xref: /openbmc/linux/drivers/vhost/vhost.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 /* Copyright (C) 2009 Red Hat, Inc.
2  * Copyright (C) 2006 Rusty Russell IBM Corporation
3  *
4  * Author: Michael S. Tsirkin <mst@redhat.com>
5  *
6  * Inspiration, some code, and most witty comments come from
7  * Documentation/virtual/lguest/lguest.c, by Rusty Russell
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.
10  *
11  * Generic code for virtio server in host kernel.
12  */
13 
14 #include <linux/eventfd.h>
15 #include <linux/vhost.h>
16 #include <linux/uio.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_context.h>
19 #include <linux/miscdevice.h>
20 #include <linux/mutex.h>
21 #include <linux/poll.h>
22 #include <linux/file.h>
23 #include <linux/highmem.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/kthread.h>
27 #include <linux/cgroup.h>
28 #include <linux/module.h>
29 #include <linux/sort.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/signal.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include "vhost.h"
35 
36 static ushort max_mem_regions = 64;
37 module_param(max_mem_regions, ushort, 0444);
38 MODULE_PARM_DESC(max_mem_regions,
39 	"Maximum number of memory regions in memory map. (default: 64)");
40 static int max_iotlb_entries = 2048;
41 module_param(max_iotlb_entries, int, 0444);
42 MODULE_PARM_DESC(max_iotlb_entries,
43 	"Maximum number of iotlb entries. (default: 2048)");
44 
45 enum {
46 	VHOST_MEMORY_F_LOG = 0x1,
47 };
48 
49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num])
50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num])
51 
52 INTERVAL_TREE_DEFINE(struct vhost_umem_node,
53 		     rb, __u64, __subtree_last,
54 		     START, LAST, static inline, vhost_umem_interval_tree);
55 
56 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY
57 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
58 {
59 	vq->user_be = !virtio_legacy_is_little_endian();
60 }
61 
62 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq)
63 {
64 	vq->user_be = true;
65 }
66 
67 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq)
68 {
69 	vq->user_be = false;
70 }
71 
72 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
73 {
74 	struct vhost_vring_state s;
75 
76 	if (vq->private_data)
77 		return -EBUSY;
78 
79 	if (copy_from_user(&s, argp, sizeof(s)))
80 		return -EFAULT;
81 
82 	if (s.num != VHOST_VRING_LITTLE_ENDIAN &&
83 	    s.num != VHOST_VRING_BIG_ENDIAN)
84 		return -EINVAL;
85 
86 	if (s.num == VHOST_VRING_BIG_ENDIAN)
87 		vhost_enable_cross_endian_big(vq);
88 	else
89 		vhost_enable_cross_endian_little(vq);
90 
91 	return 0;
92 }
93 
94 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
95 				   int __user *argp)
96 {
97 	struct vhost_vring_state s = {
98 		.index = idx,
99 		.num = vq->user_be
100 	};
101 
102 	if (copy_to_user(argp, &s, sizeof(s)))
103 		return -EFAULT;
104 
105 	return 0;
106 }
107 
108 static void vhost_init_is_le(struct vhost_virtqueue *vq)
109 {
110 	/* Note for legacy virtio: user_be is initialized at reset time
111 	 * according to the host endianness. If userspace does not set an
112 	 * explicit endianness, the default behavior is native endian, as
113 	 * expected by legacy virtio.
114 	 */
115 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be;
116 }
117 #else
118 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
119 {
120 }
121 
122 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
123 {
124 	return -ENOIOCTLCMD;
125 }
126 
127 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
128 				   int __user *argp)
129 {
130 	return -ENOIOCTLCMD;
131 }
132 
133 static void vhost_init_is_le(struct vhost_virtqueue *vq)
134 {
135 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1)
136 		|| virtio_legacy_is_little_endian();
137 }
138 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */
139 
140 static void vhost_reset_is_le(struct vhost_virtqueue *vq)
141 {
142 	vhost_init_is_le(vq);
143 }
144 
145 struct vhost_flush_struct {
146 	struct vhost_work work;
147 	struct completion wait_event;
148 };
149 
150 static void vhost_flush_work(struct vhost_work *work)
151 {
152 	struct vhost_flush_struct *s;
153 
154 	s = container_of(work, struct vhost_flush_struct, work);
155 	complete(&s->wait_event);
156 }
157 
158 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh,
159 			    poll_table *pt)
160 {
161 	struct vhost_poll *poll;
162 
163 	poll = container_of(pt, struct vhost_poll, table);
164 	poll->wqh = wqh;
165 	add_wait_queue(wqh, &poll->wait);
166 }
167 
168 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync,
169 			     void *key)
170 {
171 	struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait);
172 
173 	if (!(key_to_poll(key) & poll->mask))
174 		return 0;
175 
176 	vhost_poll_queue(poll);
177 	return 0;
178 }
179 
180 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn)
181 {
182 	clear_bit(VHOST_WORK_QUEUED, &work->flags);
183 	work->fn = fn;
184 }
185 EXPORT_SYMBOL_GPL(vhost_work_init);
186 
187 /* Init poll structure */
188 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn,
189 		     __poll_t mask, struct vhost_dev *dev)
190 {
191 	init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup);
192 	init_poll_funcptr(&poll->table, vhost_poll_func);
193 	poll->mask = mask;
194 	poll->dev = dev;
195 	poll->wqh = NULL;
196 
197 	vhost_work_init(&poll->work, fn);
198 }
199 EXPORT_SYMBOL_GPL(vhost_poll_init);
200 
201 /* Start polling a file. We add ourselves to file's wait queue. The caller must
202  * keep a reference to a file until after vhost_poll_stop is called. */
203 int vhost_poll_start(struct vhost_poll *poll, struct file *file)
204 {
205 	__poll_t mask;
206 	int ret = 0;
207 
208 	if (poll->wqh)
209 		return 0;
210 
211 	mask = vfs_poll(file, &poll->table);
212 	if (mask)
213 		vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask));
214 	if (mask & EPOLLERR) {
215 		vhost_poll_stop(poll);
216 		ret = -EINVAL;
217 	}
218 
219 	return ret;
220 }
221 EXPORT_SYMBOL_GPL(vhost_poll_start);
222 
223 /* Stop polling a file. After this function returns, it becomes safe to drop the
224  * file reference. You must also flush afterwards. */
225 void vhost_poll_stop(struct vhost_poll *poll)
226 {
227 	if (poll->wqh) {
228 		remove_wait_queue(poll->wqh, &poll->wait);
229 		poll->wqh = NULL;
230 	}
231 }
232 EXPORT_SYMBOL_GPL(vhost_poll_stop);
233 
234 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work)
235 {
236 	struct vhost_flush_struct flush;
237 
238 	if (dev->worker) {
239 		init_completion(&flush.wait_event);
240 		vhost_work_init(&flush.work, vhost_flush_work);
241 
242 		vhost_work_queue(dev, &flush.work);
243 		wait_for_completion(&flush.wait_event);
244 	}
245 }
246 EXPORT_SYMBOL_GPL(vhost_work_flush);
247 
248 /* Flush any work that has been scheduled. When calling this, don't hold any
249  * locks that are also used by the callback. */
250 void vhost_poll_flush(struct vhost_poll *poll)
251 {
252 	vhost_work_flush(poll->dev, &poll->work);
253 }
254 EXPORT_SYMBOL_GPL(vhost_poll_flush);
255 
256 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work)
257 {
258 	if (!dev->worker)
259 		return;
260 
261 	if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) {
262 		/* We can only add the work to the list after we're
263 		 * sure it was not in the list.
264 		 * test_and_set_bit() implies a memory barrier.
