 1916 if (s.num > 0xffff) { 1917 r = -EINVAL; 1918 break; 1919 } 1920 vq->last_avail_idx = s.num; 1921 } 1922 /* Forget the cached index value. */ 1923 vq->avail_idx = vq->last_avail_idx; 1924 break; 1925 case VHOST_GET_VRING_BASE: 1926 s.index = idx; 1927 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) 1928 s.num = (u32)vq->last_avail_idx | ((u32)vq->last_used_idx << 16); 1929 else 1930 s.num = vq->last_avail_idx; 1931 if (copy_to_user(argp, &s, sizeof s)) 1932 r = -EFAULT; 1933 break; 1934 case VHOST_SET_VRING_KICK: 1935 if (copy_from_user(&f, argp, sizeof f)) { 1936 r = -EFAULT; 1937 break; 1938 } 1939 eventfp = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_fget(f.fd); 1940 if (IS_ERR(eventfp)) { 1941 r = PTR_ERR(eventfp); 1942 break; 1943 } 1944 if (eventfp != vq->kick) { 1945 pollstop = (filep = vq->kick) != NULL; 1946 pollstart = (vq->kick = eventfp) != NULL; 1947 } else 1948 filep = eventfp; 1949 break; 1950 case VHOST_SET_VRING_CALL: 1951 if (copy_from_user(&f, argp, sizeof f)) { 1952 r = -EFAULT; 1953 break; 1954 } 1955 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd); 1956 if (IS_ERR(ctx)) { 1957 r = PTR_ERR(ctx); 1958 break; 1959 } 1960 1961 swap(ctx, vq->call_ctx.ctx); 1962 break; 1963 case VHOST_SET_VRING_ERR: 1964 if (copy_from_user(&f, argp, sizeof f)) { 1965 r = -EFAULT; 1966 break; 1967 } 1968 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd); 1969 if (IS_ERR(ctx)) { 1970 r = PTR_ERR(ctx); 1971 break; 1972 } 1973 swap(ctx, vq->error_ctx); 1974 break; 1975 case VHOST_SET_VRING_ENDIAN: 1976 r = vhost_set_vring_endian(vq, argp); 1977 break; 1978 case VHOST_GET_VRING_ENDIAN: 1979 r = vhost_get_vring_endian(vq, idx, argp); 1980 break; 1981 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1982 if (copy_from_user(&s, argp, sizeof(s))) { 1983 r = -EFAULT; 1984 break; 1985 } 1986 vq->busyloop_timeout = s.num; 1987 break; 1988 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1989 s.index = idx; 1990 s.num = vq->busyloop_timeout; 1991 if (copy_to_user(argp, &s, sizeof(s))) 1992 r = -EFAULT; 1993 break; 1994 default: 1995 r = -ENOIOCTLCMD; 1996 } 1997 1998 if (pollstop && vq->handle_kick) 1999 vhost_poll_stop(&vq->poll); 2000 2001 if (!IS_ERR_OR_NULL(ctx)) 2002 eventfd_ctx_put(ctx); 2003 if (filep) 2004 fput(filep); 2005 2006 if (pollstart && vq->handle_kick) 2007 r = vhost_poll_start(&vq->poll, vq->kick); 2008 2009 mutex_unlock(&vq->mutex); 2010 2011 if (pollstop && vq->handle_kick) 2012 vhost_dev_flush(vq->poll.dev); 2013 return r; 2014 } 2015 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 2016 2017 int vhost_init_device_iotlb(struct vhost_dev *d) 2018 { 2019 struct vhost_iotlb *niotlb, *oiotlb; 2020 int i; 2021 2022 niotlb = iotlb_alloc(); 2023 if (!niotlb) 2024 return -ENOMEM; 2025 2026 oiotlb = d->iotlb; 2027 d->iotlb = niotlb; 2028 2029 for (i = 0; i < d->nvqs; ++i) { 2030 struct vhost_virtqueue *vq = d->vqs[i]; 2031 2032 mutex_lock(&vq->mutex); 2033 vq->iotlb = niotlb; 2034 __vhost_vq_meta_reset(vq); 2035 mutex_unlock(&vq->mutex); 2036 } 2037 2038 vhost_iotlb_free(oiotlb); 2039 2040 return 0; 2041 } 2042 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 2043 2044 /* Caller must have device mutex */ 2045 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 2046 { 2047 struct eventfd_ctx *ctx; 2048 u64 p; 2049 long r; 2050 int i, fd; 2051 2052 /* If you are not the owner, you can become one */ 2053 if (ioctl == VHOST_SET_OWNER) { 2054 r = vhost_dev_set_owner(d); 2055 goto done; 2056 } 2057 2058 /* You must be the owner to do anything else */ 2059 r = vhost_dev_check_owner(d); 2060 if (r) 2061 goto done; 