xref: /openbmc/linux/drivers/vhost/vhost.c (revision 7fc38225363dd8f19e667ad7c77b63bc4a5c065d)
1 /* Copyright (C) 2009 Red Hat, Inc.
2  * Copyright (C) 2006 Rusty Russell IBM Corporation
3  *
4  * Author: Michael S. Tsirkin <mst@redhat.com>
5  *
6  * Inspiration, some code, and most witty comments come from
7  * Documentation/virtual/lguest/lguest.c, by Rusty Russell
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.
10  *
11  * Generic code for virtio server in host kernel.
12  */
13 
14 #include <linux/eventfd.h>
15 #include <linux/vhost.h>
16 #include <linux/uio.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_context.h>
19 #include <linux/miscdevice.h>
20 #include <linux/mutex.h>
21 #include <linux/poll.h>
22 #include <linux/file.h>
23 #include <linux/highmem.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/kthread.h>
27 #include <linux/cgroup.h>
28 #include <linux/module.h>
29 #include <linux/sort.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/signal.h>
32 #include <linux/interval_tree_generic.h>
33 #include <linux/nospec.h>
34 
35 #include "vhost.h"
36 
37 static ushort max_mem_regions = 64;
38 module_param(max_mem_regions, ushort, 0444);
39 MODULE_PARM_DESC(max_mem_regions,
40 	"Maximum number of memory regions in memory map. (default: 64)");
41 static int max_iotlb_entries = 2048;
42 module_param(max_iotlb_entries, int, 0444);
43 MODULE_PARM_DESC(max_iotlb_entries,
44 	"Maximum number of iotlb entries. (default: 2048)");
45 
46 enum {
47 	VHOST_MEMORY_F_LOG = 0x1,
48 };
49 
50 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num])
51 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num])
52 
53 INTERVAL_TREE_DEFINE(struct vhost_umem_node,
54 		     rb, __u64, __subtree_last,
55 		     START, LAST, static inline, vhost_umem_interval_tree);
56 
57 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY
58 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
59 {
60 	vq->user_be = !virtio_legacy_is_little_endian();
61 }
62 
63 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq)
64 {
65 	vq->user_be = true;
66 }
67 
68 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq)
69 {
70 	vq->user_be = false;
71 }
72 
73 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
74 {
75 	struct vhost_vring_state s;
76 
77 	if (vq->private_data)
78 		return -EBUSY;
79 
80 	if (copy_from_user(&s, argp, sizeof(s)))
81 		return -EFAULT;
82 
83 	if (s.num != VHOST_VRING_LITTLE_ENDIAN &&
84 	    s.num != VHOST_VRING_BIG_ENDIAN)
85 		return -EINVAL;
86 
87 	if (s.num == VHOST_VRING_BIG_ENDIAN)
88 		vhost_enable_cross_endian_big(vq);
89 	else
90 		vhost_enable_cross_endian_little(vq);
91 
92 	return 0;
93 }
94 
95 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
96 				   int __user *argp)
97 {
98 	struct vhost_vring_state s = {
99 		.index = idx,
100 		.num = vq->user_be
101 	};
102 
103 	if (copy_to_user(argp, &s, sizeof(s)))
104 		return -EFAULT;
105 
106 	return 0;
107 }
108 
109 static void vhost_init_is_le(struct vhost_virtqueue *vq)
110 {
111 	/* Note for legacy virtio: user_be is initialized at reset time
112 	 * according to the host endianness. If userspace does not set an
113 	 * explicit endianness, the default behavior is native endian, as
114 	 * expected by legacy virtio.
115 	 */
116 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be;
117 }
118 #else
119 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
120 {
121 }
122 
123 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
124 {
125 	return -ENOIOCTLCMD;
126 }
127 
128 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
129 				   int __user *argp)
130 {
131 	return -ENOIOCTLCMD;
132 }
133 
134 static void vhost_init_is_le(struct vhost_virtqueue *vq)
135 {
136 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1)
137 		|| virtio_legacy_is_little_endian();
138 }
139 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */
140 
141 static void vhost_reset_is_le(struct vhost_virtqueue *vq)
142 {
143 	vhost_init_is_le(vq);
144 }
145 
146 struct vhost_flush_struct {
147 	struct vhost_work work;
148 	struct completion wait_event;
149 };
150 
151 static void vhost_flush_work(struct vhost_work *work)
152 {
153 	struct vhost_flush_struct *s;
154 
155 	s = container_of(work, struct vhost_flush_struct, work);
156 	complete(&s->wait_event);
157 }
158 
159 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh,
160 			    poll_table *pt)
161 {
162 	struct vhost_poll *poll;
163 
164 	poll = container_of(pt, struct vhost_poll, table);
165 	poll->wqh = wqh;
166 	add_wait_queue(wqh, &poll->wait);
167 }
168 
169 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync,
170 			     void *key)
171 {
172 	struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait);
173 
174 	if (!(key_to_poll(key) & poll->mask))
175 		return 0;
176 
177 	vhost_poll_queue(poll);
178 	return 0;
179 }
180 
181 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn)
182 {
183 	clear_bit(VHOST_WORK_QUEUED, &work->flags);
184 	work->fn = fn;
185 }
186 EXPORT_SYMBOL_GPL(vhost_work_init);
187 
188 /* Init poll structure */
189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn,
190 		     __poll_t mask, struct vhost_dev *dev)
191 {
192 	init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup);
193 	init_poll_funcptr(&poll->table, vhost_poll_func);
194 	poll->mask = mask;
195 	poll->dev = dev;
196 	poll->wqh = NULL;
197 
198 	vhost_work_init(&poll->work, fn);
199 }
200 EXPORT_SYMBOL_GPL(vhost_poll_init);
201 
202 /* Start polling a file. We add ourselves to file's wait queue. The caller must
203  * keep a reference to a file until after vhost_poll_stop is called. */
204 int vhost_poll_start(struct vhost_poll *poll, struct file *file)
205 {
206 	__poll_t mask;
207 	int ret = 0;
208 
209 	if (poll->wqh)
210 		return 0;
211 
212 	mask = vfs_poll(file, &poll->table);
213 	if (mask)
214 		vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask));
215 	if (mask & EPOLLERR) {
216 		vhost_poll_stop(poll);
217 		ret = -EINVAL;
218 	}
219 
220 	return ret;
221 }
222 EXPORT_SYMBOL_GPL(vhost_poll_start);
223 
224 /* Stop polling a file. After this function returns, it becomes safe to drop the
225  * file reference. You must also flush afterwards. */
226 void vhost_poll_stop(struct vhost_poll *poll)
227 {
228 	if (poll->wqh) {
229 		remove_wait_queue(poll->wqh, &poll->wait);
230 		poll->wqh = NULL;
231 	}
232 }
233 EXPORT_SYMBOL_GPL(vhost_poll_stop);
234 
235 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work)
236 {
237 	struct vhost_flush_struct flush;
238 
239 	if (dev->worker) {
240 		init_completion(&flush.wait_event);
241 		vhost_work_init(&flush.work, vhost_flush_work);
242 
243 		vhost_work_queue(dev, &flush.work);
244 		wait_for_completion(&flush.wait_event);
245 	}
246 }
247 EXPORT_SYMBOL_GPL(vhost_work_flush);
248 
249 /* Flush any work that has been scheduled. When calling this, don't hold any
250  * locks that are also used by the callback. */
251 void vhost_poll_flush(struct vhost_poll *poll)
252 {
253 	vhost_work_flush(poll->dev, &poll->work);
254 }
255 EXPORT_SYMBOL_GPL(vhost_poll_flush);
256 
257 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work)
258 {
259 	if (!dev->worker)
260 		return;
261 
262 	if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) {
263 		/* We can only add the work to the list after we're
264 		 * sure it was not in the list.
265 		 * test_and_set_bit() implies a memory barrier.