265 		 */
266 		llist_add(&work->node, &dev->work_list);
267 		wake_up_process(dev->worker);
268 	}
269 }
270 EXPORT_SYMBOL_GPL(vhost_work_queue);
271 
272 /* A lockless hint for busy polling code to exit the loop */
273 bool vhost_has_work(struct vhost_dev *dev)
274 {
275 	return !llist_empty(&dev->work_list);
276 }
277 EXPORT_SYMBOL_GPL(vhost_has_work);
278 
279 void vhost_poll_queue(struct vhost_poll *poll)
280 {
281 	vhost_work_queue(poll->dev, &poll->work);
282 }
283 EXPORT_SYMBOL_GPL(vhost_poll_queue);
284 
285 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq)
286 {
287 	int j;
288 
289 	for (j = 0; j < VHOST_NUM_ADDRS; j++)
290 		vq->meta_iotlb[j] = NULL;
291 }
292 
293 static void vhost_vq_meta_reset(struct vhost_dev *d)
294 {
295 	int i;
296 
297 	for (i = 0; i < d->nvqs; ++i)
298 		__vhost_vq_meta_reset(d->vqs[i]);
299 }
300 
301 static void vhost_vq_reset(struct vhost_dev *dev,
302 			   struct vhost_virtqueue *vq)
303 {
304 	vq->num = 1;
305 	vq->desc = NULL;
306 	vq->avail = NULL;
307 	vq->used = NULL;
308 	vq->last_avail_idx = 0;
309 	vq->avail_idx = 0;
310 	vq->last_used_idx = 0;
311 	vq->signalled_used = 0;
312 	vq->signalled_used_valid = false;
313 	vq->used_flags = 0;
314 	vq->log_used = false;
315 	vq->log_addr = -1ull;
316 	vq->private_data = NULL;
317 	vq->acked_features = 0;
318 	vq->log_base = NULL;
319 	vq->error_ctx = NULL;
320 	vq->kick = NULL;
321 	vq->call_ctx = NULL;
322 	vq->log_ctx = NULL;
323 	vhost_reset_is_le(vq);
324 	vhost_disable_cross_endian(vq);
325 	vq->busyloop_timeout = 0;
326 	vq->umem = NULL;
327 	vq->iotlb = NULL;
328 	__vhost_vq_meta_reset(vq);
329 }
330 
331 static int vhost_worker(void *data)
332 {
333 	struct vhost_dev *dev = data;
334 	struct vhost_work *work, *work_next;
335 	struct llist_node *node;
336 	mm_segment_t oldfs = get_fs();
337 
338 	set_fs(USER_DS);
339 	use_mm(dev->mm);
340 
341 	for (;;) {
342 		/* mb paired w/ kthread_stop */
343 		set_current_state(TASK_INTERRUPTIBLE);
344 
345 		if (kthread_should_stop()) {
346 			__set_current_state(TASK_RUNNING);
347 			break;
348 		}
349 
350 		node = llist_del_all(&dev->work_list);
351 		if (!node)
352 			schedule();
353 
354 		node = llist_reverse_order(node);
355 		/* make sure flag is seen after deletion */
356 		smp_wmb();
357 		llist_for_each_entry_safe(work, work_next, node, node) {
358 			clear_bit(VHOST_WORK_QUEUED, &work->flags);
359 			__set_current_state(TASK_RUNNING);
360 			work->fn(work);
361 			if (need_resched())
362 				schedule();
363 		}
364 	}
365 	unuse_mm(dev->mm);
366 	set_fs(oldfs);
367 	return 0;
368 }
369 
370 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq)
371 {
372 	kfree(vq->indirect);
373 	vq->indirect = NULL;
374 	kfree(vq->log);
375 	vq->log = NULL;
376 	kfree(vq->heads);
377 	vq->heads = NULL;
378 }
379 
380 /* Helper to allocate iovec buffers for all vqs. */
381 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev)
382 {
383 	struct vhost_virtqueue *vq;
384 	int i;
385 
386 	for (i = 0; i < dev->nvqs; ++i) {
387 		vq = dev->vqs[i];
388 		vq->indirect = kmalloc_array(UIO_MAXIOV,
389 					     sizeof(*vq->indirect),
390 					     GFP_KERNEL);
391 		vq->log = kmalloc_array(UIO_MAXIOV, sizeof(*vq->log),
392 					GFP_KERNEL);
393 		vq->heads = kmalloc_array(UIO_MAXIOV, sizeof(*vq->heads),
394 					  GFP_KERNEL);
395 		if (!vq->indirect || !vq->log || !vq->heads)
396 			goto err_nomem;
397 	}
398 	return 0;
399 
400 err_nomem:
401 	for (; i >= 0; --i)
402 		vhost_vq_free_iovecs(dev->vqs[i]);
403 	return -ENOMEM;
404 }
405 
406 static void vhost_dev_free_iovecs(struct vhost_dev *dev)
407 {
408 	int i;
409 
410 	for (i = 0; i < dev->nvqs; ++i)
411 		vhost_vq_free_iovecs(dev->vqs[i]);
412 }
413 
414 void vhost_dev_init(struct vhost_dev *dev,
415 		    struct vhost_virtqueue **vqs, int nvqs)
416 {
417 	struct vhost_virtqueue *vq;
418 	int i;
419 
420 	dev->vqs = vqs;
421 	dev->nvqs = nvqs;
422 	mutex_init(&dev->mutex);
423 	dev->log_ctx = NULL;
424 	dev->umem = NULL;
425 	dev->iotlb = NULL;
426 	dev->mm = NULL;
427 	dev->worker = NULL;
428 	init_llist_head(&dev->work_list);
429 	init_waitqueue_head(&dev->wait);
430 	INIT_LIST_HEAD(&dev->read_list);
431 	INIT_LIST_HEAD(&dev->pending_list);
432 	spin_lock_init(&dev->iotlb_lock);
433 
434 
435 	for (i = 0; i < dev->nvqs; ++i) {
436 		vq = dev->vqs[i];
437 		vq->log = NULL;
438 		vq->indirect = NULL;
439 		vq->heads = NULL;
440 		vq->dev = dev;
441 		mutex_init(&vq->mutex);
442 		vhost_vq_reset(dev, vq);
443 		if (vq->handle_kick)
444 			vhost_poll_init(&vq->poll, vq->handle_kick,
445 					EPOLLIN, dev);
446 	}
447 }
448 EXPORT_SYMBOL_GPL(vhost_dev_init);
449 
450 /* Caller should have device mutex */
451 long vhost_dev_check_owner(struct vhost_dev *dev)
452 {
453 	/* Are you the owner? If not, I don't think you mean to do that */
454 	return dev->mm == current->mm ? 0 : -EPERM;
455 }
456 EXPORT_SYMBOL_GPL(vhost_dev_check_owner);
457 
458 struct vhost_attach_cgroups_struct {
459 	struct vhost_work work;
460 	struct task_struct *owner;
461 	int ret;
462 };
463 
464 static void vhost_attach_cgroups_work(struct vhost_work *work)
465 {
466 	struct vhost_attach_cgroups_struct *s;
467 
468 	s = container_of(work, struct vhost_attach_cgroups_struct, work);
469 	s->ret = cgroup_attach_task_all(s->owner, current);
470 }
471 
472 static int vhost_attach_cgroups(struct vhost_dev *dev)
473 {
474 	struct vhost_attach_cgroups_struct attach;
475 
476 	attach.owner = current;
477 	vhost_work_init(&attach.work, vhost_attach_cgroups_work);
478 	vhost_work_queue(dev, &attach.work);
479 	vhost_work_flush(dev, &attach.work);
480 	return attach.ret;
481 }
482 
483 /* Caller should have device mutex */
484 bool vhost_dev_has_owner(struct vhost_dev *dev)
485 {
486 	return dev->mm;
487 }
488 EXPORT_SYMBOL_GPL(vhost_dev_has_owner);
489 
490 /* Caller should have device mutex */
491 long vhost_dev_set_owner(struct vhost_dev *dev)
492 {
493 	struct task_struct *worker;
494 	int err;
495 
496 	/* Is there an owner already? */
497 	if (vhost_dev_has_owner(dev)) {
498 		err = -EBUSY;
499 		goto err_mm;
500 	}
501 
502 	/* No owner, become one */
503 	dev->mm = get_task_mm(current);
504 	worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid);
505 	if (IS_ERR(worker)) {
506 		err = PTR_ERR(worker);
507 		goto err_worker;
508 	}
509 
510 	dev->worker = worker;
511 	wake_up_process(worker);	/* avoid contributing to loadavg */
512 
513 	err = vhost_attach_cgroups(dev);
514 	if (err)
515 		goto err_cgroup;
516 
517 	err = vhost_dev_alloc_iovecs(dev);
518 	if (err)
519 		goto err_cgroup;
520 
521 	return 0;
522 err_cgroup:
523 	kthread_stop(worker);
524 	dev->worker = NULL;
525 err_worker:
526 	if (dev->mm)
527 		mmput(dev->mm);
528 	dev->mm = NULL;
529 err_mm:
530 	return err;
531 }
532 EXPORT_SYMBOL_GPL(vhost_dev_set_owner);
533 
534 struct vhost_umem *vhost_dev_reset_owner_prepare(void)
535 {
536 	return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL);
537 }
538 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare);
539 
540 /* Caller should have device mutex */
541 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem)
542 {
543 	int i;
544 
545 	vhost_dev_cleanup(dev);
546 
547 	/* Restore memory to default empty mapping. */
548 	INIT_LIST_HEAD(&umem->umem_list);
549 	dev->umem = umem;
550 	/* We don't need VQ locks below since vhost_dev_cleanup makes sure
551 	 * VQs aren't running.
