1 /* Copyright (C) 2009 Red Hat, Inc. 2 * Copyright (C) 2006 Rusty Russell IBM Corporation 3 * 4 * Author: Michael S. Tsirkin <mst@redhat.com> 5 * 6 * Inspiration, some code, and most witty comments come from 7 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * 11 * Generic code for virtio server in host kernel. 12 */ 13 14 #include <linux/eventfd.h> 15 #include <linux/vhost.h> 16 #include <linux/uio.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_context.h> 19 #include <linux/miscdevice.h> 20 #include <linux/mutex.h> 21 #include <linux/poll.h> 22 #include <linux/file.h> 23 #include <linux/highmem.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 #include <linux/kthread.h> 27 #include <linux/cgroup.h> 28 #include <linux/module.h> 29 #include <linux/sort.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/signal.h> 32 #include <linux/interval_tree_generic.h> 33 #include <linux/nospec.h> 34 35 #include "vhost.h" 36 37 static ushort max_mem_regions = 64; 38 module_param(max_mem_regions, ushort, 0444); 39 MODULE_PARM_DESC(max_mem_regions, 40 "Maximum number of memory regions in memory map. (default: 64)"); 41 static int max_iotlb_entries = 2048; 42 module_param(max_iotlb_entries, int, 0444); 43 MODULE_PARM_DESC(max_iotlb_entries, 44 "Maximum number of iotlb entries. (default: 2048)"); 45 46 enum { 47 VHOST_MEMORY_F_LOG = 0x1, 48 }; 49 50 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 51 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 52 53 INTERVAL_TREE_DEFINE(struct vhost_umem_node, 54 rb, __u64, __subtree_last, 55 START, LAST, static inline, vhost_umem_interval_tree); 56 57 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 58 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 59 { 60 vq->user_be = !virtio_legacy_is_little_endian(); 61 } 62 63 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 64 { 65 vq->user_be = true; 66 } 67 68 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 69 { 70 vq->user_be = false; 71 } 72 73 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 74 { 75 struct vhost_vring_state s; 76 77 if (vq->private_data) 78 return -EBUSY; 79 80 if (copy_from_user(&s, argp, sizeof(s))) 81 return -EFAULT; 82 83 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 84 s.num != VHOST_VRING_BIG_ENDIAN) 85 return -EINVAL; 86 87 if (s.num == VHOST_VRING_BIG_ENDIAN) 88 vhost_enable_cross_endian_big(vq); 89 else 90 vhost_enable_cross_endian_little(vq); 91 92 return 0; 93 } 94 95 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 96 int __user *argp) 97 { 98 struct vhost_vring_state s = { 99 .index = idx, 100 .num = vq->user_be 101 }; 102 103 if (copy_to_user(argp, &s, sizeof(s))) 104 return -EFAULT; 105 106 return 0; 107 } 108 109 static void vhost_init_is_le(struct vhost_virtqueue *vq) 110 { 111 /* Note for legacy virtio: user_be is initialized at reset time 112 * according to the host endianness. If userspace does not set an 113 * explicit endianness, the default behavior is native endian, as 114 * expected by legacy virtio. 115 */ 116 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 117 } 118 #else 119 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 120 { 121 } 122 123 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 124 { 125 return -ENOIOCTLCMD; 126 } 127 128 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 129 int __user *argp) 130 { 131 return -ENOIOCTLCMD; 132 } 133 134 static void vhost_init_is_le(struct vhost_virtqueue *vq) 135 { 136 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 137 || virtio_legacy_is_little_endian(); 138 } 139 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 140 141 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 142 { 143 vhost_init_is_le(vq); 144 } 145 146 struct vhost_flush_struct { 147 struct vhost_work work; 148 struct completion wait_event; 149 }; 150 151 static void vhost_flush_work(struct vhost_work *work) 152 { 153 struct vhost_flush_struct *s; 154 155 s = container_of(work, struct vhost_flush_struct, work); 156 complete(&s->wait_event); 157 } 158 159 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 160 poll_table *pt) 161 { 162 struct vhost_poll *poll; 163 164 poll = container_of(pt, struct vhost_poll, table); 165 poll->wqh = wqh; 166 add_wait_queue(wqh, &poll->wait); 167 } 168 169 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 170 void *key) 171 { 172 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 173 174 if (!(key_to_poll(key) & poll->mask)) 175 return 0; 176 177 vhost_poll_queue(poll); 178 return 0; 179 } 180 181 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 182 { 183 clear_bit(VHOST_WORK_QUEUED, &work->flags); 184 work->fn = fn; 185 } 186 EXPORT_SYMBOL_GPL(vhost_work_init); 187 188 /* Init poll structure */ 189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 190 __poll_t mask, struct vhost_dev *dev) 191 { 192 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 193 init_poll_funcptr(&poll->table, vhost_poll_func); 194 poll->mask = mask; 195 poll->dev = dev; 196 poll->wqh = NULL; 197 198 vhost_work_init(&poll->work, fn); 199 } 200 EXPORT_SYMBOL_GPL(vhost_poll_init); 201 202 /* Start polling a file. We add ourselves to file's wait queue. The caller must 203 * keep a reference to a file until after vhost_poll_stop is called. */ 204 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 205 { 206 __poll_t mask; 207 int ret = 0; 208 209 if (poll->wqh) 210 return 0; 211 212 mask = vfs_poll(file, &poll->table); 213 if (mask) 214 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 215 if (mask & EPOLLERR) { 216 vhost_poll_stop(poll); 217 ret = -EINVAL; 218 } 219 220 return ret; 221 } 222 EXPORT_SYMBOL_GPL(vhost_poll_start); 223 224 /* Stop polling a file. After this function returns, it becomes safe to drop the 225 * file reference. You must also flush afterwards. */ 226 void vhost_poll_stop(struct vhost_poll *poll) 227 { 228 if (poll->wqh) { 229 remove_wait_queue(poll->wqh, &poll->wait); 230 poll->wqh = NULL; 231 } 232 } 233 EXPORT_SYMBOL_GPL(vhost_poll_stop); 234 235 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work) 236 { 237 struct vhost_flush_struct flush; 238 239 if (dev->worker) { 240 init_completion(&flush.wait_event); 241 vhost_work_init(&flush.work, vhost_flush_work); 242 243 vhost_work_queue(dev, &flush.work); 244 wait_for_completion(&flush.wait_event); 245 } 246 } 247 EXPORT_SYMBOL_GPL(vhost_work_flush); 248 249 /* Flush any work that has been scheduled. When calling this, don't hold any 250 * locks that are also used by the callback. */ 251 void vhost_poll_flush(struct vhost_poll *poll) 252 { 253 vhost_work_flush(poll->dev, &poll->work); 254 } 255 EXPORT_SYMBOL_GPL(vhost_poll_flush); 256 257 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work) 258 { 259 if (!dev->worker) 260 return; 261 262 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 263 /* We can only add the work to the list after we're 264 * sure it was not in the list. 265 * test_and_set_bit() implies a memory barrier. 266 */ 267 llist_add(&work->node, &dev->work_list); 268 wake_up_process(dev->worker); 269 } 270 } 271 EXPORT_SYMBOL_GPL(vhost_work_queue); 272 273 /* A lockless hint for busy polling code to exit the loop */ 274 bool vhost_has_work(struct vhost_dev *dev) 275 { 276 return !llist_empty(&dev->work_list); 277 } 278 EXPORT_SYMBOL_GPL(vhost_has_work); 279 280 void vhost_poll_queue(struct vhost_poll *poll) 281 { 282 vhost_work_queue(poll->dev, &poll->work); 283 } 284 EXPORT_SYMBOL_GPL(vhost_poll_queue); 285 286 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 287 { 288 int j; 289 290 for (j = 0; j < VHOST_NUM_ADDRS; j++) 291 vq->meta_iotlb[j] = NULL; 292 } 293 294 static void vhost_vq_meta_reset(struct vhost_dev *d) 295 { 296 int i; 297 298 for (i = 0; i < d->nvqs; ++i) 299 __vhost_vq_meta_reset(d->vqs[i]); 300 } 301 302 static void vhost_vq_reset(struct vhost_dev *dev, 303 struct vhost_virtqueue *vq) 304 { 305 vq->num = 1; 306 vq->desc = NULL; 307 vq->avail = NULL; 308 vq->used = NULL; 309 vq->last_avail_idx = 0; 310 vq->avail_idx = 0; 311 vq->last_used_idx = 0; 312 vq->signalled_used = 0; 313 vq->signalled_used_valid = false; 314 vq->used_flags = 0; 315 vq->log_used = false; 316 vq->log_addr = -1ull; 317 vq->private_data = NULL; 318 vq->acked_features = 0; 319 vq->acked_backend_features = 0; 320 vq->log_base = NULL; 321 vq->error_ctx = NULL; 322 vq->kick = NULL; 323 vq->call_ctx = NULL; 324 vq->log_ctx = NULL; 325 vhost_reset_is_le(vq); 