266 		 */
267 		llist_add(&work->node, &dev->work_list);
268 		wake_up_process(dev->worker);
269 	}
270 }
271 EXPORT_SYMBOL_GPL(vhost_work_queue);
272 
273 /* A lockless hint for busy polling code to exit the loop */
274 bool vhost_has_work(struct vhost_dev *dev)
275 {
276 	return !llist_empty(&dev->work_list);
277 }
278 EXPORT_SYMBOL_GPL(vhost_has_work);
279 
280 void vhost_poll_queue(struct vhost_poll *poll)
281 {
282 	vhost_work_queue(poll->dev, &poll->work);
283 }
284 EXPORT_SYMBOL_GPL(vhost_poll_queue);
285 
286 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq)
287 {
288 	int j;
289 
290 	for (j = 0; j < VHOST_NUM_ADDRS; j++)
291 		vq->meta_iotlb[j] = NULL;
292 }
293 
294 static void vhost_vq_meta_reset(struct vhost_dev *d)
295 {
296 	int i;
297 
298 	for (i = 0; i < d->nvqs; ++i)
299 		__vhost_vq_meta_reset(d->vqs[i]);
300 }
301 
302 static void vhost_vq_reset(struct vhost_dev *dev,
303 			   struct vhost_virtqueue *vq)
304 {
305 	vq->num = 1;
306 	vq->desc = NULL;
307 	vq->avail = NULL;
308 	vq->used = NULL;
309 	vq->last_avail_idx = 0;
310 	vq->avail_idx = 0;
311 	vq->last_used_idx = 0;
312 	vq->signalled_used = 0;
313 	vq->signalled_used_valid = false;
314 	vq->used_flags = 0;
315 	vq->log_used = false;
316 	vq->log_addr = -1ull;
317 	vq->private_data = NULL;
318 	vq->acked_features = 0;
319 	vq->acked_backend_features = 0;
320 	vq->log_base = NULL;
321 	vq->error_ctx = NULL;
322 	vq->kick = NULL;
323 	vq->call_ctx = NULL;
324 	vq->log_ctx = NULL;
325 	vhost_reset_is_le(vq);
326 	vhost_disable_cross_endian(vq);
327 	vq->busyloop_timeout = 0;
328 	vq->umem = NULL;
329 	vq->iotlb = NULL;
330 	__vhost_vq_meta_reset(vq);
331 }
332 
333 static int vhost_worker(void *data)
334 {
335 	struct vhost_dev *dev = data;
336 	struct vhost_work *work, *work_next;
337 	struct llist_node *node;
338 	mm_segment_t oldfs = get_fs();
339 
340 	set_fs(USER_DS);
341 	use_mm(dev->mm);
342 
343 	for (;;) {
344 		/* mb paired w/ kthread_stop */
345 		set_current_state(TASK_INTERRUPTIBLE);
346 
347 		if (kthread_should_stop()) {
348 			__set_current_state(TASK_RUNNING);
349 			break;
350 		}
351 
352 		node = llist_del_all(&dev->work_list);
353 		if (!node)
354 			schedule();
355 
356 		node = llist_reverse_order(node);
357 		/* make sure flag is seen after deletion */
358 		smp_wmb();
359 		llist_for_each_entry_safe(work, work_next, node, node) {
360 			clear_bit(VHOST_WORK_QUEUED, &work->flags);
361 			__set_current_state(TASK_RUNNING);
362 			work->fn(work);
363 			if (need_resched())
364 				schedule();
365 		}
366 	}
367 	unuse_mm(dev->mm);
368 	set_fs(oldfs);
369 	return 0;
370 }
371 
372 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq)
373 {
374 	kfree(vq->indirect);
375 	vq->indirect = NULL;
376 	kfree(vq->log);
377 	vq->log = NULL;
378 	kfree(vq->heads);
379 	vq->heads = NULL;
380 }
381 
382 /* Helper to allocate iovec buffers for all vqs. */
383 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev)
384 {
385 	struct vhost_virtqueue *vq;
386 	int i;
387 
388 	for (i = 0; i < dev->nvqs; ++i) {
389 		vq = dev->vqs[i];
390 		vq->indirect = kmalloc_array(UIO_MAXIOV,
391 					     sizeof(*vq->indirect),
392 					     GFP_KERNEL);
393 		vq->log = kmalloc_array(UIO_MAXIOV, sizeof(*vq->log),
394 					GFP_KERNEL);
395 		vq->heads = kmalloc_array(UIO_MAXIOV, sizeof(*vq->heads),
396 					  GFP_KERNEL);
397 		if (!vq->indirect || !vq->log || !vq->heads)
398 			goto err_nomem;
399 	}
400 	return 0;
401 
402 err_nomem:
403 	for (; i >= 0; --i)
404 		vhost_vq_free_iovecs(dev->vqs[i]);
405 	return -ENOMEM;
406 }
407 
408 static void vhost_dev_free_iovecs(struct vhost_dev *dev)
409 {
410 	int i;
411 
412 	for (i = 0; i < dev->nvqs; ++i)
413 		vhost_vq_free_iovecs(dev->vqs[i]);
414 }
415 
416 void vhost_dev_init(struct vhost_dev *dev,
417 		    struct vhost_virtqueue **vqs, int nvqs)
418 {
419 	struct vhost_virtqueue *vq;
420 	int i;
421 
422 	dev->vqs = vqs;
423 	dev->nvqs = nvqs;
424 	mutex_init(&dev->mutex);
425 	dev->log_ctx = NULL;
426 	dev->umem = NULL;
427 	dev->iotlb = NULL;
428 	dev->mm = NULL;
429 	dev->worker = NULL;
430 	init_llist_head(&dev->work_list);
431 	init_waitqueue_head(&dev->wait);
432 	INIT_LIST_HEAD(&dev->read_list);
433 	INIT_LIST_HEAD(&dev->pending_list);
434 	spin_lock_init(&dev->iotlb_lock);
435 
436 
437 	for (i = 0; i < dev->nvqs; ++i) {
438 		vq = dev->vqs[i];
439 		vq->log = NULL;
440 		vq->indirect = NULL;
441 		vq->heads = NULL;
442 		vq->dev = dev;
443 		mutex_init(&vq->mutex);
444 		vhost_vq_reset(dev, vq);
445 		if (vq->handle_kick)
446 			vhost_poll_init(&vq->poll, vq->handle_kick,
447 					EPOLLIN, dev);
448 	}
449 }
450 EXPORT_SYMBOL_GPL(vhost_dev_init);
451 
452 /* Caller should have device mutex */
453 long vhost_dev_check_owner(struct vhost_dev *dev)
454 {
455 	/* Are you the owner? If not, I don't think you mean to do that */
456 	return dev->mm == current->mm ? 0 : -EPERM;
457 }
458 EXPORT_SYMBOL_GPL(vhost_dev_check_owner);
459 
460 struct vhost_attach_cgroups_struct {
461 	struct vhost_work work;
462 	struct task_struct *owner;
463 	int ret;
464 };
465 
466 static void vhost_attach_cgroups_work(struct vhost_work *work)
467 {
468 	struct vhost_attach_cgroups_struct *s;
469 
470 	s = container_of(work, struct vhost_attach_cgroups_struct, work);
471 	s->ret = cgroup_attach_task_all(s->owner, current);
472 }
473 
474 static int vhost_attach_cgroups(struct vhost_dev *dev)
475 {
476 	struct vhost_attach_cgroups_struct attach;
477 
478 	attach.owner = current;
479 	vhost_work_init(&attach.work, vhost_attach_cgroups_work);
480 	vhost_work_queue(dev, &attach.work);
481 	vhost_work_flush(dev, &attach.work);
482 	return attach.ret;
483 }
484 
485 /* Caller should have device mutex */
486 bool vhost_dev_has_owner(struct vhost_dev *dev)
487 {
488 	return dev->mm;
489 }
490 EXPORT_SYMBOL_GPL(vhost_dev_has_owner);
491 
492 /* Caller should have device mutex */
493 long vhost_dev_set_owner(struct vhost_dev *dev)
494 {
495 	struct task_struct *worker;
496 	int err;
497 
498 	/* Is there an owner already? */
499 	if (vhost_dev_has_owner(dev)) {
500 		err = -EBUSY;
501 		goto err_mm;
502 	}
503 
504 	/* No owner, become one */
505 	dev->mm = get_task_mm(current);
506 	worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid);
507 	if (IS_ERR(worker)) {
508 		err = PTR_ERR(worker);
509 		goto err_worker;
510 	}
511 
512 	dev->worker = worker;
513 	wake_up_process(worker);	/* avoid contributing to loadavg */
514 
515 	err = vhost_attach_cgroups(dev);
516 	if (err)
517 		goto err_cgroup;
518 
519 	err = vhost_dev_alloc_iovecs(dev);
520 	if (err)
521 		goto err_cgroup;
522 
523 	return 0;
524 err_cgroup:
525 	kthread_stop(worker);
526 	dev->worker = NULL;
527 err_worker:
528 	if (dev->mm)
529 		mmput(dev->mm);
530 	dev->mm = NULL;
531 err_mm:
532 	return err;
533 }
534 EXPORT_SYMBOL_GPL(vhost_dev_set_owner);
535 
536 struct vhost_umem *vhost_dev_reset_owner_prepare(void)
537 {
538 	return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL);
539 }
540 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare);
541 
542 /* Caller should have device mutex */
543 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem)
544 {
545 	int i;
546 
547 	vhost_dev_cleanup(dev);
548 
549 	/* Restore memory to default empty mapping. */
550 	INIT_LIST_HEAD(&umem->umem_list);
551 	dev->umem = umem;
552 	/* We don't need VQ locks below since vhost_dev_cleanup makes sure
553 	 * VQs aren't running.
554 	 */
555 	for (i = 0; i < dev->nvqs; ++i)
556 		dev->vqs[i]->umem = umem;
557 }
558 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner);
559 
560 void vhost_dev_stop(struct vhost_dev *dev)
561 {
562 	int i;
563 
564 	for (i = 0; i < dev->nvqs; ++i) {
565 		if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) {
566 			vhost_poll_stop(&dev->vqs[i]->poll);
567 			vhost_poll_flush(&dev->vqs[i]->poll);
568 		}
569 	}
570 }
571 EXPORT_SYMBOL_GPL(vhost_dev_stop);
572 
573 static void vhost_umem_free(struct vhost_umem *umem,
574 			    struct vhost_umem_node *node)
575 {
576 	vhost_umem_interval_tree_remove(node, &umem->umem_tree);
577 	list_del(&node->link);
578 	kfree(node);
579 	umem->numem--;
580 }
581 
582 static void vhost_umem_clean(struct vhost_umem *umem)
583 {
584 	struct vhost_umem_node *node, *tmp;
585 
586 	if (!umem)
587 		return;
588 
589 	list_for_each_entry_safe(node, tmp, &umem->umem_list, link)
590 		vhost_umem_free(umem, node);
591 
592 	kvfree(umem);
593 }
594 
595 static void vhost_clear_msg(struct vhost_dev *dev)
596 {
597 	struct vhost_msg_node *node, *n;
598 
599 	spin_lock(&dev->iotlb_lock);
600 
601 	list_for_each_entry_safe(node, n, &dev->read_list, node) {
602 		list_del(&node->node);
603 		kfree(node);
604 	}
605 
606 	list_for_each_entry_safe(node, n, &dev->pending_list, node) {
607 		list_del(&node->node);
608 		kfree(node);
609 	}
610 
611 	spin_unlock(&dev->iotlb_lock);
612 }
613 
614 void vhost_dev_cleanup(struct vhost_dev *dev)
615 {
616 	int i;
617 
618 	for (i = 0; i < dev->nvqs; ++i) {
619 		if (dev->vqs[i]->error_ctx)
620 			eventfd_ctx_put(dev->vqs[i]->error_ctx);
621 		if (dev->vqs[i]->kick)
622 			fput(dev->vqs[i]->kick);
623 		if (dev->vqs[i]->call_ctx)
624 			eventfd_ctx_put(dev->vqs[i]->call_ctx);
625 		vhost_vq_reset(dev, dev->vqs[i]);
626 	}
627 	vhost_dev_free_iovecs(dev);
628 	if (dev->log_ctx)
629 		eventfd_ctx_put(dev->log_ctx);
630 	dev->log_ctx = NULL;
631 	/* No one will access memory at this point */
632 	vhost_umem_clean(dev->umem);
633 	dev->umem = NULL;
634 	vhost_umem_clean(dev->iotlb);
635 	dev->iotlb = NULL;
636 	vhost_clear_msg(dev);
637 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
638 	WARN_ON(!llist_empty(&dev->work_list));
639 	if (dev->worker) {
640 		kthread_stop(dev->worker);
641 		dev->worker = NULL;
642 	}
643 	if (dev->mm)
644 		mmput(dev->mm);
645 	dev->mm = NULL;
646 }
647 EXPORT_SYMBOL_GPL(vhost_dev_cleanup);
648 
649 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz)
650 {
651 	u64 a = addr / VHOST_PAGE_SIZE / 8;
652 
653 	/* Make sure 64 bit math will not overflow. */
654 	if (a > ULONG_MAX - (unsigned long)log_base ||
655 	    a + (unsigned long)log_base > ULONG_MAX)
656 		return false;
657 
658 	return access_ok(log_base + a,
659 			 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8);
660 }
661 
662 static bool vhost_overflow(u64 uaddr, u64 size)
663 {
664 	/* Make sure 64 bit math will not overflow. */
665 	return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size;
666 }
667 
668 /* Caller should have vq mutex and device mutex. */
669 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem,
670 				int log_all)
671 {
672 	struct vhost_umem_node *node;
673 
674 	if (!umem)
675 		return false;
676 
677 	list_for_each_entry(node, &umem->umem_list, link) {
678 		unsigned long a = node->userspace_addr;
679 
680 		if (vhost_overflow(node->userspace_addr, node->size))
681 			return false;
682 
683 
684 		if (!access_ok((void __user *)a,
685 				    node->size))
686 			return false;
687 		else if (log_all && !log_access_ok(log_base,
688 						   node->start,
689 						   node->size))
690 			return false;
691 	}
692 	return true;
693 }
694 
695 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq,
696 					       u64 addr, unsigned int size,
697 					       int type)
698 {
699 	const struct vhost_umem_node *node = vq->meta_iotlb[type];
700 
701 	if (!node)
702 		return NULL;
703 
704 	return (void *)(uintptr_t)(node->userspace_addr + addr - node->start);
705 }
706 
707 /* Can we switch to this memory table? */
708 /* Caller should have device mutex but not vq mutex */
709 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem,
710 			     int log_all)
711 {
712 	int i;
713 
714 	for (i = 0; i < d->nvqs; ++i) {
715 		bool ok;
716 		bool log;
717 
718 		mutex_lock(&d->vqs[i]->mutex);
719 		log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL);
720 		/* If ring is inactive, will check when it's enabled. */
721 		if (d->vqs[i]->private_data)
722 			ok = vq_memory_access_ok(d->vqs[i]->log_base,
723 						 umem, log);
724 		else
725 			ok = true;
726 		mutex_unlock(&d->vqs[i]->mutex);
727 		if (!ok)
728 			return false;
729 	}
730 	return true;
731 }
732 
733 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
734 			  struct iovec iov[], int iov_size, int access);
735 
736 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to,
737 			      const void *from, unsigned size)
738 {
739 	int ret;
740 
741 	if (!vq->iotlb)
742 		return __copy_to_user(to, from, size);
743 	else {
744 		/* This function should be called after iotlb
745 		 * prefetch, which means we're sure that all vq
746 		 * could be access through iotlb. So -EAGAIN should
747 		 * not happen in this case.
