1 /* Copyright (C) 2009 Red Hat, Inc. 2 * Copyright (C) 2006 Rusty Russell IBM Corporation 3 * 4 * Author: Michael S. Tsirkin <mst@redhat.com> 5 * 6 * Inspiration, some code, and most witty comments come from 7 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * 11 * Generic code for virtio server in host kernel. 12 */ 13 14 #include <linux/eventfd.h> 15 #include <linux/vhost.h> 16 #include <linux/uio.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_context.h> 19 #include <linux/miscdevice.h> 20 #include <linux/mutex.h> 21 #include <linux/poll.h> 22 #include <linux/file.h> 23 #include <linux/highmem.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 #include <linux/kthread.h> 27 #include <linux/cgroup.h> 28 #include <linux/module.h> 29 #include <linux/sort.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/signal.h> 32 #include <linux/interval_tree_generic.h> 33 #include <linux/nospec.h> 34 35 #include "vhost.h" 36 37 static ushort max_mem_regions = 64; 38 module_param(max_mem_regions, ushort, 0444); 39 MODULE_PARM_DESC(max_mem_regions, 40 "Maximum number of memory regions in memory map. (default: 64)"); 41 static int max_iotlb_entries = 2048; 42 module_param(max_iotlb_entries, int, 0444); 43 MODULE_PARM_DESC(max_iotlb_entries, 44 "Maximum number of iotlb entries. (default: 2048)"); 45 46 enum { 47 VHOST_MEMORY_F_LOG = 0x1, 48 }; 49 50 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 51 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 52 53 INTERVAL_TREE_DEFINE(struct vhost_umem_node, 54 rb, __u64, __subtree_last, 55 START, LAST, static inline, vhost_umem_interval_tree); 56 57 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 58 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 59 { 60 vq->user_be = !virtio_legacy_is_little_endian(); 61 } 62 63 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 64 { 65 vq->user_be = true; 66 } 67 68 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 69 { 70 vq->user_be = false; 71 } 72 73 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 74 { 75 struct vhost_vring_state s; 76 77 if (vq->private_data) 78 return -EBUSY; 79 80 if (copy_from_user(&s, argp, sizeof(s))) 81 return -EFAULT; 82 83 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 84 s.num != VHOST_VRING_BIG_ENDIAN) 85 return -EINVAL; 86 87 if (s.num == VHOST_VRING_BIG_ENDIAN) 88 vhost_enable_cross_endian_big(vq); 89 else 90 vhost_enable_cross_endian_little(vq); 91 92 return 0; 93 } 94 95 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 96 int __user *argp) 97 { 98 struct vhost_vring_state s = { 99 .index = idx, 100 .num = vq->user_be 101 }; 102 103 if (copy_to_user(argp, &s, sizeof(s))) 104 return -EFAULT; 105 106 return 0; 107 } 108 109 static void vhost_init_is_le(struct vhost_virtqueue *vq) 110 { 111 /* Note for legacy virtio: user_be is initialized at reset time 112 * according to the host endianness. If userspace does not set an 113 * explicit endianness, the default behavior is native endian, as 114 * expected by legacy virtio. 115 */ 116 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 117 } 118 #else 119 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 120 { 121 } 122 123 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 124 { 125 return -ENOIOCTLCMD; 126 } 127 128 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 129 int __user *argp) 130 { 131 return -ENOIOCTLCMD; 132 } 133 134 static void vhost_init_is_le(struct vhost_virtqueue *vq) 135 { 136 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 137 || virtio_legacy_is_little_endian(); 138 } 139 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 140 141 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 142 { 143 vhost_init_is_le(vq); 144 } 145 146 struct vhost_flush_struct { 147 struct vhost_work work; 148 struct completion wait_event; 149 }; 150 151 static void vhost_flush_work(struct vhost_work *work) 152 { 153 struct vhost_flush_struct *s; 154 155 s = container_of(work, struct vhost_flush_struct, work); 156 complete(&s->wait_event); 157 } 158 159 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 160 poll_table *pt) 161 { 162 struct vhost_poll *poll; 163 164 poll = container_of(pt, struct vhost_poll, table); 165 poll->wqh = wqh; 166 add_wait_queue(wqh, &poll->wait); 167 } 168 169 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 170 void *key) 171 { 172 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 173 174 if (!(key_to_poll(key) & poll->mask)) 175 return 0; 176 177 vhost_poll_queue(poll); 178 return 0; 179 } 180 181 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 182 { 183 clear_bit(VHOST_WORK_QUEUED, &work->flags); 184 work->fn = fn; 185 } 186 EXPORT_SYMBOL_GPL(vhost_work_init); 187 188 /* Init poll structure */ 189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 190 __poll_t mask, struct vhost_dev *dev) 191 { 192 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 193 init_poll_funcptr(&poll->table, vhost_poll_func); 194 poll->mask = mask; 195 poll->dev = dev; 196 poll->wqh = NULL; 197 198 vhost_work_init(&poll->work, fn); 199 } 200 EXPORT_SYMBOL_GPL(vhost_poll_init); 201 202 /* Start polling a file. We add ourselves to file's wait queue. The caller must 203 * keep a reference to a file until after vhost_poll_stop is called. */ 204 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 205 { 206 __poll_t mask; 207 int ret = 0; 208 209 if (poll->wqh) 210 return 0; 211 212 mask = vfs_poll(file, &poll->table); 213 if (mask) 214 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 215 if (mask & EPOLLERR) { 216 vhost_poll_stop(poll); 217 ret = -EINVAL; 218 } 219 220 return ret; 221 } 222 EXPORT_SYMBOL_GPL(vhost_poll_start); 223 224 /* Stop polling a file. After this function returns, it becomes safe to drop the 225 * file reference. You must also flush afterwards. */ 226 void vhost_poll_stop(struct vhost_poll *poll) 227 { 228 if (poll->wqh) { 229 remove_wait_queue(poll->wqh, &poll->wait); 230 poll->wqh = NULL; 231 } 232 } 233 EXPORT_SYMBOL_GPL(vhost_poll_stop); 234 235 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work) 236 { 237 struct vhost_flush_struct flush; 238 239 if (dev->worker) { 240 init_completion(&flush.wait_event); 241 vhost_work_init(&flush.work, vhost_flush_work); 242 243 vhost_work_queue(dev, &flush.work); 244 wait_for_completion(&flush.wait_event); 245 } 246 } 247 EXPORT_SYMBOL_GPL(vhost_work_flush); 248 249 /* Flush any work that has been scheduled. When calling this, don't hold any 250 * locks that are also used by the callback. */ 251 void vhost_poll_flush(struct vhost_poll *poll) 252 { 253 vhost_work_flush(poll->dev, &poll->work); 254 } 255 EXPORT_SYMBOL_GPL(vhost_poll_flush); 256 257 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work) 258 { 259 if (!dev->worker) 260 return; 261 262 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 263 /* We can only add the work to the list after we're 264 * sure it was not in the list. 265 * test_and_set_bit() implies a memory barrier. 266 */ 267 llist_add(&work->node, &dev->work_list); 268 wake_up_process(dev->worker); 269 } 270 } 271 EXPORT_SYMBOL_GPL(vhost_work_queue); 272 273 /* A lockless hint for busy polling code to exit the loop */ 274 bool vhost_has_work(struct vhost_dev *dev) 275 { 276 return !llist_empty(&dev->work_list); 277 } 278 EXPORT_SYMBOL_GPL(vhost_has_work); 279 280 void vhost_poll_queue(struct vhost_poll *poll) 281 { 282 vhost_work_queue(poll->dev, &poll->work); 283 } 284 EXPORT_SYMBOL_GPL(vhost_poll_queue); 285 286 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 287 { 288 int j; 289 290 for (j = 0; j < VHOST_NUM_ADDRS; j++) 291 vq->meta_iotlb[j] = NULL; 292 } 293 294 static void vhost_vq_meta_reset(struct vhost_dev *d) 295 { 296 int i; 297 298 for (i = 0; i < d->nvqs; ++i) 299 __vhost_vq_meta_reset(d->vqs[i]); 300 } 301 302 static void vhost_vq_reset(struct vhost_dev *dev, 303 struct vhost_virtqueue *vq) 304 { 305 vq->num = 1; 306 vq->desc = NULL; 307 vq->avail = NULL; 308 vq->used = NULL; 309 vq->last_avail_idx = 0; 310 vq->avail_idx = 0; 311 vq->last_used_idx = 0; 312 vq->signalled_used = 0; 313 vq->signalled_used_valid = false; 314 vq->used_flags = 0; 315 vq->log_used = false; 316 vq->log_addr = -1ull; 317 vq->private_data = NULL; 318 vq->acked_features = 0; 319 vq->acked_backend_features = 0; 320 vq->log_base = NULL; 321 vq->error_ctx = NULL; 322 vq->kick = NULL; 323 vq->call_ctx = NULL; 324 vq->log_ctx = NULL; 325 vhost_reset_is_le(vq); 326 vhost_disable_cross_endian(vq); 327 vq->busyloop_timeout = 0; 