2062 2063 switch (ioctl) { 2064 case VHOST_SET_MEM_TABLE: 2065 r = vhost_set_memory(d, argp); 2066 break; 2067 case VHOST_SET_LOG_BASE: 2068 if (copy_from_user(&p, argp, sizeof p)) { 2069 r = -EFAULT; 2070 break; 2071 } 2072 if ((u64)(unsigned long)p != p) { 2073 r = -EFAULT; 2074 break; 2075 } 2076 for (i = 0; i < d->nvqs; ++i) { 2077 struct vhost_virtqueue *vq; 2078 void __user *base = (void __user *)(unsigned long)p; 2079 vq = d->vqs[i]; 2080 mutex_lock(&vq->mutex); 2081 /* If ring is inactive, will check when it's enabled. */ 2082 if (vq->private_data && !vq_log_access_ok(vq, base)) 2083 r = -EFAULT; 2084 else 2085 vq->log_base = base; 2086 mutex_unlock(&vq->mutex); 2087 } 2088 break; 2089 case VHOST_SET_LOG_FD: 2090 r = get_user(fd, (int __user *)argp); 2091 if (r < 0) 2092 break; 2093 ctx = fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(fd); 2094 if (IS_ERR(ctx)) { 2095 r = PTR_ERR(ctx); 2096 break; 2097 } 2098 swap(ctx, d->log_ctx); 2099 for (i = 0; i < d->nvqs; ++i) { 2100 mutex_lock(&d->vqs[i]->mutex); 2101 d->vqs[i]->log_ctx = d->log_ctx; 2102 mutex_unlock(&d->vqs[i]->mutex); 2103 } 2104 if (ctx) 2105 eventfd_ctx_put(ctx); 2106 break; 2107 default: 2108 r = -ENOIOCTLCMD; 2109 break; 2110 } 2111 done: 2112 return r; 2113 } 2114 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 2115 2116 /* TODO: This is really inefficient. We need something like get_user() 2117 * (instruction directly accesses the data, with an exception table entry 2118 * returning -EFAULT). See Documentation/arch/x86/exception-tables.rst. 2119 */ 2120 static int set_bit_to_user(int nr, void __user *addr) 2121 { 2122 unsigned long log = (unsigned long)addr; 2123 struct page *page; 2124 void *base; 2125 int bit = nr + (log % PAGE_SIZE) * 8; 2126 int r; 2127 2128 r = pin_user_pages_fast(log, 1, FOLL_WRITE, &page); 2129 if (r < 0) 2130 return r; 2131 BUG_ON(r != 1); 2132 base = kmap_atomic(page); 2133 set_bit(bit, base); 2134 kunmap_atomic(base); 2135 unpin_user_pages_dirty_lock(&page, 1, true); 2136 return 0; 2137 } 2138 2139 static int log_write(void __user *log_base, 2140 u64 write_address, u64 write_length) 2141 { 2142 u64 write_page = write_address / VHOST_PAGE_SIZE; 2143 int r; 2144 2145 if (!write_length) 2146 return 0; 2147 write_length += write_address % VHOST_PAGE_SIZE; 2148 for (;;) { 2149 u64 base = (u64)(unsigned long)log_base; 2150 u64 log = base + write_page / 8; 2151 int bit = write_page % 8; 2152 if ((u64)(unsigned long)log != log) 2153 return -EFAULT; 2154 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 2155 if (r < 0) 2156 return r; 2157 if (write_length <= VHOST_PAGE_SIZE) 2158 break; 2159 write_length -= VHOST_PAGE_SIZE; 2160 write_page += 1; 2161 } 2162 return r; 2163 } 2164 2165 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len) 2166 { 2167 struct vhost_iotlb *umem = vq->umem; 2168 struct vhost_iotlb_map *u; 2169 u64 start, end, l, min; 2170 int r; 2171 bool hit = false; 2172 2173 while (len) { 2174 min = len; 2175 /* More than one GPAs can be mapped into a single HVA. So 2176 * iterate all possible umems here to be safe. 2177 */ 2178 list_for_each_entry(u, &umem->list, link) { 2179 if (u->addr > hva - 1 + len || 2180 u->addr - 1 + u->size < hva) 2181 continue; 2182 start = max(u->addr, hva); 2183 end = min(u->addr - 1 + u->size, hva - 1 + len); 2184 l = end - start + 1; 2185 r = log_write(vq->log_base, 2186 u->start + start - u->addr, 2187 l); 2188 if (r < 0) 2189 return r; 2190 hit = true; 2191 min = min(l, min); 2192 } 2193 2194 if (!hit) 2195 return -EFAULT; 2196 2197 len -= min; 2198 hva += min; 2199 } 2200 2201 return 0; 2202 } 2203 