748 		 */
749 		struct iov_iter t;
750 		void __user *uaddr = vhost_vq_meta_fetch(vq,
751 				     (u64)(uintptr_t)to, size,
752 				     VHOST_ADDR_USED);
753 
754 		if (uaddr)
755 			return __copy_to_user(uaddr, from, size);
756 
757 		ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov,
758 				     ARRAY_SIZE(vq->iotlb_iov),
759 				     VHOST_ACCESS_WO);
760 		if (ret < 0)
761 			goto out;
762 		iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size);
763 		ret = copy_to_iter(from, size, &t);
764 		if (ret == size)
765 			ret = 0;
766 	}
767 out:
768 	return ret;
769 }
770 
771 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to,
772 				void __user *from, unsigned size)
773 {
774 	int ret;
775 
776 	if (!vq->iotlb)
777 		return __copy_from_user(to, from, size);
778 	else {
779 		/* This function should be called after iotlb
780 		 * prefetch, which means we're sure that vq
781 		 * could be access through iotlb. So -EAGAIN should
782 		 * not happen in this case.
783 		 */
784 		void __user *uaddr = vhost_vq_meta_fetch(vq,
785 				     (u64)(uintptr_t)from, size,
786 				     VHOST_ADDR_DESC);
787 		struct iov_iter f;
788 
789 		if (uaddr)
790 			return __copy_from_user(to, uaddr, size);
791 
792 		ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov,
793 				     ARRAY_SIZE(vq->iotlb_iov),
794 				     VHOST_ACCESS_RO);
795 		if (ret < 0) {
796 			vq_err(vq, "IOTLB translation failure: uaddr "
797 			       "%p size 0x%llx\n", from,
798 			       (unsigned long long) size);
799 			goto out;
800 		}
801 		iov_iter_init(&f, READ, vq->iotlb_iov, ret, size);
802 		ret = copy_from_iter(to, size, &f);
803 		if (ret == size)
804 			ret = 0;
805 	}
806 
807 out:
808 	return ret;
809 }
810 
811 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq,
812 					  void __user *addr, unsigned int size,
813 					  int type)
814 {
815 	int ret;
816 
817 	ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov,
818 			     ARRAY_SIZE(vq->iotlb_iov),
819 			     VHOST_ACCESS_RO);
820 	if (ret < 0) {
821 		vq_err(vq, "IOTLB translation failure: uaddr "
822 			"%p size 0x%llx\n", addr,
823 			(unsigned long long) size);
824 		return NULL;
825 	}
826 
827 	if (ret != 1 || vq->iotlb_iov[0].iov_len != size) {
828 		vq_err(vq, "Non atomic userspace memory access: uaddr "
829 			"%p size 0x%llx\n", addr,
830 			(unsigned long long) size);
831 		return NULL;
832 	}
833 
834 	return vq->iotlb_iov[0].iov_base;
835 }
836 
837 /* This function should be called after iotlb
838  * prefetch, which means we're sure that vq
839  * could be access through iotlb. So -EAGAIN should
840  * not happen in this case.
841  */
842 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq,
843 					    void *addr, unsigned int size,
844 					    int type)
845 {
846 	void __user *uaddr = vhost_vq_meta_fetch(vq,
847 			     (u64)(uintptr_t)addr, size, type);
848 	if (uaddr)
849 		return uaddr;
850 
851 	return __vhost_get_user_slow(vq, addr, size, type);
852 }
853 
854 #define vhost_put_user(vq, x, ptr)		\
855 ({ \
856 	int ret = -EFAULT; \
857 	if (!vq->iotlb) { \
858 		ret = __put_user(x, ptr); \
859 	} else { \
860 		__typeof__(ptr) to = \
861 			(__typeof__(ptr)) __vhost_get_user(vq, ptr,	\
862 					  sizeof(*ptr), VHOST_ADDR_USED); \
863 		if (to != NULL) \
864 			ret = __put_user(x, to); \
865 		else \
866 			ret = -EFAULT;	\
867 	} \
868 	ret; \
869 })
870 
871 #define vhost_get_user(vq, x, ptr, type)		\
872 ({ \
873 	int ret; \
874 	if (!vq->iotlb) { \
875 		ret = __get_user(x, ptr); \
876 	} else { \
877 		__typeof__(ptr) from = \
878 			(__typeof__(ptr)) __vhost_get_user(vq, ptr, \
879 							   sizeof(*ptr), \
880 							   type); \
881 		if (from != NULL) \
882 			ret = __get_user(x, from); \
883 		else \
884 			ret = -EFAULT; \
885 	} \
886 	ret; \
887 })
888 
889 #define vhost_get_avail(vq, x, ptr) \
890 	vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL)
891 
892 #define vhost_get_used(vq, x, ptr) \
893 	vhost_get_user(vq, x, ptr, VHOST_ADDR_USED)
894 
895 static void vhost_dev_lock_vqs(struct vhost_dev *d)
896 {
897 	int i = 0;
898 	for (i = 0; i < d->nvqs; ++i)
899 		mutex_lock_nested(&d->vqs[i]->mutex, i);
900 }
901 
902 static void vhost_dev_unlock_vqs(struct vhost_dev *d)
903 {
904 	int i = 0;
905 	for (i = 0; i < d->nvqs; ++i)
906 		mutex_unlock(&d->vqs[i]->mutex);
907 }
908 
909 static int vhost_new_umem_range(struct vhost_umem *umem,
910 				u64 start, u64 size, u64 end,
911 				u64 userspace_addr, int perm)
912 {
913 	struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC);
914 
915 	if (!node)
916 		return -ENOMEM;
917 
918 	if (umem->numem == max_iotlb_entries) {
919 		tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link);
920 		vhost_umem_free(umem, tmp);
921 	}
922 
923 	node->start = start;
924 	node->size = size;
925 	node->last = end;
926 	node->userspace_addr = userspace_addr;
927 	node->perm = perm;
928 	INIT_LIST_HEAD(&node->link);
929 	list_add_tail(&node->link, &umem->umem_list);
930 	vhost_umem_interval_tree_insert(node, &umem->umem_tree);
931 	umem->numem++;
932 
933 	return 0;
934 }
935 
936 static void vhost_del_umem_range(struct vhost_umem *umem,
937 				 u64 start, u64 end)
938 {
939 	struct vhost_umem_node *node;
940 
941 	while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
942 							   start, end)))
943 		vhost_umem_free(umem, node);
944 }
945 
946 static void vhost_iotlb_notify_vq(struct vhost_dev *d,
947 				  struct vhost_iotlb_msg *msg)
948 {
949 	struct vhost_msg_node *node, *n;
950 
951 	spin_lock(&d->iotlb_lock);
952 
953 	list_for_each_entry_safe(node, n, &d->pending_list, node) {
954 		struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb;
955 		if (msg->iova <= vq_msg->iova &&
956 		    msg->iova + msg->size - 1 >= vq_msg->iova &&
957 		    vq_msg->type == VHOST_IOTLB_MISS) {
958 			vhost_poll_queue(&node->vq->poll);
959 			list_del(&node->node);
960 			kfree(node);
961 		}
962 	}
963 
964 	spin_unlock(&d->iotlb_lock);
965 }
966 
967 static bool umem_access_ok(u64 uaddr, u64 size, int access)
968 {
969 	unsigned long a = uaddr;
970 
971 	/* Make sure 64 bit math will not overflow. */
972 	if (vhost_overflow(uaddr, size))
973 		return false;
974 
975 	if ((access & VHOST_ACCESS_RO) &&
976 	    !access_ok((void __user *)a, size))
977 		return false;
978 	if ((access & VHOST_ACCESS_WO) &&
979 	    !access_ok((void __user *)a, size))
980 		return false;
981 	return true;
982 }
983 
984 static int vhost_process_iotlb_msg(struct vhost_dev *dev,
985 				   struct vhost_iotlb_msg *msg)
986 {
987 	int ret = 0;
988 
989 	mutex_lock(&dev->mutex);
990 	vhost_dev_lock_vqs(dev);
991 	switch (msg->type) {
992 	case VHOST_IOTLB_UPDATE:
993 		if (!dev->iotlb) {
994 			ret = -EFAULT;
995 			break;
996 		}
997 		if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) {
998 			ret = -EFAULT;
999 			break;
1000 		}
1001 		vhost_vq_meta_reset(dev);
1002 		if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size,
1003 					 msg->iova + msg->size - 1,
1004 					 msg->uaddr, msg->perm)) {
1005 			ret = -ENOMEM;
1006 			break;
1007 		}
1008 		vhost_iotlb_notify_vq(dev, msg);
1009 		break;
1010 	case VHOST_IOTLB_INVALIDATE:
1011 		if (!dev->iotlb) {
1012 			ret = -EFAULT;
1013 			break;
1014 		}
1015 		vhost_vq_meta_reset(dev);
1016 		vhost_del_umem_range(dev->iotlb, msg->iova,
1017 				     msg->iova + msg->size - 1);
1018 		break;
1019 	default:
1020 		ret = -EINVAL;
1021 		break;
1022 	}
1023 
1024 	vhost_dev_unlock_vqs(dev);
1025 	mutex_unlock(&dev->mutex);
1026 
1027 	return ret;
1028 }
1029 ssize_t vhost_chr_write_iter(struct vhost_dev *dev,
1030 			     struct iov_iter *from)
1031 {
1032 	struct vhost_iotlb_msg msg;
1033 	size_t offset;
1034 	int type, ret;
1035 
1036 	ret = copy_from_iter(&type, sizeof(type), from);
1037 	if (ret != sizeof(type)) {
1038 		ret = -EINVAL;
1039 		goto done;
1040 	}
1041 
1042 	switch (type) {
1043 	case VHOST_IOTLB_MSG:
1044 		/* There maybe a hole after type for V1 message type,
1045 		 * so skip it here.