552 	 */
553 	for (i = 0; i < dev->nvqs; ++i)
554 		dev->vqs[i]->umem = umem;
555 }
556 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner);
557 
558 void vhost_dev_stop(struct vhost_dev *dev)
559 {
560 	int i;
561 
562 	for (i = 0; i < dev->nvqs; ++i) {
563 		if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) {
564 			vhost_poll_stop(&dev->vqs[i]->poll);
565 			vhost_poll_flush(&dev->vqs[i]->poll);
566 		}
567 	}
568 }
569 EXPORT_SYMBOL_GPL(vhost_dev_stop);
570 
571 static void vhost_umem_free(struct vhost_umem *umem,
572 			    struct vhost_umem_node *node)
573 {
574 	vhost_umem_interval_tree_remove(node, &umem->umem_tree);
575 	list_del(&node->link);
576 	kfree(node);
577 	umem->numem--;
578 }
579 
580 static void vhost_umem_clean(struct vhost_umem *umem)
581 {
582 	struct vhost_umem_node *node, *tmp;
583 
584 	if (!umem)
585 		return;
586 
587 	list_for_each_entry_safe(node, tmp, &umem->umem_list, link)
588 		vhost_umem_free(umem, node);
589 
590 	kvfree(umem);
591 }
592 
593 static void vhost_clear_msg(struct vhost_dev *dev)
594 {
595 	struct vhost_msg_node *node, *n;
596 
597 	spin_lock(&dev->iotlb_lock);
598 
599 	list_for_each_entry_safe(node, n, &dev->read_list, node) {
600 		list_del(&node->node);
601 		kfree(node);
602 	}
603 
604 	list_for_each_entry_safe(node, n, &dev->pending_list, node) {
605 		list_del(&node->node);
606 		kfree(node);
607 	}
608 
609 	spin_unlock(&dev->iotlb_lock);
610 }
611 
612 void vhost_dev_cleanup(struct vhost_dev *dev)
613 {
614 	int i;
615 
616 	for (i = 0; i < dev->nvqs; ++i) {
617 		if (dev->vqs[i]->error_ctx)
618 			eventfd_ctx_put(dev->vqs[i]->error_ctx);
619 		if (dev->vqs[i]->kick)
620 			fput(dev->vqs[i]->kick);
621 		if (dev->vqs[i]->call_ctx)
622 			eventfd_ctx_put(dev->vqs[i]->call_ctx);
623 		vhost_vq_reset(dev, dev->vqs[i]);
624 	}
625 	vhost_dev_free_iovecs(dev);
626 	if (dev->log_ctx)
627 		eventfd_ctx_put(dev->log_ctx);
628 	dev->log_ctx = NULL;
629 	/* No one will access memory at this point */
630 	vhost_umem_clean(dev->umem);
631 	dev->umem = NULL;
632 	vhost_umem_clean(dev->iotlb);
633 	dev->iotlb = NULL;
634 	vhost_clear_msg(dev);
635 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
636 	WARN_ON(!llist_empty(&dev->work_list));
637 	if (dev->worker) {
638 		kthread_stop(dev->worker);
639 		dev->worker = NULL;
640 	}
641 	if (dev->mm)
642 		mmput(dev->mm);
643 	dev->mm = NULL;
644 }
645 EXPORT_SYMBOL_GPL(vhost_dev_cleanup);
646 
647 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz)
648 {
649 	u64 a = addr / VHOST_PAGE_SIZE / 8;
650 
651 	/* Make sure 64 bit math will not overflow. */
652 	if (a > ULONG_MAX - (unsigned long)log_base ||
653 	    a + (unsigned long)log_base > ULONG_MAX)
654 		return false;
655 
656 	return access_ok(VERIFY_WRITE, log_base + a,
657 			 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8);
658 }
659 
660 static bool vhost_overflow(u64 uaddr, u64 size)
661 {
662 	/* Make sure 64 bit math will not overflow. */
663 	return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size;
664 }
665 
666 /* Caller should have vq mutex and device mutex. */
667 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem,
668 				int log_all)
669 {
670 	struct vhost_umem_node *node;
671 
672 	if (!umem)
673 		return false;
674 
675 	list_for_each_entry(node, &umem->umem_list, link) {
676 		unsigned long a = node->userspace_addr;
677 
678 		if (vhost_overflow(node->userspace_addr, node->size))
679 			return false;
680 
681 
682 		if (!access_ok(VERIFY_WRITE, (void __user *)a,
683 				    node->size))
684 			return false;
685 		else if (log_all && !log_access_ok(log_base,
686 						   node->start,
687 						   node->size))
688 			return false;
689 	}
690 	return true;
691 }
692 
693 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq,
694 					       u64 addr, unsigned int size,
695 					       int type)
696 {
697 	const struct vhost_umem_node *node = vq->meta_iotlb[type];
698 
699 	if (!node)
700 		return NULL;
701 
702 	return (void *)(uintptr_t)(node->userspace_addr + addr - node->start);
703 }
704 
705 /* Can we switch to this memory table? */
706 /* Caller should have device mutex but not vq mutex */
707 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem,
708 			     int log_all)
709 {
710 	int i;
711 
712 	for (i = 0; i < d->nvqs; ++i) {
713 		bool ok;
714 		bool log;
715 
716 		mutex_lock(&d->vqs[i]->mutex);
717 		log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL);
718 		/* If ring is inactive, will check when it's enabled. */
719 		if (d->vqs[i]->private_data)
720 			ok = vq_memory_access_ok(d->vqs[i]->log_base,
721 						 umem, log);
722 		else
723 			ok = true;
724 		mutex_unlock(&d->vqs[i]->mutex);
725 		if (!ok)
726 			return false;
727 	}
728 	return true;
729 }
730 
731 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
732 			  struct iovec iov[], int iov_size, int access);
733 
734 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to,
735 			      const void *from, unsigned size)
736 {
737 	int ret;
738 
739 	if (!vq->iotlb)
740 		return __copy_to_user(to, from, size);
741 	else {
742 		/* This function should be called after iotlb
743 		 * prefetch, which means we're sure that all vq
744 		 * could be access through iotlb. So -EAGAIN should
745 		 * not happen in this case.
746 		 */
747 		struct iov_iter t;
748 		void __user *uaddr = vhost_vq_meta_fetch(vq,
749 				     (u64)(uintptr_t)to, size,
750 				     VHOST_ADDR_USED);
751 
752 		if (uaddr)
753 			return __copy_to_user(uaddr, from, size);
754 
755 		ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov,
756 				     ARRAY_SIZE(vq->iotlb_iov),
757 				     VHOST_ACCESS_WO);
758 		if (ret < 0)
759 			goto out;
760 		iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size);
761 		ret = copy_to_iter(from, size, &t);
762 		if (ret == size)
763 			ret = 0;
764 	}
765 out:
766 	return ret;
767 }
768 
769 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to,
770 				void __user *from, unsigned size)
771 {
772 	int ret;
773 
774 	if (!vq->iotlb)
775 		return __copy_from_user(to, from, size);
776 	else {
777 		/* This function should be called after iotlb
778 		 * prefetch, which means we're sure that vq
779 		 * could be access through iotlb. So -EAGAIN should
780 		 * not happen in this case.
781 		 */
782 		void __user *uaddr = vhost_vq_meta_fetch(vq,
783 				     (u64)(uintptr_t)from, size,
784 				     VHOST_ADDR_DESC);
785 		struct iov_iter f;
786 
787 		if (uaddr)
788 			return __copy_from_user(to, uaddr, size);
789 
790 		ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov,
791 				     ARRAY_SIZE(vq->iotlb_iov),
792 				     VHOST_ACCESS_RO);
793 		if (ret < 0) {
794 			vq_err(vq, "IOTLB translation failure: uaddr "
795 			       "%p size 0x%llx\n", from,
796 			       (unsigned long long) size);
797 			goto out;
798 		}
799 		iov_iter_init(&f, READ, vq->iotlb_iov, ret, size);
800 		ret = copy_from_iter(to, size, &f);
801 		if (ret == size)
802 			ret = 0;
803 	}
804 
805 out:
806 	return ret;
807 }
808 
809 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq,
810 					  void __user *addr, unsigned int size,
811 					  int type)
812 {
813 	int ret;
814 
815 	ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov,
816 			     ARRAY_SIZE(vq->iotlb_iov),
817 			     VHOST_ACCESS_RO);
818 	if (ret < 0) {
819 		vq_err(vq, "IOTLB translation failure: uaddr "
820 			"%p size 0x%llx\n", addr,
821 			(unsigned long long) size);
822 		return NULL;
823 	}
824 
825 	if (ret != 1 || vq->iotlb_iov[0].iov_len != size) {
826 		vq_err(vq, "Non atomic userspace memory access: uaddr "
827 			"%p size 0x%llx\n", addr,
828 			(unsigned long long) size);
829 		return NULL;
830 	}
831 
832 	return vq->iotlb_iov[0].iov_base;
833 }
834 
835 /* This function should be called after iotlb
836  * prefetch, which means we're sure that vq
837  * could be access through iotlb. So -EAGAIN should
838  * not happen in this case.
839  */
840 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq,
841 					    void *addr, unsigned int size,
842 					    int type)
843 {
844 	void __user *uaddr = vhost_vq_meta_fetch(vq,
845 			     (u64)(uintptr_t)addr, size, type);
846 	if (uaddr)
847 		return uaddr;
848 
849 	return __vhost_get_user_slow(vq, addr, size, type);
850 }
851 
852 #define vhost_put_user(vq, x, ptr)		\
853 ({ \
854 	int ret = -EFAULT; \
855 	if (!vq->iotlb) { \
856 		ret = __put_user(x, ptr); \
857 	} else { \
858 		__typeof__(ptr) to = \
859 			(__typeof__(ptr)) __vhost_get_user(vq, ptr,	\
860 					  sizeof(*ptr), VHOST_ADDR_USED); \
861 		if (to != NULL) \