2204 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len) 2205 { 2206 struct iovec *iov = vq->log_iov; 2207 int i, ret; 2208 2209 if (!vq->iotlb) 2210 return log_write(vq->log_base, vq->log_addr + used_offset, len); 2211 2212 ret = translate_desc(vq, (uintptr_t)vq->used + used_offset, 2213 len, iov, 64, VHOST_ACCESS_WO); 2214 if (ret < 0) 2215 return ret; 2216 2217 for (i = 0; i < ret; i++) { 2218 ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 2219 iov[i].iov_len); 2220 if (ret) 2221 return ret; 2222 } 2223 2224 return 0; 2225 } 2226 2227 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 2228 unsigned int log_num, u64 len, struct iovec *iov, int count) 2229 { 2230 int i, r; 2231 2232 /* Make sure data written is seen before log. */ 2233 smp_wmb(); 2234 2235 if (vq->iotlb) { 2236 for (i = 0; i < count; i++) { 2237 r = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 2238 iov[i].iov_len); 2239 if (r < 0) 2240 return r; 2241 } 2242 return 0; 2243 } 2244 2245 for (i = 0; i < log_num; ++i) { 2246 u64 l = min(log[i].len, len); 2247 r = log_write(vq->log_base, log[i].addr, l); 2248 if (r < 0) 2249 return r; 2250 len -= l; 2251 if (!len) { 2252 if (vq->log_ctx) 2253 eventfd_signal(vq->log_ctx, 1); 2254 return 0; 2255 } 2256 } 2257 /* Length written exceeds what we have stored. This is a bug. */ 2258 BUG(); 2259 return 0; 2260 } 2261 EXPORT_SYMBOL_GPL(vhost_log_write); 2262 2263 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 2264 { 2265 void __user *used; 2266 if (vhost_put_used_flags(vq)) 2267 return -EFAULT; 2268 if (unlikely(vq->log_used)) { 2269 /* Make sure the flag is seen before log. */ 2270 smp_wmb(); 2271 /* Log used flag write. */ 2272 used = &vq->used->flags; 2273 log_used(vq, (used - (void __user *)vq->used), 2274 sizeof vq->used->flags); 2275 if (vq->log_ctx) 2276 eventfd_signal(vq->log_ctx, 1); 2277 } 2278 return 0; 2279 } 2280 2281 static int vhost_update_avail_event(struct vhost_virtqueue *vq) 2282 { 2283 if (vhost_put_avail_event(vq)) 2284 return -EFAULT; 2285 if (unlikely(vq->log_used)) { 2286 void __user *used; 2287 /* Make sure the event is seen before log. */ 2288 smp_wmb(); 2289 /* Log avail event write */ 2290 used = vhost_avail_event(vq); 2291 log_used(vq, (used - (void __user *)vq->used), 2292 sizeof *vhost_avail_event(vq)); 2293 if (vq->log_ctx) 2294 eventfd_signal(vq->log_ctx, 1); 2295 } 2296 return 0; 2297 } 2298 2299 int vhost_vq_init_access(struct vhost_virtqueue *vq) 2300 { 2301 __virtio16 last_used_idx; 2302 int r; 2303 bool is_le = vq->is_le; 2304 2305 if (!vq->private_data) 2306 return 0; 2307 2308 vhost_init_is_le(vq); 2309 2310 r = vhost_update_used_flags(vq); 2311 if (r) 2312 goto err; 2313 vq->signalled_used_valid = false; 2314 if (!vq->iotlb && 2315 !access_ok(&vq->used->idx, sizeof vq->used->idx)) { 2316 r = -EFAULT; 2317 goto err; 2318 } 2319 r = vhost_get_used_idx(vq, &last_used_idx); 2320 if (r) { 2321 vq_err(vq, "Can't access used idx at %p\n", 2322 &vq->used->idx); 2323 goto err; 2324 } 2325 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 2326 return 0; 2327 2328 err: 2329 vq->is_le = is_le; 2330 return r; 2331 } 2332 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 2333 2334 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 2335 struct iovec iov[], int iov_size, int access) 2336 { 2337 const struct vhost_iotlb_map *map; 2338 struct vhost_dev *dev = vq->dev; 2339 struct vhost_iotlb *umem = dev->iotlb ? dev->iotlb : dev->umem; 2340 struct iovec *_iov; 2341 u64 s = 0, last = addr + len - 1; 2342 int ret = 0; 2343 2344 while ((u64)len > s) { 2345 u64 size; 2346 if (unlikely(ret >= iov_size)) { 2347 ret = -ENOBUFS; 2348 break; 2349 } 2350 2351 map = vhost_iotlb_itree_first(umem, addr, last); 2352 if (map == NULL || map->start > addr) { 2353 if (umem != dev->iotlb) { 2354 ret = -EFAULT; 2355 break; 2356 } 2357 ret = -EAGAIN; 2358 break; 2359 } else if (!