328 vq->umem = NULL; 329 vq->iotlb = NULL; 330 __vhost_vq_meta_reset(vq); 331 } 332 333 static int vhost_worker(void *data) 334 { 335 struct vhost_dev *dev = data; 336 struct vhost_work *work, *work_next; 337 struct llist_node *node; 338 mm_segment_t oldfs = get_fs(); 339 340 set_fs(USER_DS); 341 use_mm(dev->mm); 342 343 for (;;) { 344 /* mb paired w/ kthread_stop */ 345 set_current_state(TASK_INTERRUPTIBLE); 346 347 if (kthread_should_stop()) { 348 __set_current_state(TASK_RUNNING); 349 break; 350 } 351 352 node = llist_del_all(&dev->work_list); 353 if (!node) 354 schedule(); 355 356 node = llist_reverse_order(node); 357 /* make sure flag is seen after deletion */ 358 smp_wmb(); 359 llist_for_each_entry_safe(work, work_next, node, node) { 360 clear_bit(VHOST_WORK_QUEUED, &work->flags); 361 __set_current_state(TASK_RUNNING); 362 work->fn(work); 363 if (need_resched()) 364 schedule(); 365 } 366 } 367 unuse_mm(dev->mm); 368 set_fs(oldfs); 369 return 0; 370 } 371 372 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 373 { 374 kfree(vq->indirect); 375 vq->indirect = NULL; 376 kfree(vq->log); 377 vq->log = NULL; 378 kfree(vq->heads); 379 vq->heads = NULL; 380 } 381 382 /* Helper to allocate iovec buffers for all vqs. */ 383 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 384 { 385 struct vhost_virtqueue *vq; 386 int i; 387 388 for (i = 0; i < dev->nvqs; ++i) { 389 vq = dev->vqs[i]; 390 vq->indirect = kmalloc_array(UIO_MAXIOV, 391 sizeof(*vq->indirect), 392 GFP_KERNEL); 393 vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log), 394 GFP_KERNEL); 395 vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads), 396 GFP_KERNEL); 397 if (!vq->indirect || !vq->log || !vq->heads) 398 goto err_nomem; 399 } 400 return 0; 401 402 err_nomem: 403 for (; i >= 0; --i) 404 vhost_vq_free_iovecs(dev->vqs[i]); 405 return -ENOMEM; 406 } 407 408 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 409 { 410 int i; 411 412 for (i = 0; i < dev->nvqs; ++i) 413 vhost_vq_free_iovecs(dev->vqs[i]); 414 } 415 416 bool vhost_exceeds_weight(struct vhost_virtqueue *vq, 417 int pkts, int total_len) 418 { 419 struct vhost_dev *dev = vq->dev; 420 421 if ((dev->byte_weight && total_len >= dev->byte_weight) || 422 pkts >= dev->weight) { 423 vhost_poll_queue(&vq->poll); 424 return true; 425 } 426 427 return false; 428 } 429 EXPORT_SYMBOL_GPL(vhost_exceeds_weight); 430 431 void vhost_dev_init(struct vhost_dev *dev, 432 struct vhost_virtqueue **vqs, int nvqs, 433 int iov_limit, int weight, int byte_weight) 434 { 435 struct vhost_virtqueue *vq; 436 int i; 437 438 dev->vqs = vqs; 439 dev->nvqs = nvqs; 440 mutex_init(&dev->mutex); 441 dev->log_ctx = NULL; 442 dev->umem = NULL; 443 dev->iotlb = NULL; 444 dev->mm = NULL; 445 dev->worker = NULL; 446 dev->iov_limit = iov_limit; 447 dev->weight = weight; 448 dev->byte_weight = byte_weight; 449 init_llist_head(&dev->work_list); 450 init_waitqueue_head(&dev->wait); 451 INIT_LIST_HEAD(&dev->read_list); 452 INIT_LIST_HEAD(&dev->pending_list); 453 spin_lock_init(&dev->iotlb_lock); 454 455 456 for (i = 0; i < dev->nvqs; ++i) { 457 vq = dev->vqs[i]; 458 vq->log = NULL; 459 vq->indirect = NULL; 460 vq->heads = NULL; 461 vq->dev = dev; 462 mutex_init(&vq->mutex); 463 vhost_vq_reset(dev, vq); 464 if (vq->handle_kick) 465 vhost_poll_init(&vq->poll, vq->handle_kick, 466 EPOLLIN, dev); 467 } 468 } 469 EXPORT_SYMBOL_GPL(vhost_dev_init); 470 471 /* Caller should have device mutex */ 472 long vhost_dev_check_owner(struct vhost_dev *dev) 473 { 474 /* Are you the owner? If not, I don't think you mean to do that */ 475 return dev->mm == current->mm ? 0 : -EPERM; 476 } 477 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 478 479 struct vhost_attach_cgroups_struct { 480 struct vhost_work work; 481 struct task_struct *owner; 482 int ret; 483 }; 484 485 static void vhost_attach_cgroups_work(struct vhost_work *work) 486 { 487 struct vhost_attach_cgroups_struct *s; 488 489 s = container_of(work, struct vhost_attach_cgroups_struct, work); 490 s->ret = cgroup_attach_task_all(s->owner, current); 491 } 492 493 static int vhost_attach_cgroups(struct vhost_dev *dev) 494 { 495 struct vhost_attach_cgroups_struct attach; 496 497 attach.owner = current; 498 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 499 vhost_work_queue(dev, &attach.work); 500 vhost_work_flush(dev, &attach.work); 501 return attach.ret; 502 } 503 504 /* Caller should have device mutex */ 505 bool vhost_dev_has_owner(struct vhost_dev *dev) 506 { 507 return dev->mm; 508 } 509 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 510 511 /* Caller should have device mutex */ 512 long vhost_dev_set_owner(struct vhost_dev *dev) 513 { 514 struct task_struct *worker; 515 int err; 516 517 /* Is there an owner already? */ 518 if (vhost_dev_has_owner(dev)) { 519 err = -EBUSY; 520 goto err_mm; 521 } 522 523 /* No owner, become one */ 524 dev->mm = get_task_mm(current); 525 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid); 526 if (IS_ERR(worker)) { 527 err = PTR_ERR(worker); 528 goto err_worker; 529 } 530 531 dev->worker = worker; 532 wake_up_process(worker); /* avoid contributing to loadavg */ 533 534 err = vhost_attach_cgroups(dev); 535 if (err) 536 goto err_cgroup; 537 538 err = vhost_dev_alloc_iovecs(dev); 539 if (err) 540 goto err_cgroup; 541 542 return 0; 543 err_cgroup: 544 kthread_stop(worker); 545 dev->worker = NULL; 546 err_worker: 547 if (dev->mm) 548 mmput(dev->mm); 549 dev->mm = NULL; 550 err_mm: 551 return err; 552 } 553 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 554 555 struct vhost_umem *vhost_dev_reset_owner_prepare(void) 556 { 557 return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL); 558 } 559 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 560 561 /* Caller should have device mutex */ 562 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem) 563 { 564 int i; 565 566 vhost_dev_cleanup(dev); 567 568 /* Restore memory to default empty mapping. */ 569 INIT_LIST_HEAD(&umem->umem_list); 570 dev->umem = umem; 571 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 572 * VQs aren't running. 573 */ 574 for (i = 0; i < dev->nvqs; ++i) 575 dev->vqs[i]->umem = umem; 576 } 577 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 578 579 void vhost_dev_stop(struct vhost_dev *dev) 580 { 581 int i; 582 583 for (i = 0; i < dev->nvqs; ++i) { 584 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) { 585 vhost_poll_stop(&dev->vqs[i]->poll); 586 vhost_poll_flush(&dev->vqs[i]->poll); 587 } 588 } 589 } 590 EXPORT_SYMBOL_GPL(vhost_dev_stop); 591 592 static void vhost_umem_free(struct vhost_umem *umem, 593 struct vhost_umem_node *node) 594 { 595 vhost_umem_interval_tree_remove(node, &umem->umem_tree); 596 list_del(&node->link); 597 kfree(node); 598 umem->numem--; 599 } 600 601 static void vhost_umem_clean(struct vhost_umem *umem) 602 { 603 struct vhost_umem_node *node, *tmp; 604 605 if (!umem) 606 return; 607 608 list_for_each_entry_safe(node, tmp, &umem->umem_list, link) 609 vhost_umem_free(umem, node); 610 611 kvfree(umem); 612 } 613 614 static void vhost_clear_msg(struct vhost_dev *dev) 615 { 616 struct vhost_msg_node *node, *n; 617 618 spin_lock(&dev->iotlb_lock); 619 620 list_for_each_entry_safe(node, n, &dev->read_list, node) { 621 list_del(&node->node); 622 kfree(node); 623 } 624 625 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 626 list_del(&node->node); 627 kfree(node); 628 } 629 630 spin_unlock(&dev->iotlb_lock); 631 } 632 633 void vhost_dev_cleanup(struct vhost_dev *dev) 634 { 635 int i; 636 637 for (i = 0; i < dev->nvqs; ++i) { 638 if (dev->vqs[i]->error_ctx) 639 eventfd_ctx_put(dev->vqs[i]->error_ctx); 640 if (dev->vqs[i]->kick) 641 fput(dev->vqs[i]->kick); 642 if (dev->vqs[i]->call_ctx) 643 eventfd_ctx_put(dev->vqs[i]->call_ctx); 644 vhost_vq_reset(dev, dev->vqs[i]); 645 } 646 vhost_dev_free_iovecs(dev); 647 if (dev->log_ctx) 648 eventfd_ctx_put(dev->log_ctx); 649 dev->log_ctx = NULL; 650 /* No one will access memory at this point */ 651 vhost_umem_clean(dev->umem); 652 dev->umem = NULL; 653 vhost_umem_clean(dev->iotlb); 654 dev->iotlb = NULL; 655 vhost_clear_msg(dev); 656 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 657 WARN_ON(!llist_empty(&dev->work_list)); 658 if (dev->worker) { 659 kthread_stop(dev->worker); 660 dev->worker = NULL; 661 } 662 if (dev->mm) 663 mmput(dev->mm); 664 dev->mm = NULL; 665 } 666 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 667 668 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 669 { 670 u64 a = addr / VHOST_PAGE_SIZE / 8; 671 672 /* Make sure 64 bit math will not overflow. */ 673 if (a > ULONG_MAX - (unsigned long)log_base || 674 a + (unsigned long)log_base > ULONG_MAX) 675 return false; 676 677 return access_ok(log_base + a, 678 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 679 } 680 681 static bool vhost_overflow(u64 uaddr, u64 size) 682 { 683 /* Make sure 64 bit math will not overflow. */ 684 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size; 685 } 686 687 /* Caller should have vq mutex and device mutex. */ 688 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem, 689 int log_all) 690 { 691 struct vhost_umem_node *node; 692 693 if (!umem) 694 return false; 695 696 list_for_each_entry(node, &umem->umem_list, link) { 697 unsigned long a = node->userspace_addr; 698 699 if (vhost_overflow(node->userspace_addr, node->size)) 700 return false; 701 702 703 if (!access_ok((void __user *)a, 704 node->size)) 705 return false; 706 else if (log_all && !log_access_ok(log_base, 707 node->start, 708 node->size)) 709 return false; 710 } 711 return true; 712 } 713 714 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 715 u64 addr, unsigned int size, 716 int type) 717 { 718 const struct vhost_umem_node *node = vq->meta_iotlb[type]; 719 720 if (!node) 721 return NULL; 722 723 return (void *)(uintptr_t)(node->userspace_addr + addr - node->start); 724 } 725 726 /* Can we switch to this memory table? */ 727 /* Caller should have device mutex but not vq mutex */ 728 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem, 729 int log_all) 730 { 731 int i; 732 733 for (i = 0; i < d->nvqs; ++i) { 734 bool ok; 735 bool log; 736 737 mutex_lock(&d->vqs[i]->mutex); 738 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 739 /* If ring is inactive, will check when it's enabled. */ 740 if (d->vqs[i]->private_data) 741 ok = vq_memory_access_ok(d->vqs[i]->log_base, 742 umem, log); 743 else 744 ok = true; 745 mutex_unlock(&d->vqs[i]->mutex); 746 if (!ok) 747 return false; 748 } 749 return true; 750 } 751 752 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 753 struct iovec iov[], int iov_size, int access); 754 755 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 756 const void *from, unsigned size) 757 { 758 int ret; 759 760 if (!vq->iotlb) 761 return __copy_to_user(to, from, size); 762 else { 763 /* This function should be called after iotlb 764 * prefetch, which means we're sure that all vq 765 * could be access through iotlb. So -EAGAIN should 766 * not happen in this case. 767 */ 768 struct iov_iter t; 769 void __user *uaddr = vhost_vq_meta_fetch(vq, 770 (u64)(uintptr_t)to, size, 771 VHOST_ADDR_USED); 772 773 if (uaddr) 774 return __copy_to_user(uaddr, from, size); 775 776 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 777 ARRAY_SIZE(vq->iotlb_iov), 778 VHOST_ACCESS_WO); 779 if (ret < 0) 780 goto out; 781 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size); 782 ret = copy_to_iter(from, size, &t); 783 if (ret == size) 784 ret = 0; 785 } 786 out: 787 return ret; 788 } 789 790 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 791 void __user *from, unsigned size) 792 { 793 int ret; 794 795 if (!vq->iotlb) 796 return __copy_from_user(to, from, size); 797 else { 798 /* This function should be called after iotlb 799 * prefetch, which means we're sure that vq 800 * could be access through iotlb. So -EAGAIN should 801 * not happen in this case. 802 */ 803 void __user *uaddr = vhost_vq_meta_fetch(vq, 804 (u64)(uintptr_t)from, size, 805 VHOST_ADDR_DESC); 806 struct iov_iter f; 807 808 if (uaddr) 809 return __copy_from_user(to, uaddr, size); 810 811 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 812 ARRAY_SIZE(vq->iotlb_iov), 813 VHOST_ACCESS_RO); 814 if (ret < 0) { 815 vq_err(vq, "IOTLB translation failure: uaddr " 816 "%p size 0x%llx\n", from, 817 (unsigned long long) size); 818 goto out; 819 } 820 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size); 821 ret = copy_from_iter(to, size, &f); 822 if (ret == size) 823 ret = 0; 824 } 825 826 out: 827 return ret; 828 } 829 830 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 831 void __user *addr, unsigned int size, 832 int type) 833 { 834 int ret; 835 836 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 837 ARRAY_SIZE(vq->iotlb_iov), 838 VHOST_ACCESS_RO); 839 if (ret < 0) { 840 vq_err(vq, "IOTLB translation failure: uaddr " 841 "%p size 0x%llx\n", addr, 842 (unsigned long long) size); 843 return NULL; 844 } 845 846 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 847 vq_err(vq, "Non atomic userspace memory access: uaddr " 848 "%p size 0x%llx\n", addr, 849 (unsigned long long) size); 850 return NULL; 851 } 852 853 return vq->iotlb_iov[0].iov_base; 854 } 855 856 /* This function should be called after iotlb 857 * prefetch, which means we're sure that vq 858 * could be access through iotlb. So -EAGAIN should 859 * not happen in this case. 860 */ 861 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 862 void *addr, unsigned int size, 863 int type) 864 { 865 void __user *uaddr = vhost_vq_meta_fetch(vq, 866 (u64)(uintptr_t)addr, size, type); 867 if (uaddr) 868 return uaddr; 869 870 return __vhost_get_user_slow(vq, addr, size, type); 871 } 872 873 #define vhost_put_user(vq, x, ptr) \ 874 ({ \ 875 int ret = -EFAULT; \ 876 if (!vq->iotlb) { \ 877 ret = __put_user(x, ptr); \ 878 } else { \ 879 __typeof__(ptr) to = \ 880 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 881 sizeof(*ptr), VHOST_ADDR_USED); \ 882 if (to != NULL) \ 883 ret = __put_user(x, to); \ 884 else \ 885 ret = -EFAULT; \ 886 } \ 887 ret; \ 888 }) 889 890 #define vhost_get_user(vq, x, ptr, type) \ 891 ({ \ 892 int ret; \ 893 if (!vq->iotlb) { \ 894 ret = __get_user(x, ptr); \ 895 } else { \ 896 __typeof__(ptr) from = \ 897 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 898 sizeof(*ptr), \ 899 type); \ 900 if (from != NULL) \ 901 ret = __get_user(x, from); \ 902 else \ 903 ret = -EFAULT; \ 904 } \ 905 ret; \ 906 }) 907 908 #define vhost_get_avail(vq, x, ptr) \ 909 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 910 911 #define vhost_get_used(vq, x, ptr) \ 912 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 913 914 static void vhost_dev_lock_vqs(struct vhost_dev *d) 915 { 916 int i = 0; 917 for (i = 0; i < d->nvqs; ++i) 918 mutex_lock_nested(&d->vqs[i]->mutex, i); 919 } 920 921 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 922 { 923 int i = 0; 924 for (i = 0; i < d->nvqs; ++i) 925 mutex_unlock(&d->vqs[i]->mutex); 926 } 927 928 static int vhost_new_umem_range(struct vhost_umem *umem, 929 u64 start, u64 size, u64 end, 930 u64 userspace_addr, int perm) 931 { 932 struct vhost_umem_node *tmp, *node; 933 934 if (!size) 935 return -EFAULT; 936 937 node = kmalloc(sizeof(*node), GFP_ATOMIC); 938 if (!node) 939 return -ENOMEM; 940 941 if (umem->numem == max_iotlb_entries) { 942 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link); 943 vhost_umem_free(umem, tmp); 944 } 945 946 node->start = start; 947 node->size = size; 948 node->last = end; 949 node->userspace_addr = userspace_addr; 950 node->perm = perm; 951 INIT_LIST_HEAD(&node->link); 952 list_add_tail(&node->link, &umem->umem_list); 953 vhost_umem_interval_tree_insert(node, &umem->umem_tree); 954 umem->numem++; 955 956 return 0; 957 } 958 959 static void vhost_del_umem_range(struct vhost_umem *umem, 960 u64 start, u64 end) 961 { 962 struct vhost_umem_node *node; 963 964 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 965 start, end))) 966 vhost_umem_free(umem, node); 967 } 968 969 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 970 struct vhost_iotlb_msg *msg) 971 { 972 struct vhost_msg_node *node, *n; 973 974 spin_lock(&d->iotlb_lock); 975 976 list_for_each_entry_safe(node, n, &d->pending_list, node) { 977 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 978 if (msg->iova <= vq_msg->iova && 979 msg->iova + msg->size - 1 >= vq_msg->iova && 980 vq_msg->type == VHOST_IOTLB_MISS) { 981 vhost_poll_queue(&node->vq->poll); 982 list_del(&node->node); 983 kfree(node); 984 } 985 } 986 987 spin_unlock(&d->iotlb_lock); 988 } 989 990 static bool umem_access_ok(u64 uaddr, u64 size, int access) 991 { 992 unsigned long a = uaddr; 993 994 /* Make sure 64 bit math will not overflow. */ 995 if (vhost_overflow(uaddr, size)) 996 return false; 997 998 if ((access & VHOST_ACCESS_RO) && 999 !access_ok((void __user *)a, size)) 1000 return false; 1001 if ((access & VHOST_ACCESS_WO) && 1002 !access_ok((void __user *)a, size)) 1003 return false; 