1046 		 */
1047 		offset = offsetof(struct vhost_msg, iotlb) - sizeof(int);
1048 		break;
1049 	case VHOST_IOTLB_MSG_V2:
1050 		offset = sizeof(__u32);
1051 		break;
1052 	default:
1053 		ret = -EINVAL;
1054 		goto done;
1055 	}
1056 
1057 	iov_iter_advance(from, offset);
1058 	ret = copy_from_iter(&msg, sizeof(msg), from);
1059 	if (ret != sizeof(msg)) {
1060 		ret = -EINVAL;
1061 		goto done;
1062 	}
1063 	if (vhost_process_iotlb_msg(dev, &msg)) {
1064 		ret = -EFAULT;
1065 		goto done;
1066 	}
1067 
1068 	ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) :
1069 	      sizeof(struct vhost_msg_v2);
1070 done:
1071 	return ret;
1072 }
1073 EXPORT_SYMBOL(vhost_chr_write_iter);
1074 
1075 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev,
1076 			    poll_table *wait)
1077 {
1078 	__poll_t mask = 0;
1079 
1080 	poll_wait(file, &dev->wait, wait);
1081 
1082 	if (!list_empty(&dev->read_list))
1083 		mask |= EPOLLIN | EPOLLRDNORM;
1084 
1085 	return mask;
1086 }
1087 EXPORT_SYMBOL(vhost_chr_poll);
1088 
1089 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to,
1090 			    int noblock)
1091 {
1092 	DEFINE_WAIT(wait);
1093 	struct vhost_msg_node *node;
1094 	ssize_t ret = 0;
1095 	unsigned size = sizeof(struct vhost_msg);
1096 
1097 	if (iov_iter_count(to) < size)
1098 		return 0;
1099 
1100 	while (1) {
1101 		if (!noblock)
1102 			prepare_to_wait(&dev->wait, &wait,
1103 					TASK_INTERRUPTIBLE);
1104 
1105 		node = vhost_dequeue_msg(dev, &dev->read_list);
1106 		if (node)
1107 			break;
1108 		if (noblock) {
1109 			ret = -EAGAIN;
1110 			break;
1111 		}
1112 		if (signal_pending(current)) {
1113 			ret = -ERESTARTSYS;
1114 			break;
1115 		}
1116 		if (!dev->iotlb) {
1117 			ret = -EBADFD;
1118 			break;
1119 		}
1120 
1121 		schedule();
1122 	}
1123 
1124 	if (!noblock)
1125 		finish_wait(&dev->wait, &wait);
1126 
1127 	if (node) {
1128 		struct vhost_iotlb_msg *msg;
1129 		void *start = &node->msg;
1130 
1131 		switch (node->msg.type) {
1132 		case VHOST_IOTLB_MSG:
1133 			size = sizeof(node->msg);
1134 			msg = &node->msg.iotlb;
1135 			break;
1136 		case VHOST_IOTLB_MSG_V2:
1137 			size = sizeof(node->msg_v2);
1138 			msg = &node->msg_v2.iotlb;
1139 			break;
1140 		default:
1141 			BUG();
1142 			break;
1143 		}
1144 
1145 		ret = copy_to_iter(start, size, to);
1146 		if (ret != size || msg->type != VHOST_IOTLB_MISS) {
1147 			kfree(node);
1148 			return ret;
1149 		}
1150 		vhost_enqueue_msg(dev, &dev->pending_list, node);
1151 	}
1152 
1153 	return ret;
1154 }
1155 EXPORT_SYMBOL_GPL(vhost_chr_read_iter);
1156 
1157 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access)
1158 {
1159 	struct vhost_dev *dev = vq->dev;
1160 	struct vhost_msg_node *node;
1161 	struct vhost_iotlb_msg *msg;
1162 	bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2);
1163 
1164 	node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG);
1165 	if (!node)
1166 		return -ENOMEM;
1167 
1168 	if (v2) {
1169 		node->msg_v2.type = VHOST_IOTLB_MSG_V2;
1170 		msg = &node->msg_v2.iotlb;
1171 	} else {
1172 		msg = &node->msg.iotlb;
1173 	}
1174 
1175 	msg->type = VHOST_IOTLB_MISS;
1176 	msg->iova = iova;
1177 	msg->perm = access;
1178 
1179 	vhost_enqueue_msg(dev, &dev->read_list, node);
1180 
1181 	return 0;
1182 }
1183 
1184 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num,
1185 			 struct vring_desc __user *desc,
1186 			 struct vring_avail __user *avail,
1187 			 struct vring_used __user *used)
1188 
1189 {
1190 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1191 
1192 	return access_ok(desc, num * sizeof *desc) &&
1193 	       access_ok(avail,
1194 			 sizeof *avail + num * sizeof *avail->ring + s) &&
1195 	       access_ok(used,
1196 			sizeof *used + num * sizeof *used->ring + s);
1197 }
1198 
1199 static void vhost_vq_meta_update(struct vhost_virtqueue *vq,
1200 				 const struct vhost_umem_node *node,
1201 				 int type)
1202 {
1203 	int access = (type == VHOST_ADDR_USED) ?
1204 		     VHOST_ACCESS_WO : VHOST_ACCESS_RO;
1205 
1206 	if (likely(node->perm & access))
1207 		vq->meta_iotlb[type] = node;
1208 }
1209 
1210 static bool iotlb_access_ok(struct vhost_virtqueue *vq,
1211 			    int access, u64 addr, u64 len, int type)
1212 {
1213 	const struct vhost_umem_node *node;
1214 	struct vhost_umem *umem = vq->iotlb;
1215 	u64 s = 0, size, orig_addr = addr, last = addr + len - 1;
1216 
1217 	if (vhost_vq_meta_fetch(vq, addr, len, type))
1218 		return true;
1219 
1220 	while (len > s) {
1221 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1222 							   addr,
1223 							   last);
1224 		if (node == NULL || node->start > addr) {
1225 			vhost_iotlb_miss(vq, addr, access);
1226 			return false;
1227 		} else if (!(node->perm & access)) {
1228 			/* Report the possible access violation by
1229 			 * request another translation from userspace.