(map->perm & access)) { 2360 ret = -EPERM; 2361 break; 2362 } 2363 2364 _iov = iov + ret; 2365 size = map->size - addr + map->start; 2366 _iov->iov_len = min((u64)len - s, size); 2367 _iov->iov_base = (void __user *)(unsigned long) 2368 (map->addr + addr - map->start); 2369 s += size; 2370 addr += size; 2371 ++ret; 2372 } 2373 2374 if (ret == -EAGAIN) 2375 vhost_iotlb_miss(vq, addr, access); 2376 return ret; 2377 } 2378 2379 /* Each buffer in the virtqueues is actually a chain of descriptors. This 2380 * function returns the next descriptor in the chain, 2381 * or -1U if we're at the end. */ 2382 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 2383 { 2384 unsigned int next; 2385 2386 /* If this descriptor says it doesn't chain, we're done. */ 2387 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 2388 return -1U; 2389 2390 /* Check they're not leading us off end of descriptors. */ 2391 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 2392 return next; 2393 } 2394 2395 static int get_indirect(struct vhost_virtqueue *vq, 2396 struct iovec iov[], unsigned int iov_size, 2397 unsigned int *out_num, unsigned int *in_num, 2398 struct vhost_log *log, unsigned int *log_num, 2399 struct vring_desc *indirect) 2400 { 2401 struct vring_desc desc; 2402 unsigned int i = 0, count, found = 0; 2403 u32 len = vhost32_to_cpu(vq, indirect->len); 2404 struct iov_iter from; 2405 int ret, access; 2406 2407 /* Sanity check */ 2408 if (unlikely(len % sizeof desc)) { 2409 vq_err(vq, "Invalid length in indirect descriptor: " 2410 "len 0x%llx not multiple of 0x%zx\n", 2411 (unsigned long long)len, 2412 sizeof desc); 2413 return -EINVAL; 2414 } 2415 2416 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 2417 UIO_MAXIOV, VHOST_ACCESS_RO); 2418 if (unlikely(ret < 0)) { 2419 if (ret != -EAGAIN) 2420 vq_err(vq, "Translation failure %d in indirect.\n", ret); 2421 return ret; 2422 } 2423 iov_iter_init(&from, ITER_SOURCE, vq->indirect, ret, len); 2424 count = len / sizeof desc; 2425 /* Buffers are chained via a 16 bit next field, so 2426 * we can have at most 2^16 of these. */ 2427 if (unlikely(count > USHRT_MAX + 1)) { 2428 vq_err(vq, "Indirect buffer length too big: %d\n", 2429 indirect->len); 2430 return -E2BIG; 2431 } 2432 2433 do { 2434 unsigned iov_count = *in_num + *out_num; 2435 if (unlikely(++found > count)) { 2436 vq_err(vq, "Loop detected: last one at %u " 2437 "indirect size %u\n", 2438 i, count); 2439 return -EINVAL; 2440 } 2441 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 2442 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 2443 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2444 return -EINVAL; 2445 } 2446 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 2447 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 2448 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2449 return -EINVAL; 2450 } 2451 2452 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2453 access = VHOST_ACCESS_WO; 2454 else 2455 access = VHOST_ACCESS_RO; 2456 2457 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2458 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2459 iov_size - iov_count, access); 2460 if (unlikely(ret < 0)) { 2461 if (ret != -EAGAIN) 2462 vq_err(vq, "Translation failure %d indirect idx %d\n", 2463 ret, i); 2464 return ret; 2465 } 2466 /* If this is an input