1004 return true; 1005 } 1006 1007 static int vhost_process_iotlb_msg(struct vhost_dev *dev, 1008 struct vhost_iotlb_msg *msg) 1009 { 1010 int ret = 0; 1011 1012 mutex_lock(&dev->mutex); 1013 vhost_dev_lock_vqs(dev); 1014 switch (msg->type) { 1015 case VHOST_IOTLB_UPDATE: 1016 if (!dev->iotlb) { 1017 ret = -EFAULT; 1018 break; 1019 } 1020 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 1021 ret = -EFAULT; 1022 break; 1023 } 1024 vhost_vq_meta_reset(dev); 1025 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size, 1026 msg->iova + msg->size - 1, 1027 msg->uaddr, msg->perm)) { 1028 ret = -ENOMEM; 1029 break; 1030 } 1031 vhost_iotlb_notify_vq(dev, msg); 1032 break; 1033 case VHOST_IOTLB_INVALIDATE: 1034 if (!dev->iotlb) { 1035 ret = -EFAULT; 1036 break; 1037 } 1038 vhost_vq_meta_reset(dev); 1039 vhost_del_umem_range(dev->iotlb, msg->iova, 1040 msg->iova + msg->size - 1); 1041 break; 1042 default: 1043 ret = -EINVAL; 1044 break; 1045 } 1046 1047 vhost_dev_unlock_vqs(dev); 1048 mutex_unlock(&dev->mutex); 1049 1050 return ret; 1051 } 1052 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1053 struct iov_iter *from) 1054 { 1055 struct vhost_iotlb_msg msg; 1056 size_t offset; 1057 int type, ret; 1058 1059 ret = copy_from_iter(&type, sizeof(type), from); 1060 if (ret != sizeof(type)) { 1061 ret = -EINVAL; 1062 goto done; 1063 } 1064 1065 switch (type) { 1066 case VHOST_IOTLB_MSG: 1067 /* There maybe a hole after type for V1 message type, 1068 * so skip it here. 1069 */ 1070 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int); 1071 break; 1072 case VHOST_IOTLB_MSG_V2: 1073 offset = sizeof(__u32); 1074 break; 1075 default: 1076 ret = -EINVAL; 1077 goto done; 1078 } 1079 1080 iov_iter_advance(from, offset); 1081 ret = copy_from_iter(&msg, sizeof(msg), from); 1082 if (ret != sizeof(msg)) { 1083 ret = -EINVAL; 1084 goto done; 1085 } 1086 if (vhost_process_iotlb_msg(dev, &msg)) { 1087 ret = -EFAULT; 1088 goto done; 1089 } 1090 1091 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) : 1092 sizeof(struct vhost_msg_v2); 1093 done: 1094 return ret; 1095 } 1096 EXPORT_SYMBOL(vhost_chr_write_iter); 1097 1098 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1099 poll_table *wait) 1100 { 1101 __poll_t mask = 0; 1102 1103 poll_wait(file, &dev->wait, wait); 1104 1105 if (!list_empty(&dev->read_list)) 1106 mask |= EPOLLIN | EPOLLRDNORM; 1107 1108 return mask; 1109 } 1110 EXPORT_SYMBOL(vhost_chr_poll); 1111 1112 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1113 int noblock) 1114 { 1115 DEFINE_WAIT(wait); 1116 struct vhost_msg_node *node; 1117 ssize_t ret = 0; 1118 unsigned size = sizeof(struct vhost_msg); 1119 1120 if (iov_iter_count(to) < size) 1121 return 0; 1122 1123 while (1) { 1124 if (!noblock) 1125 prepare_to_wait(&dev->wait, &wait, 1126 TASK_INTERRUPTIBLE); 1127 1128 node = vhost_dequeue_msg(dev, &dev->read_list); 1129 if (node) 1130 break; 1131 if (noblock) { 1132 ret = -EAGAIN; 1133 break; 1134 } 1135 if (signal_pending(current)) { 1136 ret = -ERESTARTSYS; 1137 break; 1138 } 1139 if (!dev->iotlb) { 1140 ret = -EBADFD; 1141 break; 1142 } 1143 1144 schedule(); 1145 } 1146 1147 if (!noblock) 1148 finish_wait(&dev->wait, &wait); 1149 1150 if (node) { 1151 struct vhost_iotlb_msg *msg; 1152 void *start = &node->msg; 1153 1154 switch (node->msg.type) { 1155 case VHOST_IOTLB_MSG: 1156 size = sizeof(node->msg); 1157 msg = &node->msg.iotlb; 1158 break; 1159 case VHOST_IOTLB_MSG_V2: 1160 size = sizeof(node->msg_v2); 1161 msg = &node->msg_v2.iotlb; 1162 break; 1163 default: 1164 BUG(); 1165 break; 1166 } 1167 1168 ret = copy_to_iter(start, size, to); 1169 if (ret != size || msg->type != VHOST_IOTLB_MISS) { 1170 kfree(node); 1171 return ret; 1172 } 1173 vhost_enqueue_msg(dev, &dev->pending_list, node); 1174 } 1175 1176 return ret; 1177 } 1178 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1179 1180 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1181 { 1182 struct vhost_dev *dev = vq->dev; 1183 struct vhost_msg_node *node; 1184 struct vhost_iotlb_msg *msg; 1185 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2); 1186 1187 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG); 1188 if (!node) 1189 return -ENOMEM; 1190 1191 if (v2) { 1192 node->msg_v2.type = VHOST_IOTLB_MSG_V2; 1193 msg = &node->msg_v2.iotlb; 1194 } else { 1195 msg = &node->msg.iotlb; 1196 } 1197 1198 msg->type = VHOST_IOTLB_MISS; 1199 msg->iova = iova; 1200 msg->perm = access; 1201 1202 vhost_enqueue_msg(dev, &dev->read_list, node); 1203 1204 return 0; 1205 } 1206 1207 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1208 struct vring_desc __user *desc, 1209 struct vring_avail __user *avail, 1210 struct vring_used __user *used) 1211 1212 { 1213 size_t s __maybe_unused = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1214 1215 return access_ok(desc, num * sizeof *desc) && 1216 access_ok(avail, 1217 sizeof *avail + num * sizeof *avail->ring + s) && 1218 access_ok(used, 1219 sizeof *used + num * sizeof *used->ring + s); 1220 } 1221 1222 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1223 const struct vhost_umem_node *node, 1224 int type) 1225 { 1226 int access = (type == VHOST_ADDR_USED) ? 1227 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1228 1229 if (likely(node->perm & access)) 1230 vq->meta_iotlb[type] = node; 1231 } 1232 1233 static bool iotlb_access_ok(struct vhost_virtqueue *vq, 1234 int access, u64 addr, u64 len, int type) 1235 { 1236 const struct vhost_umem_node *node; 1237 struct vhost_umem *umem = vq->iotlb; 1238 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1239 1240 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1241 return true; 1242 1243 while (len > s) { 1244 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1245 addr, 1246 last); 1247 if (node == NULL || node->start > addr) { 1248 vhost_iotlb_miss(vq, addr, access); 1249 return false; 1250 } else if (!(node->perm & access)) { 1251 /* Report the possible access violation by 1252 * request another translation from userspace. 1253 */ 1254 return false; 1255 } 1256 1257 size = node->size - addr + node->start; 1258 1259 if (orig_addr == addr && size >= len) 1260 vhost_vq_meta_update(vq, node, type); 1261 1262 s += size; 1263 addr += size; 1264 } 1265 1266 return true; 1267 } 1268 1269 int vq_iotlb_prefetch(struct vhost_virtqueue *vq) 1270 { 1271 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1272 unsigned int num = vq->num; 1273 1274 if (!vq->iotlb) 1275 return 1; 1276 1277 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc, 1278 num * sizeof(*vq->desc), VHOST_ADDR_DESC) && 1279 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail, 1280 sizeof *vq->avail + 1281 num * sizeof(*vq->avail->ring) + s, 1282 VHOST_ADDR_AVAIL) && 1283 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used, 1284 sizeof *vq->used + 1285 num * sizeof(*vq->used->ring) + s, 1286 VHOST_ADDR_USED); 1287 } 1288 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch); 1289 1290 /* Can we log writes? */ 1291 /* Caller should have device mutex but not vq mutex */ 1292 bool vhost_log_access_ok(struct vhost_dev *dev) 1293 { 1294 return memory_access_ok(dev, dev->umem, 1); 1295 } 1296 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1297 1298 /* Verify access for write logging. */ 1299 /* Caller should have vq mutex and device mutex */ 1300 static bool vq_log_access_ok(struct vhost_virtqueue *vq, 1301 void __user *log_base) 1302 { 1303 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1304 1305 return vq_memory_access_ok(log_base, vq->umem, 1306 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1307 (!vq->log_used || log_access_ok(log_base, vq->log_addr, 1308 sizeof *vq->used + 1309 vq->num * sizeof *vq->used->ring + s)); 1310 } 1311 1312 /* Can we start vq? */ 1313 /* Caller should have vq mutex and device mutex */ 1314 bool vhost_vq_access_ok(struct vhost_virtqueue *vq) 1315 { 1316 if (!vq_log_access_ok(vq, vq->log_base)) 1317 return false; 1318 1319 /* Access validation occurs at prefetch time with IOTLB */ 1320 if (vq->iotlb) 1321 return true; 1322 1323 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1324 } 1325 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1326 1327 static struct vhost_umem *vhost_umem_alloc(void) 1328 { 1329 struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL); 1330 1331 if (!umem) 1332 return NULL; 1333 1334 umem->umem_tree = RB_ROOT_CACHED; 1335 umem->numem = 0; 1336 INIT_LIST_HEAD(&umem->umem_list); 1337 1338 return umem; 1339 } 1340 1341 