862 			ret = __put_user(x, to); \
863 		else \
864 			ret = -EFAULT;	\
865 	} \
866 	ret; \
867 })
868 
869 #define vhost_get_user(vq, x, ptr, type)		\
870 ({ \
871 	int ret; \
872 	if (!vq->iotlb) { \
873 		ret = __get_user(x, ptr); \
874 	} else { \
875 		__typeof__(ptr) from = \
876 			(__typeof__(ptr)) __vhost_get_user(vq, ptr, \
877 							   sizeof(*ptr), \
878 							   type); \
879 		if (from != NULL) \
880 			ret = __get_user(x, from); \
881 		else \
882 			ret = -EFAULT; \
883 	} \
884 	ret; \
885 })
886 
887 #define vhost_get_avail(vq, x, ptr) \
888 	vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL)
889 
890 #define vhost_get_used(vq, x, ptr) \
891 	vhost_get_user(vq, x, ptr, VHOST_ADDR_USED)
892 
893 static void vhost_dev_lock_vqs(struct vhost_dev *d)
894 {
895 	int i = 0;
896 	for (i = 0; i < d->nvqs; ++i)
897 		mutex_lock_nested(&d->vqs[i]->mutex, i);
898 }
899 
900 static void vhost_dev_unlock_vqs(struct vhost_dev *d)
901 {
902 	int i = 0;
903 	for (i = 0; i < d->nvqs; ++i)
904 		mutex_unlock(&d->vqs[i]->mutex);
905 }
906 
907 static int vhost_new_umem_range(struct vhost_umem *umem,
908 				u64 start, u64 size, u64 end,
909 				u64 userspace_addr, int perm)
910 {
911 	struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC);
912 
913 	if (!node)
914 		return -ENOMEM;
915 
916 	if (umem->numem == max_iotlb_entries) {
917 		tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link);
918 		vhost_umem_free(umem, tmp);
919 	}
920 
921 	node->start = start;
922 	node->size = size;
923 	node->last = end;
924 	node->userspace_addr = userspace_addr;
925 	node->perm = perm;
926 	INIT_LIST_HEAD(&node->link);
927 	list_add_tail(&node->link, &umem->umem_list);
928 	vhost_umem_interval_tree_insert(node, &umem->umem_tree);
929 	umem->numem++;
930 
931 	return 0;
932 }
933 
934 static void vhost_del_umem_range(struct vhost_umem *umem,
935 				 u64 start, u64 end)
936 {
937 	struct vhost_umem_node *node;
938 
939 	while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
940 							   start, end)))
941 		vhost_umem_free(umem, node);
942 }
943 
944 static void vhost_iotlb_notify_vq(struct vhost_dev *d,
945 				  struct vhost_iotlb_msg *msg)
946 {
947 	struct vhost_msg_node *node, *n;
948 
949 	spin_lock(&d->iotlb_lock);
950 
951 	list_for_each_entry_safe(node, n, &d->pending_list, node) {
952 		struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb;
953 		if (msg->iova <= vq_msg->iova &&
954 		    msg->iova + msg->size - 1 > vq_msg->iova &&
955 		    vq_msg->type == VHOST_IOTLB_MISS) {
956 			vhost_poll_queue(&node->vq->poll);
957 			list_del(&node->node);
958 			kfree(node);
959 		}
960 	}
961 
962 	spin_unlock(&d->iotlb_lock);
963 }
964 
965 static bool umem_access_ok(u64 uaddr, u64 size, int access)
966 {
967 	unsigned long a = uaddr;
968 
969 	/* Make sure 64 bit math will not overflow. */
970 	if (vhost_overflow(uaddr, size))
971 		return false;
972 
973 	if ((access & VHOST_ACCESS_RO) &&
974 	    !access_ok(VERIFY_READ, (void __user *)a, size))
975 		return false;
976 	if ((access & VHOST_ACCESS_WO) &&
977 	    !access_ok(VERIFY_WRITE, (void __user *)a, size))
978 		return false;
979 	return true;
980 }
981 
982 static int vhost_process_iotlb_msg(struct vhost_dev *dev,
983 				   struct vhost_iotlb_msg *msg)
984 {
985 	int ret = 0;
986 
987 	mutex_lock(&dev->mutex);
988 	vhost_dev_lock_vqs(dev);
989 	switch (msg->type) {
990 	case VHOST_IOTLB_UPDATE:
991 		if (!dev->iotlb) {
992 			ret = -EFAULT;
993 			break;
994 		}
995 		if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) {
996 			ret = -EFAULT;
997 			break;
998 		}
999 		vhost_vq_meta_reset(dev);
1000 		if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size,
1001 					 msg->iova + msg->size - 1,
1002 					 msg->uaddr, msg->perm)) {
1003 			ret = -ENOMEM;
1004 			break;
1005 		}
1006 		vhost_iotlb_notify_vq(dev, msg);
1007 		break;
1008 	case VHOST_IOTLB_INVALIDATE:
1009 		if (!dev->iotlb) {
1010 			ret = -EFAULT;
1011 			break;
1012 		}
1013 		vhost_vq_meta_reset(dev);
1014 		vhost_del_umem_range(dev->iotlb, msg->iova,
1015 				     msg->iova + msg->size - 1);
1016 		break;
1017 	default:
1018 		ret = -EINVAL;
1019 		break;
1020 	}
1021 
1022 	vhost_dev_unlock_vqs(dev);
1023 	mutex_unlock(&dev->mutex);
1024 
1025 	return ret;
1026 }
1027 ssize_t vhost_chr_write_iter(struct vhost_dev *dev,
1028 			     struct iov_iter *from)
1029 {
1030 	struct vhost_msg_node node;
1031 	unsigned size = sizeof(struct vhost_msg);
1032 	size_t ret;
1033 	int err;
1034 
1035 	if (iov_iter_count(from) < size)
1036 		return 0;
1037 	ret = copy_from_iter(&node.msg, size, from);
1038 	if (ret != size)
1039 		goto done;
1040 
1041 	switch (node.msg.type) {
1042 	case VHOST_IOTLB_MSG:
1043 		err = vhost_process_iotlb_msg(dev, &node.msg.iotlb);
1044 		if (err)
1045 			ret = err;
1046 		break;
1047 	default:
1048 		ret = -EINVAL;
1049 		break;
1050 	}
1051 
1052 done:
1053 	return ret;
1054 }
1055 EXPORT_SYMBOL(vhost_chr_write_iter);
1056 
1057 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev,
1058 			    poll_table *wait)
1059 {
1060 	__poll_t mask = 0;
1061 
1062 	poll_wait(file, &dev->wait, wait);
1063 
1064 	if (!list_empty(&dev->read_list))
1065 		mask |= EPOLLIN | EPOLLRDNORM;
1066 
1067 	return mask;
1068 }
1069 EXPORT_SYMBOL(vhost_chr_poll);
1070 
1071 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to,
1072 			    int noblock)
1073 {
1074 	DEFINE_WAIT(wait);
1075 	struct vhost_msg_node *node;
1076 	ssize_t ret = 0;
1077 	unsigned size = sizeof(struct vhost_msg);
1078 
1079 	if (iov_iter_count(to) < size)
1080 		return 0;
1081 
1082 	while (1) {
1083 		if (!noblock)
1084 			prepare_to_wait(&dev->wait, &wait,
1085 					TASK_INTERRUPTIBLE);
1086 
1087 		node = vhost_dequeue_msg(dev, &dev->read_list);
1088 		if (node)
1089 			break;
1090 		if (noblock) {
1091 			ret = -EAGAIN;
1092 			break;
1093 		}
1094 		if (signal_pending(current)) {
1095 			ret = -ERESTARTSYS;
1096 			break;
1097 		}
1098 		if (!dev->iotlb) {
1099 			ret = -EBADFD;
1100 			break;
1101 		}
1102 
1103 		schedule();
1104 	}
1105 
1106 	if (!noblock)
1107 		finish_wait(&dev->wait, &wait);
1108 
1109 	if (node) {
1110 		ret = copy_to_iter(&node->msg, size, to);
1111 
1112 		if (ret != size || node->msg.type != VHOST_IOTLB_MISS) {
1113 			kfree(node);
1114 			return ret;
1115 		}
1116 
1117 		vhost_enqueue_msg(dev, &dev->pending_list, node);
1118 	}
1119 
1120 	return ret;
1121 }
1122 EXPORT_SYMBOL_GPL(vhost_chr_read_iter);
1123 
1124 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access)
1125 {
1126 	struct vhost_dev *dev = vq->dev;
1127 	struct vhost_msg_node *node;
1128 	struct vhost_iotlb_msg *msg;
1129 
1130 	node = vhost_new_msg(vq, VHOST_IOTLB_MISS);
1131 	if (!node)
1132 		return -ENOMEM;
1133 
1134 	msg = &node->msg.iotlb;
1135 	msg->type = VHOST_IOTLB_MISS;
1136 	msg->iova = iova;
1137 	msg->perm = access;
1138 
1139 	vhost_enqueue_msg(dev, &dev->read_list, node);
1140 
1141 	return 0;
1142 }
1143 
1144 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num,
1145 			 struct vring_desc __user *desc,
1146 			 struct vring_avail __user *avail,
1147 			 struct vring_used __user *used)
1148 
1149 {
1150 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1151 
1152 	return access_ok(VERIFY_READ, desc, num * sizeof *desc) &&
1153 	       access_ok(VERIFY_READ, avail,
1154 			 sizeof *avail + num * sizeof *avail->ring + s) &&
1155 	       access_ok(VERIFY_WRITE, used,
1156 			sizeof *used + num * sizeof *used->ring + s);
1157 }
1158 
1159 static void vhost_vq_meta_update(struct vhost_virtqueue *vq,
1160 				 const struct vhost_umem_node *node,
1161 				 int type)
1162 {
1163 	int access = (type == VHOST_ADDR_USED) ?
1164 		     VHOST_ACCESS_WO : VHOST_ACCESS_RO;
1165 
1166 	if (likely(node->perm & access))
1167 		vq->meta_iotlb[type] = node;
1168 }
1169 
1170 static bool iotlb_access_ok(struct vhost_virtqueue *vq,
1171 			    int access, u64 addr, u64 len, int type)
1172 {
1173 	const struct vhost_umem_node *node;
1174 	struct vhost_umem *umem = vq->iotlb;
1175 	u64 s = 0, size, orig_addr = addr, last = addr + len - 1;
1176 
1177 	if (vhost_vq_meta_fetch(vq, addr, len, type))
1178 		return true;
1179 
1180 	while (len > s) {
1181 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1182 							   addr,
1183 							   last);
1184 		if (node == NULL || node->start > addr) {
1185 			vhost_iotlb_miss(vq, addr, access);
1186 			return false;
1187 		} else if (!(node->perm & access)) {
1188 			/* Report the possible access violation by
1189 			 * request another translation from userspace.
