xref: /openbmc/linux/drivers/vhost/vhost.c (revision 752beb5e)
1 /* Copyright (C) 2009 Red Hat, Inc.
2  * Copyright (C) 2006 Rusty Russell IBM Corporation
3  *
4  * Author: Michael S. Tsirkin <mst@redhat.com>
5  *
6  * Inspiration, some code, and most witty comments come from
7  * Documentation/virtual/lguest/lguest.c, by Rusty Russell
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.
10  *
11  * Generic code for virtio server in host kernel.
12  */
13 
14 #include <linux/eventfd.h>
15 #include <linux/vhost.h>
16 #include <linux/uio.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_context.h>
19 #include <linux/miscdevice.h>
20 #include <linux/mutex.h>
21 #include <linux/poll.h>
22 #include <linux/file.h>
23 #include <linux/highmem.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/kthread.h>
27 #include <linux/cgroup.h>
28 #include <linux/module.h>
29 #include <linux/sort.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/signal.h>
32 #include <linux/interval_tree_generic.h>
33 #include <linux/nospec.h>
34 
35 #include "vhost.h"
36 
37 static ushort max_mem_regions = 64;
38 module_param(max_mem_regions, ushort, 0444);
39 MODULE_PARM_DESC(max_mem_regions,
40 	"Maximum number of memory regions in memory map. (default: 64)");
41 static int max_iotlb_entries = 2048;
42 module_param(max_iotlb_entries, int, 0444);
43 MODULE_PARM_DESC(max_iotlb_entries,
44 	"Maximum number of iotlb entries. (default: 2048)");
45 
46 enum {
47 	VHOST_MEMORY_F_LOG = 0x1,
48 };
49 
50 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num])
51 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num])
52 
53 INTERVAL_TREE_DEFINE(struct vhost_umem_node,
54 		     rb, __u64, __subtree_last,
55 		     START, LAST, static inline, vhost_umem_interval_tree);
56 
57 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY
58 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
59 {
60 	vq->user_be = !virtio_legacy_is_little_endian();
61 }
62 
63 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq)
64 {
65 	vq->user_be = true;
66 }
67 
68 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq)
69 {
70 	vq->user_be = false;
71 }
72 
73 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
74 {
75 	struct vhost_vring_state s;
76 
77 	if (vq->private_data)
78 		return -EBUSY;
79 
80 	if (copy_from_user(&s, argp, sizeof(s)))
81 		return -EFAULT;
82 
83 	if (s.num != VHOST_VRING_LITTLE_ENDIAN &&
84 	    s.num != VHOST_VRING_BIG_ENDIAN)
85 		return -EINVAL;
86 
87 	if (s.num == VHOST_VRING_BIG_ENDIAN)
88 		vhost_enable_cross_endian_big(vq);
89 	else
90 		vhost_enable_cross_endian_little(vq);
91 
92 	return 0;
93 }
94 
95 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
96 				   int __user *argp)
97 {
98 	struct vhost_vring_state s = {
99 		.index = idx,
100 		.num = vq->user_be
101 	};
102 
103 	if (copy_to_user(argp, &s, sizeof(s)))
104 		return -EFAULT;
105 
106 	return 0;
107 }
108 
109 static void vhost_init_is_le(struct vhost_virtqueue *vq)
110 {
111 	/* Note for legacy virtio: user_be is initialized at reset time
112 	 * according to the host endianness. If userspace does not set an
113 	 * explicit endianness, the default behavior is native endian, as
114 	 * expected by legacy virtio.
115 	 */
116 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be;
117 }
118 #else
119 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
120 {
121 }
122 
123 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
124 {
125 	return -ENOIOCTLCMD;
126 }
127 
128 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
129 				   int __user *argp)
130 {
131 	return -ENOIOCTLCMD;
132 }
133 
134 static void vhost_init_is_le(struct vhost_virtqueue *vq)
135 {
136 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1)
137 		|| virtio_legacy_is_little_endian();
138 }
139 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */
140 
141 static void vhost_reset_is_le(struct vhost_virtqueue *vq)
142 {
143 	vhost_init_is_le(vq);
144 }
145 
146 struct vhost_flush_struct {
147 	struct vhost_work work;
148 	struct completion wait_event;
149 };
150 
151 static void vhost_flush_work(struct vhost_work *work)
152 {
153 	struct vhost_flush_struct *s;
154 
155 	s = container_of(work, struct vhost_flush_struct, work);
156 	complete(&s->wait_event);
157 }
158 
159 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh,
160 			    poll_table *pt)
161 {
162 	struct vhost_poll *poll;
163 
164 	poll = container_of(pt, struct vhost_poll, table);
165 	poll->wqh = wqh;
166 	add_wait_queue(wqh, &poll->wait);
167 }
168 
169 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync,
170 			     void *key)
171 {
172 	struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait);
173 
174 	if (!(key_to_poll(key) & poll->mask))
175 		return 0;
176 
177 	vhost_poll_queue(poll);
178 	return 0;
179 }
180 
181 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn)
182 {
183 	clear_bit(VHOST_WORK_QUEUED, &work->flags);
184 	work->fn = fn;
185 }
186 EXPORT_SYMBOL_GPL(vhost_work_init);
187 
188 /* Init poll structure */
189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn,
190 		     __poll_t mask, struct vhost_dev *dev)
191 {
192 	init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup);
193 	init_poll_funcptr(&poll->table, vhost_poll_func);
194 	poll->mask = mask;
195 	poll->dev = dev;
196 	poll->wqh = NULL;
197 
198 	vhost_work_init(&poll->work, fn);
199 }
200 EXPORT_SYMBOL_GPL(vhost_poll_init);
201 
202 /* Start polling a file. We add ourselves to file's wait queue. The caller must
203  * keep a reference to a file until after vhost_poll_stop is called. */
204 int vhost_poll_start(struct vhost_poll *poll, struct file *file)
205 {
206 	__poll_t mask;
207 	int ret = 0;
208 
209 	if (poll->wqh)
210 		return 0;
211 
212 	mask = vfs_poll(file, &poll->table);
213 	if (mask)
214 		vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask));
215 	if (mask & EPOLLERR) {
216 		vhost_poll_stop(poll);
217 		ret = -EINVAL;
218 	}
219 
220 	return ret;
221 }
222 EXPORT_SYMBOL_GPL(vhost_poll_start);
223 
224 /* Stop polling a file. After this function returns, it becomes safe to drop the
225  * file reference. You must also flush afterwards. */
226 void vhost_poll_stop(struct vhost_poll *poll)
227 {
228 	if (poll->wqh) {
229 		remove_wait_queue(poll->wqh, &poll->wait);
230 		poll->wqh = NULL;
231 	}
232 }
233 EXPORT_SYMBOL_GPL(vhost_poll_stop);
234 
235 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work)
236 {
237 	struct vhost_flush_struct flush;
238 
239 	if (dev->worker) {
240 		init_completion(&flush.wait_event);
241 		vhost_work_init(&flush.work, vhost_flush_work);
242 
243 		vhost_work_queue(dev, &flush.work);
244 		wait_for_completion(&flush.wait_event);
245 	}
246 }
247 EXPORT_SYMBOL_GPL(vhost_work_flush);
248 
249 /* Flush any work that has been scheduled. When calling this, don't hold any
250  * locks that are also used by the callback. */
251 void vhost_poll_flush(struct vhost_poll *poll)
252 {
253 	vhost_work_flush(poll->dev, &poll->work);
254 }
255 EXPORT_SYMBOL_GPL(vhost_poll_flush);
256 
257 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work)
258 {
259 	if (!dev->worker)
260 		return;
261 
262 	if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) {
263 		/* We can only add the work to the list after we're
264 		 * sure it was not in the list.
265 		 * test_and_set_bit() implies a memory barrier.