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1342 { 1343 struct vhost_memory mem, *newmem; 1344 struct vhost_memory_region *region; 1345 struct vhost_umem *newumem, *oldumem; 1346 unsigned long size = offsetof(struct vhost_memory, regions); 1347 int i; 1348 1349 if (copy_from_user(&mem, m, size)) 1350 return -EFAULT; 1351 if (mem.padding) 1352 return -EOPNOTSUPP; 1353 if (mem.nregions > max_mem_regions) 1354 return -E2BIG; 1355 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), 1356 GFP_KERNEL); 1357 if (!newmem) 1358 return -ENOMEM; 1359 1360 memcpy(newmem, &mem, size); 1361 if (copy_from_user(newmem->regions, m->regions, 1362 mem.nregions * sizeof *m->regions)) { 1363 kvfree(newmem); 1364 return -EFAULT; 1365 } 1366 1367 newumem = vhost_umem_alloc(); 1368 if (!newumem) { 1369 kvfree(newmem); 1370 return -ENOMEM; 1371 } 1372 1373 for (region = newmem->regions; 1374 region < newmem->regions + mem.nregions; 1375 region++) { 1376 if (vhost_new_umem_range(newumem, 1377 region->guest_phys_addr, 1378 region->memory_size, 1379 region->guest_phys_addr + 1380 region->memory_size - 1, 1381 region->userspace_addr, 1382 VHOST_ACCESS_RW)) 1383 goto err; 1384 } 1385 1386 if (!memory_access_ok(d, newumem, 0)) 1387 goto err; 1388 1389 oldumem = d->umem; 1390 d->umem = newumem; 1391 1392 /* All memory accesses are done under some VQ mutex. */ 1393 for (i = 0; i < d->nvqs; ++i) { 1394 mutex_lock(&d->vqs[i]->mutex); 1395 d->vqs[i]->umem = newumem; 1396 mutex_unlock(&d->vqs[i]->mutex); 1397 } 1398 1399 kvfree(newmem); 1400 vhost_umem_clean(oldumem); 1401 return 0; 1402 1403 err: 1404 vhost_umem_clean(newumem); 1405 kvfree(newmem); 1406 return -EFAULT; 1407 } 1408 1409 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1410 { 1411 struct file *eventfp, *filep = NULL; 1412 bool pollstart = false, pollstop = false; 1413 struct eventfd_ctx *ctx = NULL; 1414 u32 __user *idxp = argp; 1415 struct vhost_virtqueue *vq; 1416 struct vhost_vring_state s; 1417 struct vhost_vring_file f; 1418 struct vhost_vring_addr a; 1419 u32 idx; 1420 long r; 1421 1422 r = get_user(idx, idxp); 1423 if (r < 0) 1424 return r; 1425 if (idx >= d->nvqs) 1426 return -ENOBUFS; 1427 1428 idx = array_index_nospec(idx, d->nvqs); 1429 vq = d->vqs[idx]; 1430 1431 mutex_lock(&vq->mutex); 1432 1433 switch (ioctl) { 1434 case VHOST_SET_VRING_NUM: 1435 /* Resizing ring with an active backend? 1436 * You don't want to do that. */ 1437 if (vq->private_data) { 1438 r = -EBUSY; 1439 break; 1440 } 1441 if (copy_from_user(&s, argp, sizeof s)) { 1442 r = -EFAULT; 1443 break; 1444 } 1445 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) { 1446 r = -EINVAL; 1447 break; 1448 } 1449 vq->num = s.num; 1450 break; 1451 case VHOST_SET_VRING_BASE: 1452 /* Moving base with an active backend? 1453 * You don't want to do that. */ 1454 if (vq->private_data) { 1455 r = -EBUSY; 1456 break; 1457 } 1458 if (copy_from_user(&s, argp, sizeof s)) { 1459 r = -EFAULT; 1460 break; 1461 } 1462 if (s.num > 0xffff) { 1463 r = -EINVAL; 1464 break; 1465 } 1466 vq->last_avail_idx = s.num; 1467 /* Forget the cached index value. */ 1468 vq->avail_idx = vq->last_avail_idx; 1469 break; 1470 case VHOST_GET_VRING_BASE: 1471 s.index = idx; 1472 s.num = vq->last_avail_idx; 1473 if (copy_to_user(argp, &s, sizeof s)) 1474 r = -EFAULT; 1475 break; 1476 case VHOST_SET_VRING_ADDR: 1477 if (copy_from_user(&a, argp, sizeof a)) { 1478 r = -EFAULT; 1479 break; 1480 } 1481 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) { 1482 r = -EOPNOTSUPP; 1483 break; 1484 } 1485 /* For 32bit, verify that the top 32bits of the user 1486 data are set to zero. */ 1487 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1488 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1489 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) { 1490 r = -EFAULT; 1491 break; 1492 } 1493 1494 /* Make sure it's safe to cast pointers to vring types. */ 1495 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1496 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1497 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1498 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1499 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) { 1500 r = -EINVAL; 1501 break; 1502 } 1503 1504 /* We only verify access here if backend is configured. 1505 * If it is not, we don't as size might not have been setup. 1506 * We will verify when backend is configured. */ 1507 if (vq->private_data) { 1508 if (!vq_access_ok(vq, vq->num, 1509 (void __user *)(unsigned long)a.desc_user_addr, 1510 (void __user *)(unsigned long)a.avail_user_addr, 1511 (void __user *)(unsigned long)a.used_user_addr)) { 1512 r = -EINVAL; 1513 break; 1514 } 1515 1516 /* Also validate log access for used ring if enabled. */ 1517 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) && 1518 !log_access_ok(vq->log_base, a.log_guest_addr, 1519 sizeof *vq->used + 1520 vq->num * sizeof *vq->used->ring)) { 1521 r = -EINVAL; 1522 break; 1523 } 1524 } 1525 1526 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1527 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1528 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1529 vq->log_addr = a.log_guest_addr; 1530 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1531 break; 1532 case VHOST_SET_VRING_KICK: 1533 if (copy_from_user(&f, argp, sizeof f)) { 1534 r = -EFAULT; 1535 break; 1536 } 1537 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1538 if (IS_ERR(eventfp)) { 1539 r = PTR_ERR(eventfp); 1540 break; 1541 } 1542 if (eventfp != vq->kick) { 1543 pollstop = (filep = vq->kick) != NULL; 1544 pollstart = (vq->kick = eventfp) != NULL; 1545 } else 1546 filep = eventfp; 1547 break; 1548 case VHOST_SET_VRING_CALL: 1549 if (copy_from_user(&f, argp, sizeof f)) { 1550 r = -EFAULT; 1551 break; 1552 } 1553 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1554 if (IS_ERR(ctx)) { 1555 r = PTR_ERR(ctx); 1556 break; 1557 } 1558 swap(ctx, vq->call_ctx); 1559 break; 1560 case VHOST_SET_VRING_ERR: 1561 if (copy_from_user(&f, argp, sizeof f)) { 1562 r = -EFAULT; 1563 break; 1564 } 1565 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1566 if (IS_ERR(ctx)) { 1567 r = PTR_ERR(ctx); 1568 break; 1569 } 1570 swap(ctx, vq->error_ctx); 1571 break; 1572 case VHOST_SET_VRING_ENDIAN: 1573 r = vhost_set_vring_endian(vq, argp); 1574 break; 1575 case VHOST_GET_VRING_ENDIAN: 1576 r = vhost_get_vring_endian(vq, idx, argp); 1577 break; 1578 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1579 if (copy_from_user(&s, argp, sizeof(s))) { 1580 r = -EFAULT; 1581 break; 1582 } 1583 vq->busyloop_timeout = s.num; 1584 break; 1585 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1586 s.index = idx; 1587 s.num = vq->busyloop_timeout; 1588 if (copy_to_user(argp, &s, sizeof(s))) 1589 r = -EFAULT; 1590 break; 1591 default: 1592 r = -ENOIOCTLCMD; 1593 } 1594 1595 if (pollstop && vq->handle_kick) 1596 vhost_poll_stop(&vq->poll); 1597 1598 if (!IS_ERR_OR_NULL(ctx)) 1599 eventfd_ctx_put(ctx); 1600 if (filep) 1601 fput(filep); 1602 1603 if (pollstart && vq->handle_kick) 1604 r = vhost_poll_start(&vq->poll, vq->kick); 1605 1606 mutex_unlock(&vq->mutex); 1607 1608 if (pollstop && vq->handle_kick) 1609 vhost_poll_flush(&vq->poll); 1610 return r; 1611 } 1612 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 1613 1614 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled) 1615 { 1616 struct vhost_umem *niotlb, *oiotlb; 1617 int i; 1618 1619 niotlb = vhost_umem_alloc(); 1620 if (!niotlb) 1621 return -ENOMEM; 1622 1623 oiotlb = d->iotlb; 1624 d->iotlb = niotlb; 1625 1626 for (i = 0; i < d->nvqs; ++i) { 1627 struct vhost_virtqueue *vq = d->vqs[i]; 1628 1629 mutex_lock(&vq->mutex); 1630 vq->iotlb = niotlb; 1631 __vhost_vq_meta_reset(vq); 1632 mutex_unlock(&vq->mutex); 1633 } 1634 1635 vhost_umem_clean(oiotlb); 1636 1637 return 0; 1638 } 1639 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 1640 1641 /* Caller must have device mutex */ 1642 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1643 { 1644 struct eventfd_ctx *ctx; 1645 u64 p; 1646 long r; 1647 int i, fd; 1648 1649 /* If you are not the owner, you can become one */ 1650 if (ioctl == VHOST_SET_OWNER) { 1651 r = vhost_dev_set_owner(d); 1652 goto done; 1653 } 1654 1655 /* You must be the owner to do anything else */ 1656 r = vhost_dev_check_owner(d); 1657 if (r) 1658 goto done; 1659 1660 switch (ioctl) { 1661 case VHOST_SET_MEM_TABLE: 1662 r = vhost_set_memory(d, argp); 1663 break; 1664 case VHOST_SET_LOG_BASE: 1665 if (copy_from_user(&p, argp, sizeof