1190 			 */
1191 			return false;
1192 		}
1193 
1194 		size = node->size - addr + node->start;
1195 
1196 		if (orig_addr == addr && size >= len)
1197 			vhost_vq_meta_update(vq, node, type);
1198 
1199 		s += size;
1200 		addr += size;
1201 	}
1202 
1203 	return true;
1204 }
1205 
1206 int vq_iotlb_prefetch(struct vhost_virtqueue *vq)
1207 {
1208 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1209 	unsigned int num = vq->num;
1210 
1211 	if (!vq->iotlb)
1212 		return 1;
1213 
1214 	return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc,
1215 			       num * sizeof(*vq->desc), VHOST_ADDR_DESC) &&
1216 	       iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail,
1217 			       sizeof *vq->avail +
1218 			       num * sizeof(*vq->avail->ring) + s,
1219 			       VHOST_ADDR_AVAIL) &&
1220 	       iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used,
1221 			       sizeof *vq->used +
1222 			       num * sizeof(*vq->used->ring) + s,
1223 			       VHOST_ADDR_USED);
1224 }
1225 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch);
1226 
1227 /* Can we log writes? */
1228 /* Caller should have device mutex but not vq mutex */
1229 bool vhost_log_access_ok(struct vhost_dev *dev)
1230 {
1231 	return memory_access_ok(dev, dev->umem, 1);
1232 }
1233 EXPORT_SYMBOL_GPL(vhost_log_access_ok);
1234 
1235 /* Verify access for write logging. */
1236 /* Caller should have vq mutex and device mutex */
1237 static bool vq_log_access_ok(struct vhost_virtqueue *vq,
1238 			     void __user *log_base)
1239 {
1240 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1241 
1242 	return vq_memory_access_ok(log_base, vq->umem,
1243 				   vhost_has_feature(vq, VHOST_F_LOG_ALL)) &&
1244 		(!vq->log_used || log_access_ok(log_base, vq->log_addr,
1245 					sizeof *vq->used +
1246 					vq->num * sizeof *vq->used->ring + s));
1247 }
1248 
1249 /* Can we start vq? */
1250 /* Caller should have vq mutex and device mutex */
1251 bool vhost_vq_access_ok(struct vhost_virtqueue *vq)
1252 {
1253 	if (!vq_log_access_ok(vq, vq->log_base))
1254 		return false;
1255 
1256 	/* Access validation occurs at prefetch time with IOTLB */
1257 	if (vq->iotlb)
1258 		return true;
1259 
1260 	return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used);
1261 }
1262 EXPORT_SYMBOL_GPL(vhost_vq_access_ok);
1263 
1264 static struct vhost_umem *vhost_umem_alloc(void)
1265 {
1266 	struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL);
1267 
1268 	if (!umem)
1269 		return NULL;
1270 
1271 	umem->umem_tree = RB_ROOT_CACHED;
1272 	umem->numem = 0;
1273 	INIT_LIST_HEAD(&umem->umem_list);
1274 
1275 	return umem;
1276 }
1277 
1278 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
1279 {
1280 	struct vhost_memory mem, *newmem;
1281 	struct vhost_memory_region *region;
1282 	struct vhost_umem *newumem, *oldumem;
1283 	unsigned long size = offsetof(struct vhost_memory, regions);
1284 	int i;
1285 
1286 	if (copy_from_user(&mem, m, size))
1287 		return -EFAULT;
1288 	if (mem.padding)
1289 		return -EOPNOTSUPP;
1290 	if (mem.nregions > max_mem_regions)
1291 		return -E2BIG;
1292 	newmem = kvzalloc(struct_size(newmem, regions, mem.nregions),
1293 			GFP_KERNEL);
1294 	if (!newmem)
1295 		return -ENOMEM;
1296 
1297 	memcpy(newmem, &mem, size);
1298 	if (copy_from_user(newmem->regions, m->regions,
1299 			   mem.nregions * sizeof *m->regions)) {
1300 		kvfree(newmem);
1301 		return -EFAULT;
1302 	}
1303 
1304 	newumem = vhost_umem_alloc();
1305 	if (!newumem) {
1306 		kvfree(newmem);
1307 		return -ENOMEM;
1308 	}
1309 
1310 	for (region = newmem->regions;
1311 	     region < newmem->regions + mem.nregions;
1312 	     region++) {
1313 		if (vhost_new_umem_range(newumem,
1314 					 region->guest_phys_addr,
1315 					 region->memory_size,
1316 					 region->guest_phys_addr +
1317 					 region->memory_size - 1,
1318 					 region->userspace_addr,
1319 					 VHOST_ACCESS_RW))
1320 			goto err;
1321 	}
1322 
1323 	if (!memory_access_ok(d, newumem, 0))
1324 		goto err;
1325 
1326 	oldumem = d->umem;
1327 	d->umem = newumem;
1328 
1329 	/* All memory accesses are done under some VQ mutex. */
1330 	for (i = 0; i < d->nvqs; ++i) {
1331 		mutex_lock(&d->vqs[i]->mutex);
1332 		d->vqs[i]->umem = newumem;
1333 		mutex_unlock(&d->vqs[i]->mutex);
1334 	}
1335 
1336 	kvfree(newmem);
1337 	vhost_umem_clean(oldumem);
1338 	return 0;
1339 
1340 err:
1341 	vhost_umem_clean(newumem);
1342 	kvfree(newmem);
1343 	return -EFAULT;
1344 }
1345 
1346 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1347 {
1348 	struct file *eventfp, *filep = NULL;
1349 	bool pollstart = false, pollstop = false;
1350 	struct eventfd_ctx *ctx = NULL;
1351 	u32 __user *idxp = argp;
1352 	struct vhost_virtqueue *vq;
1353 	struct vhost_vring_state s;
1354 	struct vhost_vring_file f;
1355 	struct vhost_vring_addr a;
1356 	u32 idx;
1357 	long r;
1358 
1359 	r = get_user(idx, idxp);
1360 	if (r < 0)
1361 		return r;
1362 	if (idx >= d->nvqs)
1363 		return -ENOBUFS;
1364 
1365 	vq = d->vqs[idx];
1366 
1367 	mutex_lock(&vq->mutex);
1368 
1369 	switch (ioctl) {
1370 	case VHOST_SET_VRING_NUM:
1371 		/* Resizing ring with an active backend?
1372 		 * You don't want to do that. */
1373 		if (vq->private_data) {
1374 			r = -EBUSY;
1375 			break;
1376 		}
1377 		if (copy_from_user(&s, argp, sizeof s)) {
1378 			r = -EFAULT;
1379 			break;
1380 		}
1381 		if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) {
1382 			r = -EINVAL;
1383 			break;
1384 		}
1385 		vq->num = s.num;
1386 		break;
1387 	case VHOST_SET_VRING_BASE:
1388 		/* Moving base with an active backend?
1389 		 * You don't want to do that. */
1390 		if (vq->private_data) {
1391 			r = -EBUSY;
1392 			break;
1393 		}
1394 		if (copy_from_user(&s, argp, sizeof s)) {
1395 			r = -EFAULT;
1396 			break;
1397 		}
1398 		if (s.num > 0xffff) {
1399 			r = -EINVAL;
1400 			break;
1401 		}
1402 		vq->last_avail_idx = s.num;
1403 		/* Forget the cached index value. */
1404 		vq->avail_idx = vq->last_avail_idx;
1405 		break;
1406 	case VHOST_GET_VRING_BASE:
1407 		s.index = idx;
1408 		s.num = vq->last_avail_idx;
1409 		if (copy_to_user(argp, &s, sizeof s))
1410 			r = -EFAULT;
1411 		break;
1412 	case VHOST_SET_VRING_ADDR:
1413 		if (copy_from_user(&a, argp, sizeof a)) {
1414 			r = -EFAULT;
1415 			break;
1416 		}
1417 		if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) {
1418 			r = -EOPNOTSUPP;
1419 			break;
1420 		}
1421 		/* For 32bit, verify that the top 32bits of the user
1422 		   data are set to zero. */
1423 		if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr ||
1424 		    (u64)(unsigned long)a.used_user_addr != a.used_user_addr ||
1425 		    (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) {
1426 			r = -EFAULT;
1427 			break;
1428 		}
1429 
1430 		/* Make sure it's safe to cast pointers to vring types. */
1431 		BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE);
1432 		BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE);
1433 		if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) ||
1434 		    (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) ||
1435 		    (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) {
1436 			r = -EINVAL;
1437 			break;
1438 		}
1439 
1440 		/* We only verify access here if backend is configured.
1441 		 * If it is not, we don't as size might not have been setup.
1442 		 * We will verify when backend is configured. */
1443 		if (vq->private_data) {
1444 			if (!vq_access_ok(vq, vq->num,
1445 				(void __user *)(unsigned long)a.desc_user_addr,
1446 				(void __user *)(unsigned long)a.avail_user_addr,
1447 				(void __user *)(unsigned long)a.used_user_addr)) {
1448 				r = -EINVAL;
1449 				break;
1450 			}
1451 
1452 			/* Also validate log access for used ring if enabled. */
1453 			if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) &&
1454 			    !log_access_ok(vq->log_base, a.log_guest_addr,
1455 					   sizeof *vq->used +
1456 					   vq->num * sizeof *vq->used->ring)) {
1457 				r = -EINVAL;
1458 				break;
1459 			}
1460 		}
1461 
1462 		vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG));
1463 		vq->desc = (void __user *)(unsigned long)a.desc_user_addr;
1464 		vq->avail = (void __user *)(unsigned long)a.avail_user_addr;
1465 		vq->log_addr = a.log_guest_addr;
1466 		vq->used = (void __user *)(unsigned long)a.used_user_addr;
1467 		break;
1468 	case VHOST_SET_VRING_KICK:
1469 		if (copy_from_user(&f, argp, sizeof f)) {
1470 			r = -EFAULT;
1471 			break;
1472 		}
1473 		eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd);
1474 		if (IS_ERR(eventfp)) {
1475 			r = PTR_ERR(eventfp);
1476 			break;
1477 		}
1478 		if (eventfp != vq->kick) {
1479 			pollstop = (filep = vq->kick) != NULL;
1480 			pollstart = (vq->kick = eventfp) != NULL;
1481 		} else
1482 			filep = eventfp;
1483 		break;
1484 	case VHOST_SET_VRING_CALL:
1485 		if (copy_from_user(&f, argp, sizeof f)) {
1486 			r = -EFAULT;
1487 			break;
1488 		}
1489 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1490 		if (IS_ERR(ctx)) {
1491 			r = PTR_ERR(ctx);
1492 			break;
1493 		}
1494 		swap(ctx, vq->call_ctx);
1495 		break;
1496 	case VHOST_SET_VRING_ERR:
1497 		if (copy_from_user(&f, argp, sizeof f)) {
1498 			r = -EFAULT;
1499 			break;
1500 		}