266 		 */
267 		llist_add(&work->node, &dev->work_list);
268 		wake_up_process(dev->worker);
269 	}
270 }
271 EXPORT_SYMBOL_GPL(vhost_work_queue);
272 
273 /* A lockless hint for busy polling code to exit the loop */
274 bool vhost_has_work(struct vhost_dev *dev)
275 {
276 	return !llist_empty(&dev->work_list);
277 }
278 EXPORT_SYMBOL_GPL(vhost_has_work);
279 
280 void vhost_poll_queue(struct vhost_poll *poll)
281 {
282 	vhost_work_queue(poll->dev, &poll->work);
283 }
284 EXPORT_SYMBOL_GPL(vhost_poll_queue);
285 
286 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq)
287 {
288 	int j;
289 
290 	for (j = 0; j < VHOST_NUM_ADDRS; j++)
291 		vq->meta_iotlb[j] = NULL;
292 }
293 
294 static void vhost_vq_meta_reset(struct vhost_dev *d)
295 {
296 	int i;
297 
298 	for (i = 0; i < d->nvqs; ++i)
299 		__vhost_vq_meta_reset(d->vqs[i]);
300 }
301 
302 static void vhost_vq_reset(struct vhost_dev *dev,
303 			   struct vhost_virtqueue *vq)
304 {
305 	vq->num = 1;
306 	vq->desc = NULL;
307 	vq->avail = NULL;
308 	vq->used = NULL;
309 	vq->last_avail_idx = 0;
310 	vq->avail_idx = 0;
311 	vq->last_used_idx = 0;
312 	vq->signalled_used = 0;
313 	vq->signalled_used_valid = false;
314 	vq->used_flags = 0;
315 	vq->log_used = false;
316 	vq->log_addr = -1ull;
317 	vq->private_data = NULL;
318 	vq->acked_features = 0;
319 	vq->acked_backend_features = 0;
320 	vq->log_base = NULL;
321 	vq->error_ctx = NULL;
322 	vq->kick = NULL;
323 	vq->call_ctx = NULL;
324 	vq->log_ctx = NULL;
325 	vhost_reset_is_le(vq);
326 	vhost_disable_cross_endian(vq);
327 	vq->busyloop_timeout = 0;
328 	vq->umem = NULL;
329 	vq->iotlb = NULL;
330 	__vhost_vq_meta_reset(vq);
331 }
332 
333 static int vhost_worker(void *data)
334 {
335 	struct vhost_dev *dev = data;
336 	struct vhost_work *work, *work_next;
337 	struct llist_node *node;
338 	mm_segment_t oldfs = get_fs();
339 
340 	set_fs(USER_DS);
341 	use_mm(dev->mm);
342 
343 	for (;;) {
344 		/* mb paired w/ kthread_stop */
345 		set_current_state(TASK_INTERRUPTIBLE);
346 
347 		if (kthread_should_stop()) {
348 			__set_current_state(TASK_RUNNING);
349 			break;
350 		}
351 
352 		node = llist_del_all(&dev->work_list);
353 		if (!node)
354 			schedule();
355 
356 		node = llist_reverse_order(node);
357 		/* make sure flag is seen after deletion */
358 		smp_wmb();
359 		llist_for_each_entry_safe(work, work_next, node, node) {
360 			clear_bit(VHOST_WORK_QUEUED, &work->flags);
361 			__set_current_state(TASK_RUNNING);
362 			work->fn(work);
363 			if (need_resched())
364 				schedule();
365 		}
366 	}
367 	unuse_mm(dev->mm);
368 	set_fs(oldfs);
369 	return 0;
370 }
371 
372 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq)
373 {
374 	kfree(vq->indirect);
375 	vq->indirect = NULL;
376 	kfree(vq->log);
377 	vq->log = NULL;
378 	kfree(vq->heads);
379 	vq->heads = NULL;
380 }
381 
382 /* Helper to allocate iovec buffers for all vqs. */
383 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev)
384 {
385 	struct vhost_virtqueue *vq;
386 	int i;
387 
388 	for (i = 0; i < dev->nvqs; ++i) {
389 		vq = dev->vqs[i];
390 		vq->indirect = kmalloc_array(UIO_MAXIOV,
391 					     sizeof(*vq->indirect),
392 					     GFP_KERNEL);
393 		vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log),
394 					GFP_KERNEL);
395 		vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads),
396 					  GFP_KERNEL);
397 		if (!vq->indirect || !vq->log || !vq->heads)
398 			goto err_nomem;
399 	}
400 	return 0;
401 
402 err_nomem:
403 	for (; i >= 0; --i)
404 		vhost_vq_free_iovecs(dev->vqs[i]);
405 	return -ENOMEM;
406 }
407 
408 static void vhost_dev_free_iovecs(struct vhost_dev *dev)
409 {
410 	int i;
411 
412 	for (i = 0; i < dev->nvqs; ++i)
413 		vhost_vq_free_iovecs(dev->vqs[i]);
414 }
415 
416 void vhost_dev_init(struct vhost_dev *dev,
417 		    struct vhost_virtqueue **vqs, int nvqs, int iov_limit)
418 {
419 	struct vhost_virtqueue *vq;
420 	int i;
421 
422 	dev->vqs = vqs;
423 	dev->nvqs = nvqs;
424 	mutex_init(&dev->mutex);
425 	dev->log_ctx = NULL;
426 	dev->umem = NULL;
427 	dev->iotlb = NULL;
428 	dev->mm = NULL;
429 	dev->worker = NULL;
430 	dev->iov_limit = iov_limit;
431 	init_llist_head(&dev->work_list);
432 	init_waitqueue_head(&dev->wait);
433 	INIT_LIST_HEAD(&dev->read_list);
434 	INIT_LIST_HEAD(&dev->pending_list);
435 	spin_lock_init(&dev->iotlb_lock);
436 
437 
438 	for (i = 0; i < dev->nvqs; ++i) {
439 		vq = dev->vqs[i];
440 		vq->log = NULL;
441 		vq->indirect = NULL;
442 		vq->heads = NULL;
443 		vq->dev = dev;
444 		mutex_init(&vq->mutex);
445 		vhost_vq_reset(dev, vq);
446 		if (vq->handle_kick)
447 			vhost_poll_init(&vq->poll, vq->handle_kick,
448 					EPOLLIN, dev);
449 	}
450 }
451 EXPORT_SYMBOL_GPL(vhost_dev_init);
452 
453 /* Caller should have device mutex */
454 long vhost_dev_check_owner(struct vhost_dev *dev)
455 {
456 	/* Are you the owner? If not, I don't think you mean to do that */
457 	return dev->mm == current->mm ? 0 : -EPERM;
458 }
459 EXPORT_SYMBOL_GPL(vhost_dev_check_owner);
460 
461 struct vhost_attach_cgroups_struct {
462 	struct vhost_work work;
463 	struct task_struct *owner;
464 	int ret;
465 };
466 
467 static void vhost_attach_cgroups_work(struct vhost_work *work)
468 {
469 	struct vhost_attach_cgroups_struct *s;
470 
471 	s = container_of(work, struct vhost_attach_cgroups_struct, work);
472 	s->ret = cgroup_attach_task_all(s->owner, current);
473 }
474 
475 static int vhost_attach_cgroups(struct vhost_dev *dev)
476 {
477 	struct vhost_attach_cgroups_struct attach;
478 
479 	attach.owner = current;
480 	vhost_work_init(&attach.work, vhost_attach_cgroups_work);
481 	vhost_work_queue(dev, &attach.work);
482 	vhost_work_flush(dev, &attach.work);
483 	return attach.ret;
484 }
485 
486 /* Caller should have device mutex */
487 bool vhost_dev_has_owner(struct vhost_dev *dev)
488 {
489 	return dev->mm;
490 }
491 EXPORT_SYMBOL_GPL(vhost_dev_has_owner);
492 
493 /* Caller should have device mutex */
494 long vhost_dev_set_owner(struct vhost_dev *dev)
495 {
496 	struct task_struct *worker;
497 	int err;
498 
499 	/* Is there an owner already? */
500 	if (vhost_dev_has_owner(dev)) {
501 		err = -EBUSY;
502 		goto err_mm;
503 	}
504 
505 	/* No owner, become one */
506 	dev->mm = get_task_mm(current);
507 	worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid);
508 	if (IS_ERR(worker)) {
509 		err = PTR_ERR(worker);
510 		goto err_worker;
511 	}
512 
513 	dev->worker = worker;
514 	wake_up_process(worker);	/* avoid contributing to loadavg */
515 
516 	err = vhost_attach_cgroups(dev);
517 	if (err)
518 		goto err_cgroup;
519 
520 	err = vhost_dev_alloc_iovecs(dev);
521 	if (err)
522 		goto err_cgroup;
523 
524 	return 0;
525 err_cgroup:
526 	kthread_stop(worker);
527 	dev->worker = NULL;
528 err_worker:
529 	if (dev->mm)
530 		mmput(dev->mm);
531 	dev->mm = NULL;
532 err_mm:
533 	return err;
534 }
535 EXPORT_SYMBOL_GPL(vhost_dev_set_owner);
536 
537 struct vhost_umem *vhost_dev_reset_owner_prepare(void)
538 {
539 	return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL);
540 }
541 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare);
542 
543 /* Caller should have device mutex */
544 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem)
545 {
546 	int i;
547 
548 	vhost_dev_cleanup(dev);
549 
550 	/* Restore memory to default empty mapping. */
551 	INIT_LIST_HEAD(&umem->umem_list);
552 	dev->umem = umem;
553 	/* We don't need VQ locks below since vhost_dev_cleanup makes sure
554 	 * VQs aren't running.