p)) { 1666 r = -EFAULT; 1667 break; 1668 } 1669 if ((u64)(unsigned long)p != p) { 1670 r = -EFAULT; 1671 break; 1672 } 1673 for (i = 0; i < d->nvqs; ++i) { 1674 struct vhost_virtqueue *vq; 1675 void __user *base = (void __user *)(unsigned long)p; 1676 vq = d->vqs[i]; 1677 mutex_lock(&vq->mutex); 1678 /* If ring is inactive, will check when it's enabled. */ 1679 if (vq->private_data && !vq_log_access_ok(vq, base)) 1680 r = -EFAULT; 1681 else 1682 vq->log_base = base; 1683 mutex_unlock(&vq->mutex); 1684 } 1685 break; 1686 case VHOST_SET_LOG_FD: 1687 r = get_user(fd, (int __user *)argp); 1688 if (r < 0) 1689 break; 1690 ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd); 1691 if (IS_ERR(ctx)) { 1692 r = PTR_ERR(ctx); 1693 break; 1694 } 1695 swap(ctx, d->log_ctx); 1696 for (i = 0; i < d->nvqs; ++i) { 1697 mutex_lock(&d->vqs[i]->mutex); 1698 d->vqs[i]->log_ctx = d->log_ctx; 1699 mutex_unlock(&d->vqs[i]->mutex); 1700 } 1701 if (ctx) 1702 eventfd_ctx_put(ctx); 1703 break; 1704 default: 1705 r = -ENOIOCTLCMD; 1706 break; 1707 } 1708 done: 1709 return r; 1710 } 1711 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 1712 1713 /* TODO: This is really inefficient. We need something like get_user() 1714 * (instruction directly accesses the data, with an exception table entry 1715 * returning -EFAULT). See Documentation/x86/exception-tables.txt. 1716 */ 1717 static int set_bit_to_user(int nr, void __user *addr) 1718 { 1719 unsigned long log = (unsigned long)addr; 1720 struct page *page; 1721 void *base; 1722 int bit = nr + (log % PAGE_SIZE) * 8; 1723 int r; 1724 1725 r = get_user_pages_fast(log, 1, FOLL_WRITE, &page); 1726 if (r < 0) 1727 return r; 1728 BUG_ON(r != 1); 1729 base = kmap_atomic(page); 1730 set_bit(bit, base); 1731 kunmap_atomic(base); 1732 set_page_dirty_lock(page); 1733 put_page(page); 1734 return 0; 1735 } 1736 1737 static int log_write(void __user *log_base, 1738 u64 write_address, u64 write_length) 1739 { 1740 u64 write_page = write_address / VHOST_PAGE_SIZE; 1741 int r; 1742 1743 if (!write_length) 1744 return 0; 1745 write_length += write_address % VHOST_PAGE_SIZE; 1746 for (;;) { 1747 u64 base = (u64)(unsigned long)log_base; 1748 u64 log = base + write_page / 8; 1749 int bit = write_page % 8; 1750 if ((u64)(unsigned long)log != log) 1751 return -EFAULT; 1752 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 1753 if (r < 0) 1754 return r; 1755 if (write_length <= VHOST_PAGE_SIZE) 1756 break; 1757 write_length -= VHOST_PAGE_SIZE; 1758 write_page += 1; 1759 } 1760 return r; 1761 } 1762 1763 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len) 1764 { 1765 struct vhost_umem *umem = vq->umem; 1766 struct vhost_umem_node *u; 1767 u64 start, end, l, min; 1768 int r; 1769 bool hit = false; 1770 1771 while (len) { 1772 min = len; 1773 /* More than one GPAs can be mapped into a single HVA. So 1774 * iterate all possible umems here to be safe. 1775 */ 1776 list_for_each_entry(u, &umem->umem_list, link) { 1777 if (u->userspace_addr > hva - 1 + len || 1778 u->userspace_addr - 1 + u->size < hva) 1779 continue; 1780 start = max(u->userspace_addr, hva); 1781 end = min(u->userspace_addr - 1 + u->size, 1782 hva - 1 + len); 1783 l = end - start + 1; 1784 r = log_write(vq->log_base, 1785 u->start + start - u->userspace_addr, 1786 l); 1787 if (r < 0) 1788 return r; 1789 hit = true; 1790 min = min(l, min); 1791 } 1792 1793 if (!hit) 1794 return -EFAULT; 1795 1796 len -= min; 1797 hva += min; 1798 } 1799 1800 return 0; 1801 } 1802 1803 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len) 1804 { 1805 struct iovec iov[64]; 1806 int i, ret; 1807 1808 if (!vq->iotlb) 1809 return log_write(vq->log_base, vq->log_addr + used_offset, len); 1810 1811 ret = translate_desc(vq, (uintptr_t)vq->used + used_offset, 1812 len, iov, 64, VHOST_ACCESS_WO); 1813 if (ret < 0) 1814 return ret; 1815 1816 for (i = 0; i < ret; i++) { 1817 ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 1818 iov[i].iov_len); 1819 if (ret) 1820 return ret; 1821 } 1822 1823 return 0; 1824 } 1825 1826 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 1827 unsigned int log_num, u64 len, struct iovec *iov, int count) 1828 { 1829 int i, r; 1830 1831 /* Make sure data written is seen before log. */ 1832 smp_wmb(); 1833 1834 if (vq->iotlb) { 1835 for (i = 0; i < count; i++) { 1836 r = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 1837 iov[i].iov_len); 1838 if (r < 0) 1839 return r; 1840 } 1841 return 0; 1842 } 1843 1844 for (i = 0; i < log_num; ++i) { 1845 u64 l = min(log[i].len, len); 1846 r = log_write(vq->log_base, log[i].addr, l); 1847 if (r < 0) 1848 return r; 1849 len -= l; 1850 if (!len) { 1851 if (vq->log_ctx) 1852 eventfd_signal(vq->log_ctx, 1); 1853 return 0; 1854 } 1855 } 1856 /* Length written exceeds what we have stored. This is a bug. */ 1857 BUG(); 1858 return 0; 1859 } 1860 EXPORT_SYMBOL_GPL(vhost_log_write); 1861 1862 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 1863 { 1864 void __user *used; 1865 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1866 &vq->used->flags) < 0) 1867 return -EFAULT; 1868 if (unlikely(vq->log_used)) { 1869 /* Make sure the flag is seen before log. */ 1870 smp_wmb(); 1871 /* Log used flag write. */ 1872 used = &vq->used->flags; 1873 log_used(vq, (used - (void __user *)vq->used), 1874 sizeof vq->used->flags); 1875 if (vq->log_ctx) 1876 eventfd_signal(vq->log_ctx, 1); 1877 } 1878 return 0; 1879 } 1880 1881 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event) 1882 { 1883 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1884 vhost_avail_event(vq))) 1885 return -EFAULT; 1886 if (unlikely(vq->log_used)) { 1887 void __user *used; 1888 /* Make sure the event is seen before log. */ 1889 smp_wmb(); 1890 /* Log avail event write */ 1891 used = vhost_avail_event(vq); 1892 log_used(vq, (used - (void __user *)vq->used), 1893 sizeof *vhost_avail_event(vq)); 1894 if (vq->log_ctx) 1895 eventfd_signal(vq->log_ctx, 1); 1896 } 1897 return 0; 1898 } 1899 1900 int vhost_vq_init_access(struct vhost_virtqueue *vq) 1901 { 1902 __virtio16 last_used_idx; 1903 int r; 1904 bool is_le = vq->is_le; 1905 1906 if (!vq->private_data) 1907 return 0; 1908 1909 vhost_init_is_le(vq); 1910 1911 r = vhost_update_used_flags(vq); 1912 if (r) 1913 goto err; 1914 vq->signalled_used_valid = false; 1915 if (!vq->iotlb && 1916 !access_ok(&vq->used->idx, sizeof vq->used->idx)) { 1917 r = -EFAULT; 1918 goto err; 1919 } 1920 r = vhost_get_used(vq, last_used_idx, &vq->used->idx); 1921 if (r) { 1922 vq_err(vq, "Can't access used idx at %p\n", 1923 &vq->used->idx); 1924 goto err; 1925 } 1926 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 1927 return 0; 1928 1929 err: 1930 vq->is_le = is_le; 1931 return r; 1932 } 1933 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 1934 1935 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1936 struct iovec iov[], int iov_size, int access) 1937 { 1938 const struct vhost_umem_node *node; 1939 struct vhost_dev *dev = vq->dev; 1940 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem; 1941 struct iovec *_iov; 1942 u64 s = 0; 1943 int ret = 0; 1944 1945 while ((u64)len > s) { 1946 u64 size; 1947 if (unlikely(ret >= iov_size)) { 1948 ret = -ENOBUFS; 1949 break; 1950 } 1951 1952 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1953 addr, addr + len - 1); 1954 if (node == NULL || node->start > addr) { 1955 if (umem != dev->iotlb) { 1956 ret = -EFAULT; 1957 break; 1958 } 1959 ret = -EAGAIN; 1960 break; 1961 } else if (!(node->perm & access)) { 1962 ret = -EPERM; 1963 break; 1964 } 1965 1966 _iov = iov + ret; 1967 size = node->size - addr + node->start; 1968 _iov->iov_len = min((u64)len - s, size); 1969 _iov->iov_base = (void __user *)(unsigned long) 1970 (node->userspace_addr + addr - node->start); 1971 s += size; 1972 addr += size; 1973 ++ret; 1974 } 1975 1976 if (ret == -EAGAIN) 1977 vhost_iotlb_miss(vq, addr, access); 1978 return ret; 1979 } 1980 1981 /* Each buffer in the virtqueues is actually a chain of descriptors. This 1982 * function returns the next descriptor in the chain, 1983 * or -1U if we're at the end. */ 1984 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 1985 { 1986 unsigned int next; 1987 1988 /* If this descriptor says it doesn't chain, we're done. */ 1989 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 1990 return -1U; 1991 1992 /* Check they're not leading us off end of descriptors. */ 1993 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 1994 return next; 1995 } 1996 1997 static int get_indirect(struct vhost_virtqueue *vq, 1998 struct iovec iov[], unsigned int iov_size, 1999 unsigned int *out_num, unsigned int *in_num, 2000 struct vhost_log *log, unsigned int *log_num, 2001 struct vring_desc *indirect) 2002 { 2003 struct vring_desc desc; 2004 unsigned int i = 0, count, found = 0; 2005 u32 len = vhost32_to_cpu(vq, indirect->len); 2006 struct iov_iter from; 2007 int ret, access; 2008 2009 /* Sanity check */ 2010 if (unlikely(len % sizeof desc)) { 2011 vq_err(vq, "Invalid length in indirect descriptor: " 2012 "len 0x%llx not multiple of 0x%zx\n", 2013 (unsigned long long)len, 2014 sizeof desc); 2015 return -EINVAL; 2016 } 2017 2018 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 2019 UIO_MAXIOV, VHOST_ACCESS_RO); 2020 if (unlikely(ret < 0)) { 2021 if (ret != -EAGAIN) 2022 vq_err(vq, "Translation failure %d in indirect.