326 vhost_disable_cross_endian(vq); 327 vq->busyloop_timeout = 0; 328 vq->umem = NULL; 329 vq->iotlb = NULL; 330 __vhost_vq_meta_reset(vq); 331 } 332 333 static int vhost_worker(void *data) 334 { 335 struct vhost_dev *dev = data; 336 struct vhost_work *work, *work_next; 337 struct llist_node *node; 338 mm_segment_t oldfs = get_fs(); 339 340 set_fs(USER_DS); 341 use_mm(dev->mm); 342 343 for (;;) { 344 /* mb paired w/ kthread_stop */ 345 set_current_state(TASK_INTERRUPTIBLE); 346 347 if (kthread_should_stop()) { 348 __set_current_state(TASK_RUNNING); 349 break; 350 } 351 352 node = llist_del_all(&dev->work_list); 353 if (!node) 354 schedule(); 355 356 node = llist_reverse_order(node); 357 /* make sure flag is seen after deletion */ 358 smp_wmb(); 359 llist_for_each_entry_safe(work, work_next, node, node) { 360 clear_bit(VHOST_WORK_QUEUED, &work->flags); 361 __set_current_state(TASK_RUNNING); 362 work->fn(work); 363 if (need_resched()) 364 schedule(); 365 } 366 } 367 unuse_mm(dev->mm); 368 set_fs(oldfs); 369 return 0; 370 } 371 372 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 373 { 374 kfree(vq->indirect); 375 vq->indirect = NULL; 376 kfree(vq->log); 377 vq->log = NULL; 378 kfree(vq->heads); 379 vq->heads = NULL; 380 } 381 382 /* Helper to allocate iovec buffers for all vqs. */ 383 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 384 { 385 struct vhost_virtqueue *vq; 386 int i; 387 388 for (i = 0; i < dev->nvqs; ++i) { 389 vq = dev->vqs[i]; 390 vq->indirect = kmalloc_array(UIO_MAXIOV, 391 sizeof(*vq->indirect), 392 GFP_KERNEL); 393 vq->log = kmalloc_array(UIO_MAXIOV, sizeof(*vq->log), 394 GFP_KERNEL); 395 vq->heads = kmalloc_array(UIO_MAXIOV, sizeof(*vq->heads), 396 GFP_KERNEL); 397 if (!vq->indirect || !vq->log || !vq->heads) 398 goto err_nomem; 399 } 400 return 0; 401 402 err_nomem: 403 for (; i >= 0; --i) 404 vhost_vq_free_iovecs(dev->vqs[i]); 405 return -ENOMEM; 406 } 407 408 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 409 { 410 int i; 411 412 for (i = 0; i < dev->nvqs; ++i) 413 vhost_vq_free_iovecs(dev->vqs[i]); 414 } 415 416 void vhost_dev_init(struct vhost_dev *dev, 417 struct vhost_virtqueue **vqs, int nvqs) 418 { 419 struct vhost_virtqueue *vq; 420 int i; 421 422 dev->vqs = vqs; 423 dev->nvqs = nvqs; 424 mutex_init(&dev->mutex); 425 dev->log_ctx = NULL; 426 dev->umem = NULL; 427 dev->iotlb = NULL; 428 dev->mm = NULL; 429 dev->worker = NULL; 430 init_llist_head(&dev->work_list); 431 init_waitqueue_head(&dev->wait); 432 INIT_LIST_HEAD(&dev->read_list); 433 INIT_LIST_HEAD(&dev->pending_list); 434 spin_lock_init(&dev->iotlb_lock); 435 436 437 for (i = 0; i < dev->nvqs; ++i) { 438 vq = dev->vqs[i]; 439 vq->log = NULL; 440 vq->indirect = NULL; 441 vq->heads = NULL; 442 vq->dev = dev; 443 mutex_init(&vq->mutex); 444 vhost_vq_reset(dev, vq); 445 if (vq->handle_kick) 446 vhost_poll_init(&vq->poll, vq->handle_kick, 447 EPOLLIN, dev); 448 } 449 } 450 EXPORT_SYMBOL_GPL(vhost_dev_init); 451 452 /* Caller should have device mutex */ 453 long vhost_dev_check_owner(struct vhost_dev *dev) 454 { 455 /* Are you the owner? If not, I don't think you mean to do that */ 456 return dev->mm == current->mm ? 0 : -EPERM; 457 } 458 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 459 460 struct vhost_attach_cgroups_struct { 461 struct vhost_work work; 462 struct task_struct *owner; 463 int ret; 464 }; 465 466 static void vhost_attach_cgroups_work(struct vhost_work *work) 467 { 468 struct vhost_attach_cgroups_struct *s; 469 470 s = container_of(work, struct vhost_attach_cgroups_struct, work); 471 s->ret = cgroup_attach_task_all(s->owner, current); 472 } 473 474 static int vhost_attach_cgroups(struct vhost_dev *dev) 475 { 476 struct vhost_attach_cgroups_struct attach; 477 478 attach.owner = current; 479 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 480 vhost_work_queue(dev, &attach.work); 481 vhost_work_flush(dev, &attach.work); 482 return attach.ret; 483 } 484 485 /* Caller should have device mutex */ 486 bool vhost_dev_has_owner(struct vhost_dev *dev) 487 { 488 return dev->mm; 489 } 490 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 491 492 /* Caller should have device mutex */ 493 long vhost_dev_set_owner(struct vhost_dev *dev) 494 { 495 struct task_struct *worker; 496 int err; 497 498 /* Is there an owner already? */ 499 if (vhost_dev_has_owner(dev)) { 500 err = -EBUSY; 501 goto err_mm; 502 } 503 504 /* No owner, become one */ 505 dev->mm = get_task_mm(current); 506 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid); 507 if (IS_ERR(worker)) { 508 err = PTR_ERR(worker); 509 goto err_worker; 510 } 511 512 dev->worker = worker; 513 wake_up_process(worker); /* avoid contributing to loadavg */ 514 515 err = vhost_attach_cgroups(dev); 516 if (err) 517 goto err_cgroup; 518 519 err = vhost_dev_alloc_iovecs(dev); 520 if (err) 521 goto err_cgroup; 522 523 return 0; 524 err_cgroup: 525 kthread_stop(worker); 526 dev->worker = NULL; 527 err_worker: 528 if (dev->mm) 529 mmput(dev->mm); 530 dev->mm = NULL; 531 err_mm: 532 return err; 533 } 534 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 535 536 struct vhost_umem *vhost_dev_reset_owner_prepare(void) 537 { 538 return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL); 539 } 540 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 541 542 /* Caller should have device mutex */ 543 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem) 544 { 545 int i; 546 547 vhost_dev_cleanup(dev); 548 549 /* Restore memory to default empty mapping. */ 550 INIT_LIST_HEAD(&umem->umem_list); 551 dev->umem = umem; 552 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 553 * VQs aren't running. 554 */ 555 for (i = 0; i < dev->nvqs; ++i) 556 dev->vqs[i]->umem = umem; 557 } 558 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 559 560 void vhost_dev_stop(struct vhost_dev *dev) 561 { 562 int i; 563 564 for (i = 0; i < dev->nvqs; ++i) { 565 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) { 566 vhost_poll_stop(&dev->vqs[i]->poll); 567 vhost_poll_flush(&dev->vqs[i]->poll); 568 } 569 } 570 } 571 EXPORT_SYMBOL_GPL(vhost_dev_stop); 572 573 static void vhost_umem_free(struct vhost_umem *umem, 574 struct vhost_umem_node *node) 575 { 576 vhost_umem_interval_tree_remove(node, &umem->umem_tree); 577 list_del(&node->link); 578 kfree(node); 579 umem->numem--; 580 } 581 582 static void vhost_umem_clean(struct vhost_umem *umem) 583 { 584 struct vhost_umem_node *node, *tmp; 585 586 if (!umem) 587 return; 588 589 list_for_each_entry_safe(node, tmp, &umem->umem_list, link) 590 vhost_umem_free(umem, node); 591 592 kvfree(umem); 593 } 594 595 static void vhost_clear_msg(struct vhost_dev *dev) 596 { 597 struct vhost_msg_node *node, *n; 598 599 spin_lock(&dev->iotlb_lock); 600 601 list_for_each_entry_safe(node, n, &dev->read_list, node) { 602 list_del(&node->node); 603 kfree(node); 604 } 605 606 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 607 list_del(&node->node); 608 kfree(node); 609 } 610 611 spin_unlock(&dev->iotlb_lock); 612 } 613 614 void vhost_dev_cleanup(struct vhost_dev *dev) 615 { 616 int i; 617 618 for (i = 0; i < dev->nvqs; ++i) { 619 if (dev->vqs[i]->error_ctx) 620 eventfd_ctx_put(dev->vqs[i]->error_ctx); 621 if (dev->vqs[i]->kick) 622 fput(dev->vqs[i]->kick); 623 if (dev->vqs[i]->call_ctx) 624 eventfd_ctx_put(dev->vqs[i]->call_ctx); 625 vhost_vq_reset(dev, dev->vqs[i]); 626 } 627 vhost_dev_free_iovecs(dev); 628 if (dev->log_ctx) 629 eventfd_ctx_put(dev->log_ctx); 630 dev->log_ctx = NULL; 631 /* No one will access memory at this point */ 632 vhost_umem_clean(dev->umem); 633 dev->umem = NULL; 634 vhost_umem_clean(dev->iotlb); 635 dev->iotlb = NULL; 636 vhost_clear_msg(dev); 637 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 638 WARN_ON(!llist_empty(&dev->work_list)); 639 if (dev->worker) { 640 kthread_stop(dev->worker); 641 dev->worker = NULL; 642 } 643 if (dev->mm) 644 mmput(dev->mm); 645 dev->mm = NULL; 646 } 647 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 648 649 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 650 { 651 u64 a = addr / VHOST_PAGE_SIZE / 8; 652 653 /* Make sure 64 bit math will not overflow. */ 654 if (a > ULONG_MAX - (unsigned long)log_base || 655 a + (unsigned long)log_base > ULONG_MAX) 656 return false; 657 658 return access_ok(log_base + a, 659 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 660 } 661 662 static bool vhost_overflow(u64 uaddr, u64 size) 663 { 664 /* Make sure 64 bit math will not overflow. */ 665 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size; 666 } 667 668 /* Caller should have vq mutex and device mutex. */ 669 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem, 670 int log_all) 671 { 672 struct vhost_umem_node *node; 673 674 if (!umem) 675 return false; 676 677 list_for_each_entry(node, &umem->umem_list, link) { 678 unsigned long a = node->userspace_addr; 679 680 if (vhost_overflow(node->userspace_addr, node->size)) 681 return false; 682 683 684 if (!access_ok((void __user *)a, 685 node->size)) 686 return false; 687 else if (log_all && !log_access_ok(log_base, 688 node->start, 689 node->size)) 690 return false; 691 } 692 return true; 693 } 694 695 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 696 u64 addr, unsigned int size, 697 int type) 698 { 699 const struct vhost_umem_node *node = vq->meta_iotlb[type]; 700 701 if (!node) 702 return NULL; 703 704 return (void *)(uintptr_t)(node->userspace_addr + addr - node->start); 705 } 706 707 /* Can we switch to this memory table? */ 708 /* Caller should have device mutex but not vq mutex */ 709 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem, 710 int log_all) 711 { 712 int i; 713 714 for (i = 0; i < d->nvqs; ++i) { 715 bool ok; 716 bool log; 717 718 mutex_lock(&d->vqs[i]->mutex); 719 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 720 /* If ring is inactive, will check when it's enabled. */ 721 if (d->vqs[i]->private_data) 722 ok = vq_memory_access_ok(d->vqs[i]->log_base, 723 umem, log); 724 else 725 ok = true; 726 mutex_unlock(&d->vqs[i]->mutex); 727 if (!ok) 728 return false; 729 } 730 return true; 731 } 732 733 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 734 struct iovec iov[], int iov_size, int access); 735 736 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 737 const void *from, unsigned size) 738 { 739 int ret; 740 741 if (!vq->iotlb) 742 return __copy_to_user(to, from, size); 743 else { 744 /* This function should be called after iotlb 745 * prefetch, which means we're sure that all vq 746 * could be access through iotlb. So -EAGAIN should 747 * not happen in this case. 748 */ 749 struct iov_iter t; 750 void __user *uaddr = vhost_vq_meta_fetch(vq, 751 (u64)(uintptr_t)to, size, 752 VHOST_ADDR_USED); 753 754 if (uaddr) 755 return __copy_to_user(uaddr, from, size); 756 757 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 758 ARRAY_SIZE(vq->iotlb_iov), 759 VHOST_ACCESS_WO); 760 if (ret < 0) 761 goto out; 762 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size); 763 ret = copy_to_iter(from, size, &t); 764 if (ret == size) 765 ret = 0; 766 } 767 out: 768 return ret; 769 } 770 771 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 772 void __user *from, unsigned size) 773 { 774 int ret; 775 776 if (!vq->iotlb) 777 return __copy_from_user(to, from, size); 778 else { 779 /* This function should be called after iotlb 780 * prefetch, which means we're sure that vq 781 * could be access through iotlb. So -EAGAIN should 782 * not happen in this case. 783 */ 784 void __user *uaddr = vhost_vq_meta_fetch(vq, 785 (u64)(uintptr_t)from, size, 786 VHOST_ADDR_DESC); 787 struct iov_iter f; 788 789 if (uaddr) 790 return __copy_from_user(to, uaddr, size); 791 792 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 793 ARRAY_SIZE(vq->iotlb_iov), 794 VHOST_ACCESS_RO); 795 if (ret < 0) { 796 vq_err(vq, "IOTLB translation failure: uaddr " 797 "%p size 0x%llx\n", from, 798 (unsigned long long) size); 799 goto out; 800 } 801 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size); 802 ret = copy_from_iter(to, size, &f); 803 if (ret == size) 804 ret = 0; 805 } 806 807 out: 808 return ret; 809 } 810 811 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 812 void __user *addr, unsigned int size, 813 int type) 814 { 815 int ret; 816 817 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 818 ARRAY_SIZE(vq->iotlb_iov), 819 VHOST_ACCESS_RO); 820 if (ret < 0) { 821 vq_err(vq, "IOTLB translation failure: uaddr " 822 "%p size 0x%llx\n", addr, 823 (unsigned long long) size); 824 return NULL; 825 } 826 827 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 828 vq_err(vq, "Non atomic userspace memory access: uaddr " 829 "%p size 0x%llx\n", addr, 830 (unsigned long long) size); 831 return NULL; 832 } 833 834 return vq->iotlb_iov[0].iov_base; 835 } 836 837 /* This function should be called after iotlb 838 * prefetch, which means we're sure that vq 839 * could be access through iotlb. So -EAGAIN should 840 * not happen in this case. 841 */ 842 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 843 void *addr, unsigned int size, 844 int type) 845 { 846 void __user *uaddr = vhost_vq_meta_fetch(vq, 847 (u64)(uintptr_t)addr, size, type); 848 if (uaddr) 849 return uaddr; 850 851 return __vhost_get_user_slow(vq, addr, size, type); 852 } 853 854 #define vhost_put_user(vq, x, ptr) \ 855 ({ \ 856 int ret = -EFAULT; \ 857 if (!vq->iotlb) { \ 858 ret = __put_user(x, ptr); \ 859 } else { \ 860 __typeof__(ptr) to = \ 861 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 862 sizeof(*ptr), VHOST_ADDR_USED); \ 863 if (to != NULL) \ 864 ret = __put_user(x, to); \ 865 else \ 866 ret = -EFAULT; \ 867 } \ 868 ret; \ 869 }) 870 871 #define vhost_get_user(vq, x, ptr, type) \ 872 ({ \ 873 int ret; \ 874 if (!vq->iotlb) { \ 875 ret = __get_user(x, ptr); \ 876 } else { \ 877 __typeof__(ptr) from = \ 878 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 879 sizeof(*ptr), \ 880 type); \ 881 if (from != NULL) \ 882 ret = __get_user(x, from); \ 883 else \ 884 ret = -EFAULT; \ 885 } \ 886 ret; \ 887 }) 888 889 #define vhost_get_avail(vq, x, ptr) \ 890 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 891 892 #define vhost_get_used(vq, x, ptr) \ 893 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 894 895 static void vhost_dev_lock_vqs(struct vhost_dev *d) 896 { 897 int i = 0; 898 for (i = 0; i < d->nvqs; ++i) 899 mutex_lock_nested(&d->vqs[i]->mutex, i); 900 } 901 902 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 903 { 904 int i = 0; 905 for (i = 0; i < d->nvqs; ++i) 906 mutex_unlock(&d->vqs[i]->mutex); 907 } 908 909 static int vhost_new_umem_range(struct vhost_umem *umem, 910 u64 start, u64 size, u64 end, 911 u64 userspace_addr, int perm) 912 { 913 struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC); 914 915 if (!node) 916 return -ENOMEM; 917 918 if (umem->numem == max_iotlb_entries) { 919 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link); 920 vhost_umem_free(umem, tmp); 921 } 922 923 node->start = start; 924 node->size = size; 925 node->last = end; 926 node->userspace_addr = userspace_addr; 927 node->perm = perm; 928 INIT_LIST_HEAD(&node->link); 929 list_add_tail(&node->link, &umem->umem_list); 930 vhost_umem_interval_tree_insert(node, &umem->umem_tree); 931 umem->numem++; 932 933 return 0; 934 } 935 936 static void vhost_del_umem_range(struct vhost_umem *umem, 937 u64 start, u64 end) 938 { 939 struct vhost_umem_node *node; 940 941 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 942 start, end))) 943 vhost_umem_free(umem, node); 944 } 945 946 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 947 struct vhost_iotlb_msg *msg) 948 { 949 struct vhost_msg_node *node, *n; 950 951 spin_lock(&d->iotlb_lock); 952 953 list_for_each_entry_safe(node, n, &d->pending_list, node) { 954 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 955 if (msg->iova <= vq_msg->iova && 956 msg->iova + msg->size - 1 >= vq_msg->iova && 957 vq_msg->type == VHOST_IOTLB_MISS) { 958 vhost_poll_queue(&node->vq->poll); 959 list_del(&node->node); 960 kfree(node); 961 } 962 } 963 964 spin_unlock(&d->iotlb_lock); 965 } 966 967 static bool umem_access_ok(u64 uaddr, u64 size, int access) 968 { 969 unsigned long a = uaddr; 970 971 /* Make sure 64 bit math will not overflow. */ 972 if (vhost_overflow(uaddr, size)) 973 return false; 974 975 if ((access & VHOST_ACCESS_RO) && 976 !access_ok((void __user *)a, size)) 977 return false; 978 if ((access & VHOST_ACCESS_WO) && 979 !access_ok((void __user *)a, size)) 980 return false; 981 return true; 982 } 983 984 static int vhost_process_iotlb_msg(struct vhost_dev *dev, 985 struct vhost_iotlb_msg *msg) 986 { 987 int ret = 0; 988 989 mutex_lock(&dev->mutex); 990 vhost_dev_lock_vqs(dev); 991 switch (msg->type) { 992 case VHOST_IOTLB_UPDATE: 993 if (!dev->iotlb) { 994 ret = -EFAULT; 995 break; 996 } 997 