1501 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1502 		if (IS_ERR(ctx)) {
1503 			r = PTR_ERR(ctx);
1504 			break;
1505 		}
1506 		swap(ctx, vq->error_ctx);
1507 		break;
1508 	case VHOST_SET_VRING_ENDIAN:
1509 		r = vhost_set_vring_endian(vq, argp);
1510 		break;
1511 	case VHOST_GET_VRING_ENDIAN:
1512 		r = vhost_get_vring_endian(vq, idx, argp);
1513 		break;
1514 	case VHOST_SET_VRING_BUSYLOOP_TIMEOUT:
1515 		if (copy_from_user(&s, argp, sizeof(s))) {
1516 			r = -EFAULT;
1517 			break;
1518 		}
1519 		vq->busyloop_timeout = s.num;
1520 		break;
1521 	case VHOST_GET_VRING_BUSYLOOP_TIMEOUT:
1522 		s.index = idx;
1523 		s.num = vq->busyloop_timeout;
1524 		if (copy_to_user(argp, &s, sizeof(s)))
1525 			r = -EFAULT;
1526 		break;
1527 	default:
1528 		r = -ENOIOCTLCMD;
1529 	}
1530 
1531 	if (pollstop && vq->handle_kick)
1532 		vhost_poll_stop(&vq->poll);
1533 
1534 	if (!IS_ERR_OR_NULL(ctx))
1535 		eventfd_ctx_put(ctx);
1536 	if (filep)
1537 		fput(filep);
1538 
1539 	if (pollstart && vq->handle_kick)
1540 		r = vhost_poll_start(&vq->poll, vq->kick);
1541 
1542 	mutex_unlock(&vq->mutex);
1543 
1544 	if (pollstop && vq->handle_kick)
1545 		vhost_poll_flush(&vq->poll);
1546 	return r;
1547 }
1548 EXPORT_SYMBOL_GPL(vhost_vring_ioctl);
1549 
1550 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled)
1551 {
1552 	struct vhost_umem *niotlb, *oiotlb;
1553 	int i;
1554 
1555 	niotlb = vhost_umem_alloc();
1556 	if (!niotlb)
1557 		return -ENOMEM;
1558 
1559 	oiotlb = d->iotlb;
1560 	d->iotlb = niotlb;
1561 
1562 	for (i = 0; i < d->nvqs; ++i) {
1563 		mutex_lock(&d->vqs[i]->mutex);
1564 		d->vqs[i]->iotlb = niotlb;
1565 		mutex_unlock(&d->vqs[i]->mutex);
1566 	}
1567 
1568 	vhost_umem_clean(oiotlb);
1569 
1570 	return 0;
1571 }
1572 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb);
1573 
1574 /* Caller must have device mutex */
1575 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1576 {
1577 	struct eventfd_ctx *ctx;
1578 	u64 p;
1579 	long r;
1580 	int i, fd;
1581 
1582 	/* If you are not the owner, you can become one */
1583 	if (ioctl == VHOST_SET_OWNER) {
1584 		r = vhost_dev_set_owner(d);
1585 		goto done;
1586 	}
1587 
1588 	/* You must be the owner to do anything else */
1589 	r = vhost_dev_check_owner(d);
1590 	if (r)
1591 		goto done;
1592 
1593 	switch (ioctl) {
1594 	case VHOST_SET_MEM_TABLE:
1595 		r = vhost_set_memory(d, argp);
1596 		break;
1597 	case VHOST_SET_LOG_BASE:
1598 		if (copy_from_user(&p, argp, sizeof p)) {
1599 			r = -EFAULT;
1600 			break;
1601 		}
1602 		if ((u64)(unsigned long)p != p) {
1603 			r = -EFAULT;
1604 			break;
1605 		}
1606 		for (i = 0; i < d->nvqs; ++i) {
1607 			struct vhost_virtqueue *vq;
1608 			void __user *base = (void __user *)(unsigned long)p;
1609 			vq = d->vqs[i];
1610 			mutex_lock(&vq->mutex);
1611 			/* If ring is inactive, will check when it's enabled. */
1612 			if (vq->private_data && !vq_log_access_ok(vq, base))
1613 				r = -EFAULT;
1614 			else
1615 				vq->log_base = base;
1616 			mutex_unlock(&vq->mutex);
1617 		}
1618 		break;
1619 	case VHOST_SET_LOG_FD:
1620 		r = get_user(fd, (int __user *)argp);
1621 		if (r < 0)
1622 			break;
1623 		ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd);
1624 		if (IS_ERR(ctx)) {
1625 			r = PTR_ERR(ctx);
1626 			break;
1627 		}
1628 		swap(ctx, d->log_ctx);
1629 		for (i = 0; i < d->nvqs; ++i) {
1630 			mutex_lock(&d->vqs[i]->mutex);
1631 			d->vqs[i]->log_ctx = d->log_ctx;
1632 			mutex_unlock(&d->vqs[i]->mutex);
1633 		}
1634 		if (ctx)
1635 			eventfd_ctx_put(ctx);
1636 		break;
1637 	default:
1638 		r = -ENOIOCTLCMD;
1639 		break;
1640 	}
1641 done:
1642 	return r;
1643 }
1644 EXPORT_SYMBOL_GPL(vhost_dev_ioctl);
1645 
1646 /* TODO: This is really inefficient.  We need something like get_user()
1647  * (instruction directly accesses the data, with an exception table entry
1648  * returning -EFAULT). See Documentation/x86/exception-tables.txt.
1649  */
1650 static int set_bit_to_user(int nr, void __user *addr)
1651 {
1652 	unsigned long log = (unsigned long)addr;
1653 	struct page *page;
1654 	void *base;
1655 	int bit = nr + (log % PAGE_SIZE) * 8;
1656 	int r;
1657 
1658 	r = get_user_pages_fast(log, 1, 1, &page);
1659 	if (r < 0)
1660 		return r;
1661 	BUG_ON(r != 1);
1662 	base = kmap_atomic(page);
1663 	set_bit(bit, base);
1664 	kunmap_atomic(base);
1665 	set_page_dirty_lock(page);
1666 	put_page(page);
1667 	return 0;
1668 }
1669 
1670 static int log_write(void __user *log_base,
1671 		     u64 write_address, u64 write_length)
1672 {
1673 	u64 write_page = write_address / VHOST_PAGE_SIZE;
1674 	int r;
1675 
1676 	if (!write_length)
1677 		return 0;
1678 	write_length += write_address % VHOST_PAGE_SIZE;
1679 	for (;;) {
1680 		u64 base = (u64)(unsigned long)log_base;
1681 		u64 log = base + write_page / 8;
1682 		int bit = write_page % 8;
1683 		if ((u64)(unsigned long)log != log)
1684 			return -EFAULT;
1685 		r = set_bit_to_user(bit, (void __user *)(unsigned long)log);
1686 		if (r < 0)
1687 			return r;
1688 		if (write_length <= VHOST_PAGE_SIZE)
1689 			break;
1690 		write_length -= VHOST_PAGE_SIZE;
1691 		write_page += 1;
1692 	}
1693 	return r;
1694 }
1695 
1696 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log,
1697 		    unsigned int log_num, u64 len)
1698 {
1699 	int i, r;
1700 
1701 	/* Make sure data written is seen before log. */
1702 	smp_wmb();
1703 	for (i = 0; i < log_num; ++i) {
1704 		u64 l = min(log[i].len, len);
1705 		r = log_write(vq->log_base, log[i].addr, l);
1706 		if (r < 0)
1707 			return r;
1708 		len -= l;
1709 		if (!len) {
1710 			if (vq->log_ctx)
1711 				eventfd_signal(vq->log_ctx, 1);
1712 			return 0;
1713 		}
1714 	}
1715 	/* Length written exceeds what we have stored. This is a bug. */
1716 	BUG();
1717 	return 0;
1718 }
1719 EXPORT_SYMBOL_GPL(vhost_log_write);
1720 
1721 static int vhost_update_used_flags(struct vhost_virtqueue *vq)
1722 {
1723 	void __user *used;
1724 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags),
1725 			   &vq->used->flags) < 0)
1726 		return -EFAULT;
1727 	if (unlikely(vq->log_used)) {
1728 		/* Make sure the flag is seen before log. */
1729 		smp_wmb();
1730 		/* Log used flag write. */
1731 		used = &vq->used->flags;
1732 		log_write(vq->log_base, vq->log_addr +
1733 			  (used - (void __user *)vq->used),
1734 			  sizeof vq->used->flags);
1735 		if (vq->log_ctx)
1736 			eventfd_signal(vq->log_ctx, 1);
1737 	}
1738 	return 0;
1739 }
1740 
1741 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event)
1742 {
1743 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx),
1744 			   vhost_avail_event(vq)))
1745 		return -EFAULT;
1746 	if (unlikely(vq->log_used)) {
1747 		void __user *used;
1748 		/* Make sure the event is seen before log. */
1749 		smp_wmb();
1750 		/* Log avail event write */
1751 		used = vhost_avail_event(vq);
1752 		log_write(vq->log_base, vq->log_addr +
1753 			  (used - (void __user *)vq->used),
1754 			  sizeof *vhost_avail_event(vq));
1755 		if (vq->log_ctx)
1756 			eventfd_signal(vq->log_ctx, 1);
1757 	}
1758 	return 0;
1759 }
1760 
1761 int vhost_vq_init_access(struct vhost_virtqueue *vq)
1762 {
1763 	__virtio16 last_used_idx;
1764 	int r;
1765 	bool is_le = vq->is_le;
1766 
1767 	if (!vq->private_data)
1768 		return 0;
1769 
1770 	vhost_init_is_le(vq);
1771 
1772 	r = vhost_update_used_flags(vq);
1773 	if (r)
1774 		goto err;
1775 	vq->signalled_used_valid = false;
1776 	if (!vq->iotlb &&
1777 	    !access_ok(VERIFY_READ, &vq->used->idx, sizeof vq->used->idx)) {
1778 		r = -EFAULT;
1779 		goto err;
1780 	}
1781 	r = vhost_get_used(vq, last_used_idx, &vq->used->idx);
1782 	if (r) {
1783 		vq_err(vq, "Can't access used idx at %p\n",
1784 		       &vq->used->idx);
1785 		goto err;
1786 	}
1787 	vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx);
1788 	return 0;
1789 
1790 err:
1791 	vq->is_le = is_le;
1792 	return r;
1793 }
1794 EXPORT_SYMBOL_GPL(vhost_vq_init_access);
1795 
1796 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
1797 			  struct iovec iov[], int iov_size, int access)
1798 {
1799 	const struct vhost_umem_node *node;
1800 	struct vhost_dev *dev = vq->dev;
1801 	struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem;
1802 	struct iovec *_iov;
1803 	u64 s = 0;
1804 	int ret = 0;
1805 
1806 	while ((u64)len > s) {
1807 		u64 size;
1808 		if (unlikely(ret >= iov_size)) {
1809 			ret = -ENOBUFS;
1810 			break;
1811 		}
1812 
1813 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1814 							addr, addr + len - 1);
1815 		if (node == NULL || node->start > addr) {
1816 			if (umem != dev->iotlb) {
1817 				ret = -EFAULT;
1818 				break;
1819 			}
1820 			ret = -EAGAIN;
1821 			break;
1822 		} else if (!(node->perm & access)) {
1823 			ret = -EPERM;
1824 			break;
1825 		}
1826 
1827 		_iov = iov + ret;
1828 		size = node->size - addr + node->start;
1829 		_iov->iov_len = min((u64)len - s, size);
1830 		_iov->iov_base = (void __user *)(unsigned long)
1831 			(node->userspace_addr + addr - node->start);
1832 		s += size;
1833 		addr += size;
1834 		++ret;
1835 	}
1836 
1837 	if (ret == -EAGAIN)
1838 		vhost_iotlb_miss(vq, addr, access);
1839 	return ret;
1840 }
1841 
1842 /* Each buffer in the virtqueues is actually a chain of descriptors.  This
1843  * function returns the next descriptor in the chain,