\n", ret); 2023 return ret; 2024 } 2025 iov_iter_init(&from, READ, vq->indirect, ret, len); 2026 2027 /* We will use the result as an address to read from, so most 2028 * architectures only need a compiler barrier here. */ 2029 read_barrier_depends(); 2030 2031 count = len / sizeof desc; 2032 /* Buffers are chained via a 16 bit next field, so 2033 * we can have at most 2^16 of these. */ 2034 if (unlikely(count > USHRT_MAX + 1)) { 2035 vq_err(vq, "Indirect buffer length too big: %d\n", 2036 indirect->len); 2037 return -E2BIG; 2038 } 2039 2040 do { 2041 unsigned iov_count = *in_num + *out_num; 2042 if (unlikely(++found > count)) { 2043 vq_err(vq, "Loop detected: last one at %u " 2044 "indirect size %u\n", 2045 i, count); 2046 return -EINVAL; 2047 } 2048 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 2049 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 2050 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2051 return -EINVAL; 2052 } 2053 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 2054 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 2055 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2056 return -EINVAL; 2057 } 2058 2059 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2060 access = VHOST_ACCESS_WO; 2061 else 2062 access = VHOST_ACCESS_RO; 2063 2064 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2065 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2066 iov_size - iov_count, access); 2067 if (unlikely(ret < 0)) { 2068 if (ret != -EAGAIN) 2069 vq_err(vq, "Translation failure %d indirect idx %d\n", 2070 ret, i); 2071 return ret; 2072 } 2073 /* If this is an input descriptor, increment that count. */ 2074 if (access == VHOST_ACCESS_WO) { 2075 *in_num += ret; 2076 if (unlikely(log)) { 2077 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2078 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2079 ++*log_num; 2080 } 2081 } else { 2082 /* If it's an output descriptor, they're all supposed 2083 * to come before any input descriptors. */ 2084 if (unlikely(*in_num)) { 2085 vq_err(vq, "Indirect descriptor " 2086 "has out after in: idx %d\n", i); 2087 return -EINVAL; 2088 } 2089 *out_num += ret; 2090 } 2091 } while ((i = next_desc(vq, &desc)) != -1); 2092 return 0; 2093 } 2094 2095 /* This looks in the virtqueue and for the first available buffer, and converts 2096 * it to an iovec for convenient access. Since descriptors consist of some 2097 * number of output then some number of input descriptors, it's actually two 2098 * iovecs, but we pack them into one and note how many of each there were. 2099 * 2100 * This function returns the descriptor number found, or vq->num (which is 2101 * never a valid descriptor number) if none was found. A negative code is 2102 * returned on error. */ 2103 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 2104 struct iovec iov[], unsigned int iov_size, 2105 unsigned int *out_num, unsigned int *in_num, 2106 struct vhost_log *log, unsigned int *log_num) 2107 { 2108 struct vring_desc desc; 2109 unsigned int i, head, found = 0; 2110 u16 last_avail_idx; 2111 __virtio16 avail_idx; 2112 __virtio16 ring_head; 2113 int ret, access; 2114 2115 /* Check it isn't doing very strange things with descriptor numbers. */ 2116 last_avail_idx = vq->last_avail_idx; 2117 2118 if (vq->avail_idx == vq->last_avail_idx) { 2119 if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) { 2120 vq_err(vq, "Failed to access avail idx at %p\n", 2121 &vq->avail->idx); 2122 return -EFAULT; 2123 } 2124 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2125 2126 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 2127 vq_err(vq, "Guest moved used index from %u to %u", 2128 last_avail_idx, vq->avail_idx); 2129 return -EFAULT; 2130 } 2131 2132 /* If there's nothing new since last we looked, return 2133 * invalid. 2134 */ 2135 if (vq->avail_idx == last_avail_idx) 2136 return vq->num; 2137 2138 /* Only get avail ring entries after they have been 2139 * exposed by guest. 2140 */ 2141 smp_rmb(); 2142 } 2143 2144 /* Grab the next descriptor number they're advertising, and increment 2145 * the index we've seen. */ 2146 if (unlikely(vhost_get_avail(vq, ring_head, 2147 &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) { 2148 vq_err(vq, "Failed to read head: idx %d address %p\n", 2149 last_avail_idx, 2150 &vq->avail->ring[last_avail_idx % vq->num]); 2151 return -EFAULT; 2152 } 2153 2154 head = vhost16_to_cpu(vq, ring_head); 2155 2156 /* If their number is silly, that's an error. */ 2157 if (unlikely(head >= vq->num)) { 2158 vq_err(vq, "Guest says index %u > %u is available", 2159 head, vq->num); 2160 return -EINVAL; 2161 } 2162 2163 /* When we start there are none of either input nor output. */ 2164 *out_num = *in_num = 0; 2165 if (unlikely(log)) 2166 *log_num = 0; 2167 2168 i = head; 2169 do { 2170 unsigned iov_count = *in_num + *out_num; 2171 if (unlikely(i >= vq->num)) { 2172 vq_err(vq, "Desc index is %u > %u, head = %u", 2173 i, vq->num, head); 2174 return -EINVAL; 2175 } 2176 if (unlikely(++found > vq->num)) { 2177 vq_err(vq, "Loop detected: last one at %u " 2178 "vq size %u head %u\n", 2179 i, vq->num, head); 2180 return -EINVAL; 2181 } 2182 ret = vhost_copy_from_user(vq, &desc, vq->desc + i, 2183 sizeof desc); 2184 if (unlikely(ret)) { 2185 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2186 i, vq->desc + i); 2187 return -EFAULT; 2188 } 2189 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2190 ret = get_indirect(vq, iov, iov_size, 2191 out_num, in_num, 2192 log, log_num, &desc); 2193 if (unlikely(ret < 0)) { 2194 if (ret != -EAGAIN) 2195 vq_err(vq, "Failure detected " 2196 "in indirect descriptor at idx %d\n", i); 2197 return ret; 2198 } 2199 continue; 2200 } 2201 2202 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2203 access = VHOST_ACCESS_WO; 2204 else 2205 access = VHOST_ACCESS_RO; 2206 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2207 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2208 iov_size - iov_count, access); 2209 if (unlikely(ret < 0)) { 2210 if (ret != -EAGAIN) 2211 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2212 ret, i); 2213 return ret; 2214 } 2215 if (access == VHOST_ACCESS_WO) { 2216 /* If this is an input descriptor, 2217 * increment that count. */ 2218 *in_num += ret; 2219 if (unlikely(log)) { 2220 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2221 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2222 ++*log_num; 2223 } 2224 } else { 2225 /* If it's an output descriptor, they're all supposed 2226 * to come before any input descriptors. */ 2227 if (unlikely(*in_num)) { 2228 vq_err(vq, "Descriptor has out after in: " 2229 "idx %d\n", i); 2230 return -EINVAL; 2231 } 2232 *out_num += ret; 2233 } 2234 } while ((i = next_desc(vq, &desc)) != -1); 2235 2236 /* On success, increment avail index. */ 2237 vq->last_avail_idx++; 2238 2239 /* Assume notifications from guest are disabled at this point, 2240 * if they aren't we would need to update avail_event index. */ 2241 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2242 return head; 2243 } 2244 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2245 2246 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2247 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2248 { 2249 vq->last_avail_idx -= n; 2250 } 2251 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2252 2253 /* After we've used one of their buffers, we tell them about it. We'll then 2254 * want to notify the guest, using eventfd. */ 2255 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2256 { 2257 struct vring_used_elem heads = { 2258 cpu_to_vhost32(vq, head), 2259 cpu_to_vhost32(vq, len) 