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 998 ret = -EFAULT; 999 break; 1000 } 1001 vhost_vq_meta_reset(dev); 1002 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size, 1003 msg->iova + msg->size - 1, 1004 msg->uaddr, msg->perm)) { 1005 ret = -ENOMEM; 1006 break; 1007 } 1008 vhost_iotlb_notify_vq(dev, msg); 1009 break; 1010 case VHOST_IOTLB_INVALIDATE: 1011 if (!dev->iotlb) { 1012 ret = -EFAULT; 1013 break; 1014 } 1015 vhost_vq_meta_reset(dev); 1016 vhost_del_umem_range(dev->iotlb, msg->iova, 1017 msg->iova + msg->size - 1); 1018 break; 1019 default: 1020 ret = -EINVAL; 1021 break; 1022 } 1023 1024 vhost_dev_unlock_vqs(dev); 1025 mutex_unlock(&dev->mutex); 1026 1027 return ret; 1028 } 1029 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1030 struct iov_iter *from) 1031 { 1032 struct vhost_iotlb_msg msg; 1033 size_t offset; 1034 int type, ret; 1035 1036 ret = copy_from_iter(&type, sizeof(type), from); 1037 if (ret != sizeof(type)) { 1038 ret = -EINVAL; 1039 goto done; 1040 } 1041 1042 switch (type) { 1043 case VHOST_IOTLB_MSG: 1044 /* There maybe a hole after type for V1 message type, 1045 * so skip it here. 1046 */ 1047 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int); 1048 break; 1049 case VHOST_IOTLB_MSG_V2: 1050 offset = sizeof(__u32); 1051 break; 1052 default: 1053 ret = -EINVAL; 1054 goto done; 1055 } 1056 1057 iov_iter_advance(from, offset); 1058 ret = copy_from_iter(&msg, sizeof(msg), from); 1059 if (ret != sizeof(msg)) { 1060 ret = -EINVAL; 1061 goto done; 1062 } 1063 if (vhost_process_iotlb_msg(dev, &msg)) { 1064 ret = -EFAULT; 1065 goto done; 1066 } 1067 1068 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) : 1069 sizeof(struct vhost_msg_v2); 1070 done: 1071 return ret; 1072 } 1073 EXPORT_SYMBOL(vhost_chr_write_iter); 1074 1075 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1076 poll_table *wait) 1077 { 1078 __poll_t mask = 0; 1079 1080 poll_wait(file, &dev->wait, wait); 1081 1082 if (!list_empty(&dev->read_list)) 1083 mask |= EPOLLIN | EPOLLRDNORM; 1084 1085 return mask; 1086 } 1087 EXPORT_SYMBOL(vhost_chr_poll); 1088 1089 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1090 int noblock) 1091 { 1092 DEFINE_WAIT(wait); 1093 struct vhost_msg_node *node; 1094 ssize_t ret = 0; 1095 unsigned size = sizeof(struct vhost_msg); 1096 1097 if (iov_iter_count(to) < size) 1098 return 0; 1099 1100 while (1) { 1101 if (!noblock) 1102 prepare_to_wait(&dev->wait, &wait, 1103 TASK_INTERRUPTIBLE); 1104 1105 node = vhost_dequeue_msg(dev, &dev->read_list); 1106 if (node) 1107 break; 1108 if (noblock) { 1109 ret = -EAGAIN; 1110 break; 1111 } 1112 if (signal_pending(current)) { 1113 ret = -ERESTARTSYS; 1114 break; 1115 } 1116 if (!dev->iotlb) { 1117 ret = -EBADFD; 1118 break; 1119 } 1120 1121 schedule(); 1122 } 1123 1124 if (!noblock) 1125 finish_wait(&dev->wait, &wait); 1126 1127 if (node) { 1128 struct vhost_iotlb_msg *msg; 1129 void *start = &node->msg; 1130 1131 switch (node->msg.type) { 1132 case VHOST_IOTLB_MSG: 1133 size = sizeof(node->msg); 1134 msg = &node->msg.iotlb; 1135 break; 1136 case VHOST_IOTLB_MSG_V2: 1137 size = sizeof(node->msg_v2); 1138 msg = &node->msg_v2.iotlb; 1139 break; 1140 default: 1141 BUG(); 1142 break; 1143 } 1144 1145 ret = copy_to_iter(start, size, to); 1146 if (ret != size || msg->type != VHOST_IOTLB_MISS) { 1147 kfree(node); 1148 return ret; 1149 } 1150 vhost_enqueue_msg(dev, &dev->pending_list, node); 1151 } 1152 1153 return ret; 1154 } 1155 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1156 1157 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1158 { 1159 struct vhost_dev *dev = vq->dev; 1160 struct vhost_msg_node *node; 1161 struct vhost_iotlb_msg *msg; 1162 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2); 1163 1164 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG); 1165 if (!node) 1166 return -ENOMEM; 1167 1168 if (v2) { 1169 node->msg_v2.type = VHOST_IOTLB_MSG_V2; 1170 msg = &node->msg_v2.iotlb; 1171 } else { 1172 msg = &node->msg.iotlb; 1173 } 1174 1175 msg->type = VHOST_IOTLB_MISS; 1176 msg->iova = iova; 1177 msg->perm = access; 1178 1179 vhost_enqueue_msg(dev, &dev->read_list, node); 1180 1181 return 0; 1182 } 1183 1184 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1185 struct vring_desc __user *desc, 1186 struct vring_avail __user *avail, 1187 struct vring_used __user *used) 1188 1189 { 1190 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1191 1192 return access_ok(desc, num * sizeof *desc) && 1193 access_ok(avail, 1194 sizeof *avail + num * sizeof *avail->ring + s) && 1195 access_ok(used, 1196 sizeof *used + num * sizeof *used->ring + s); 1197 } 1198 1199 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1200 const struct vhost_umem_node *node, 1201 int type) 1202 { 1203 int access = (type == VHOST_ADDR_USED) ? 1204 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1205 1206 if (likely(node->perm & access)) 1207 vq->meta_iotlb[type] = node; 1208 } 1209 1210 static bool iotlb_access_ok(struct vhost_virtqueue *vq, 1211 int access, u64 addr, u64 len, int type) 1212 { 1213 const struct vhost_umem_node *node; 1214 struct vhost_umem *umem = vq->iotlb; 1215 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1216 1217 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1218 return true; 1219 1220 while (len > s) { 1221 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1222 addr, 1223 last); 1224 if (node == NULL || node->start > addr) { 1225 vhost_iotlb_miss(vq, addr, access); 1226 return false; 1227 } else if (!(node->perm & access)) { 1228 /* Report the possible access violation by 1229 * request another translation from userspace. 1230 */ 1231 return false; 1232 } 1233 1234 size = node->size - addr + node->start; 1235 1236 if (orig_addr == addr && size >= len) 1237 vhost_vq_meta_update(vq, node, type); 1238 1239 s += size; 1240 addr += size; 1241 } 1242 1243 return true; 1244 } 1245 1246 int vq_iotlb_prefetch(struct vhost_virtqueue *vq) 1247 { 1248 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1249 unsigned int num = vq->num; 1250 1251 if (!vq->iotlb) 1252 return 1; 1253 1254 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc, 1255 num * sizeof(*vq->desc), VHOST_ADDR_DESC) && 1256 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail, 1257 sizeof *vq->avail + 1258 num * sizeof(*vq->avail->ring) + s, 1259 VHOST_ADDR_AVAIL) && 1260 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used, 1261 sizeof *vq->used + 1262 num * sizeof(*vq->used->ring) + s, 1263 VHOST_ADDR_USED); 1264 } 1265 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch); 1266 1267 /* Can we log writes? */ 1268 /* Caller should have device mutex but not vq mutex */ 1269 bool vhost_log_access_ok(struct vhost_dev *dev) 1270 { 1271 return memory_access_ok(dev, dev->umem, 1); 1272 } 1273 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1274 1275 /* Verify access for write logging. */ 1276 /* Caller should have vq mutex and device mutex */ 1277 static bool vq_log_access_ok(struct vhost_virtqueue *vq, 1278 void __user *log_base) 1279 { 1280 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1281 1282 return vq_memory_access_ok(log_base, vq->umem, 1283 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1284 (!vq->log_used || log_access_ok(log_base, vq->log_addr, 1285 sizeof *vq->used + 1286 vq->num * sizeof *vq->used->ring + s)); 1287 } 1288 1289 /* Can we start vq? */ 1290 /* Caller should have vq mutex and device mutex */ 1291 bool vhost_vq_access_ok(struct vhost_virtqueue *vq) 1292 { 1293 if (!vq_log_access_ok(vq, vq->log_base)) 1294 return false; 1295 1296 /* Access validation occurs at prefetch time with IOTLB */ 1297 if (vq->iotlb) 1298 return true; 1299 1300 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1301 } 1302 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1303 1304 static struct vhost_umem *vhost_umem_alloc(void) 1305 { 1306 struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL); 1307 1308 if (!umem) 1309 return NULL; 1310 1311 umem->umem_tree = RB_ROOT_CACHED; 1312 umem->numem = 0; 1313 INIT_LIST_HEAD(&umem->umem_list); 1314 1315 return umem; 1316 } 1317 1318 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1319 { 1320 struct vhost_memory mem, *newmem; 1321 struct vhost_memory_region *region; 1322 struct vhost_umem *newumem, *oldumem; 1323 unsigned long size = offsetof(struct vhost_memory, regions); 1324 int i; 1325 1326 if (copy_from_user(&mem, m, size)) 