1230 			 */
1231 			return false;
1232 		}
1233 
1234 		size = node->size - addr + node->start;
1235 
1236 		if (orig_addr == addr && size >= len)
1237 			vhost_vq_meta_update(vq, node, type);
1238 
1239 		s += size;
1240 		addr += size;
1241 	}
1242 
1243 	return true;
1244 }
1245 
1246 int vq_iotlb_prefetch(struct vhost_virtqueue *vq)
1247 {
1248 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1249 	unsigned int num = vq->num;
1250 
1251 	if (!vq->iotlb)
1252 		return 1;
1253 
1254 	return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc,
1255 			       num * sizeof(*vq->desc), VHOST_ADDR_DESC) &&
1256 	       iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail,
1257 			       sizeof *vq->avail +
1258 			       num * sizeof(*vq->avail->ring) + s,
1259 			       VHOST_ADDR_AVAIL) &&
1260 	       iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used,
1261 			       sizeof *vq->used +
1262 			       num * sizeof(*vq->used->ring) + s,
1263 			       VHOST_ADDR_USED);
1264 }
1265 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch);
1266 
1267 /* Can we log writes? */
1268 /* Caller should have device mutex but not vq mutex */
1269 bool vhost_log_access_ok(struct vhost_dev *dev)
1270 {
1271 	return memory_access_ok(dev, dev->umem, 1);
1272 }
1273 EXPORT_SYMBOL_GPL(vhost_log_access_ok);
1274 
1275 /* Verify access for write logging. */
1276 /* Caller should have vq mutex and device mutex */
1277 static bool vq_log_access_ok(struct vhost_virtqueue *vq,
1278 			     void __user *log_base)
1279 {
1280 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1281 
1282 	return vq_memory_access_ok(log_base, vq->umem,
1283 				   vhost_has_feature(vq, VHOST_F_LOG_ALL)) &&
1284 		(!vq->log_used || log_access_ok(log_base, vq->log_addr,
1285 					sizeof *vq->used +
1286 					vq->num * sizeof *vq->used->ring + s));
1287 }
1288 
1289 /* Can we start vq? */
1290 /* Caller should have vq mutex and device mutex */
1291 bool vhost_vq_access_ok(struct vhost_virtqueue *vq)
1292 {
1293 	if (!vq_log_access_ok(vq, vq->log_base))
1294 		return false;
1295 
1296 	/* Access validation occurs at prefetch time with IOTLB */
1297 	if (vq->iotlb)
1298 		return true;
1299 
1300 	return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used);
1301 }
1302 EXPORT_SYMBOL_GPL(vhost_vq_access_ok);
1303 
1304 static struct vhost_umem *vhost_umem_alloc(void)
1305 {
1306 	struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL);
1307 
1308 	if (!umem)
1309 		return NULL;
1310 
1311 	umem->umem_tree = RB_ROOT_CACHED;
1312 	umem->numem = 0;
1313 	INIT_LIST_HEAD(&umem->umem_list);
1314 
1315 	return umem;
1316 }
1317 
1318 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
1319 {
1320 	struct vhost_memory mem, *newmem;
1321 	struct vhost_memory_region *region;
1322 	struct vhost_umem *newumem, *oldumem;
1323 	unsigned long size = offsetof(struct vhost_memory, regions);
1324 	int i;
1325 
1326 	if (copy_from_user(&mem, m, size))
1327 		return -EFAULT;
1328 	if (mem.padding)
1329 		return -EOPNOTSUPP;
1330 	if (mem.nregions > max_mem_regions)
1331 		return -E2BIG;
1332 	newmem = kvzalloc(struct_size(newmem, regions, mem.nregions),
1333 			GFP_KERNEL);
1334 	if (!newmem)
1335 		return -ENOMEM;
1336 
1337 	memcpy(newmem, &mem, size);
1338 	if (copy_from_user(newmem->regions, m->regions,
1339 			   mem.nregions * sizeof *m->regions)) {
1340 		kvfree(newmem);
1341 		return -EFAULT;
1342 	}
1343 
1344 	newumem = vhost_umem_alloc();
1345 	if (!newumem) {
1346 		kvfree(newmem);
1347 		return -ENOMEM;
1348 	}
1349 
1350 	for (region = newmem->regions;
1351 	     region < newmem->regions + mem.nregions;
1352 	     region++) {
1353 		if (vhost_new_umem_range(newumem,
1354 					 region->guest_phys_addr,
1355 					 region->memory_size,
1356 					 region->guest_phys_addr +
1357 					 region->memory_size - 1,
1358 					 region->userspace_addr,
1359 					 VHOST_ACCESS_RW))
1360 			goto err;
1361 	}
1362 
1363 	if (!memory_access_ok(d, newumem, 0))
1364 		goto err;
1365 
1366 	oldumem = d->umem;
1367 	d->umem = newumem;
1368 
1369 	/* All memory accesses are done under some VQ mutex. */
1370 	for (i = 0; i < d->nvqs; ++i) {
1371 		mutex_lock(&d->vqs[i]->mutex);
1372 		d->vqs[i]->umem = newumem;
1373 		mutex_unlock(&d->vqs[i]->mutex);
1374 	}
1375 
1376 	kvfree(newmem);
1377 	vhost_umem_clean(oldumem);
1378 	return 0;
1379 
1380 err:
1381 	vhost_umem_clean(newumem);
1382 	kvfree(newmem);
1383 	return -EFAULT;
1384 }
1385 
1386 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1387 {
1388 	struct file *eventfp, *filep = NULL;
1389 	bool pollstart = false, pollstop = false;
1390 	struct eventfd_ctx *ctx = NULL;
1391 	u32 __user *idxp = argp;
1392 	struct vhost_virtqueue *vq;
1393 	struct vhost_vring_state s;
1394 	struct vhost_vring_file f;
1395 	struct vhost_vring_addr a;
1396 	u32 idx;
1397 	long r;
1398 
1399 	r = get_user(idx, idxp);
1400 	if (r < 0)
1401 		return r;
1402 	if (idx >= d->nvqs)
1403 		return -ENOBUFS;
1404 
1405 	idx = array_index_nospec(idx, d->nvqs);
1406 	vq = d->vqs[idx];
1407 
1408 	mutex_lock(&vq->mutex);
1409 
1410 	switch (ioctl) {
1411 	case VHOST_SET_VRING_NUM:
1412 		/* Resizing ring with an active backend?
1413 		 * You don't want to do that. */
1414 		if (vq->private_data) {
1415 			r = -EBUSY;
1416 			break;
1417 		}
1418 		if (copy_from_user(&s, argp, sizeof s)) {
1419 			r = -EFAULT;
1420 			break;
1421 		}
1422 		if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) {
1423 			r = -EINVAL;
1424 			break;
1425 		}
1426 		vq->num = s.num;
1427 		break;
1428 	case VHOST_SET_VRING_BASE:
1429 		/* Moving base with an active backend?
1430 		 * You don't want to do that. */
1431 		if (vq->private_data) {
1432 			r = -EBUSY;
1433 			break;
1434 		}
1435 		if (copy_from_user(&s, argp, sizeof s)) {
1436 			r = -EFAULT;
1437 			break;
1438 		}
1439 		if (s.num > 0xffff) {
1440 			r = -EINVAL;
1441 			break;
1442 		}
1443 		vq->last_avail_idx = s.num;
1444 		/* Forget the cached index value. */
1445 		vq->avail_idx = vq->last_avail_idx;
1446 		break;
1447 	case VHOST_GET_VRING_BASE:
1448 		s.index = idx;
1449 		s.num = vq->last_avail_idx;
1450 		if (copy_to_user(argp, &s, sizeof s))
1451 			r = -EFAULT;
1452 		break;
1453 	case VHOST_SET_VRING_ADDR:
1454 		if (copy_from_user(&a, argp, sizeof a)) {
1455 			r = -EFAULT;
1456 			break;
1457 		}
1458 		if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) {
1459 			r = -EOPNOTSUPP;
1460 			break;
1461 		}
1462 		/* For 32bit, verify that the top 32bits of the user
1463 		   data are set to zero. */
1464 		if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr ||
1465 		    (u64)(unsigned long)a.used_user_addr != a.used_user_addr ||
1466 		    (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) {
1467 			r = -EFAULT;
1468 			break;
1469 		}
1470 
1471 		/* Make sure it's safe to cast pointers to vring types. */
1472 		BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE);
1473 		BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE);
1474 		if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) ||
1475 		    (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) ||
1476 		    (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) {
1477 			r = -EINVAL;
1478 			break;
1479 		}
1480 
1481 		/* We only verify access here if backend is configured.
1482 		 * If it is not, we don't as size might not have been setup.
1483 		 * We will verify when backend is configured. */
1484 		if (vq->private_data) {
1485 			if (!vq_access_ok(vq, vq->num,
1486 				(void __user *)(unsigned long)a.desc_user_addr,
1487 				(void __user *)(unsigned long)a.avail_user_addr,
1488 				(void __user *)(unsigned long)a.used_user_addr)) {
1489 				r = -EINVAL;
1490 				break;
1491 			}
1492 
1493 			/* Also validate log access for used ring if enabled. */
1494 			if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) &&
1495 			    !log_access_ok(vq->log_base, a.log_guest_addr,
1496 					   sizeof *vq->used +
1497 					   vq->num * sizeof *vq->used->ring)) {
1498 				r = -EINVAL;
1499 				break;
1500 			}
1501 		}
1502 
1503 		vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG));
1504 		vq->desc = (void __user *)(unsigned long)a.desc_user_addr;
1505 		vq->avail = (void __user *)(unsigned long)a.avail_user_addr;
1506 		vq->log_addr = a.log_guest_addr;
1507 		vq->used = (void __user *)(unsigned long)a.used_user_addr;
1508 		break;
1509 	case VHOST_SET_VRING_KICK:
1510 		if (copy_from_user(&f, argp, sizeof f)) {
1511 			r = -EFAULT;
1512 			break;
1513 		}
1514 		eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd);
1515 		if (IS_ERR(eventfp)) {
1516 			r = PTR_ERR(eventfp);
1517 			break;
1518 		}
1519 		if (eventfp != vq->kick) {
1520 			pollstop = (filep = vq->kick) != NULL;
1521 			pollstart = (vq->kick = eventfp) != NULL;
1522 		} else
1523 			filep = eventfp;
1524 		break;
1525 	case VHOST_SET_VRING_CALL:
1526 		if (copy_from_user(&f, argp, sizeof f)) {
1527 			r = -EFAULT;
1528 			break;
1529 		}
1530 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1531 		if (IS_ERR(ctx)) {
1532 			r = PTR_ERR(ctx);
1533 			break;
1534 		}
1535 		swap(ctx, vq->call_ctx);
1536 		break;
1537 	case VHOST_SET_VRING_ERR:
1538 		if (copy_from_user(&f, argp, sizeof f)) {
1539 			r = -EFAULT;
1540 			break;
1541 		}
1542 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1543 		if (IS_ERR(ctx)) {
1544 			r = PTR_ERR(ctx);
1545 			break;
1546 		}
1547 		swap(ctx, vq->error_ctx);
1548 		break;
1549 	case VHOST_SET_VRING_ENDIAN:
1550 		r = vhost_set_vring_endian(vq, argp);
1551 		break;
1552 	case VHOST_GET_VRING_ENDIAN:
1553 		r = vhost_get_vring_endian(vq, idx, argp);
1554 		break;
1555 	case VHOST_SET_VRING_BUSYLOOP_TIMEOUT:
1556 		if (copy_from_user(&s, argp, sizeof(s))) {