2260 }; 2261 2262 return vhost_add_used_n(vq, &heads, 1); 2263 } 2264 EXPORT_SYMBOL_GPL(vhost_add_used); 2265 2266 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2267 struct vring_used_elem *heads, 2268 unsigned count) 2269 { 2270 struct vring_used_elem __user *used; 2271 u16 old, new; 2272 int start; 2273 2274 start = vq->last_used_idx & (vq->num - 1); 2275 used = vq->used->ring + start; 2276 if (count == 1) { 2277 if (vhost_put_user(vq, heads[0].id, &used->id)) { 2278 vq_err(vq, "Failed to write used id"); 2279 return -EFAULT; 2280 } 2281 if (vhost_put_user(vq, heads[0].len, &used->len)) { 2282 vq_err(vq, "Failed to write used len"); 2283 return -EFAULT; 2284 } 2285 } else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) { 2286 vq_err(vq, "Failed to write used"); 2287 return -EFAULT; 2288 } 2289 if (unlikely(vq->log_used)) { 2290 /* Make sure data is seen before log. */ 2291 smp_wmb(); 2292 /* Log used ring entry write. */ 2293 log_used(vq, ((void __user *)used - (void __user *)vq->used), 2294 count * sizeof *used); 2295 } 2296 old = vq->last_used_idx; 2297 new = (vq->last_used_idx += count); 2298 /* If the driver never bothers to signal in a very long while, 2299 * used index might wrap around. If that happens, invalidate 2300 * signalled_used index we stored. TODO: make sure driver 2301 * signals at least once in 2^16 and remove this. */ 2302 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2303 vq->signalled_used_valid = false; 2304 return 0; 2305 } 2306 2307 /* After we've used one of their buffers, we tell them about it. We'll then 2308 * want to notify the guest, using eventfd. */ 2309 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2310 unsigned count) 2311 { 2312 int start, n, r; 2313 2314 start = vq->last_used_idx & (vq->num - 1); 2315 n = vq->num - start; 2316 if (n < count) { 2317 r = __vhost_add_used_n(vq, heads, n); 2318 if (r < 0) 2319 return r; 2320 heads += n; 2321 count -= n; 2322 } 2323 r = __vhost_add_used_n(vq, heads, count); 2324 2325 /* Make sure buffer is written before we update index. */ 2326 smp_wmb(); 2327 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 2328 &vq->used->idx)) { 2329 vq_err(vq, "Failed to increment used idx"); 2330 return -EFAULT; 2331 } 2332 if (unlikely(vq->log_used)) { 2333 /* Make sure used idx is seen before log. */ 2334 smp_wmb(); 2335 /* Log used index update. */ 2336 log_used(vq, offsetof(struct vring_used, idx), 2337 sizeof vq->used->idx); 2338 if (vq->log_ctx) 2339 eventfd_signal(vq->log_ctx, 1); 2340 } 2341 return r; 2342 } 2343 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2344 2345 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2346 { 2347 __u16 old, new; 2348 __virtio16 event; 2349 bool v; 2350 /* Flush out used index updates. This is paired 2351 * with the barrier that the Guest executes when enabling 2352 * interrupts. */ 2353 smp_mb(); 2354 2355 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2356 unlikely(vq->avail_idx == vq->last_avail_idx)) 2357 return true; 2358 2359 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2360 __virtio16 flags; 2361 if (vhost_get_avail(vq, flags, &vq->avail->flags)) { 2362 vq_err(vq, "Failed to get flags"); 2363 return true; 2364 } 2365 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2366 } 2367 old = vq->signalled_used; 2368 v = vq->signalled_used_valid; 2369 new = vq->signalled_used = vq->last_used_idx; 2370 vq->signalled_used_valid = true; 2371 2372 if (unlikely(!v)) 2373 return true; 2374 2375 if (vhost_get_avail(vq, event, vhost_used_event(vq))) { 2376 vq_err(vq, "Failed to get used event idx"); 2377 return true; 2378 } 2379 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2380 } 2381 2382 /* This actually signals the guest, using eventfd. */ 2383 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2384 { 2385 /* Signal the Guest tell them we used something up. */ 2386 if (vq->call_ctx && vhost_notify(dev, vq)) 2387 eventfd_signal(vq->call_ctx, 1); 2388 } 2389 EXPORT_SYMBOL_GPL(vhost_signal); 2390 2391 /* And here's the combo meal deal. Supersize me! */ 2392 void vhost_add_used_and_signal(struct vhost_dev *dev, 2393 struct vhost_virtqueue *vq, 2394 unsigned int head, int len) 2395 { 2396 vhost_add_used(vq, head, len); 2397 vhost_signal(dev, vq); 2398 } 2399 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2400 2401 /* multi-buffer version of vhost_add_used_and_signal */ 2402 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2403 struct vhost_virtqueue *vq, 2404 struct vring_used_elem *heads, unsigned count) 2405 { 2406 vhost_add_used_n(vq, heads, count); 2407 vhost_signal(dev, vq); 2408 } 2409 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2410 2411 /* return true if we're sure that avaiable ring is empty */ 2412 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2413 { 2414 __virtio16 avail_idx; 2415 int r; 2416 2417 if (vq->avail_idx != vq->last_avail_idx) 2418 return false; 2419 2420 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2421 if (unlikely(r)) 2422 return false; 2423 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2424 2425 return vq->avail_idx == vq->last_avail_idx; 2426 } 2427 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2428 2429 /* OK, now we need to know about added descriptors. */ 2430 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2431 { 2432 __virtio16 avail_idx; 2433 int r; 2434 2435 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2436 return false; 2437 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2438 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2439 r = vhost_update_used_flags(vq); 2440 if (r) { 2441 vq_err(vq, "Failed to enable notification at %p: %d\n", 2442 &vq->used->flags, r); 2443 return false; 2444 } 2445 } else { 2446 r = vhost_update_avail_event(vq, vq->avail_idx); 2447 if (r) { 2448 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2449 vhost_avail_event(vq), r); 2450 return false; 2451 } 2452 } 2453 /* They could have slipped one in as we were doing that: make 2454 * sure it's written, then check again. */ 2455 smp_mb(); 2456 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2457 if (r) { 2458 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2459 &vq->avail->idx, r); 2460 return false; 2461 } 2462 2463 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx; 2464 } 2465 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2466 2467 /* We don't need to be notified again. */ 2468 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2469 { 2470 int r; 2471 2472 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2473 return; 2474 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2475 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2476 r = vhost_update_used_flags(vq); 2477 if (r) 2478 vq_err(vq, "Failed to enable notification at %p: %d\n", 2479 &vq->used->flags, r); 2480 } 2481 } 2482 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2483 2484 /* Create a new message. */ 2485 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2486 { 2487 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL); 2488 if (!node) 2489 return NULL; 2490 2491 /* Make sure all padding within the structure is initialized. */ 2492 memset(&node->msg, 0, sizeof node->msg); 2493 node->vq = vq; 2494 node->msg.type = type; 2495 return node; 2496 } 2497 EXPORT_SYMBOL_GPL(vhost_new_msg); 2498 2499 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2500 struct vhost_msg_node *node) 2501 { 2502 spin_lock(&dev->iotlb_lock); 2503 list_add_tail(&node->node, head); 2504 spin_unlock(&dev->iotlb_lock); 2505 2506 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 2507 } 2508 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2509 2510 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2511 struct list_head *head) 2512 { 2513 struct vhost_msg_node *node = NULL; 2514 2515 spin_lock(&dev->iotlb_lock); 2516 if (!list_empty(head)) { 2517 node = list_first_entry(head, struct vhost_msg_node, 2518 node); 2519 list_del(&node->node); 2520 } 2521 spin_unlock(&dev->iotlb_lock); 2522 2523 return node; 2524 } 2525 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2526 2527 2528 static int __init vhost_init(void) 2529 { 2530 return 0; 2531 } 2532 2533 static void __exit vhost_exit(void) 2534 { 2535 } 2536 2537 module_init(vhost_init); 2538 module_exit(vhost_exit); 2539 2540 MODULE_VERSION("0.0.1"); 2541 MODULE_LICENSE("GPL v2"); 2542 MODULE_AUTHOR("Michael S. Tsirkin"); 2543 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2544