1327 return -EFAULT; 1328 if (mem.padding) 1329 return -EOPNOTSUPP; 1330 if (mem.nregions > max_mem_regions) 1331 return -E2BIG; 1332 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), 1333 GFP_KERNEL); 1334 if (!newmem) 1335 return -ENOMEM; 1336 1337 memcpy(newmem, &mem, size); 1338 if (copy_from_user(newmem->regions, m->regions, 1339 mem.nregions * sizeof *m->regions)) { 1340 kvfree(newmem); 1341 return -EFAULT; 1342 } 1343 1344 newumem = vhost_umem_alloc(); 1345 if (!newumem) { 1346 kvfree(newmem); 1347 return -ENOMEM; 1348 } 1349 1350 for (region = newmem->regions; 1351 region < newmem->regions + mem.nregions; 1352 region++) { 1353 if (vhost_new_umem_range(newumem, 1354 region->guest_phys_addr, 1355 region->memory_size, 1356 region->guest_phys_addr + 1357 region->memory_size - 1, 1358 region->userspace_addr, 1359 VHOST_ACCESS_RW)) 1360 goto err; 1361 } 1362 1363 if (!memory_access_ok(d, newumem, 0)) 1364 goto err; 1365 1366 oldumem = d->umem; 1367 d->umem = newumem; 1368 1369 /* All memory accesses are done under some VQ mutex. */ 1370 for (i = 0; i < d->nvqs; ++i) { 1371 mutex_lock(&d->vqs[i]->mutex); 1372 d->vqs[i]->umem = newumem; 1373 mutex_unlock(&d->vqs[i]->mutex); 1374 } 1375 1376 kvfree(newmem); 1377 vhost_umem_clean(oldumem); 1378 return 0; 1379 1380 err: 1381 vhost_umem_clean(newumem); 1382 kvfree(newmem); 1383 return -EFAULT; 1384 } 1385 1386 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1387 { 1388 struct file *eventfp, *filep = NULL; 1389 bool pollstart = false, pollstop = false; 1390 struct eventfd_ctx *ctx = NULL; 1391 u32 __user *idxp = argp; 1392 struct vhost_virtqueue *vq; 1393 struct vhost_vring_state s; 1394 struct vhost_vring_file f; 1395 struct vhost_vring_addr a; 1396 u32 idx; 1397 long r; 1398 1399 r = get_user(idx, idxp); 1400 if (r < 0) 1401 return r; 1402 if (idx >= d->nvqs) 1403 return -ENOBUFS; 1404 1405 idx = array_index_nospec(idx, d->nvqs); 1406 vq = d->vqs[idx]; 1407 1408 mutex_lock(&vq->mutex); 1409 1410 switch (ioctl) { 1411 case VHOST_SET_VRING_NUM: 1412 /* Resizing ring with an active backend? 1413 * You don't want to do that. */ 1414 if (vq->private_data) { 1415 r = -EBUSY; 1416 break; 1417 } 1418 if (copy_from_user(&s, argp, sizeof s)) { 1419 r = -EFAULT; 1420 break; 1421 } 1422 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) { 1423 r = -EINVAL; 1424 break; 1425 } 1426 vq->num = s.num; 1427 break; 1428 case VHOST_SET_VRING_BASE: 1429 /* Moving base with an active backend? 1430 * You don't want to do that. */ 1431 if (vq->private_data) { 1432 r = -EBUSY; 1433 break; 1434 } 1435 if (copy_from_user(&s, argp, sizeof s)) { 1436 r = -EFAULT; 1437 break; 1438 } 1439 if (s.num > 0xffff) { 1440 r = -EINVAL; 1441 break; 1442 } 1443 vq->last_avail_idx = s.num; 1444 /* Forget the cached index value. */ 1445 vq->avail_idx = vq->last_avail_idx; 1446 break; 1447 case VHOST_GET_VRING_BASE: 1448 s.index = idx; 1449 s.num = vq->last_avail_idx; 1450 if (copy_to_user(argp, &s, sizeof s)) 1451 r = -EFAULT; 1452 break; 1453 case VHOST_SET_VRING_ADDR: 1454 if (copy_from_user(&a, argp, sizeof a)) { 1455 r = -EFAULT; 1456 break; 1457 } 1458 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) { 1459 r = -EOPNOTSUPP; 1460 break; 1461 } 1462 /* For 32bit, verify that the top 32bits of the user 1463 data are set to zero. */ 1464 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1465 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1466 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) { 1467 r = -EFAULT; 1468 break; 1469 } 1470 1471 /* Make sure it's safe to cast pointers to vring types. */ 1472 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1473 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1474 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1475 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1476 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) { 1477 r = -EINVAL; 1478 break; 1479 } 1480 1481 /* We only verify access here if backend is configured. 1482 * If it is not, we don't as size might not have been setup. 1483 * We will verify when backend is configured. */ 1484 if (vq->private_data) { 1485 if (!vq_access_ok(vq, vq->num, 1486 (void __user *)(unsigned long)a.desc_user_addr, 1487 (void __user *)(unsigned long)a.avail_user_addr, 1488 (void __user *)(unsigned long)a.used_user_addr)) { 1489 r = -EINVAL; 1490 break; 1491 } 1492 1493 /* Also validate log access for used ring if enabled. */ 1494 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) && 1495 !log_access_ok(vq->log_base, a.log_guest_addr, 1496 sizeof *vq->used + 1497 vq->num * sizeof *vq->used->ring)) { 1498 r = -EINVAL; 1499 break; 1500 } 1501 } 1502 1503 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1504 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1505 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1506 vq->log_addr = a.log_guest_addr; 1507 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1508 break; 1509 case VHOST_SET_VRING_KICK: 1510 if (copy_from_user(&f, argp, sizeof f)) { 1511 r = -EFAULT; 1512 break; 1513 } 1514 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1515 if (IS_ERR(eventfp)) { 1516 r = PTR_ERR(eventfp); 1517 break; 1518 } 1519 if (eventfp != vq->kick) { 1520 pollstop = (filep = vq->kick) != NULL; 1521 pollstart = (vq->kick = eventfp) != NULL; 1522 } else 1523 filep = eventfp; 1524 break; 1525 case VHOST_SET_VRING_CALL: 1526 if (copy_from_user(&f, argp, sizeof f)) { 1527 r = -EFAULT; 1528 break; 1529 } 1530 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1531 if (IS_ERR(ctx)) { 1532 r = PTR_ERR(ctx); 1533 break; 1534 } 1535 swap(ctx, vq->call_ctx); 1536 break; 1537 case VHOST_SET_VRING_ERR: 1538 if (copy_from_user(&f, argp, sizeof f)) { 1539 r = -EFAULT; 1540 break; 1541 } 1542 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1543 if (IS_ERR(ctx)) { 1544 r = PTR_ERR(ctx); 1545 break; 1546 } 1547 swap(ctx, vq->error_ctx); 1548 break; 1549 case VHOST_SET_VRING_ENDIAN: 1550 r = vhost_set_vring_endian(vq, argp); 1551 break; 1552 case VHOST_GET_VRING_ENDIAN: 1553 r = vhost_get_vring_endian(vq, idx, argp); 1554 break; 1555 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1556 if (copy_from_user(&s, argp, sizeof(s))) { 1557 r = -EFAULT; 1558 break; 1559 } 1560 vq->busyloop_timeout = s.num; 1561 break; 1562 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1563 s.index = idx; 1564 s.num = vq->busyloop_timeout; 1565 if (copy_to_user(argp, &s, sizeof(s))) 1566 r = -EFAULT; 1567 break; 1568 default: 1569 r = -ENOIOCTLCMD; 1570 } 1571 1572 if (pollstop && vq->handle_kick) 1573 vhost_poll_stop(&vq->poll); 1574 1575 if (!IS_ERR_OR_NULL(ctx)) 1576 eventfd_ctx_put(ctx); 1577 if (filep) 1578 fput(filep); 1579 1580 if (pollstart && vq->handle_kick) 1581 r = vhost_poll_start(&vq->poll, vq->kick); 1582 1583 mutex_unlock(&vq->mutex); 1584 1585 if (pollstop && vq->handle_kick) 1586 vhost_poll_flush(&vq->poll); 1587 return r; 1588 } 1589 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 1590 1591 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled) 1592 { 1593 struct vhost_umem *niotlb, *oiotlb; 1594 int i; 1595 1596 niotlb = vhost_umem_alloc(); 1597 if (!niotlb) 1598 return -ENOMEM; 1599 1600 oiotlb = d->iotlb; 1601 d->iotlb = niotlb; 1602 1603 for (i = 0; i < d->nvqs; ++i) { 1604 struct vhost_virtqueue *vq = d->vqs[i]; 1605 1606 mutex_lock(&vq->mutex); 1607 vq->iotlb = niotlb; 1608 __vhost_vq_meta_reset(vq); 1609 mutex_unlock(&vq->mutex); 1610 } 1611 1612 vhost_umem_clean(oiotlb); 1613 1614 return 0; 1615 } 1616 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 1617 1618 /* Caller must have device mutex */ 1619 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1620 { 1621 struct eventfd_ctx *ctx; 1622 u64 p; 1623 long r; 1624 int i, fd; 1625 1626 /* If you are not the owner, you can become one */ 1627 if (ioctl == VHOST_SET_OWNER) { 1628 r = vhost_dev_set_owner(d); 1629 goto done; 1630 } 1631 1632 /* You must be the owner to do anything else */ 1633 r = vhost_dev_check_owner(d); 1634 if (r) 1635 goto done; 1636 1637 switch (ioctl) { 1638 case VHOST_SET_MEM_TABLE: 1639 r = vhost_set_memory(d, argp); 1640 break; 1641 case VHOST_SET_LOG_BASE: 1642 if (copy_from_user(&p, argp, sizeof p)) { 1643 r = -EFAULT; 1644 break; 1645 } 1646 if ((u64)(unsigned long)p != p) { 1647 r = -EFAULT; 1648 break; 1649 } 1650 for (i = 0; i < d->nvqs; ++i) { 1651 struct vhost_virtqueue *vq; 1652 void __user *base = (void __user *)(unsigned long)p; 1653 vq = d->vqs[i]; 1654 mutex_lock(&vq->mutex); 1655 /* If ring is inactive, will check when it's enabled. */ 1656 if (vq->private_data && !vq_log_access_ok(vq, base)) 1657 r = -EFAULT; 1658 else 1659 vq->log_base = base; 1660 mutex_unlock(&vq->mutex); 1661 } 1662 break; 1663 case VHOST_SET_LOG_FD: 1664 r = get_user(fd, (int __user *)argp); 1665 if (r < 0) 1666 break; 1667 ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd); 1668 if (IS_ERR(ctx)) { 1669 r = PTR_ERR(ctx); 1670 break; 1671 } 1672 swap(ctx, d->log_ctx); 1673 for (i = 0; i < d->nvqs; ++i) { 1674 mutex_lock(&d->vqs[i]->mutex); 1675 d->vqs[i]->log_ctx = d->log_ctx; 1676 mutex_unlock(&d->vqs[i]->mutex); 1677 } 1678 if (ctx) 1679 eventfd_ctx_put(ctx); 1680 break; 1681 default: 1682 r = -ENOIOCTLCMD; 1683 break; 1684 } 1685 done: 1686 return r; 1687 } 1688 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 1689 1690 /* TODO: This is really inefficient. We need something like get_user() 1691 * (instruction directly accesses the data, with an exception table entry 1692 * returning -EFAULT). See Documentation/x86/exception-tables.txt. 1693 */ 1694 static int set_bit_to_user(int nr, void __user *addr) 1695 { 1696 unsigned long log = (unsigned long)addr; 1697 struct page *page; 1698 void *base; 1699 int bit = nr + (log % PAGE_SIZE) * 8; 1700 int r; 1701 1702 r = get_user_pages_fast(log, 1, 1, &page); 1703 if (r < 0) 1704 return r; 1705 BUG_ON(r != 1); 1706 base = kmap_atomic(page); 1707 set_bit(bit, base); 1708 kunmap_atomic(base); 1709 set_page_dirty_lock(page); 1710 put_page(page); 1711 return 0; 1712 } 1713 1714 static int log_write(void __user *log_base, 1715 u64 write_address, u64 write_length) 1716 { 1717 u64 write_page = write_address / VHOST_PAGE_SIZE; 1718 int r; 1719 1720 if (!write_length) 1721 return 0; 1722 write_length += write_address % VHOST_PAGE_SIZE; 1723 for (;;) { 1724 u64 base = (u64)(unsigned long)log_base; 1725 u64 log = base + write_page / 8; 1726 int bit = write_page % 8; 1727 if ((u64)(unsigned long)log != log) 1728 return -EFAULT; 1729 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 1730 if (r < 0) 1731 return r; 1732 if (write_length <= VHOST_PAGE_SIZE) 1733 break; 1734 write_length -= VHOST_PAGE_SIZE; 1735 write_page += 1; 1736 } 1737 return r; 1738 } 1739 1740 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len) 1741 { 1742 struct vhost_umem *umem = vq->umem; 1743 struct vhost_umem_node *u; 1744 u64 start, end, l, min; 1745 int r; 1746 bool hit = false; 1747 1748 while (len) { 1749 min = len; 1750 /* More than one GPAs can be mapped into a single HVA. So 1751 * iterate all possible umems here to be safe. 1752 */ 1753 list_for_each_entry(u, &umem->umem_list, link) { 1754 if (u->userspace_addr > hva - 1 + len || 1755 u->userspace_addr - 1 + u->size < hva) 1756 continue; 1757 start = max(u->userspace_addr, hva); 1758 end = min(u->userspace_addr - 1 + u->size, 1759 hva - 1 + len); 1760 l = end - start + 1; 1761 r = log_write(vq->log_base, 1762 u->start + start - u->userspace_addr, 1763 l); 1764 if (r < 0) 1765 return r; 1766 hit = true; 1767 min = min(l, min); 1768 } 1769 1770 if (!hit) 1771 return -EFAULT; 1772 1773 len -= min; 1774 hva += min; 1775 } 1776 1777 return 0; 1778 } 1779 1780 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len) 1781 { 1782 struct iovec iov[64]; 1783 int i, ret; 1784 1785 if (!vq->iotlb) 1786 return log_write(vq->log_base, vq->log_addr + used_offset, len); 1787 1788 ret = translate_desc(vq, (uintptr_t)vq->used + used_offset, 1789 len, iov, 64, VHOST_ACCESS_WO); 1790 if (ret) 1791 return ret; 1792 1793 for (i = 0; i < ret; i++) { 1794 ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 1795 iov[i].iov_len); 1796 if (ret) 1797 return ret; 1798 } 1799 1800 return 0; 1801 } 1802 1803 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 1804 unsigned int log_num, u64 len, struct iovec *iov, int count) 1805 { 1806 int i, r; 1807 1808 /* Make sure data written is seen before log. */ 1809 smp_wmb(); 1810 1811 if (vq->iotlb) { 1812 for (i = 0; i < count; i++) { 1813 r = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 1814 iov[i].iov_len); 1815 if (r < 0) 1816 return r; 1817 } 1818 return 0; 1819 } 1820 1821 for (i = 0; i < log_num; ++i) { 1822 u64 l = min(log[i].len, len); 1823 r = log_write(vq->log_base, log[i].addr, l); 1824 if (r < 0) 1825 return r; 1826 len -= l; 1827 if (!len) { 1828 if (vq->log_ctx) 1829 eventfd_signal(vq->log_ctx, 1); 1830 return 0; 1831 } 1832 } 1833 /* Length written exceeds what we have stored. This is a bug. */ 1834 BUG(); 1835 return 0; 1836 } 1837 EXPORT_SYMBOL_GPL(vhost_log_write); 1838 1839 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 1840 { 1841 void __user *used; 1842 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1843 &vq->used->flags) < 0) 1844 return -EFAULT; 1845 if (unlikely(vq->log_used)) { 1846 /* Make sure the flag is seen before log. */ 1847 smp_wmb(); 1848 /* Log used flag write. */ 1849 used = &vq->used->flags; 1850 log_used(vq, (used - (void __user *)vq->used), 1851 sizeof vq->used->flags); 1852 if (vq->log_ctx) 1853 eventfd_signal(vq->log_ctx, 1); 1854 } 1855 return 0; 1856 } 1857 1858 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event) 1859 { 1860 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1861 vhost_avail_event(vq))) 1862 return -EFAULT; 1863 if (unlikely(vq->log_used)) { 1864 void __user *used; 1865 /* Make sure the event is seen before log. */ 1866 smp_wmb(); 1867 /* Log avail event write */ 1868 used = vhost_avail_event(vq); 1869 log_used(vq, (used - (void __user *)vq->used), 1870 sizeof *vhost_avail_event(vq)); 1871 if (vq->log_ctx) 1872 eventfd_signal(vq->log_ctx, 1); 1873 } 1874 return 0; 1875 } 1876 1877 int vhost_vq_init_access(struct vhost_virtqueue *vq) 1878 { 1879 __virtio16 last_used_idx; 1880 int r; 1881 bool is_le = vq->is_le; 1882 1883 if (!vq->private_data) 1884 return 0; 1885 1886 vhost_init_is_le(vq); 1887 1888 r = vhost_update_used_flags(vq); 1889 if (r) 1890 goto err; 1891 vq->signalled_used_valid = false; 1892 if (!vq->iotlb && 1893 !access_ok(&vq->used->idx, sizeof vq->used->idx)) { 1894 r = -EFAULT; 1895 goto err; 1896 } 1897 r = vhost_get_used(vq, last_used_idx, &vq->used->idx); 1898 if (r) { 1899 vq_err(vq, "Can't access used idx at %p\n", 1900 &vq->used->idx); 1901 goto err; 1902 } 1903 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 1904 return 0; 1905 1906 err: 1907 vq->is_le = is_le; 1908 return r; 1909 } 1910 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 1911 1912 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1913 struct iovec iov[], int iov_size, int access) 1914 { 1915 const struct vhost_umem_node *node; 1916 struct vhost_dev *dev = vq->dev; 1917 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem; 1918 struct iovec *_iov; 1919 u64 s = 0; 1920 int ret = 0; 1921 1922 while ((u64)len > s) { 1923 u64 size; 1924 if (unlikely(ret >= iov_size)) { 1925 ret = -ENOBUFS; 1926 break; 1927 } 1928 1929 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1930 addr, addr + len - 1); 1931 if (node == NULL || node->start > addr) { 1932 if (umem != dev->iotlb) { 1933 ret = -EFAULT; 1934 break; 1935 } 1936 ret = -EAGAIN; 1937 break; 1938 } else if (!(node->perm & access)) { 1939 ret = -EPERM; 1940 break; 1941 } 1942 1943 _iov = iov + ret; 1944 size = node->size - addr + node->start; 1945 _iov->iov_len = min((u64)len - s, size); 1946 _iov->iov_base = (void __user *)(unsigned long) 1947 (node->userspace_addr + addr - node->start); 1948 s += size; 1949 addr += size; 1950 ++ret; 1951 } 1952 1953 if (ret == -EAGAIN) 1954 vhost_iotlb_miss(vq, addr, access); 1955 return ret; 1956 } 1957 1958 /* Each buffer in the virtqueues is actually a chain of descriptors. This 1959 * function returns the next descriptor in the chain, 1960 * or -1U if we're at the end. */ 1961 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 1962 { 1963 unsigned int next; 1964 1965 /* If this descriptor says it doesn't chain, we're done. */ 1966 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 1967 return -1U; 1968 1969 /* Check they're not leading us off end of descriptors. */ 1970 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 1971 return next; 1972 } 1973 1974 static int get_indirect(struct vhost_virtqueue *vq, 1975 struct iovec iov[], unsigned int iov_size, 1976 unsigned int *out_num, unsigned int *in_num, 1977 struct vhost_log *log, unsigned int *log_num, 1978 struct vring_desc *indirect) 1979 { 1980 struct vring_desc desc; 1981 unsigned int i = 0, count, found = 0; 1982 u32 len = vhost32_to_cpu(vq, indirect->len); 1983 struct iov_iter from; 1984 int ret, access; 1985 1986 /* Sanity check */ 1987 if (unlikely(len % sizeof desc)) { 1988 vq_err(vq, "Invalid length in indirect descriptor: " 1989 "len 0x%llx not multiple of 0x%zx\n", 1990 (unsigned long long)len, 1991 sizeof desc); 1992 return -EINVAL; 1993 } 1994 1995 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 1996 UIO_MAXIOV, VHOST_ACCESS_RO); 1997 if (unlikely(ret < 0)) { 1998 if (ret != -EAGAIN) 1999 vq_err(vq, "Translation failure %d in indirect.