555 	 */
556 	for (i = 0; i < dev->nvqs; ++i)
557 		dev->vqs[i]->umem = umem;
558 }
559 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner);
560 
561 void vhost_dev_stop(struct vhost_dev *dev)
562 {
563 	int i;
564 
565 	for (i = 0; i < dev->nvqs; ++i) {
566 		if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) {
567 			vhost_poll_stop(&dev->vqs[i]->poll);
568 			vhost_poll_flush(&dev->vqs[i]->poll);
569 		}
570 	}
571 }
572 EXPORT_SYMBOL_GPL(vhost_dev_stop);
573 
574 static void vhost_umem_free(struct vhost_umem *umem,
575 			    struct vhost_umem_node *node)
576 {
577 	vhost_umem_interval_tree_remove(node, &umem->umem_tree);
578 	list_del(&node->link);
579 	kfree(node);
580 	umem->numem--;
581 }
582 
583 static void vhost_umem_clean(struct vhost_umem *umem)
584 {
585 	struct vhost_umem_node *node, *tmp;
586 
587 	if (!umem)
588 		return;
589 
590 	list_for_each_entry_safe(node, tmp, &umem->umem_list, link)
591 		vhost_umem_free(umem, node);
592 
593 	kvfree(umem);
594 }
595 
596 static void vhost_clear_msg(struct vhost_dev *dev)
597 {
598 	struct vhost_msg_node *node, *n;
599 
600 	spin_lock(&dev->iotlb_lock);
601 
602 	list_for_each_entry_safe(node, n, &dev->read_list, node) {
603 		list_del(&node->node);
604 		kfree(node);
605 	}
606 
607 	list_for_each_entry_safe(node, n, &dev->pending_list, node) {
608 		list_del(&node->node);
609 		kfree(node);
610 	}
611 
612 	spin_unlock(&dev->iotlb_lock);
613 }
614 
615 void vhost_dev_cleanup(struct vhost_dev *dev)
616 {
617 	int i;
618 
619 	for (i = 0; i < dev->nvqs; ++i) {
620 		if (dev->vqs[i]->error_ctx)
621 			eventfd_ctx_put(dev->vqs[i]->error_ctx);
622 		if (dev->vqs[i]->kick)
623 			fput(dev->vqs[i]->kick);
624 		if (dev->vqs[i]->call_ctx)
625 			eventfd_ctx_put(dev->vqs[i]->call_ctx);
626 		vhost_vq_reset(dev, dev->vqs[i]);
627 	}
628 	vhost_dev_free_iovecs(dev);
629 	if (dev->log_ctx)
630 		eventfd_ctx_put(dev->log_ctx);
631 	dev->log_ctx = NULL;
632 	/* No one will access memory at this point */
633 	vhost_umem_clean(dev->umem);
634 	dev->umem = NULL;
635 	vhost_umem_clean(dev->iotlb);
636 	dev->iotlb = NULL;
637 	vhost_clear_msg(dev);
638 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
639 	WARN_ON(!llist_empty(&dev->work_list));
640 	if (dev->worker) {
641 		kthread_stop(dev->worker);
642 		dev->worker = NULL;
643 	}
644 	if (dev->mm)
645 		mmput(dev->mm);
646 	dev->mm = NULL;
647 }
648 EXPORT_SYMBOL_GPL(vhost_dev_cleanup);
649 
650 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz)
651 {
652 	u64 a = addr / VHOST_PAGE_SIZE / 8;
653 
654 	/* Make sure 64 bit math will not overflow. */
655 	if (a > ULONG_MAX - (unsigned long)log_base ||
656 	    a + (unsigned long)log_base > ULONG_MAX)
657 		return false;
658 
659 	return access_ok(log_base + a,
660 			 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8);
661 }
662 
663 static bool vhost_overflow(u64 uaddr, u64 size)
664 {
665 	/* Make sure 64 bit math will not overflow. */
666 	return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size;
667 }
668 
669 /* Caller should have vq mutex and device mutex. */
670 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem,
671 				int log_all)
672 {
673 	struct vhost_umem_node *node;
674 
675 	if (!umem)
676 		return false;
677 
678 	list_for_each_entry(node, &umem->umem_list, link) {
679 		unsigned long a = node->userspace_addr;
680 
681 		if (vhost_overflow(node->userspace_addr, node->size))
682 			return false;
683 
684 
685 		if (!access_ok((void __user *)a,
686 				    node->size))
687 			return false;
688 		else if (log_all && !log_access_ok(log_base,
689 						   node->start,
690 						   node->size))
691 			return false;
692 	}
693 	return true;
694 }
695 
696 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq,
697 					       u64 addr, unsigned int size,
698 					       int type)
699 {
700 	const struct vhost_umem_node *node = vq->meta_iotlb[type];
701 
702 	if (!node)
703 		return NULL;
704 
705 	return (void *)(uintptr_t)(node->userspace_addr + addr - node->start);
706 }
707 
708 /* Can we switch to this memory table? */
709 /* Caller should have device mutex but not vq mutex */
710 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem,
711 			     int log_all)
712 {
713 	int i;
714 
715 	for (i = 0; i < d->nvqs; ++i) {
716 		bool ok;
717 		bool log;
718 
719 		mutex_lock(&d->vqs[i]->mutex);
720 		log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL);
721 		/* If ring is inactive, will check when it's enabled. */
722 		if (d->vqs[i]->private_data)
723 			ok = vq_memory_access_ok(d->vqs[i]->log_base,
724 						 umem, log);
725 		else
726 			ok = true;
727 		mutex_unlock(&d->vqs[i]->mutex);
728 		if (!ok)
729 			return false;
730 	}
731 	return true;
732 }
733 
734 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
735 			  struct iovec iov[], int iov_size, int access);
736 
737 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to,
738 			      const void *from, unsigned size)
739 {
740 	int ret;
741 
742 	if (!vq->iotlb)
743 		return __copy_to_user(to, from, size);
744 	else {
745 		/* This function should be called after iotlb
746 		 * prefetch, which means we're sure that all vq
747 		 * could be access through iotlb. So -EAGAIN should
748 		 * not happen in this case.
749 		 */
750 		struct iov_iter t;
751 		void __user *uaddr = vhost_vq_meta_fetch(vq,
752 				     (u64)(uintptr_t)to, size,
753 				     VHOST_ADDR_USED);
754 
755 		if (uaddr)
756 			return __copy_to_user(uaddr, from, size);
757 
758 		ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov,
759 				     ARRAY_SIZE(vq->iotlb_iov),
760 				     VHOST_ACCESS_WO);
761 		if (ret < 0)
762 			goto out;
763 		iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size);
764 		ret = copy_to_iter(from, size, &t);
765 		if (ret == size)
766 			ret = 0;
767 	}
768 out:
769 	return ret;
770 }
771 
772 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to,
773 				void __user *from, unsigned size)
774 {
775 	int ret;
776 
777 	if (!vq->iotlb)
778 		return __copy_from_user(to, from, size);
779 	else {
780 		/* This function should be called after iotlb
781 		 * prefetch, which means we're sure that vq
782 		 * could be access through iotlb. So -EAGAIN should
783 		 * not happen in this case.