1844  * or -1U if we're at the end. */
1845 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc)
1846 {
1847 	unsigned int next;
1848 
1849 	/* If this descriptor says it doesn't chain, we're done. */
1850 	if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT)))
1851 		return -1U;
1852 
1853 	/* Check they're not leading us off end of descriptors. */
1854 	next = vhost16_to_cpu(vq, READ_ONCE(desc->next));
1855 	return next;
1856 }
1857 
1858 static int get_indirect(struct vhost_virtqueue *vq,
1859 			struct iovec iov[], unsigned int iov_size,
1860 			unsigned int *out_num, unsigned int *in_num,
1861 			struct vhost_log *log, unsigned int *log_num,
1862 			struct vring_desc *indirect)
1863 {
1864 	struct vring_desc desc;
1865 	unsigned int i = 0, count, found = 0;
1866 	u32 len = vhost32_to_cpu(vq, indirect->len);
1867 	struct iov_iter from;
1868 	int ret, access;
1869 
1870 	/* Sanity check */
1871 	if (unlikely(len % sizeof desc)) {
1872 		vq_err(vq, "Invalid length in indirect descriptor: "
1873 		       "len 0x%llx not multiple of 0x%zx\n",
1874 		       (unsigned long long)len,
1875 		       sizeof desc);
1876 		return -EINVAL;
1877 	}
1878 
1879 	ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect,
1880 			     UIO_MAXIOV, VHOST_ACCESS_RO);
1881 	if (unlikely(ret < 0)) {
1882 		if (ret != -EAGAIN)
1883 			vq_err(vq, "Translation failure %d in indirect.\n", ret);
1884 		return ret;
1885 	}
1886 	iov_iter_init(&from, READ, vq->indirect, ret, len);
1887 
1888 	/* We will use the result as an address to read from, so most
1889 	 * architectures only need a compiler barrier here. */
1890 	read_barrier_depends();
1891 
1892 	count = len / sizeof desc;
1893 	/* Buffers are chained via a 16 bit next field, so
1894 	 * we can have at most 2^16 of these. */
1895 	if (unlikely(count > USHRT_MAX + 1)) {
1896 		vq_err(vq, "Indirect buffer length too big: %d\n",
1897 		       indirect->len);
1898 		return -E2BIG;
1899 	}
1900 
1901 	do {
1902 		unsigned iov_count = *in_num + *out_num;
1903 		if (unlikely(++found > count)) {
1904 			vq_err(vq, "Loop detected: last one at %u "
1905 			       "indirect size %u\n",
1906 			       i, count);
1907 			return -EINVAL;
1908 		}
1909 		if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) {
1910 			vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n",
1911 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
1912 			return -EINVAL;
1913 		}
1914 		if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) {
1915 			vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n",
1916 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
1917 			return -EINVAL;
1918 		}
1919 
1920 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
1921 			access = VHOST_ACCESS_WO;
1922 		else
1923 			access = VHOST_ACCESS_RO;
1924 
1925 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
1926 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
1927 				     iov_size - iov_count, access);
1928 		if (unlikely(ret < 0)) {
1929 			if (ret != -EAGAIN)
1930 				vq_err(vq, "Translation failure %d indirect idx %d\n",
1931 					ret, i);
1932 			return ret;
1933 		}
1934 		/* If this is an input descriptor, increment that count. */
1935 		if (access == VHOST_ACCESS_WO) {
1936 			*in_num += ret;
1937 			if (unlikely(log)) {
1938 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
1939 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
1940 				++*log_num;
1941 			}
1942 		} else {
1943 			/* If it's an output descriptor, they're all supposed
1944 			 * to come before any input descriptors. */
1945 			if (unlikely(*in_num)) {
1946 				vq_err(vq, "Indirect descriptor "
1947 				       "has out after in: idx %d\n", i);
1948 				return -EINVAL;
1949 			}
1950 			*out_num += ret;
1951 		}
1952 	} while ((i = next_desc(vq, &desc)) != -1);
1953 	return 0;
1954 }
1955 
1956 /* This looks in the virtqueue and for the first available buffer, and converts
1957  * it to an iovec for convenient access.  Since descriptors consist of some
1958  * number of output then some number of input descriptors, it's actually two
1959  * iovecs, but we pack them into one and note how many of each there were.
1960  *
1961  * This function returns the descriptor number found, or vq->num (which is
1962  * never a valid descriptor number) if none was found.  A negative code is
1963  * returned on error. */
1964 int vhost_get_vq_desc(struct vhost_virtqueue *vq,
1965 		      struct iovec iov[], unsigned int iov_size,
1966 		      unsigned int *out_num, unsigned int *in_num,
1967 		      struct vhost_log *log, unsigned int *log_num)
1968 {
1969 	struct vring_desc desc;
1970 	unsigned int i, head, found = 0;
1971 	u16 last_avail_idx;
1972 	__virtio16 avail_idx;
1973 	__virtio16 ring_head;
1974 	int ret, access;
1975 
1976 	/* Check it isn't doing very strange things with descriptor numbers. */
1977 	last_avail_idx = vq->last_avail_idx;
1978 
1979 	if (vq->avail_idx == vq->last_avail_idx) {
1980 		if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) {
1981 			vq_err(vq, "Failed to access avail idx at %p\n",
1982 				&vq->avail->idx);
1983 			return -EFAULT;
1984 		}
1985 		vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
1986 
1987 		if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) {
1988 			vq_err(vq, "Guest moved used index from %u to %u",
1989 				last_avail_idx, vq->avail_idx);
1990 			return -EFAULT;
1991 		}
1992 
1993 		/* If there's nothing new since last we looked, return
1994 		 * invalid.
1995 		 */
1996 		if (vq->avail_idx == last_avail_idx)
1997 			return vq->num;
1998 
1999 		/* Only get avail ring entries after they have been
2000 		 * exposed by guest.
2001 		 */
2002 		smp_rmb();
2003 	}
2004 
2005 	/* Grab the next descriptor number they're advertising, and increment
2006 	 * the index we've seen. */
2007 	if (unlikely(vhost_get_avail(vq, ring_head,
2008 		     &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) {
2009 		vq_err(vq, "Failed to read head: idx %d address %p\n",
2010 		       last_avail_idx,
2011 		       &vq->avail->ring[last_avail_idx % vq->num]);
2012 		return -EFAULT;
2013 	}
2014 
2015 	head = vhost16_to_cpu(vq, ring_head);
2016 
2017 	/* If their number is silly, that's an error. */
2018 	if (unlikely(head >= vq->num)) {
2019 		vq_err(vq, "Guest says index %u > %u is available",
2020 		       head, vq->num);
2021 		return -EINVAL;
2022 	}
2023 
2024 	/* When we start there are none of either input nor output. */
2025 	*out_num = *in_num = 0;
2026 	if (unlikely(log))
2027 		*log_num = 0;
2028 
2029 	i = head;
2030 	do {
2031 		unsigned iov_count = *in_num + *out_num;
2032 		if (unlikely(i >= vq->num)) {
2033 			vq_err(vq, "Desc index is %u > %u, head = %u",
2034 			       i, vq->num, head);
2035 			return -EINVAL;
2036 		}
2037 		if (unlikely(++found > vq->num)) {
2038 			vq_err(vq, "Loop detected: last one at %u "
2039 			       "vq size %u head %u\n",
2040 			       i, vq->num, head);
2041 			return -EINVAL;
2042 		}
2043 		ret = vhost_copy_from_user(vq, &desc, vq->desc + i,
2044 					   sizeof desc);
2045 		if (unlikely(ret)) {
2046 			vq_err(vq, "Failed to get descriptor: idx %d addr %p\n",
2047 			       i, vq->desc + i);
2048 			return -EFAULT;
2049 		}
2050 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) {
2051 			ret = get_indirect(vq, iov, iov_size,
2052 					   out_num, in_num,
2053 					   log, log_num, &desc);
2054 			if (unlikely(ret < 0)) {
2055 				if (ret != -EAGAIN)
2056 					vq_err(vq, "Failure detected "
2057 						"in indirect descriptor at idx %d\n", i);
2058 				return ret;
2059 			}
2060 			continue;
2061 		}
2062 
2063 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2064 			access = VHOST_ACCESS_WO;
2065 		else
2066 			access = VHOST_ACCESS_RO;
2067 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2068 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
2069 				     iov_size - iov_count, access);
2070 		if (unlikely(ret < 0)) {
2071 			if (ret != -EAGAIN)
2072 				vq_err(vq, "Translation failure %d descriptor idx %d\n",
2073 					ret, i);
2074 			return ret;
2075 		}
2076 		if (access == VHOST_ACCESS_WO) {
2077 			/* If this is an input descriptor,
2078 			 * increment that count. */
2079 			*in_num += ret;
2080 			if (unlikely(log)) {
2081 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2082 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2083 				++*log_num;
2084 			}
2085 		} else {
2086 			/* If it's an output descriptor, they're all supposed
2087 			 * to come before any input descriptors. */
2088 			if (unlikely(*in_num)) {
2089 				vq_err(vq, "Descriptor has out after in: "
2090 				       "idx %d\n", i);
2091 				return -EINVAL;
2092 			}
2093 			*out_num += ret;
2094 		}
2095 	} while ((i = next_desc(vq, &desc)) != -1);
2096 
2097 	/* On success, increment avail index. */
2098 	vq->last_avail_idx++;
2099 
2100 	/* Assume notifications from guest are disabled at this point,
2101 	 * if they aren't we would need to update avail_event index. */
2102 	BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY));
2103 	return head;
2104 }
2105 EXPORT_SYMBOL_GPL(vhost_get_vq_desc);
2106 
2107 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */
2108 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n)
2109 {
2110 	vq->last_avail_idx -= n;