\n", ret); 2000 return ret; 2001 } 2002 iov_iter_init(&from, READ, vq->indirect, ret, len); 2003 2004 /* We will use the result as an address to read from, so most 2005 * architectures only need a compiler barrier here. */ 2006 read_barrier_depends(); 2007 2008 count = len / sizeof desc; 2009 /* Buffers are chained via a 16 bit next field, so 2010 * we can have at most 2^16 of these. */ 2011 if (unlikely(count > USHRT_MAX + 1)) { 2012 vq_err(vq, "Indirect buffer length too big: %d\n", 2013 indirect->len); 2014 return -E2BIG; 2015 } 2016 2017 do { 2018 unsigned iov_count = *in_num + *out_num; 2019 if (unlikely(++found > count)) { 2020 vq_err(vq, "Loop detected: last one at %u " 2021 "indirect size %u\n", 2022 i, count); 2023 return -EINVAL; 2024 } 2025 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 2026 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 2027 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2028 return -EINVAL; 2029 } 2030 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 2031 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 2032 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2033 return -EINVAL; 2034 } 2035 2036 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2037 access = VHOST_ACCESS_WO; 2038 else 2039 access = VHOST_ACCESS_RO; 2040 2041 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2042 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2043 iov_size - iov_count, access); 2044 if (unlikely(ret < 0)) { 2045 if (ret != -EAGAIN) 2046 vq_err(vq, "Translation failure %d indirect idx %d\n", 2047 ret, i); 2048 return ret; 2049 } 2050 /* If this is an input descriptor, increment that count. */ 2051 if (access == VHOST_ACCESS_WO) { 2052 *in_num += ret; 2053 if (unlikely(log)) { 2054 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2055 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2056 ++*log_num; 2057 } 2058 } else { 2059 /* If it's an output descriptor, they're all supposed 2060 * to come before any input descriptors. */ 2061 if (unlikely(*in_num)) { 2062 vq_err(vq, "Indirect descriptor " 2063 "has out after in: idx %d\n", i); 2064 return -EINVAL; 2065 } 2066 *out_num += ret; 2067 } 2068 } while ((i = next_desc(vq, &desc)) != -1); 2069 return 0; 2070 } 2071 2072 /* This looks in the virtqueue and for the first available buffer, and converts 2073 * it to an iovec for convenient access. Since descriptors consist of some 2074 * number of output then some number of input descriptors, it's actually two 2075 * iovecs, but we pack them into one and note how many of each there were. 2076 * 2077 * This function returns the descriptor number found, or vq->num (which is 2078 * never a valid descriptor number) if none was found. A negative code is 2079 * returned on error. */ 2080 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 2081 struct iovec iov[], unsigned int iov_size, 2082 unsigned int *out_num, unsigned int *in_num, 2083 struct vhost_log *log, unsigned int *log_num) 2084 { 2085 struct vring_desc desc; 2086 unsigned int i, head, found = 0; 2087 u16 last_avail_idx; 2088 __virtio16 avail_idx; 2089 __virtio16 ring_head; 2090 int ret, access; 2091 2092 /* Check it isn't doing very strange things with descriptor numbers. */ 2093 last_avail_idx = vq->last_avail_idx; 2094 2095 if (vq->avail_idx == vq->last_avail_idx) { 2096 if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) { 2097 vq_err(vq, "Failed to access avail idx at %p\n", 2098 &vq->avail->idx); 2099 return -EFAULT; 2100 } 2101 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2102 2103 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 2104 vq_err(vq, "Guest moved used index from %u to %u", 2105 last_avail_idx, vq->avail_idx); 2106 return -EFAULT; 2107 } 2108 2109 /* If there's nothing new since last we looked, return 2110 * invalid. 2111 */ 2112 if (vq->avail_idx == last_avail_idx) 2113 return vq->num; 2114 2115 /* Only get avail ring entries after they have been 2116 * exposed by guest. 2117 */ 2118 smp_rmb(); 2119 } 2120 2121 /* Grab the next descriptor number they're advertising, and increment 2122 * the index we've seen. */ 2123 if (unlikely(vhost_get_avail(vq, ring_head, 2124 &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) { 2125 vq_err(vq, "Failed to read head: idx %d address %p\n", 2126 last_avail_idx, 2127 &vq->avail->ring[last_avail_idx % vq->num]); 2128 return -EFAULT; 2129 } 2130 2131 head = vhost16_to_cpu(vq, ring_head); 2132 2133 /* If their number is silly, that's an error. */ 2134 if (unlikely(head >= vq->num)) { 2135 vq_err(vq, "Guest says index %u > %u is available", 2136 head, vq->num); 2137 return -EINVAL; 2138 } 2139 2140 /* When we start there are none of either input nor output. */ 2141 *out_num = *in_num = 0; 2142 if (unlikely(log)) 2143 *log_num = 0; 2144 2145 i = head; 2146 do { 2147 unsigned iov_count = *in_num + *out_num; 2148 if (unlikely(i >= vq->num)) { 2149 vq_err(vq, "Desc index is %u > %u, head = %u", 2150 i, vq->num, head); 2151 return -EINVAL; 2152 } 2153 if (unlikely(++found > vq->num)) { 2154 vq_err(vq, "Loop detected: last one at %u " 2155 "vq size %u head %u\n", 2156 i, vq->num, head); 2157 return -EINVAL; 2158 } 2159 ret = vhost_copy_from_user(vq, &desc, vq->desc + i, 2160 sizeof desc); 2161 if (unlikely(ret)) { 2162 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2163 i, vq->desc + i); 2164 return -EFAULT; 2165 } 2166 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2167 ret = get_indirect(vq, iov, iov_size, 2168 out_num, in_num, 2169 log, log_num, &desc); 2170 if (unlikely(ret < 0)) { 2171 if (ret != -EAGAIN) 2172 vq_err(vq, "Failure detected " 2173 "in indirect descriptor at idx %d\n", i); 2174 return ret; 2175 } 2176 continue; 2177 } 2178 2179 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2180 access = VHOST_ACCESS_WO; 2181 else 2182 access = VHOST_ACCESS_RO; 2183 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2184 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2185 iov_size - iov_count, access); 2186 if (unlikely(ret < 0)) { 2187 if (ret != -EAGAIN) 2188 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2189 ret, i); 2190 return ret; 2191 } 2192 if (access == VHOST_ACCESS_WO) { 2193 /* If this is an input descriptor, 2194 * increment that count. */ 2195 *in_num += ret; 2196 if (unlikely(log)) { 2197 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2198 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2199 ++*log_num; 2200 } 2201 } else { 2202 /* If it's an output descriptor, they're all supposed 2203 * to come before any input descriptors. */ 2204 if (unlikely(*in_num)) { 2205 vq_err(vq, "Descriptor has out after in: " 2206 "idx %d\n", i); 2207 return -EINVAL; 2208 } 2209 *out_num += ret; 2210 } 2211 } while ((i = next_desc(vq, &desc)) != -1); 2212 2213 /* On success, increment avail index. */ 2214 vq->last_avail_idx++; 2215 2216 /* Assume notifications from guest are disabled at this point, 2217 * if they aren't we would need to update avail_event index. */ 2218 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2219 return head; 2220 } 2221 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2222 2223 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2224 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2225 { 2226 vq->last_avail_idx -= n; 2227 } 2228 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2229 2230 /* After we've used one of their buffers, we tell them about it. We'll then 2231 * want to notify the guest, using eventfd. */ 2232 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2233 { 2234 struct vring_used_elem heads = { 2235 cpu_to_vhost32(vq, head), 2236 cpu_to_vhost32(vq, len) 2237 }; 2238 2239 return vhost_add_used_n(vq, &heads, 1); 2240 } 