784 		 */
785 		void __user *uaddr = vhost_vq_meta_fetch(vq,
786 				     (u64)(uintptr_t)from, size,
787 				     VHOST_ADDR_DESC);
788 		struct iov_iter f;
789 
790 		if (uaddr)
791 			return __copy_from_user(to, uaddr, size);
792 
793 		ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov,
794 				     ARRAY_SIZE(vq->iotlb_iov),
795 				     VHOST_ACCESS_RO);
796 		if (ret < 0) {
797 			vq_err(vq, "IOTLB translation failure: uaddr "
798 			       "%p size 0x%llx\n", from,
799 			       (unsigned long long) size);
800 			goto out;
801 		}
802 		iov_iter_init(&f, READ, vq->iotlb_iov, ret, size);
803 		ret = copy_from_iter(to, size, &f);
804 		if (ret == size)
805 			ret = 0;
806 	}
807 
808 out:
809 	return ret;
810 }
811 
812 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq,
813 					  void __user *addr, unsigned int size,
814 					  int type)
815 {
816 	int ret;
817 
818 	ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov,
819 			     ARRAY_SIZE(vq->iotlb_iov),
820 			     VHOST_ACCESS_RO);
821 	if (ret < 0) {
822 		vq_err(vq, "IOTLB translation failure: uaddr "
823 			"%p size 0x%llx\n", addr,
824 			(unsigned long long) size);
825 		return NULL;
826 	}
827 
828 	if (ret != 1 || vq->iotlb_iov[0].iov_len != size) {
829 		vq_err(vq, "Non atomic userspace memory access: uaddr "
830 			"%p size 0x%llx\n", addr,
831 			(unsigned long long) size);
832 		return NULL;
833 	}
834 
835 	return vq->iotlb_iov[0].iov_base;
836 }
837 
838 /* This function should be called after iotlb
839  * prefetch, which means we're sure that vq
840  * could be access through iotlb. So -EAGAIN should
841  * not happen in this case.
842  */
843 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq,
844 					    void *addr, unsigned int size,
845 					    int type)
846 {
847 	void __user *uaddr = vhost_vq_meta_fetch(vq,
848 			     (u64)(uintptr_t)addr, size, type);
849 	if (uaddr)
850 		return uaddr;
851 
852 	return __vhost_get_user_slow(vq, addr, size, type);
853 }
854 
855 #define vhost_put_user(vq, x, ptr)		\
856 ({ \
857 	int ret = -EFAULT; \
858 	if (!vq->iotlb) { \
859 		ret = __put_user(x, ptr); \
860 	} else { \
861 		__typeof__(ptr) to = \
862 			(__typeof__(ptr)) __vhost_get_user(vq, ptr,	\
863 					  sizeof(*ptr), VHOST_ADDR_USED); \
864 		if (to != NULL) \
865 			ret = __put_user(x, to); \
866 		else \
867 			ret = -EFAULT;	\
868 	} \
869 	ret; \
870 })
871 
872 #define vhost_get_user(vq, x, ptr, type)		\
873 ({ \
874 	int ret; \
875 	if (!vq->iotlb) { \
876 		ret = __get_user(x, ptr); \
877 	} else { \
878 		__typeof__(ptr) from = \
879 			(__typeof__(ptr)) __vhost_get_user(vq, ptr, \
880 							   sizeof(*ptr), \
881 							   type); \
882 		if (from != NULL) \
883 			ret = __get_user(x, from); \
884 		else \
885 			ret = -EFAULT; \
886 	} \
887 	ret; \
888 })
889 
890 #define vhost_get_avail(vq, x, ptr) \
891 	vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL)
892 
893 #define vhost_get_used(vq, x, ptr) \
894 	vhost_get_user(vq, x, ptr, VHOST_ADDR_USED)
895 
896 static void vhost_dev_lock_vqs(struct vhost_dev *d)
897 {
898 	int i = 0;
899 	for (i = 0; i < d->nvqs; ++i)
900 		mutex_lock_nested(&d->vqs[i]->mutex, i);
901 }
902 
903 static void vhost_dev_unlock_vqs(struct vhost_dev *d)
904 {
905 	int i = 0;
906 	for (i = 0; i < d->nvqs; ++i)
907 		mutex_unlock(&d->vqs[i]->mutex);
908 }
909 
910 static int vhost_new_umem_range(struct vhost_umem *umem,
911 				u64 start, u64 size, u64 end,
912 				u64 userspace_addr, int perm)
913 {
914 	struct vhost_umem_node *tmp, *node;
915 
916 	if (!size)
917 		return -EFAULT;
918 
919 	node = kmalloc(sizeof(*node), GFP_ATOMIC);
920 	if (!node)
921 		return -ENOMEM;
922 
923 	if (umem->numem == max_iotlb_entries) {
924 		tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link);
925 		vhost_umem_free(umem, tmp);
926 	}
927 
928 	node->start = start;
929 	node->size = size;
930 	node->last = end;
931 	node->userspace_addr = userspace_addr;
932 	node->perm = perm;
933 	INIT_LIST_HEAD(&node->link);
934 	list_add_tail(&node->link, &umem->umem_list);
935 	vhost_umem_interval_tree_insert(node, &umem->umem_tree);
936 	umem->numem++;
937 
938 	return 0;
939 }
940 
941 static void vhost_del_umem_range(struct vhost_umem *umem,
942 				 u64 start, u64 end)
943 {
944 	struct vhost_umem_node *node;
945 
946 	while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
947 							   start, end)))
948 		vhost_umem_free(umem, node);
949 }
950 
951 static void vhost_iotlb_notify_vq(struct vhost_dev *d,
952 				  struct vhost_iotlb_msg *msg)
953 {
954 	struct vhost_msg_node *node, *n;
955 
956 	spin_lock(&d->iotlb_lock);
957 
958 	list_for_each_entry_safe(node, n, &d->pending_list, node) {
959 		struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb;
960 		if (msg->iova <= vq_msg->iova &&
961 		    msg->iova + msg->size - 1 >= vq_msg->iova &&
962 		    vq_msg->type == VHOST_IOTLB_MISS) {
963 			vhost_poll_queue(&node->vq->poll);
964 			list_del(&node->node);
965 			kfree(node);
966 		}
967 	}
968 
969 	spin_unlock(&d->iotlb_lock);
970 }
971 
972 static bool umem_access_ok(u64 uaddr, u64 size, int access)
973 {
974 	unsigned long a = uaddr;
975 
976 	/* Make sure 64 bit math will not overflow. */
977 	if (vhost_overflow(uaddr, size))
978 		return false;
979 
980 	if ((access & VHOST_ACCESS_RO) &&
981 	    !access_ok((void __user *)a, size))
982 		return false;
983 	if ((access & VHOST_ACCESS_WO) &&
984 	    !access_ok((void __user *)a, size))
985 		return false;
986 	return true;
987 }
988 
989 static int vhost_process_iotlb_msg(struct vhost_dev *dev,
990 				   struct vhost_iotlb_msg *msg)
991 {
992 	int ret = 0;
993 
994 	mutex_lock(&dev->mutex);
995 	vhost_dev_lock_vqs(dev);
996 	switch (msg->type) {
997 	case VHOST_IOTLB_UPDATE:
998 		if (!dev->iotlb) {
999 			ret = -EFAULT;
1000 			break;
1001 		}
1002 		if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) {
1003 			ret = -EFAULT;
1004 			break;
1005 		}
1006 		vhost_vq_meta_reset(dev);
1007 		if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size,
1008 					 msg->iova + msg->size - 1,
1009 					 msg->uaddr, msg->perm)) {
1010 			ret = -ENOMEM;
1011 			break;
1012 		}
1013 		vhost_iotlb_notify_vq(dev, msg);
1014 		break;
1015 	case VHOST_IOTLB_INVALIDATE:
1016 		if (!dev->iotlb) {
1017 			ret = -EFAULT;
1018 			break;
1019 		}
1020 		vhost_vq_meta_reset(dev);
1021 		vhost_del_umem_range(dev->iotlb, msg->iova,
1022 				     msg->iova + msg->size - 1);
1023 		break;
1024 	default:
1025 		ret = -EINVAL;
1026 		break;
1027 	}
1028 
1029 	vhost_dev_unlock_vqs(dev);
1030 	mutex_unlock(&dev->mutex);
1031 
1032 	return ret;
1033 }
1034 ssize_t vhost_chr_write_iter(struct vhost_dev *dev,
1035 			     struct iov_iter *from)
1036 {
1037 	struct vhost_iotlb_msg msg;
1038 	size_t offset;
1039 	int type, ret;
1040 
1041 	ret = copy_from_iter(&type, sizeof(type), from);
1042 	if (ret != sizeof(type)) {
1043 		ret = -EINVAL;
1044 		goto done;
1045 	}
1046 
1047 	switch (type) {
1048 	case VHOST_IOTLB_MSG:
1049 		/* There maybe a hole after type for V1 message type,
1050 		 * so skip it here.