1557 			r = -EFAULT;
1558 			break;
1559 		}
1560 		vq->busyloop_timeout = s.num;
1561 		break;
1562 	case VHOST_GET_VRING_BUSYLOOP_TIMEOUT:
1563 		s.index = idx;
1564 		s.num = vq->busyloop_timeout;
1565 		if (copy_to_user(argp, &s, sizeof(s)))
1566 			r = -EFAULT;
1567 		break;
1568 	default:
1569 		r = -ENOIOCTLCMD;
1570 	}
1571 
1572 	if (pollstop && vq->handle_kick)
1573 		vhost_poll_stop(&vq->poll);
1574 
1575 	if (!IS_ERR_OR_NULL(ctx))
1576 		eventfd_ctx_put(ctx);
1577 	if (filep)
1578 		fput(filep);
1579 
1580 	if (pollstart && vq->handle_kick)
1581 		r = vhost_poll_start(&vq->poll, vq->kick);
1582 
1583 	mutex_unlock(&vq->mutex);
1584 
1585 	if (pollstop && vq->handle_kick)
1586 		vhost_poll_flush(&vq->poll);
1587 	return r;
1588 }
1589 EXPORT_SYMBOL_GPL(vhost_vring_ioctl);
1590 
1591 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled)
1592 {
1593 	struct vhost_umem *niotlb, *oiotlb;
1594 	int i;
1595 
1596 	niotlb = vhost_umem_alloc();
1597 	if (!niotlb)
1598 		return -ENOMEM;
1599 
1600 	oiotlb = d->iotlb;
1601 	d->iotlb = niotlb;
1602 
1603 	for (i = 0; i < d->nvqs; ++i) {
1604 		struct vhost_virtqueue *vq = d->vqs[i];
1605 
1606 		mutex_lock(&vq->mutex);
1607 		vq->iotlb = niotlb;
1608 		__vhost_vq_meta_reset(vq);
1609 		mutex_unlock(&vq->mutex);
1610 	}
1611 
1612 	vhost_umem_clean(oiotlb);
1613 
1614 	return 0;
1615 }
1616 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb);
1617 
1618 /* Caller must have device mutex */
1619 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1620 {
1621 	struct eventfd_ctx *ctx;
1622 	u64 p;
1623 	long r;
1624 	int i, fd;
1625 
1626 	/* If you are not the owner, you can become one */
1627 	if (ioctl == VHOST_SET_OWNER) {
1628 		r = vhost_dev_set_owner(d);
1629 		goto done;
1630 	}
1631 
1632 	/* You must be the owner to do anything else */
1633 	r = vhost_dev_check_owner(d);
1634 	if (r)
1635 		goto done;
1636 
1637 	switch (ioctl) {
1638 	case VHOST_SET_MEM_TABLE:
1639 		r = vhost_set_memory(d, argp);
1640 		break;
1641 	case VHOST_SET_LOG_BASE:
1642 		if (copy_from_user(&p, argp, sizeof p)) {
1643 			r = -EFAULT;
1644 			break;
1645 		}
1646 		if ((u64)(unsigned long)p != p) {
1647 			r = -EFAULT;
1648 			break;
1649 		}
1650 		for (i = 0; i < d->nvqs; ++i) {
1651 			struct vhost_virtqueue *vq;
1652 			void __user *base = (void __user *)(unsigned long)p;
1653 			vq = d->vqs[i];
1654 			mutex_lock(&vq->mutex);
1655 			/* If ring is inactive, will check when it's enabled. */
1656 			if (vq->private_data && !vq_log_access_ok(vq, base))
1657 				r = -EFAULT;
1658 			else
1659 				vq->log_base = base;
1660 			mutex_unlock(&vq->mutex);
1661 		}
1662 		break;
1663 	case VHOST_SET_LOG_FD:
1664 		r = get_user(fd, (int __user *)argp);
1665 		if (r < 0)
1666 			break;
1667 		ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd);
1668 		if (IS_ERR(ctx)) {
1669 			r = PTR_ERR(ctx);
1670 			break;
1671 		}
1672 		swap(ctx, d->log_ctx);
1673 		for (i = 0; i < d->nvqs; ++i) {
1674 			mutex_lock(&d->vqs[i]->mutex);
1675 			d->vqs[i]->log_ctx = d->log_ctx;
1676 			mutex_unlock(&d->vqs[i]->mutex);
1677 		}
1678 		if (ctx)
1679 			eventfd_ctx_put(ctx);
1680 		break;
1681 	default:
1682 		r = -ENOIOCTLCMD;
1683 		break;
1684 	}
1685 done:
1686 	return r;
1687 }
1688 EXPORT_SYMBOL_GPL(vhost_dev_ioctl);
1689 
1690 /* TODO: This is really inefficient.  We need something like get_user()
1691  * (instruction directly accesses the data, with an exception table entry
1692  * returning -EFAULT). See Documentation/x86/exception-tables.txt.
1693  */
1694 static int set_bit_to_user(int nr, void __user *addr)
1695 {
1696 	unsigned long log = (unsigned long)addr;
1697 	struct page *page;
1698 	void *base;
1699 	int bit = nr + (log % PAGE_SIZE) * 8;
1700 	int r;
1701 
1702 	r = get_user_pages_fast(log, 1, 1, &page);
1703 	if (r < 0)
1704 		return r;
1705 	BUG_ON(r != 1);
1706 	base = kmap_atomic(page);
1707 	set_bit(bit, base);
1708 	kunmap_atomic(base);
1709 	set_page_dirty_lock(page);
1710 	put_page(page);
1711 	return 0;
1712 }
1713 
1714 static int log_write(void __user *log_base,
1715 		     u64 write_address, u64 write_length)
1716 {
1717 	u64 write_page = write_address / VHOST_PAGE_SIZE;
1718 	int r;
1719 
1720 	if (!write_length)
1721 		return 0;
1722 	write_length += write_address % VHOST_PAGE_SIZE;
1723 	for (;;) {
1724 		u64 base = (u64)(unsigned long)log_base;
1725 		u64 log = base + write_page / 8;
1726 		int bit = write_page % 8;
1727 		if ((u64)(unsigned long)log != log)
1728 			return -EFAULT;
1729 		r = set_bit_to_user(bit, (void __user *)(unsigned long)log);
1730 		if (r < 0)
1731 			return r;
1732 		if (write_length <= VHOST_PAGE_SIZE)
1733 			break;
1734 		write_length -= VHOST_PAGE_SIZE;
1735 		write_page += 1;
1736 	}
1737 	return r;
1738 }
1739 
1740 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len)
1741 {
1742 	struct vhost_umem *umem = vq->umem;
1743 	struct vhost_umem_node *u;
1744 	u64 start, end, l, min;
1745 	int r;
1746 	bool hit = false;
1747 
1748 	while (len) {
1749 		min = len;
1750 		/* More than one GPAs can be mapped into a single HVA. So
1751 		 * iterate all possible umems here to be safe.
1752 		 */
1753 		list_for_each_entry(u, &umem->umem_list, link) {
1754 			if (u->userspace_addr > hva - 1 + len ||
1755 			    u->userspace_addr - 1 + u->size < hva)
1756 				continue;
1757 			start = max(u->userspace_addr, hva);
1758 			end = min(u->userspace_addr - 1 + u->size,
1759 				  hva - 1 + len);
1760 			l = end - start + 1;
1761 			r = log_write(vq->log_base,
1762 				      u->start + start - u->userspace_addr,
1763 				      l);
1764 			if (r < 0)
1765 				return r;
1766 			hit = true;
1767 			min = min(l, min);
1768 		}
1769 
1770 		if (!hit)
1771 			return -EFAULT;
1772 
1773 		len -= min;
1774 		hva += min;
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len)
1781 {
1782 	struct iovec iov[64];
1783 	int i, ret;
1784 
1785 	if (!vq->iotlb)
1786 		return log_write(vq->log_base, vq->log_addr + used_offset, len);
1787 
1788 	ret = translate_desc(vq, (uintptr_t)vq->used + used_offset,
1789 			     len, iov, 64, VHOST_ACCESS_WO);
1790 	if (ret)
1791 		return ret;
1792 
1793 	for (i = 0; i < ret; i++) {
1794 		ret = log_write_hva(vq,	(uintptr_t)iov[i].iov_base,
1795 				    iov[i].iov_len);
1796 		if (ret)
1797 			return ret;
1798 	}
1799 
1800 	return 0;
1801 }
1802 
1803 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log,
1804 		    unsigned int log_num, u64 len, struct iovec *iov, int count)
1805 {
1806 	int i, r;
1807 
1808 	/* Make sure data written is seen before log. */
1809 	smp_wmb();
1810 
1811 	if (vq->iotlb) {
1812 		for (i = 0; i < count; i++) {
1813 			r = log_write_hva(vq, (uintptr_t)iov[i].iov_base,
1814 					  iov[i].iov_len);
1815 			if (r < 0)
1816 				return r;
1817 		}
1818 		return 0;
1819 	}
1820 
1821 	for (i = 0; i < log_num; ++i) {
1822 		u64 l = min(log[i].len, len);
1823 		r = log_write(vq->log_base, log[i].addr, l);
1824 		if (r < 0)
1825 			return r;
1826 		len -= l;
1827 		if (!len) {
1828 			if (vq->log_ctx)
1829 				eventfd_signal(vq->log_ctx, 1);
1830 			return 0;
1831 		}
1832 	}
1833 	/* Length written exceeds what we have stored. This is a bug. */
1834 	BUG();
1835 	return 0;
1836 }
1837 EXPORT_SYMBOL_GPL(vhost_log_write);
1838 
1839 static int vhost_update_used_flags(struct vhost_virtqueue *vq)
1840 {
1841 	void __user *used;
1842 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags),
1843 			   &vq->used->flags) < 0)
1844 		return -EFAULT;
1845 	if (unlikely(vq->log_used)) {
1846 		/* Make sure the flag is seen before log. */
1847 		smp_wmb();
1848 		/* Log used flag write. */
1849 		used = &vq->used->flags;
1850 		log_used(vq, (used - (void __user *)vq->used),
1851 			 sizeof vq->used->flags);
1852 		if (vq->log_ctx)
1853 			eventfd_signal(vq->log_ctx, 1);
1854 	}
1855 	return 0;
1856 }
1857 
1858 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event)
1859 {
1860 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx),
1861 			   vhost_avail_event(vq)))
1862 		return -EFAULT;
1863 	if (unlikely(vq->log_used)) {
1864 		void __user *used;
1865 		/* Make sure the event is seen before log. */
1866 		smp_wmb();
1867 		/* Log avail event write */
1868 		used = vhost_avail_event(vq);
1869 		log_used(vq, (used - (void __user *)vq->used),
1870 			 sizeof *vhost_avail_event(vq));
1871 		if (vq->log_ctx)
1872 			eventfd_signal(vq->log_ctx, 1);
1873 	}
1874 	return 0;
1875 }
1876 
1877 int vhost_vq_init_access(struct vhost_virtqueue *vq)
1878 {
1879 	__virtio16 last_used_idx;
1880 	int r;
1881 	bool is_le = vq->is_le;
1882 
1883 	if (!vq->private_data)
1884 		return 0;
1885 
1886 	vhost_init_is_le(vq);
1887 
1888 	r = vhost_update_used_flags(vq);
1889 	if (r)
1890 		goto err;
1891 	vq->signalled_used_valid = false;
1892 	if (!vq->iotlb &&
1893 	    !access_ok(&vq->used->idx, sizeof vq->used->idx)) {
1894 		r = -EFAULT;
1895 		goto err;
1896 	}
1897 	r = vhost_get_used(vq, last_used_idx, &vq->used->idx);
1898 	if (r) {
1899 		vq_err(vq, "Can't access used idx at %p\n",
1900 		       &vq->used->idx);
1901 		goto err;
1902 	}
1903 	vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx);
1904 	return 0;
1905 
1906 err:
1907 	vq->is_le = is_le;
1908 	return r;
1909 }
1910 EXPORT_SYMBOL_GPL(vhost_vq_init_access);
1911 
1912 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
1913 			  struct iovec iov[], int iov_size, int access)
1914 {
1915 	const struct vhost_umem_node *node;
1916 	struct vhost_dev *dev = vq->dev;
1917 	struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem;
1918 	struct iovec *_iov;
1919 	u64 s = 0;
1920 	int ret = 0;
1921 
1922 	while ((u64)len > s) {
1923 		u64 size;
1924 		if (unlikely(ret >= iov_size)) {
1925 			ret = -ENOBUFS;