2241 EXPORT_SYMBOL_GPL(vhost_add_used); 2242 2243 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2244 struct vring_used_elem *heads, 2245 unsigned count) 2246 { 2247 struct vring_used_elem __user *used; 2248 u16 old, new; 2249 int start; 2250 2251 start = vq->last_used_idx & (vq->num - 1); 2252 used = vq->used->ring + start; 2253 if (count == 1) { 2254 if (vhost_put_user(vq, heads[0].id, &used->id)) { 2255 vq_err(vq, "Failed to write used id"); 2256 return -EFAULT; 2257 } 2258 if (vhost_put_user(vq, heads[0].len, &used->len)) { 2259 vq_err(vq, "Failed to write used len"); 2260 return -EFAULT; 2261 } 2262 } else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) { 2263 vq_err(vq, "Failed to write used"); 2264 return -EFAULT; 2265 } 2266 if (unlikely(vq->log_used)) { 2267 /* Make sure data is seen before log. */ 2268 smp_wmb(); 2269 /* Log used ring entry write. */ 2270 log_used(vq, ((void __user *)used - (void __user *)vq->used), 2271 count * sizeof *used); 2272 } 2273 old = vq->last_used_idx; 2274 new = (vq->last_used_idx += count); 2275 /* If the driver never bothers to signal in a very long while, 2276 * used index might wrap around. If that happens, invalidate 2277 * signalled_used index we stored. TODO: make sure driver 2278 * signals at least once in 2^16 and remove this. */ 2279 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2280 vq->signalled_used_valid = false; 2281 return 0; 2282 } 2283 2284 /* After we've used one of their buffers, we tell them about it. We'll then 2285 * want to notify the guest, using eventfd. */ 2286 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2287 unsigned count) 2288 { 2289 int start, n, r; 2290 2291 start = vq->last_used_idx & (vq->num - 1); 2292 n = vq->num - start; 2293 if (n < count) { 2294 r = __vhost_add_used_n(vq, heads, n); 2295 if (r < 0) 2296 return r; 2297 heads += n; 2298 count -= n; 2299 } 2300 r = __vhost_add_used_n(vq, heads, count); 2301 2302 /* Make sure buffer is written before we update index. */ 2303 smp_wmb(); 2304 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 2305 &vq->used->idx)) { 2306 vq_err(vq, "Failed to increment used idx"); 2307 return -EFAULT; 2308 } 2309 if (unlikely(vq->log_used)) { 2310 /* Make sure used idx is seen before log. */ 2311 smp_wmb(); 2312 /* Log used index update. */ 2313 log_used(vq, offsetof(struct vring_used, idx), 2314 sizeof vq->used->idx); 2315 if (vq->log_ctx) 2316 eventfd_signal(vq->log_ctx, 1); 2317 } 2318 return r; 2319 } 2320 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2321 2322 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2323 { 2324 __u16 old, new; 2325 __virtio16 event; 2326 bool v; 2327 /* Flush out used index updates. This is paired 2328 * with the barrier that the Guest executes when enabling 2329 * interrupts. */ 2330 smp_mb(); 2331 2332 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2333 unlikely(vq->avail_idx == vq->last_avail_idx)) 2334 return true; 2335 2336 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2337 __virtio16 flags; 2338 if (vhost_get_avail(vq, flags, &vq->avail->flags)) { 2339 vq_err(vq, "Failed to get flags"); 2340 return true; 2341 } 2342 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2343 } 2344 old = vq->signalled_used; 2345 v = vq->signalled_used_valid; 2346 new = vq->signalled_used = vq->last_used_idx; 2347 vq->signalled_used_valid = true; 2348 2349 if (unlikely(!v)) 2350 return true; 2351 2352 if (vhost_get_avail(vq, event, vhost_used_event(vq))) { 2353 vq_err(vq, "Failed to get used event idx"); 2354 return true; 2355 } 2356 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2357 } 2358 2359 /* This actually signals the guest, using eventfd. */ 2360 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2361 { 2362 /* Signal the Guest tell them we used something up. */ 2363 if (vq->call_ctx && vhost_notify(dev, vq)) 2364 eventfd_signal(vq->call_ctx, 1); 2365 } 2366 EXPORT_SYMBOL_GPL(vhost_signal); 2367 2368 /* And here's the combo meal deal. Supersize me! */ 2369 void vhost_add_used_and_signal(struct vhost_dev *dev, 2370 struct vhost_virtqueue *vq, 2371 unsigned int head, int len) 2372 { 2373 vhost_add_used(vq, head, len); 2374 vhost_signal(dev, vq); 2375 } 2376 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2377 2378 /* multi-buffer version of vhost_add_used_and_signal */ 2379 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2380 struct vhost_virtqueue *vq, 2381 struct vring_used_elem *heads, unsigned count) 2382 { 2383 vhost_add_used_n(vq, heads, count); 2384 vhost_signal(dev, vq); 2385 } 2386 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2387 2388 /* return true if we're sure that avaiable ring is empty */ 2389 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2390 { 2391 __virtio16 avail_idx; 2392 int r; 2393 2394 if (vq->avail_idx != vq->last_avail_idx) 2395 return false; 2396 2397 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2398 if (unlikely(r)) 2399 return false; 2400 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2401 2402 return vq->avail_idx == vq->last_avail_idx; 2403 } 2404 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2405 2406 /* OK, now we need to know about added descriptors. */ 2407 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2408 { 2409 __virtio16 avail_idx; 2410 int r; 2411 2412 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2413 return false; 2414 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2415 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2416 r = vhost_update_used_flags(vq); 2417 if (r) { 2418 vq_err(vq, "Failed to enable notification at %p: %d\n", 2419 &vq->used->flags, r); 2420 return false; 2421 } 2422 } else { 2423 r = vhost_update_avail_event(vq, vq->avail_idx); 2424 if (r) { 2425 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2426 vhost_avail_event(vq), r); 2427 return false; 2428 } 2429 } 2430 /* They could have slipped one in as we were doing that: make 2431 * sure it's written, then check again. */ 2432 smp_mb(); 2433 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2434 if (r) { 2435 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2436 &vq->avail->idx, r); 2437 return false; 2438 } 2439 2440 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx; 2441 } 2442 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2443 2444 /* We don't need to be notified again. */ 2445 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2446 { 2447 int r; 2448 2449 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2450 return; 2451 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2452 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2453 r = vhost_update_used_flags(vq); 2454 if (r) 2455 vq_err(vq, "Failed to enable notification at %p: %d\n", 2456 &vq->used->flags, r); 2457 } 2458 } 2459 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2460 2461 /* Create a new message. */ 2462 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2463 { 2464 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL); 2465 if (!node) 2466 return NULL; 2467 2468 /* Make sure all padding within the structure is initialized. */ 2469 memset(&node->msg, 0, sizeof node->msg); 2470 node->vq = vq; 2471 node->msg.type = type; 2472 return node; 2473 } 2474 EXPORT_SYMBOL_GPL(vhost_new_msg); 2475 2476 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2477 struct vhost_msg_node *node) 2478 { 2479 spin_lock(&dev->iotlb_lock); 2480 list_add_tail(&node->node, head); 2481 spin_unlock(&dev->iotlb_lock); 2482 2483 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 2484 } 2485 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2486 2487 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2488 struct list_head *head) 2489 { 2490 struct vhost_msg_node *node = NULL; 2491 2492 spin_lock(&dev->iotlb_lock); 2493 if (!list_empty(head)) { 2494 node = list_first_entry(head, struct vhost_msg_node, 2495 node); 2496 list_del(&node->node); 2497 } 2498 spin_unlock(&dev->iotlb_lock); 2499 2500 return node; 2501 } 2502 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2503 2504 2505 static int __init vhost_init(void) 2506 { 2507 return 0; 2508 } 2509 2510 static void __exit vhost_exit(void) 2511 { 2512 } 2513 2514 module_init(vhost_init); 2515 module_exit(vhost_exit); 2516 2517 MODULE_VERSION("0.0.1"); 2518 MODULE_LICENSE("GPL v2"); 2519 MODULE_AUTHOR("Michael S. Tsirkin"); 2520 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2521