1051 		 */
1052 		offset = offsetof(struct vhost_msg, iotlb) - sizeof(int);
1053 		break;
1054 	case VHOST_IOTLB_MSG_V2:
1055 		offset = sizeof(__u32);
1056 		break;
1057 	default:
1058 		ret = -EINVAL;
1059 		goto done;
1060 	}
1061 
1062 	iov_iter_advance(from, offset);
1063 	ret = copy_from_iter(&msg, sizeof(msg), from);
1064 	if (ret != sizeof(msg)) {
1065 		ret = -EINVAL;
1066 		goto done;
1067 	}
1068 	if (vhost_process_iotlb_msg(dev, &msg)) {
1069 		ret = -EFAULT;
1070 		goto done;
1071 	}
1072 
1073 	ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) :
1074 	      sizeof(struct vhost_msg_v2);
1075 done:
1076 	return ret;
1077 }
1078 EXPORT_SYMBOL(vhost_chr_write_iter);
1079 
1080 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev,
1081 			    poll_table *wait)
1082 {
1083 	__poll_t mask = 0;
1084 
1085 	poll_wait(file, &dev->wait, wait);
1086 
1087 	if (!list_empty(&dev->read_list))
1088 		mask |= EPOLLIN | EPOLLRDNORM;
1089 
1090 	return mask;
1091 }
1092 EXPORT_SYMBOL(vhost_chr_poll);
1093 
1094 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to,
1095 			    int noblock)
1096 {
1097 	DEFINE_WAIT(wait);
1098 	struct vhost_msg_node *node;
1099 	ssize_t ret = 0;
1100 	unsigned size = sizeof(struct vhost_msg);
1101 
1102 	if (iov_iter_count(to) < size)
1103 		return 0;
1104 
1105 	while (1) {
1106 		if (!noblock)
1107 			prepare_to_wait(&dev->wait, &wait,
1108 					TASK_INTERRUPTIBLE);
1109 
1110 		node = vhost_dequeue_msg(dev, &dev->read_list);
1111 		if (node)
1112 			break;
1113 		if (noblock) {
1114 			ret = -EAGAIN;
1115 			break;
1116 		}
1117 		if (signal_pending(current)) {
1118 			ret = -ERESTARTSYS;
1119 			break;
1120 		}
1121 		if (!dev->iotlb) {
1122 			ret = -EBADFD;
1123 			break;
1124 		}
1125 
1126 		schedule();
1127 	}
1128 
1129 	if (!noblock)
1130 		finish_wait(&dev->wait, &wait);
1131 
1132 	if (node) {
1133 		struct vhost_iotlb_msg *msg;
1134 		void *start = &node->msg;
1135 
1136 		switch (node->msg.type) {
1137 		case VHOST_IOTLB_MSG:
1138 			size = sizeof(node->msg);
1139 			msg = &node->msg.iotlb;
1140 			break;
1141 		case VHOST_IOTLB_MSG_V2:
1142 			size = sizeof(node->msg_v2);
1143 			msg = &node->msg_v2.iotlb;
1144 			break;
1145 		default:
1146 			BUG();
1147 			break;
1148 		}
1149 
1150 		ret = copy_to_iter(start, size, to);
1151 		if (ret != size || msg->type != VHOST_IOTLB_MISS) {
1152 			kfree(node);
1153 			return ret;
1154 		}
1155 		vhost_enqueue_msg(dev, &dev->pending_list, node);
1156 	}
1157 
1158 	return ret;
1159 }
1160 EXPORT_SYMBOL_GPL(vhost_chr_read_iter);
1161 
1162 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access)
1163 {
1164 	struct vhost_dev *dev = vq->dev;
1165 	struct vhost_msg_node *node;
1166 	struct vhost_iotlb_msg *msg;
1167 	bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2);
1168 
1169 	node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG);
1170 	if (!node)
1171 		return -ENOMEM;
1172 
1173 	if (v2) {
1174 		node->msg_v2.type = VHOST_IOTLB_MSG_V2;
1175 		msg = &node->msg_v2.iotlb;
1176 	} else {
1177 		msg = &node->msg.iotlb;
1178 	}
1179 
1180 	msg->type = VHOST_IOTLB_MISS;
1181 	msg->iova = iova;
1182 	msg->perm = access;
1183 
1184 	vhost_enqueue_msg(dev, &dev->read_list, node);
1185 
1186 	return 0;
1187 }
1188 
1189 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num,
1190 			 struct vring_desc __user *desc,
1191 			 struct vring_avail __user *avail,
1192 			 struct vring_used __user *used)
1193 
1194 {
1195 	size_t s __maybe_unused = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1196 
1197 	return access_ok(desc, num * sizeof *desc) &&
1198 	       access_ok(avail,
1199 			 sizeof *avail + num * sizeof *avail->ring + s) &&
1200 	       access_ok(used,
1201 			sizeof *used + num * sizeof *used->ring + s);
1202 }
1203 
1204 static void vhost_vq_meta_update(struct vhost_virtqueue *vq,
1205 				 const struct vhost_umem_node *node,
1206 				 int type)
1207 {
1208 	int access = (type == VHOST_ADDR_USED) ?
1209 		     VHOST_ACCESS_WO : VHOST_ACCESS_RO;
1210 
1211 	if (likely(node->perm & access))
1212 		vq->meta_iotlb[type] = node;
1213 }
1214 
1215 static bool iotlb_access_ok(struct vhost_virtqueue *vq,
1216 			    int access, u64 addr, u64 len, int type)
1217 {
1218 	const struct vhost_umem_node *node;
1219 	struct vhost_umem *umem = vq->iotlb;
1220 	u64 s = 0, size, orig_addr = addr, last = addr + len - 1;
1221 
1222 	if (vhost_vq_meta_fetch(vq, addr, len, type))
1223 		return true;
1224 
1225 	while (len > s) {
1226 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1227 							   addr,
1228 							   last);
1229 		if (node == NULL || node->start > addr) {
1230 			vhost_iotlb_miss(vq, addr, access);
1231 			return false;
1232 		} else if (!(node->perm & access)) {
1233 			/* Report the possible access violation by
1234 			 * request another translation from userspace.
1235 			 */
1236 			return false;
1237 		}
1238 
1239 		size = node->size - addr + node->start;
1240 
1241 		if (orig_addr == addr && size >= len)
1242 			vhost_vq_meta_update(vq, node, type);
1243 
1244 		s += size;
1245 		addr += size;
1246 	}
1247 
1248 	return true;
1249 }
1250 
1251 int vq_iotlb_prefetch(struct vhost_virtqueue *vq)
1252 {
1253 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1254 	unsigned int num = vq->num;
1255 
1256 	if (!vq->iotlb)
1257 		return 1;
1258 
1259 	return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc,
1260 			       num * sizeof(*vq->desc), VHOST_ADDR_DESC) &&
1261 	       iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail,
1262 			       sizeof *vq->avail +
1263 			       num * sizeof(*vq->avail->ring) + s,
1264 			       VHOST_ADDR_AVAIL) &&
1265 	       iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used,
1266 			       sizeof *vq->used +
1267 			       num * sizeof(*vq->used->ring) + s,
1268 			       VHOST_ADDR_USED);
1269 }
1270 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch);
1271 
1272 /* Can we log writes? */
1273 /* Caller should have device mutex but not vq mutex */
1274 bool vhost_log_access_ok(struct vhost_dev *dev)
1275 {
1276 	return memory_access_ok(dev, dev->umem, 1);
1277 }
1278 EXPORT_SYMBOL_GPL(vhost_log_access_ok);
1279 
1280 /* Verify access for write logging. */
1281 /* Caller should have vq mutex and device mutex */
1282 static bool vq_log_access_ok(struct vhost_virtqueue *vq,
1283 			     void __user *log_base)
1284 {
1285 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1286 
1287 	return vq_memory_access_ok(log_base, vq->umem,
1288 				   vhost_has_feature(vq, VHOST_F_LOG_ALL)) &&