2111 }
2112 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc);
2113 
2114 /* After we've used one of their buffers, we tell them about it.  We'll then
2115  * want to notify the guest, using eventfd. */
2116 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len)
2117 {
2118 	struct vring_used_elem heads = {
2119 		cpu_to_vhost32(vq, head),
2120 		cpu_to_vhost32(vq, len)
2121 	};
2122 
2123 	return vhost_add_used_n(vq, &heads, 1);
2124 }
2125 EXPORT_SYMBOL_GPL(vhost_add_used);
2126 
2127 static int __vhost_add_used_n(struct vhost_virtqueue *vq,
2128 			    struct vring_used_elem *heads,
2129 			    unsigned count)
2130 {
2131 	struct vring_used_elem __user *used;
2132 	u16 old, new;
2133 	int start;
2134 
2135 	start = vq->last_used_idx & (vq->num - 1);
2136 	used = vq->used->ring + start;
2137 	if (count == 1) {
2138 		if (vhost_put_user(vq, heads[0].id, &used->id)) {
2139 			vq_err(vq, "Failed to write used id");
2140 			return -EFAULT;
2141 		}
2142 		if (vhost_put_user(vq, heads[0].len, &used->len)) {
2143 			vq_err(vq, "Failed to write used len");
2144 			return -EFAULT;
2145 		}
2146 	} else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) {
2147 		vq_err(vq, "Failed to write used");
2148 		return -EFAULT;
2149 	}
2150 	if (unlikely(vq->log_used)) {
2151 		/* Make sure data is seen before log. */
2152 		smp_wmb();
2153 		/* Log used ring entry write. */
2154 		log_write(vq->log_base,
2155 			  vq->log_addr +
2156 			   ((void __user *)used - (void __user *)vq->used),
2157 			  count * sizeof *used);
2158 	}
2159 	old = vq->last_used_idx;
2160 	new = (vq->last_used_idx += count);
2161 	/* If the driver never bothers to signal in a very long while,
2162 	 * used index might wrap around. If that happens, invalidate
2163 	 * signalled_used index we stored. TODO: make sure driver
2164 	 * signals at least once in 2^16 and remove this. */
2165 	if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
2166 		vq->signalled_used_valid = false;
2167 	return 0;
2168 }
2169 
2170 /* After we've used one of their buffers, we tell them about it.  We'll then
2171  * want to notify the guest, using eventfd. */
2172 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads,
2173 		     unsigned count)
2174 {
2175 	int start, n, r;
2176 
2177 	start = vq->last_used_idx & (vq->num - 1);
2178 	n = vq->num - start;
2179 	if (n < count) {
2180 		r = __vhost_add_used_n(vq, heads, n);
2181 		if (r < 0)
2182 			return r;
2183 		heads += n;
2184 		count -= n;
2185 	}
2186 	r = __vhost_add_used_n(vq, heads, count);
2187 
2188 	/* Make sure buffer is written before we update index. */
2189 	smp_wmb();
2190 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx),
2191 			   &vq->used->idx)) {
2192 		vq_err(vq, "Failed to increment used idx");
2193 		return -EFAULT;
2194 	}
2195 	if (unlikely(vq->log_used)) {
2196 		/* Log used index update. */
2197 		log_write(vq->log_base,
2198 			  vq->log_addr + offsetof(struct vring_used, idx),
2199 			  sizeof vq->used->idx);
2200 		if (vq->log_ctx)
2201 			eventfd_signal(vq->log_ctx, 1);
2202 	}
2203 	return r;
2204 }
2205 EXPORT_SYMBOL_GPL(vhost_add_used_n);
2206 
2207 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2208 {
2209 	__u16 old, new;
2210 	__virtio16 event;
2211 	bool v;
2212 	/* Flush out used index updates. This is paired
2213 	 * with the barrier that the Guest executes when enabling
2214 	 * interrupts. */
2215 	smp_mb();
2216 
2217 	if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) &&
2218 	    unlikely(vq->avail_idx == vq->last_avail_idx))
2219 		return true;
2220 
2221 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2222 		__virtio16 flags;
2223 		if (vhost_get_avail(vq, flags, &vq->avail->flags)) {
2224 			vq_err(vq, "Failed to get flags");
2225 			return true;
2226 		}
2227 		return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT));
2228 	}
2229 	old = vq->signalled_used;
2230 	v = vq->signalled_used_valid;
2231 	new = vq->signalled_used = vq->last_used_idx;
2232 	vq->signalled_used_valid = true;
2233 
2234 	if (unlikely(!v))
2235 		return true;
2236 
2237 	if (vhost_get_avail(vq, event, vhost_used_event(vq))) {
2238 		vq_err(vq, "Failed to get used event idx");
2239 		return true;
2240 	}
2241 	return vring_need_event(vhost16_to_cpu(vq, event), new, old);
2242 }
2243 
2244 /* This actually signals the guest, using eventfd. */
2245 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2246 {
2247 	/* Signal the Guest tell them we used something up. */
2248 	if (vq->call_ctx && vhost_notify(dev, vq))
2249 		eventfd_signal(vq->call_ctx, 1);
2250 }
2251 EXPORT_SYMBOL_GPL(vhost_signal);
2252 
2253 /* And here's the combo meal deal.  Supersize me! */
2254 void vhost_add_used_and_signal(struct vhost_dev *dev,
2255 			       struct vhost_virtqueue *vq,
2256 			       unsigned int head, int len)
2257 {
2258 	vhost_add_used(vq, head, len);
2259 	vhost_signal(dev, vq);
2260 }
2261 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal);
2262 
2263 /* multi-buffer version of vhost_add_used_and_signal */
2264 void vhost_add_used_and_signal_n(struct vhost_dev *dev,
2265 				 struct vhost_virtqueue *vq,
2266 				 struct vring_used_elem *heads, unsigned count)
2267 {
2268 	vhost_add_used_n(vq, heads, count);
2269 	vhost_signal(dev, vq);
2270 }
2271 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n);
2272 
2273 /* return true if we're sure that avaiable ring is empty */
2274 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2275 {
2276 	__virtio16 avail_idx;
2277 	int r;
2278 
2279 	if (vq->avail_idx != vq->last_avail_idx)
2280 		return false;
2281 
2282 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2283 	if (unlikely(r))
2284 		return false;
2285 	vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2286 
2287 	return vq->avail_idx == vq->last_avail_idx;
2288 }
2289 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty);
2290 
2291 /* OK, now we need to know about added descriptors. */
2292 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2293 {
2294 	__virtio16 avail_idx;
2295 	int r;
2296 
2297 	if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY))
2298 		return false;
2299 	vq->used_flags &= ~VRING_USED_F_NO_NOTIFY;
2300 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2301 		r = vhost_update_used_flags(vq);
2302 		if (r) {
2303 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2304 			       &vq->used->flags, r);
2305 			return false;
2306 		}
2307 	} else {
2308 		r = vhost_update_avail_event(vq, vq->avail_idx);
2309 		if (r) {
2310 			vq_err(vq, "Failed to update avail event index at %p: %d\n",
2311 			       vhost_avail_event(vq), r);
2312 			return false;
2313 		}
2314 	}
2315 	/* They could have slipped one in as we were doing that: make
2316 	 * sure it's written, then check again. */
2317 	smp_mb();
2318 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2319 	if (r) {
2320 		vq_err(vq, "Failed to check avail idx at %p: %d\n",
2321 		       &vq->avail->idx, r);
2322 		return false;
2323 	}
2324 
2325 	return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx;
2326 }
2327 EXPORT_SYMBOL_GPL(vhost_enable_notify);
2328 
2329 /* We don't need to be notified again. */
2330 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2331 {
2332 	int r;
2333 
2334 	if (vq->used_flags & VRING_USED_F_NO_NOTIFY)
2335 		return;
2336 	vq->used_flags |= VRING_USED_F_NO_NOTIFY;
2337 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2338 		r = vhost_update_used_flags(vq);
2339 		if (r)
2340 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2341 			       &vq->used->flags, r);
2342 	}
2343 }
2344 EXPORT_SYMBOL_GPL(vhost_disable_notify);
2345 
2346 /* Create a new message. */
2347 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type)
2348 {
2349 	struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL);
2350 	if (!node)
2351 		return NULL;
2352 
2353 	/* Make sure all padding within the structure is initialized. */
2354 	memset(&node->msg, 0, sizeof node->msg);
2355 	node->vq = vq;
2356 	node->msg.type = type;
2357 	return node;
2358 }
2359 EXPORT_SYMBOL_GPL(vhost_new_msg);
2360 
2361 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head,
2362 		       struct vhost_msg_node *node)
2363 {
2364 	spin_lock(&dev->iotlb_lock);
2365 	list_add_tail(&node->node, head);
2366 	spin_unlock(&dev->iotlb_lock);
2367 
2368 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
2369 }
2370 EXPORT_SYMBOL_GPL(vhost_enqueue_msg);
2371 
2372 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev,
2373 					 struct list_head *head)
2374 {
2375 	struct vhost_msg_node *node = NULL;
2376 
2377 	spin_lock(&dev->iotlb_lock);
2378 	if (!list_empty(head)) {
2379 		node = list_first_entry(head, struct vhost_msg_node,
2380 					node);
2381 		list_del(&node->node);
2382 	}
2383 	spin_unlock(&dev->iotlb_lock);
2384 
2385 	return node;
2386 }
2387 EXPORT_SYMBOL_GPL(vhost_dequeue_msg);
2388 
2389 
2390 static int __init vhost_init(void)
2391 {
2392 	return 0;
2393 }
2394 
2395 static void __exit vhost_exit(void)
2396 {
2397 }
2398 
2399 module_init(vhost_init);
2400 module_exit(vhost_exit);
2401 
2402 MODULE_VERSION("0.0.1");
2403 MODULE_LICENSE("GPL v2");
2404 MODULE_AUTHOR("Michael S. Tsirkin");
2405 MODULE_DESCRIPTION("Host kernel accelerator for virtio");
2406