descriptor, increment that count. */ 2467 if (access == VHOST_ACCESS_WO) { 2468 *in_num += ret; 2469 if (unlikely(log && ret)) { 2470 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2471 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2472 ++*log_num; 2473 } 2474 } else { 2475 /* If it's an output descriptor, they're all supposed 2476 * to come before any input descriptors. */ 2477 if (unlikely(*in_num)) { 2478 vq_err(vq, "Indirect descriptor " 2479 "has out after in: idx %d\n", i); 2480 return -EINVAL; 2481 } 2482 *out_num += ret; 2483 } 2484 } while ((i = next_desc(vq, &desc)) != -1); 2485 return 0; 2486 } 2487 2488 /* This looks in the virtqueue and for the first available buffer, and converts 2489 * it to an iovec for convenient access. Since descriptors consist of some 2490 * number of output then some number of input descriptors, it's actually two 2491 * iovecs, but we pack them into one and note how many of each there were. 2492 * 2493 * This function returns the descriptor number found, or vq->num (which is 2494 * never a valid descriptor number) if none was found. A negative code is 2495 * returned on error. */ 2496 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 2497 struct iovec iov[], unsigned int iov_size, 2498 unsigned int *out_num, unsigned int *in_num, 2499 struct vhost_log *log, unsigned int *log_num) 2500 { 2501 struct vring_desc desc; 2502 unsigned int i, head, found = 0; 2503 u16 last_avail_idx; 2504 __virtio16 avail_idx; 2505 __virtio16 ring_head; 2506 int ret, access; 2507 2508 /* Check it isn't doing very strange things with descriptor numbers. */ 2509 last_avail_idx = vq->last_avail_idx; 2510 2511 if (vq->avail_idx == vq->last_avail_idx) { 2512 if (unlikely(vhost_get_avail_idx(vq, &avail_idx))) { 2513 vq_err(vq, "Failed to access avail idx at %p\n", 2514 &vq->avail->idx); 2515 return -EFAULT; 2516 } 2517 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2518 2519 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 2520 vq_err(vq, "Guest moved used index from %u to %u", 2521 last_avail_idx, vq->avail_idx); 2522 return -EFAULT; 2523 } 2524 2525 /* If there's nothing new since last we looked, return 2526 * invalid. 2527 */ 2528 if (vq->avail_idx == last_avail_idx) 2529 return vq->num; 2530 2531 /* Only get avail ring entries after they have been 2532 * exposed by guest. 2533 */ 2534 smp_rmb(); 2535 } 2536 2537 /* Grab the next descriptor number they're advertising, and increment 2538 * the index we've seen. */ 2539 if (unlikely(vhost_get_avail_head(vq, &ring_head, last_avail_idx))) { 2540 vq_err(vq, "Failed to read head: idx %d address %p\n", 2541 last_avail_idx, 2542 &vq->avail->ring[last_avail_idx % vq->num]); 2543 return -EFAULT; 2544 } 2545 2546 head = vhost16_to_cpu(vq, ring_head); 2547 2548 /* If their number is silly, that's an error. */ 2549 if (unlikely(head >= vq->num)) { 2550 vq_err(vq, "Guest says index %u > %u is available", 2551 head, vq->num); 2552 return -EINVAL; 2553 } 2554 2555 /* When we start there are none of either input nor output. */ 2556 *out_num = *in_num = 0; 2557 if (unlikely(log)) 2558 *log_num = 0; 2559 2560 i = head; 2561 do { 2562 unsigned iov_count = *in_num + *out_num; 2563 if (unlikely(i >= vq->num)) { 2564 vq_err(vq, "Desc index is %u > %u, head = %u", 2565 i, vq->num, head); 2566 return -EINVAL; 2567 } 2568 if (unlikely(++found > vq->num)) { 2569 vq_err(vq, "Loop detected: last one at %u " 2570 "vq size %u head %u\n", 2571 i, vq->num, head); 2572 return -EINVAL; 2573 } 2574 ret = vhost_get_desc(vq, &desc, i); 2575 if (unlikely(ret)) { 2576 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2577 