1289 		(!vq->log_used || log_access_ok(log_base, vq->log_addr,
1290 					sizeof *vq->used +
1291 					vq->num * sizeof *vq->used->ring + s));
1292 }
1293 
1294 /* Can we start vq? */
1295 /* Caller should have vq mutex and device mutex */
1296 bool vhost_vq_access_ok(struct vhost_virtqueue *vq)
1297 {
1298 	if (!vq_log_access_ok(vq, vq->log_base))
1299 		return false;
1300 
1301 	/* Access validation occurs at prefetch time with IOTLB */
1302 	if (vq->iotlb)
1303 		return true;
1304 
1305 	return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used);
1306 }
1307 EXPORT_SYMBOL_GPL(vhost_vq_access_ok);
1308 
1309 static struct vhost_umem *vhost_umem_alloc(void)
1310 {
1311 	struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL);
1312 
1313 	if (!umem)
1314 		return NULL;
1315 
1316 	umem->umem_tree = RB_ROOT_CACHED;
1317 	umem->numem = 0;
1318 	INIT_LIST_HEAD(&umem->umem_list);
1319 
1320 	return umem;
1321 }
1322 
1323 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
1324 {
1325 	struct vhost_memory mem, *newmem;
1326 	struct vhost_memory_region *region;
1327 	struct vhost_umem *newumem, *oldumem;
1328 	unsigned long size = offsetof(struct vhost_memory, regions);
1329 	int i;
1330 
1331 	if (copy_from_user(&mem, m, size))
1332 		return -EFAULT;
1333 	if (mem.padding)
1334 		return -EOPNOTSUPP;
1335 	if (mem.nregions > max_mem_regions)
1336 		return -E2BIG;
1337 	newmem = kvzalloc(struct_size(newmem, regions, mem.nregions),
1338 			GFP_KERNEL);
1339 	if (!newmem)
1340 		return -ENOMEM;
1341 
1342 	memcpy(newmem, &mem, size);
1343 	if (copy_from_user(newmem->regions, m->regions,
1344 			   mem.nregions * sizeof *m->regions)) {
1345 		kvfree(newmem);
1346 		return -EFAULT;
1347 	}
1348 
1349 	newumem = vhost_umem_alloc();
1350 	if (!newumem) {
1351 		kvfree(newmem);
1352 		return -ENOMEM;
1353 	}
1354 
1355 	for (region = newmem->regions;
1356 	     region < newmem->regions + mem.nregions;
1357 	     region++) {
1358 		if (vhost_new_umem_range(newumem,
1359 					 region->guest_phys_addr,
1360 					 region->memory_size,
1361 					 region->guest_phys_addr +
1362 					 region->memory_size - 1,
1363 					 region->userspace_addr,
1364 					 VHOST_ACCESS_RW))
1365 			goto err;
1366 	}
1367 
1368 	if (!memory_access_ok(d, newumem, 0))
1369 		goto err;
1370 
1371 	oldumem = d->umem;
1372 	d->umem = newumem;
1373 
1374 	/* All memory accesses are done under some VQ mutex. */
1375 	for (i = 0; i < d->nvqs; ++i) {
1376 		mutex_lock(&d->vqs[i]->mutex);
1377 		d->vqs[i]->umem = newumem;
1378 		mutex_unlock(&d->vqs[i]->mutex);
1379 	}
1380 
1381 	kvfree(newmem);
1382 	vhost_umem_clean(oldumem);
1383 	return 0;
1384 
1385 err:
1386 	vhost_umem_clean(newumem);
1387 	kvfree(newmem);
1388 	return -EFAULT;
1389 }
1390 
1391 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1392 {
1393 	struct file *eventfp, *filep = NULL;
1394 	bool pollstart = false, pollstop = false;
1395 	struct eventfd_ctx *ctx = NULL;
1396 	u32 __user *idxp = argp;
1397 	struct vhost_virtqueue *vq;
1398 	struct vhost_vring_state s;
1399 	struct vhost_vring_file f;
1400 	struct vhost_vring_addr a;
1401 	u32 idx;
1402 	long r;
1403 
1404 	r = get_user(idx, idxp);
1405 	if (r < 0)
1406 		return r;
1407 	if (idx >= d->nvqs)
1408 		return -ENOBUFS;
1409 
1410 	idx = array_index_nospec(idx, d->nvqs);
1411 	vq = d->vqs[idx];
1412 
1413 	mutex_lock(&vq->mutex);
1414 
1415 	switch (ioctl) {
1416 	case VHOST_SET_VRING_NUM:
1417 		/* Resizing ring with an active backend?
1418 		 * You don't want to do that. */
1419 		if (vq->private_data) {
1420 			r = -EBUSY;
1421 			break;
1422 		}
1423 		if (copy_from_user(&s, argp, sizeof s)) {
1424 			r = -EFAULT;
1425 			break;
1426 		}
1427 		if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) {
1428 			r = -EINVAL;
1429 			break;
1430 		}
1431 		vq->num = s.num;
1432 		break;
1433 	case VHOST_SET_VRING_BASE:
1434 		/* Moving base with an active backend?
1435 		 * You don't want to do that. */
1436 		if (vq->private_data) {
1437 			r = -EBUSY;
1438 			break;
1439 		}
1440 		if (copy_from_user(&s, argp, sizeof s)) {
1441 			r = -EFAULT;
1442 			break;
1443 		}
1444 		if (s.num > 0xffff) {
1445 			r = -EINVAL;
1446 			break;
1447 		}
1448 		vq->last_avail_idx = s.num;
1449 		/* Forget the cached index value. */
1450 		vq->avail_idx = vq->last_avail_idx;
1451 		break;
1452 	case VHOST_GET_VRING_BASE:
1453 		s.index = idx;
1454 		s.num = vq->last_avail_idx;
1455 		if (copy_to_user(argp, &s, sizeof s))
1456 			r = -EFAULT;
1457 		break;
1458 	case VHOST_SET_VRING_ADDR:
1459 		if (copy_from_user(&a, argp, sizeof a)) {
1460 			r = -EFAULT;
1461 			break;
1462 		}
1463 		if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) {
1464 			r = -EOPNOTSUPP;
1465 			break;
1466 		}
1467 		/* For 32bit, verify that the top 32bits of the user
1468 		   data are set to zero. */
1469 		if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr ||
1470 		    (u64)(unsigned long)a.used_user_addr != a.used_user_addr ||
1471 		    (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) {
1472 			r = -EFAULT;
1473 			break;
1474 		}
1475 
1476 		/* Make sure it's safe to cast pointers to vring types. */
1477 		BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE);
1478 		BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE);
1479 		if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) ||
1480 		    (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) ||
1481 		    (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) {
1482 			r = -EINVAL;
1483 			break;
1484 		}
1485 
1486 		/* We only verify access here if backend is configured.
1487 		 * If it is not, we don't as size might not have been setup.
1488 		 * We will verify when backend is configured. */
1489 		if (vq->private_data) {
1490 			if (!vq_access_ok(vq, vq->num,
1491 				(void __user *)(unsigned long)a.desc_user_addr,
1492 				(void __user *)(unsigned long)a.avail_user_addr,
1493 				(void __user *)(unsigned long)a.used_user_addr)) {
1494 				r = -EINVAL;
1495 				break;
1496 			}
1497 
1498 			/* Also validate log access for used ring if enabled. */
1499 			if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) &&
1500 			    !log_access_ok(vq->log_base, a.log_guest_addr,
1501 					   sizeof *vq->used +
1502 					   vq->num * sizeof *vq->used->ring)) {
1503 				r = -EINVAL;
1504 				break;
1505 			}
1506 		}
1507 
1508 		vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG));
1509 		vq->desc = (void __user *)(unsigned long)a.desc_user_addr;
1510 		vq->avail = (void __user *)(unsigned long)a.avail_user_addr;
1511 		vq->log_addr = a.log_guest_addr;