1926 			break;
1927 		}
1928 
1929 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1930 							addr, addr + len - 1);
1931 		if (node == NULL || node->start > addr) {
1932 			if (umem != dev->iotlb) {
1933 				ret = -EFAULT;
1934 				break;
1935 			}
1936 			ret = -EAGAIN;
1937 			break;
1938 		} else if (!(node->perm & access)) {
1939 			ret = -EPERM;
1940 			break;
1941 		}
1942 
1943 		_iov = iov + ret;
1944 		size = node->size - addr + node->start;
1945 		_iov->iov_len = min((u64)len - s, size);
1946 		_iov->iov_base = (void __user *)(unsigned long)
1947 			(node->userspace_addr + addr - node->start);
1948 		s += size;
1949 		addr += size;
1950 		++ret;
1951 	}
1952 
1953 	if (ret == -EAGAIN)
1954 		vhost_iotlb_miss(vq, addr, access);
1955 	return ret;
1956 }
1957 
1958 /* Each buffer in the virtqueues is actually a chain of descriptors.  This
1959  * function returns the next descriptor in the chain,
1960  * or -1U if we're at the end. */
1961 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc)
1962 {
1963 	unsigned int next;
1964 
1965 	/* If this descriptor says it doesn't chain, we're done. */
1966 	if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT)))
1967 		return -1U;
1968 
1969 	/* Check they're not leading us off end of descriptors. */
1970 	next = vhost16_to_cpu(vq, READ_ONCE(desc->next));
1971 	return next;
1972 }
1973 
1974 static int get_indirect(struct vhost_virtqueue *vq,
1975 			struct iovec iov[], unsigned int iov_size,
1976 			unsigned int *out_num, unsigned int *in_num,
1977 			struct vhost_log *log, unsigned int *log_num,
1978 			struct vring_desc *indirect)
1979 {
1980 	struct vring_desc desc;
1981 	unsigned int i = 0, count, found = 0;
1982 	u32 len = vhost32_to_cpu(vq, indirect->len);
1983 	struct iov_iter from;
1984 	int ret, access;
1985 
1986 	/* Sanity check */
1987 	if (unlikely(len % sizeof desc)) {
1988 		vq_err(vq, "Invalid length in indirect descriptor: "
1989 		       "len 0x%llx not multiple of 0x%zx\n",
1990 		       (unsigned long long)len,
1991 		       sizeof desc);
1992 		return -EINVAL;
1993 	}
1994 
1995 	ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect,
1996 			     UIO_MAXIOV, VHOST_ACCESS_RO);
1997 	if (unlikely(ret < 0)) {
1998 		if (ret != -EAGAIN)
1999 			vq_err(vq, "Translation failure %d in indirect.\n", ret);
2000 		return ret;
2001 	}
2002 	iov_iter_init(&from, READ, vq->indirect, ret, len);
2003 
2004 	/* We will use the result as an address to read from, so most
2005 	 * architectures only need a compiler barrier here. */
2006 	read_barrier_depends();
2007 
2008 	count = len / sizeof desc;
2009 	/* Buffers are chained via a 16 bit next field, so
2010 	 * we can have at most 2^16 of these. */
2011 	if (unlikely(count > USHRT_MAX + 1)) {
2012 		vq_err(vq, "Indirect buffer length too big: %d\n",
2013 		       indirect->len);
2014 		return -E2BIG;
2015 	}
2016 
2017 	do {
2018 		unsigned iov_count = *in_num + *out_num;
2019 		if (unlikely(++found > count)) {
2020 			vq_err(vq, "Loop detected: last one at %u "
2021 			       "indirect size %u\n",
2022 			       i, count);
2023 			return -EINVAL;
2024 		}
2025 		if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) {
2026 			vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n",
2027 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2028 			return -EINVAL;
2029 		}
2030 		if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) {
2031 			vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n",
2032 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2033 			return -EINVAL;
2034 		}
2035 
2036 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2037 			access = VHOST_ACCESS_WO;
2038 		else
2039 			access = VHOST_ACCESS_RO;
2040 
2041 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2042 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
2043 				     iov_size - iov_count, access);
2044 		if (unlikely(ret < 0)) {
2045 			if (ret != -EAGAIN)
2046 				vq_err(vq, "Translation failure %d indirect idx %d\n",
2047 					ret, i);
2048 			return ret;
2049 		}
2050 		/* If this is an input descriptor, increment that count. */
2051 		if (access == VHOST_ACCESS_WO) {
2052 			*in_num += ret;
2053 			if (unlikely(log)) {
2054 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2055 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2056 				++*log_num;
2057 			}
2058 		} else {
2059 			/* If it's an output descriptor, they're all supposed
2060 			 * to come before any input descriptors. */
2061 			if (unlikely(*in_num)) {
2062 				vq_err(vq, "Indirect descriptor "
2063 				       "has out after in: idx %d\n", i);
2064 				return -EINVAL;
2065 			}
2066 			*out_num += ret;
2067 		}
2068 	} while ((i = next_desc(vq, &desc)) != -1);
2069 	return 0;
2070 }
2071 
2072 /* This looks in the virtqueue and for the first available buffer, and converts
2073  * it to an iovec for convenient access.  Since descriptors consist of some
2074  * number of output then some number of input descriptors, it's actually two
2075  * iovecs, but we pack them into one and note how many of each there were.
2076  *
2077  * This function returns the descriptor number found, or vq->num (which is
2078  * never a valid descriptor number) if none was found.  A negative code is
2079  * returned on error. */
2080 int vhost_get_vq_desc(struct vhost_virtqueue *vq,
2081 		      struct iovec iov[], unsigned int iov_size,
2082 		      unsigned int *out_num, unsigned int *in_num,
2083 		      struct vhost_log *log, unsigned int *log_num)
2084 {
2085 	struct vring_desc desc;
2086 	unsigned int i, head, found = 0;
2087 	u16 last_avail_idx;
2088 	__virtio16 avail_idx;
2089 	__virtio16 ring_head;
2090 	int ret, access;
2091 
2092 	/* Check it isn't doing very strange things with descriptor numbers. */
2093 	last_avail_idx = vq->last_avail_idx;
2094 
2095 	if (vq->avail_idx == vq->last_avail_idx) {
2096 		if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) {
2097 			vq_err(vq, "Failed to access avail idx at %p\n",
2098 				&vq->avail->idx);
2099 			return -EFAULT;
2100 		}
2101 		vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2102 
2103 		if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) {
2104 			vq_err(vq, "Guest moved used index from %u to %u",
2105 				last_avail_idx, vq->avail_idx);
2106 			return -EFAULT;
2107 		}
2108 
2109 		/* If there's nothing new since last we looked, return
2110 		 * invalid.
2111 		 */
2112 		if (vq->avail_idx == last_avail_idx)
2113 			return vq->num;
2114 
2115 		/* Only get avail ring entries after they have been
2116 		 * exposed by guest.
2117 		 */
2118 		smp_rmb();
2119 	}
2120 
2121 	/* Grab the next descriptor number they're advertising, and increment
2122 	 * the index we've seen. */
2123 	if (unlikely(vhost_get_avail(vq, ring_head,
2124 		     &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) {
2125 		vq_err(vq, "Failed to read head: idx %d address %p\n",
2126 		       last_avail_idx,
2127 		       &vq->avail->ring[last_avail_idx % vq->num]);
2128 		return -EFAULT;
2129 	}
2130 
2131 	head = vhost16_to_cpu(vq, ring_head);
2132 
2133 	/* If their number is silly, that's an error. */
2134 	if (unlikely(head >= vq->num)) {
2135 		vq_err(vq, "Guest says index %u > %u is available",
2136 		       head, vq->num);
2137 		return -EINVAL;
2138 	}
2139 
2140 	/* When we start there are none of either input nor output. */
2141 	*out_num = *in_num = 0;
2142 	if (unlikely(log))
2143 		*log_num = 0;
2144 
2145 	i = head;
2146 	do {
2147 		unsigned iov_count = *in_num + *out_num;
2148 		if (unlikely(i >= vq->num)) {
2149 			vq_err(vq, "Desc index is %u > %u, head = %u",
2150 			       i, vq->num, head);
2151 			return -EINVAL;
2152 		}
2153 		if (unlikely(++found > vq->num)) {
2154 			vq_err(vq, "Loop detected: last one at %u "
2155 			       "vq size %u head %u\n",
2156 			       i, vq->num, head);
2157 			return -EINVAL;
2158 		}
2159 		ret = vhost_copy_from_user(vq, &desc, vq->desc + i,
2160 					   sizeof desc);
2161 		if (unlikely(ret)) {
2162 			vq_err(vq, "Failed to get descriptor: idx %d addr %p\n",
2163 			       i, vq->desc + i);
2164 			return -EFAULT;
2165 		}
2166 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) {
2167 			ret = get_indirect(vq, iov, iov_size,
2168 					   out_num, in_num,
2169 					   log, log_num, &desc);
2170 			if (unlikely(ret < 0)) {
2171 				if (ret != -EAGAIN)
2172 					vq_err(vq, "Failure detected "
2173 						"in indirect descriptor at idx %d\n", i);
2174 				return ret;
2175 			}
2176 			continue;
2177 		}
2178 
2179 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2180 			access = VHOST_ACCESS_WO;
2181 		else
2182 			access = VHOST_ACCESS_RO;
2183 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2184 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
2185 				     iov_size - iov_count, access);
2186 		if (unlikely(ret < 0)) {
2187 			if (ret != -EAGAIN)
2188 				vq_err(vq, "Translation failure %d descriptor idx %d\n",
2189 					ret, i);
2190 			return ret;
2191 		}
2192 		if (access == VHOST_ACCESS_WO) {
2193 			/* If this is an input descriptor,
2194 			 * increment that count. */
2195 			*in_num += ret;
2196 			if (unlikely(log)) {
2197 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2198 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2199 				++*log_num;
2200 			}
2201 		} else {
2202 			/* If it's an output descriptor, they're all supposed
2203 			 * to come before any input descriptors. */
2204 			if (unlikely(*in_num)) {
2205 				vq_err(vq, "Descriptor has out after in: "
2206 				       "idx %d\n", i);
2207 				return -EINVAL;
2208 			}
2209 			*out_num += ret;
2210 		}
2211 	} while ((i = next_desc(vq, &desc)) != -1);
2212 
2213 	/* On success, increment avail index. */