i, vq->desc + i); 2578 return -EFAULT; 2579 } 2580 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2581 ret = get_indirect(vq, iov, iov_size, 2582 out_num, in_num, 2583 log, log_num, &desc); 2584 if (unlikely(ret < 0)) { 2585 if (ret != -EAGAIN) 2586 vq_err(vq, "Failure detected " 2587 "in indirect descriptor at idx %d\n", i); 2588 return ret; 2589 } 2590 continue; 2591 } 2592 2593 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2594 access = VHOST_ACCESS_WO; 2595 else 2596 access = VHOST_ACCESS_RO; 2597 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2598 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2599 iov_size - iov_count, access); 2600 if (unlikely(ret < 0)) { 2601 if (ret != -EAGAIN) 2602 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2603 ret, i); 2604 return ret; 2605 } 2606 if (access == VHOST_ACCESS_WO) { 2607 /* If this is an input descriptor, 2608 * increment that count. */ 2609 *in_num += ret; 2610 if (unlikely(log && ret)) { 2611 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2612 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2613 ++*log_num; 2614 } 2615 } else { 2616 /* If it's an output descriptor, they're all supposed 2617 * to come before any input descriptors. */ 2618 if (unlikely(*in_num)) { 2619 vq_err(vq, "Descriptor has out after in: " 2620 "idx %d\n", i); 2621 return -EINVAL; 2622 } 2623 *out_num += ret; 2624 } 2625 } while ((i = next_desc(vq, &desc)) != -1); 2626 2627 /* On success, increment avail index. */ 2628 vq->last_avail_idx++; 2629 2630 /* Assume notifications from guest are disabled at this point, 2631 * if they aren't we would need to update avail_event index. */ 2632 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2633 return head; 2634 } 2635 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2636 2637 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2638 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2639 { 2640 vq->last_avail_idx -= n; 2641 } 2642 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2643 2644 /* After we've used one of their buffers, we tell them about it. We'll then 2645 * want to notify the guest, using eventfd. */ 2646 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2647 { 2648 struct vring_used_elem heads = { 2649 cpu_to_vhost32(vq, head), 2650 cpu_to_vhost32(vq, len) 2651 }; 2652 2653 return vhost_add_used_n(vq, &heads, 1); 2654 } 2655 EXPORT_SYMBOL_GPL(vhost_add_used); 2656 2657 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2658 struct vring_used_elem *heads, 2659 unsigned count) 2660 { 2661 vring_used_elem_t __user *used; 2662 u16 old, new; 2663 int start; 2664 2665 start = vq->last_used_idx & (vq->num - 1); 2666 used = vq->used->ring + start; 2667 if (vhost_put_used(vq, heads, start, count)) { 2668 vq_err(vq, "Failed to write used"); 2669 return -EFAULT; 2670 } 2671 if (unlikely(vq->log_used)) { 2672 /* Make sure data is seen before log. */ 2673 smp_wmb(); 2674 /* Log used ring entry write. */ 2675 log_used(vq, ((void __user *)used - (void __user *)vq->used), 2676 count * sizeof *used); 2677 } 2678 old = vq->last_used_idx; 2679 new = (vq->last_used_idx += count); 2680 /* If the driver never bothers to signal in a very long while, 2681 * used index might wrap around. If that happens, invalidate 2682 * signalled_used index we stored. TODO: make sure driver 2683 * signals at least once in 2^16 and remove this. */ 2684 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2685 vq->signalled_used_valid = false; 2686 return 0; 2687 } 2688 2689 /* After we've used one of their buffers, we tell them about it. We'll then 2690 * want