1512 		vq->used = (void __user *)(unsigned long)a.used_user_addr;
1513 		break;
1514 	case VHOST_SET_VRING_KICK:
1515 		if (copy_from_user(&f, argp, sizeof f)) {
1516 			r = -EFAULT;
1517 			break;
1518 		}
1519 		eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd);
1520 		if (IS_ERR(eventfp)) {
1521 			r = PTR_ERR(eventfp);
1522 			break;
1523 		}
1524 		if (eventfp != vq->kick) {
1525 			pollstop = (filep = vq->kick) != NULL;
1526 			pollstart = (vq->kick = eventfp) != NULL;
1527 		} else
1528 			filep = eventfp;
1529 		break;
1530 	case VHOST_SET_VRING_CALL:
1531 		if (copy_from_user(&f, argp, sizeof f)) {
1532 			r = -EFAULT;
1533 			break;
1534 		}
1535 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1536 		if (IS_ERR(ctx)) {
1537 			r = PTR_ERR(ctx);
1538 			break;
1539 		}
1540 		swap(ctx, vq->call_ctx);
1541 		break;
1542 	case VHOST_SET_VRING_ERR:
1543 		if (copy_from_user(&f, argp, sizeof f)) {
1544 			r = -EFAULT;
1545 			break;
1546 		}
1547 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1548 		if (IS_ERR(ctx)) {
1549 			r = PTR_ERR(ctx);
1550 			break;
1551 		}
1552 		swap(ctx, vq->error_ctx);
1553 		break;
1554 	case VHOST_SET_VRING_ENDIAN:
1555 		r = vhost_set_vring_endian(vq, argp);
1556 		break;
1557 	case VHOST_GET_VRING_ENDIAN:
1558 		r = vhost_get_vring_endian(vq, idx, argp);
1559 		break;
1560 	case VHOST_SET_VRING_BUSYLOOP_TIMEOUT:
1561 		if (copy_from_user(&s, argp, sizeof(s))) {
1562 			r = -EFAULT;
1563 			break;
1564 		}
1565 		vq->busyloop_timeout = s.num;
1566 		break;
1567 	case VHOST_GET_VRING_BUSYLOOP_TIMEOUT:
1568 		s.index = idx;
1569 		s.num = vq->busyloop_timeout;
1570 		if (copy_to_user(argp, &s, sizeof(s)))
1571 			r = -EFAULT;
1572 		break;
1573 	default:
1574 		r = -ENOIOCTLCMD;
1575 	}
1576 
1577 	if (pollstop && vq->handle_kick)
1578 		vhost_poll_stop(&vq->poll);
1579 
1580 	if (!IS_ERR_OR_NULL(ctx))
1581 		eventfd_ctx_put(ctx);
1582 	if (filep)
1583 		fput(filep);
1584 
1585 	if (pollstart && vq->handle_kick)
1586 		r = vhost_poll_start(&vq->poll, vq->kick);
1587 
1588 	mutex_unlock(&vq->mutex);
1589 
1590 	if (pollstop && vq->handle_kick)
1591 		vhost_poll_flush(&vq->poll);
1592 	return r;
1593 }
1594 EXPORT_SYMBOL_GPL(vhost_vring_ioctl);
1595 
1596 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled)
1597 {
1598 	struct vhost_umem *niotlb, *oiotlb;
1599 	int i;
1600 
1601 	niotlb = vhost_umem_alloc();
1602 	if (!niotlb)
1603 		return -ENOMEM;
1604 
1605 	oiotlb = d->iotlb;
1606 	d->iotlb = niotlb;
1607 
1608 	for (i = 0; i < d->nvqs; ++i) {
1609 		struct vhost_virtqueue *vq = d->vqs[i];
1610 
1611 		mutex_lock(&vq->mutex);
1612 		vq->iotlb = niotlb;
1613 		__vhost_vq_meta_reset(vq);
1614 		mutex_unlock(&vq->mutex);
1615 	}
1616 
1617 	vhost_umem_clean(oiotlb);
1618 
1619 	return 0;
1620 }
1621 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb);
1622 
1623 /* Caller must have device mutex */
1624 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1625 {
1626 	struct eventfd_ctx *ctx;
1627 	u64 p;
1628 	long r;
1629 	int i, fd;
1630 
1631 	/* If you are not the owner, you can become one */
1632 	if (ioctl == VHOST_SET_OWNER) {
1633 		r = vhost_dev_set_owner(d);
1634 		goto done;
1635 	}
1636 
1637 	/* You must be the owner to do anything else */
1638 	r = vhost_dev_check_owner(d);
1639 	if (r)
1640 		goto done;
1641 
1642 	switch (ioctl) {
1643 	case VHOST_SET_MEM_TABLE:
1644 		r = vhost_set_memory(d, argp);
1645 		break;
1646 	case VHOST_SET_LOG_BASE:
1647 		if (copy_from_user(&p, argp, sizeof p)) {
1648 			r = -EFAULT;
1649 			break;
1650 		}
1651 		if ((u64)(unsigned long)p != p) {
1652 			r = -EFAULT;
1653 			break;
1654 		}
1655 		for (i = 0; i < d->nvqs; ++i) {
1656 			struct vhost_virtqueue *vq;
1657 			void __user *base = (void __user *)(unsigned long)p;
1658 			vq = d->vqs[i];
1659 			mutex_lock(&vq->mutex);
1660 			/* If ring is inactive, will check when it's enabled. */
1661 			if (vq->private_data && !vq_log_access_ok(vq, base))
1662 				r = -EFAULT;
1663 			else
1664 				vq->log_base = base;
1665 			mutex_unlock(&vq->mutex);
1666 		}
1667 		break;
1668 	case VHOST_SET_LOG_FD:
1669 		r = get_user(fd, (int __user *)argp);
1670 		if (r < 0)
1671 			break;
1672 		ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd);
1673 		if (IS_ERR(ctx)) {
1674 			r = PTR_ERR(ctx);
1675 			break;
1676 		}
1677 		swap(ctx, d->log_ctx);
1678 		for (i = 0; i < d->nvqs; ++i) {
1679 			mutex_lock(&d->vqs[i]->mutex);
1680 			d->vqs[i]->log_ctx = d->log_ctx;
1681 			mutex_unlock(&d->vqs[i]->mutex);
1682 		}
1683 		if (ctx)
1684 			eventfd_ctx_put(ctx);
1685 		break;
1686 	default:
1687 		r = -ENOIOCTLCMD;
1688 		break;
1689 	}
1690 done:
1691 	return r;
1692 }
1693 EXPORT_SYMBOL_GPL(vhost_dev_ioctl);
1694 
1695 /* TODO: This is really inefficient.  We need something like get_user()
1696  * (instruction directly accesses the data, with an exception table entry
1697  * returning -EFAULT). See Documentation/x86/exception-tables.txt.
1698  */
1699 static int set_bit_to_user(int nr, void __user *addr)
1700 {
1701 	unsigned long log = (unsigned long)addr;
1702 	struct page *page;
1703 	void *base;
1704 	int bit = nr + (log % PAGE_SIZE) * 8;
1705 	int r;
1706 
1707 	r = get_user_pages_fast(log, 1, FOLL_WRITE, &page);
1708 	if (r < 0)
1709 		return r;
1710 	BUG_ON(r != 1);
1711 	base = kmap_atomic(page);
1712 	set_bit(bit, base);
1713 	kunmap_atomic(base);
1714 	set_page_dirty_lock(page);
1715 	put_page(page);
1716 	return 0;
1717 }
1718 
1719 static int log_write(void __user *log_base,
1720 		     u64 write_address, u64 write_length)
1721 {
1722 	u64 write_page = write_address / VHOST_PAGE_SIZE;
1723 	int r;
1724 
1725 	if (!write_length)
1726 		return 0;
1727 	write_length += write_address % VHOST_PAGE_SIZE;
1728 	for (;;) {
1729 		u64 base = (u64)(unsigned long)log_base;
1730 		u64 log = base + write_page / 8;
1731 		int bit = write_page % 8;
1732 		if ((u64)(unsigned long)log != log)
1733 			return -EFAULT;
1734 		r = set_bit_to_user(bit, (void __user *)(unsigned long)log);
1735 		if (r < 0)
1736 			return r;
1737 		if (write_length <= VHOST_PAGE_SIZE)
1738 			break;
1739 		write_length -= VHOST_PAGE_SIZE;
1740 		write_page += 1;
1741 	}
1742 	return r;
1743 }
1744 
1745 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len)
1746 {
1747 	struct vhost_umem *umem = vq->umem;
1748 	struct vhost_umem_node *u;
1749 	u64 start, end, l, min;
1750 	int r;
1751 	bool hit = false;
1752 
1753 	while (len) {
1754 		min = len;
1755 		/* More than one GPAs can be mapped into a single HVA. So
1756 		 * iterate all possible umems here to be safe.