2214 	vq->last_avail_idx++;
2215 
2216 	/* Assume notifications from guest are disabled at this point,
2217 	 * if they aren't we would need to update avail_event index. */
2218 	BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY));
2219 	return head;
2220 }
2221 EXPORT_SYMBOL_GPL(vhost_get_vq_desc);
2222 
2223 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */
2224 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n)
2225 {
2226 	vq->last_avail_idx -= n;
2227 }
2228 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc);
2229 
2230 /* After we've used one of their buffers, we tell them about it.  We'll then
2231  * want to notify the guest, using eventfd. */
2232 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len)
2233 {
2234 	struct vring_used_elem heads = {
2235 		cpu_to_vhost32(vq, head),
2236 		cpu_to_vhost32(vq, len)
2237 	};
2238 
2239 	return vhost_add_used_n(vq, &heads, 1);
2240 }
2241 EXPORT_SYMBOL_GPL(vhost_add_used);
2242 
2243 static int __vhost_add_used_n(struct vhost_virtqueue *vq,
2244 			    struct vring_used_elem *heads,
2245 			    unsigned count)
2246 {
2247 	struct vring_used_elem __user *used;
2248 	u16 old, new;
2249 	int start;
2250 
2251 	start = vq->last_used_idx & (vq->num - 1);
2252 	used = vq->used->ring + start;
2253 	if (count == 1) {
2254 		if (vhost_put_user(vq, heads[0].id, &used->id)) {
2255 			vq_err(vq, "Failed to write used id");
2256 			return -EFAULT;
2257 		}
2258 		if (vhost_put_user(vq, heads[0].len, &used->len)) {
2259 			vq_err(vq, "Failed to write used len");
2260 			return -EFAULT;
2261 		}
2262 	} else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) {
2263 		vq_err(vq, "Failed to write used");
2264 		return -EFAULT;
2265 	}
2266 	if (unlikely(vq->log_used)) {
2267 		/* Make sure data is seen before log. */
2268 		smp_wmb();
2269 		/* Log used ring entry write. */
2270 		log_used(vq, ((void __user *)used - (void __user *)vq->used),
2271 			 count * sizeof *used);
2272 	}
2273 	old = vq->last_used_idx;
2274 	new = (vq->last_used_idx += count);
2275 	/* If the driver never bothers to signal in a very long while,
2276 	 * used index might wrap around. If that happens, invalidate
2277 	 * signalled_used index we stored. TODO: make sure driver
2278 	 * signals at least once in 2^16 and remove this. */
2279 	if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
2280 		vq->signalled_used_valid = false;
2281 	return 0;
2282 }
2283 
2284 /* After we've used one of their buffers, we tell them about it.  We'll then
2285  * want to notify the guest, using eventfd. */
2286 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads,
2287 		     unsigned count)
2288 {
2289 	int start, n, r;
2290 
2291 	start = vq->last_used_idx & (vq->num - 1);
2292 	n = vq->num - start;
2293 	if (n < count) {
2294 		r = __vhost_add_used_n(vq, heads, n);
2295 		if (r < 0)
2296 			return r;
2297 		heads += n;
2298 		count -= n;
2299 	}
2300 	r = __vhost_add_used_n(vq, heads, count);
2301 
2302 	/* Make sure buffer is written before we update index. */
2303 	smp_wmb();
2304 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx),
2305 			   &vq->used->idx)) {
2306 		vq_err(vq, "Failed to increment used idx");
2307 		return -EFAULT;
2308 	}
2309 	if (unlikely(vq->log_used)) {
2310 		/* Make sure used idx is seen before log. */
2311 		smp_wmb();
2312 		/* Log used index update. */
2313 		log_used(vq, offsetof(struct vring_used, idx),
2314 			 sizeof vq->used->idx);
2315 		if (vq->log_ctx)
2316 			eventfd_signal(vq->log_ctx, 1);
2317 	}
2318 	return r;
2319 }
2320 EXPORT_SYMBOL_GPL(vhost_add_used_n);
2321 
2322 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2323 {
2324 	__u16 old, new;
2325 	__virtio16 event;
2326 	bool v;
2327 	/* Flush out used index updates. This is paired
2328 	 * with the barrier that the Guest executes when enabling
2329 	 * interrupts. */
2330 	smp_mb();
2331 
2332 	if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) &&
2333 	    unlikely(vq->avail_idx == vq->last_avail_idx))
2334 		return true;
2335 
2336 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2337 		__virtio16 flags;
2338 		if (vhost_get_avail(vq, flags, &vq->avail->flags)) {
2339 			vq_err(vq, "Failed to get flags");
2340 			return true;
2341 		}
2342 		return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT));
2343 	}
2344 	old = vq->signalled_used;
2345 	v = vq->signalled_used_valid;
2346 	new = vq->signalled_used = vq->last_used_idx;
2347 	vq->signalled_used_valid = true;
2348 
2349 	if (unlikely(!v))
2350 		return true;
2351 
2352 	if (vhost_get_avail(vq, event, vhost_used_event(vq))) {
2353 		vq_err(vq, "Failed to get used event idx");
2354 		return true;
2355 	}
2356 	return vring_need_event(vhost16_to_cpu(vq, event), new, old);
2357 }
2358 
2359 /* This actually signals the guest, using eventfd. */
2360 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2361 {
2362 	/* Signal the Guest tell them we used something up. */
2363 	if (vq->call_ctx && vhost_notify(dev, vq))
2364 		eventfd_signal(vq->call_ctx, 1);
2365 }
2366 EXPORT_SYMBOL_GPL(vhost_signal);
2367 
2368 /* And here's the combo meal deal.  Supersize me! */
2369 void vhost_add_used_and_signal(struct vhost_dev *dev,
2370 			       struct vhost_virtqueue *vq,
2371 			       unsigned int head, int len)
2372 {
2373 	vhost_add_used(vq, head, len);
2374 	vhost_signal(dev, vq);
2375 }
2376 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal);
2377 
2378 /* multi-buffer version of vhost_add_used_and_signal */
2379 void vhost_add_used_and_signal_n(struct vhost_dev *dev,
2380 				 struct vhost_virtqueue *vq,
2381 				 struct vring_used_elem *heads, unsigned count)
2382 {
2383 	vhost_add_used_n(vq, heads, count);
2384 	vhost_signal(dev, vq);
2385 }
2386 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n);
2387 
2388 /* return true if we're sure that avaiable ring is empty */
2389 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2390 {
2391 	__virtio16 avail_idx;
2392 	int r;
2393 
2394 	if (vq->avail_idx != vq->last_avail_idx)
2395 		return false;
2396 
2397 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2398 	if (unlikely(r))
2399 		return false;
2400 	vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2401 
2402 	return vq->avail_idx == vq->last_avail_idx;
2403 }
2404 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty);
2405 
2406 /* OK, now we need to know about added descriptors. */
2407 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2408 {
2409 	__virtio16 avail_idx;
2410 	int r;
2411 
2412 	if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY))
2413 		return false;
2414 	vq->used_flags &= ~VRING_USED_F_NO_NOTIFY;
2415 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2416 		r = vhost_update_used_flags(vq);
2417 		if (r) {
2418 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2419 			       &vq->used->flags, r);
2420 			return false;
2421 		}
2422 	} else {
2423 		r = vhost_update_avail_event(vq, vq->avail_idx);
2424 		if (r) {
2425 			vq_err(vq, "Failed to update avail event index at %p: %d\n",
2426 			       vhost_avail_event(vq), r);
2427 			return false;
2428 		}
2429 	}
2430 	/* They could have slipped one in as we were doing that: make
2431 	 * sure it's written, then check again. */
2432 	smp_mb();
2433 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2434 	if (r) {
2435 		vq_err(vq, "Failed to check avail idx at %p: %d\n",
2436 		       &vq->avail->idx, r);
2437 		return false;
2438 	}
2439 
2440 	return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx;
2441 }
2442 EXPORT_SYMBOL_GPL(vhost_enable_notify);
2443 
2444 /* We don't need to be notified again. */
2445 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2446 {
2447 	int r;
2448 
2449 	if (vq->used_flags & VRING_USED_F_NO_NOTIFY)
2450 		return;
2451 	vq->used_flags |= VRING_USED_F_NO_NOTIFY;
2452 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2453 		r = vhost_update_used_flags(vq);
2454 		if (r)
2455 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2456 			       &vq->used->flags, r);
2457 	}
2458 }
2459 EXPORT_SYMBOL_GPL(vhost_disable_notify);
2460 
2461 /* Create a new message. */
2462 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type)
2463 {
2464 	struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL);
2465 	if (!node)
2466 		return NULL;
2467 
2468 	/* Make sure all padding within the structure is initialized. */
2469 	memset(&node->msg, 0, sizeof node->msg);
2470 	node->vq = vq;
2471 	node->msg.type = type;
2472 	return node;
2473 }
2474 EXPORT_SYMBOL_GPL(vhost_new_msg);
2475 
2476 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head,
2477 		       struct vhost_msg_node *node)
2478 {
2479 	spin_lock(&dev->iotlb_lock);
2480 	list_add_tail(&node->node, head);
2481 	spin_unlock(&dev->iotlb_lock);
2482 
2483 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
2484 }
2485 EXPORT_SYMBOL_GPL(vhost_enqueue_msg);
2486 
2487 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev,
2488 					 struct list_head *head)
2489 {
2490 	struct vhost_msg_node *node = NULL;
2491 
2492 	spin_lock(&dev->iotlb_lock);
2493 	if (!list_empty(head)) {
2494 		node = list_first_entry(head, struct vhost_msg_node,
2495 					node);
2496 		list_del(&node->node);
2497 	}
2498 	spin_unlock(&dev->iotlb_lock);
2499 
2500 	return node;
2501 }
2502 EXPORT_SYMBOL_GPL(vhost_dequeue_msg);
2503 
2504 
2505 static int __init vhost_init(void)
2506 {
2507 	return 0;
2508 }
2509 
2510 static void __exit vhost_exit(void)
2511 {
2512 }
2513 
2514 module_init(vhost_init);
2515 module_exit(vhost_exit);
2516 
2517 MODULE_VERSION("0.0.1");
2518 MODULE_LICENSE("GPL v2");
2519 MODULE_AUTHOR("Michael S. Tsirkin");
2520 MODULE_DESCRIPTION("Host kernel accelerator for virtio");
2521