to notify the guest, using eventfd. */ 2691 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2692 unsigned count) 2693 { 2694 int start, n, r; 2695 2696 start = vq->last_used_idx & (vq->num - 1); 2697 n = vq->num - start; 2698 if (n < count) { 2699 r = __vhost_add_used_n(vq, heads, n); 2700 if (r < 0) 2701 return r; 2702 heads += n; 2703 count -= n; 2704 } 2705 r = __vhost_add_used_n(vq, heads, count); 2706 2707 /* Make sure buffer is written before we update index. */ 2708 smp_wmb(); 2709 if (vhost_put_used_idx(vq)) { 2710 vq_err(vq, "Failed to increment used idx"); 2711 return -EFAULT; 2712 } 2713 if (unlikely(vq->log_used)) { 2714 /* Make sure used idx is seen before log. */ 2715 smp_wmb(); 2716 /* Log used index update. */ 2717 log_used(vq, offsetof(struct vring_used, idx), 2718 sizeof vq->used->idx); 2719 if (vq->log_ctx) 2720 eventfd_signal(vq->log_ctx, 1); 2721 } 2722 return r; 2723 } 2724 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2725 2726 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2727 { 2728 __u16 old, new; 2729 __virtio16 event; 2730 bool v; 2731 /* Flush out used index updates. This is paired 2732 * with the barrier that the Guest executes when enabling 2733 * interrupts. */ 2734 smp_mb(); 2735 2736 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2737 unlikely(vq->avail_idx == vq->last_avail_idx)) 2738 return true; 2739 2740 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2741 __virtio16 flags; 2742 if (vhost_get_avail_flags(vq, &flags)) { 2743 vq_err(vq, "Failed to get flags"); 2744 return true; 2745 } 2746 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2747 } 2748 old = vq->signalled_used; 2749 v = vq->signalled_used_valid; 2750 new = vq->signalled_used = vq->last_used_idx; 2751 vq->signalled_used_valid = true; 2752 2753 if (unlikely(!v)) 2754 return true; 2755 2756 if (vhost_get_used_event(vq, &event)) { 2757 vq_err(vq, "Failed to get used event idx"); 2758 return true; 2759 } 2760 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2761 } 2762 2763 /* This actually signals the guest, using eventfd. */ 2764 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2765 { 2766 /* Signal the Guest tell them we used something up. */ 2767 if (vq->call_ctx.ctx && vhost_notify(dev, vq)) 2768 eventfd_signal(vq->call_ctx.ctx, 1); 2769 } 2770 EXPORT_SYMBOL_GPL(vhost_signal); 2771 2772 /* And here's the combo meal deal. Supersize me! */ 2773 void vhost_add_used_and_signal(struct vhost_dev *dev, 2774 struct vhost_virtqueue *vq, 2775 unsigned int head, int len) 2776 { 2777 vhost_add_used(vq, head, len); 2778 vhost_signal(dev, vq); 2779 } 2780 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2781 2782 /* multi-buffer version of vhost_add_used_and_signal */ 2783 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2784 struct vhost_virtqueue *vq, 2785 struct vring_used_elem *heads, unsigned count) 2786 { 2787 vhost_add_used_n(vq, heads, count); 2788 vhost_signal(dev, vq); 2789 } 2790 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2791 2792 /* return true if we're sure that avaiable ring is empty */ 2793 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2794 { 2795 __virtio16 avail_idx; 2796 int r; 2797 2798 if (vq->avail_idx != vq->last_avail_idx) 2799 return false; 2800 2801 r = vhost_get_avail_idx(vq, &avail_idx); 2802 if (unlikely(r)) 2803 return false; 2804 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2805 2806 return vq->avail_idx == vq->last_avail_idx; 2807 } 2808 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2809 2810 /* OK, now we need to know about added descriptors. */ 2811 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2812 { 2813 __virtio16 avail_idx; 2814 int r; 2815 2816 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2817 return false; 2818 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2819 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2820 r = vhost_update_used_flags(vq); 2821 if (r) { 2822 vq_err(vq, "Failed to enable notification at %p: %d\n", 2823 &vq->used->flags, r); 2824 return false; 2825 } 2826 } else { 2827 r = vhost_update_avail_event(vq); 2828 if (r) { 2829 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2830 vhost_avail_event(vq), r); 2831 return false; 2832 } 2833 } 2834 /* They could have slipped one in as we were doing that: make 2835 * sure it's written, then check again. */ 2836 smp_mb(); 2837 r = vhost_get_avail_idx(vq, &avail_idx); 2838 if (r) { 2839 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2840 &vq->avail->idx, r); 2841 return false; 2842 } 2843 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2844 2845 return vq->avail_idx != vq->last_avail_idx; 2846 } 2847 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2848 2849 /* We don't need to be notified again. */ 2850 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2851 { 2852 int r; 2853 2854 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2855 return; 2856 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2857 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2858 r = vhost_update_used_flags(vq); 2859 if (r) 2860 vq_err(vq, "Failed to disable notification at %p: %d\n", 2861 &vq->used->flags, r); 2862 } 2863 } 2864 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2865 2866 /* Create a new message. */ 2867 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2868 { 2869 /* Make sure all padding within the structure is initialized. */ 2870 struct vhost_msg_node *node = kzalloc(sizeof(*node), GFP_KERNEL); 2871 if (!node) 2872 return NULL; 2873 2874 node->vq = vq; 2875 node->msg.type = type; 2876 return node; 2877 } 2878 EXPORT_SYMBOL_GPL(vhost_new_msg); 2879 2880 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2881 struct vhost_msg_node *node) 2882 { 2883 spin_lock(&dev->iotlb_lock); 2884 list_add_tail(&node->node, head); 2885 spin_unlock(&dev->iotlb_lock); 2886 2887 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 2888 } 2889 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2890 2891 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2892 struct list_head *head) 2893 { 2894 struct vhost_msg_node *node = NULL; 2895 2896 spin_lock(&dev->iotlb_lock); 2897 if (!list_empty(head)) { 2898 node = list_first_entry(head, struct vhost_msg_node, 2899 node); 2900 list_del(&node->node); 2901 } 2902 spin_unlock(&dev->iotlb_lock); 2903 2904 return node; 2905 } 2906 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2907 2908 void vhost_set_backend_features(struct vhost_dev *dev, u64 features) 2909 { 2910 struct vhost_virtqueue *vq; 2911 int i; 2912 2913 mutex_lock(&dev->mutex); 2914 for (i = 0; i < dev->nvqs; ++i) { 2915 vq = dev->vqs[i]; 2916 mutex_lock(&vq->mutex); 2917 vq->acked_backend_features = features; 2918 mutex_unlock(&vq->mutex); 2919 } 2920 mutex_unlock(&dev->mutex); 2921 } 2922 EXPORT_SYMBOL_GPL(vhost_set_backend_features); 2923 2924 static int __init vhost_init(void) 2925 { 2926 return 0; 2927 } 2928 2929 static void __exit vhost_exit(void) 2930 { 2931 } 2932 2933 module_init(vhost_init); 2934 module_exit(vhost_exit); 2935 2936 MODULE_VERSION("0.0.1"); 2937 MODULE_LICENSE("GPL v2"); 2938 MODULE_AUTHOR("Michael S. Tsirkin"); 2939 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2940