1757 		 */
1758 		list_for_each_entry(u, &umem->umem_list, link) {
1759 			if (u->userspace_addr > hva - 1 + len ||
1760 			    u->userspace_addr - 1 + u->size < hva)
1761 				continue;
1762 			start = max(u->userspace_addr, hva);
1763 			end = min(u->userspace_addr - 1 + u->size,
1764 				  hva - 1 + len);
1765 			l = end - start + 1;
1766 			r = log_write(vq->log_base,
1767 				      u->start + start - u->userspace_addr,
1768 				      l);
1769 			if (r < 0)
1770 				return r;
1771 			hit = true;
1772 			min = min(l, min);
1773 		}
1774 
1775 		if (!hit)
1776 			return -EFAULT;
1777 
1778 		len -= min;
1779 		hva += min;
1780 	}
1781 
1782 	return 0;
1783 }
1784 
1785 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len)
1786 {
1787 	struct iovec iov[64];
1788 	int i, ret;
1789 
1790 	if (!vq->iotlb)
1791 		return log_write(vq->log_base, vq->log_addr + used_offset, len);
1792 
1793 	ret = translate_desc(vq, (uintptr_t)vq->used + used_offset,
1794 			     len, iov, 64, VHOST_ACCESS_WO);
1795 	if (ret < 0)
1796 		return ret;
1797 
1798 	for (i = 0; i < ret; i++) {
1799 		ret = log_write_hva(vq,	(uintptr_t)iov[i].iov_base,
1800 				    iov[i].iov_len);
1801 		if (ret)
1802 			return ret;
1803 	}
1804 
1805 	return 0;
1806 }
1807 
1808 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log,
1809 		    unsigned int log_num, u64 len, struct iovec *iov, int count)
1810 {
1811 	int i, r;
1812 
1813 	/* Make sure data written is seen before log. */
1814 	smp_wmb();
1815 
1816 	if (vq->iotlb) {
1817 		for (i = 0; i < count; i++) {
1818 			r = log_write_hva(vq, (uintptr_t)iov[i].iov_base,
1819 					  iov[i].iov_len);
1820 			if (r < 0)
1821 				return r;
1822 		}
1823 		return 0;
1824 	}
1825 
1826 	for (i = 0; i < log_num; ++i) {
1827 		u64 l = min(log[i].len, len);
1828 		r = log_write(vq->log_base, log[i].addr, l);
1829 		if (r < 0)
1830 			return r;
1831 		len -= l;
1832 		if (!len) {
1833 			if (vq->log_ctx)
1834 				eventfd_signal(vq->log_ctx, 1);
1835 			return 0;
1836 		}
1837 	}
1838 	/* Length written exceeds what we have stored. This is a bug. */
1839 	BUG();
1840 	return 0;
1841 }
1842 EXPORT_SYMBOL_GPL(vhost_log_write);
1843 
1844 static int vhost_update_used_flags(struct vhost_virtqueue *vq)
1845 {
1846 	void __user *used;
1847 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags),
1848 			   &vq->used->flags) < 0)
1849 		return -EFAULT;
1850 	if (unlikely(vq->log_used)) {
1851 		/* Make sure the flag is seen before log. */
1852 		smp_wmb();
1853 		/* Log used flag write. */
1854 		used = &vq->used->flags;
1855 		log_used(vq, (used - (void __user *)vq->used),
1856 			 sizeof vq->used->flags);
1857 		if (vq->log_ctx)
1858 			eventfd_signal(vq->log_ctx, 1);
1859 	}
1860 	return 0;
1861 }
1862 
1863 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event)
1864 {
1865 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx),
1866 			   vhost_avail_event(vq)))
1867 		return -EFAULT;
1868 	if (unlikely(vq->log_used)) {
1869 		void __user *used;
1870 		/* Make sure the event is seen before log. */
1871 		smp_wmb();
1872 		/* Log avail event write */
1873 		used = vhost_avail_event(vq);
1874 		log_used(vq, (used - (void __user *)vq->used),
1875 			 sizeof *vhost_avail_event(vq));
1876 		if (vq->log_ctx)
1877 			eventfd_signal(vq->log_ctx, 1);
1878 	}
1879 	return 0;
1880 }
1881 
1882 int vhost_vq_init_access(struct vhost_virtqueue *vq)
1883 {
1884 	__virtio16 last_used_idx;
1885 	int r;
1886 	bool is_le = vq->is_le;
1887 
1888 	if (!vq->private_data)
1889 		return 0;
1890 
1891 	vhost_init_is_le(vq);
1892 
1893 	r = vhost_update_used_flags(vq);
1894 	if (r)
1895 		goto err;
1896 	vq->signalled_used_valid = false;
1897 	if (!vq->iotlb &&
1898 	    !access_ok(&vq->used->idx, sizeof vq->used->idx)) {
1899 		r = -EFAULT;
1900 		goto err;
1901 	}
1902 	r = vhost_get_used(vq, last_used_idx, &vq->used->idx);
1903 	if (r) {
1904 		vq_err(vq, "Can't access used idx at %p\n",
1905 		       &vq->used->idx);
1906 		goto err;
1907 	}
1908 	vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx);
1909 	return 0;
1910 
1911 err:
1912 	vq->is_le = is_le;
1913 	return r;
1914 }
1915 EXPORT_SYMBOL_GPL(vhost_vq_init_access);
1916 
1917 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
1918 			  struct iovec iov[], int iov_size, int access)
1919 {
1920 	const struct vhost_umem_node *node;
1921 	struct vhost_dev *dev = vq->dev;
1922 	struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem;
1923 	struct iovec *_iov;
1924 	u64 s = 0;
1925 	int ret = 0;
1926 
1927 	while ((u64)len > s) {
1928 		u64 size;
1929 		if (unlikely(ret >= iov_size)) {
1930 			ret = -ENOBUFS;
1931 			break;
1932 		}
1933 
1934 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1935 							addr, addr + len - 1);
1936 		if (node == NULL || node->start > addr) {
1937 			if (umem != dev->iotlb) {
1938 				ret = -EFAULT;
1939 				break;
1940 			}
1941 			ret = -EAGAIN;
1942 			break;
1943 		} else if (!(node->perm & access)) {
1944 			ret = -EPERM;
1945 			break;
1946 		}
1947 
1948 		_iov = iov + ret;
1949 		size = node->size - addr + node->start;
1950 		_iov->iov_len = min((u64)len - s, size);
1951 		_iov->iov_base = (void __user *)(unsigned long)
1952 			(node->userspace_addr + addr - node->start);
1953 		s += size;
1954 		addr += size;
1955 		++ret;
1956 	}
1957 
1958 	if (ret == -EAGAIN)
1959 		vhost_iotlb_miss(vq, addr, access);
1960 	return ret;
1961 }
1962 
1963 /* Each buffer in the virtqueues is actually a chain of descriptors.  This
1964  * function returns the next descriptor in the chain,
1965  * or -1U if we're at the end. */
1966 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc)
1967 {
1968 	unsigned int next;
1969 
1970 	/* If this descriptor says it doesn't chain, we're done. */
1971 	if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT)))
1972 		return -1U;
1973 
1974 	/* Check they're not leading us off end of descriptors. */
1975 	next = vhost16_to_cpu(vq, READ_ONCE(desc->next));
1976 	return next;
1977 }
1978 
1979 static int get_indirect(struct vhost_virtqueue *vq,
1980 			struct iovec iov[], unsigned int iov_size,
1981 			unsigned int *out_num, unsigned int *in_num,
1982 			struct vhost_log *log, unsigned int *log_num,
1983 			struct vring_desc *indirect)
1984 {
1985 	struct vring_desc desc;
1986 	unsigned int i = 0, count, found = 0;
1987 	u32 len = vhost32_to_cpu(vq, indirect->len);
1988 	struct iov_iter from;
1989 	int ret, access;
1990 
1991 	/* Sanity check */
1992 	if (unlikely(len % sizeof desc)) {
1993 		vq_err(vq, "Invalid length in indirect descriptor: "
1994 		       "len 0x%llx not multiple of 0x%zx\n",
1995 		       (unsigned long long)len,
1996 		       sizeof desc);
1997 		return -EINVAL;
1998 	}
1999 
2000 	ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect,
2001 			     UIO_MAXIOV, VHOST_ACCESS_RO);
2002 	if (unlikely(ret < 0)) {
2003 		if (ret != -EAGAIN)
2004 			vq_err(vq, "Translation failure %d in indirect.\n", ret);
2005 		return ret;
2006 	}
2007 	iov_iter_init(&from, READ, vq->indirect, ret, len);
2008 
2009 	/* We will use the result as an address to read from, so most
2010 	 * architectures only need a compiler barrier here. */
2011 	read_barrier_depends();
2012 
2013 	count = len / sizeof desc;
2014 	/* Buffers are chained via a 16 bit next field, so
2015 	 * we can have at most 2^16 of these. */
2016 	if (unlikely(count > USHRT_MAX + 1)) {
2017 		vq_err(vq, "Indirect buffer length too big: %d\n",
2018 		       indirect->len);
2019 		return -E2BIG;
2020 	}
2021 
2022 	do {
2023 		unsigned iov_count = *in_num + *out_num;
2024 		if (unlikely(++found > count)) {
2025 			vq_err(vq, "Loop detected: last one at %u "
2026 			       "indirect size %u\n",
2027 			       i, count);
2028 			return -EINVAL;
2029 		}
2030 		if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) {
2031 			vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n",
2032 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2033 			return -EINVAL;
2034 		}
2035 		if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) {
2036 			vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n",
2037 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2038 			return -EINVAL;
2039 		}
2040 
2041 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2042 			access = VHOST_ACCESS_WO;
2043 		else
2044 			access = VHOST_ACCESS_RO;
2045 
2046 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2047 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
2048 				     iov_size - iov_count, access);
2049 		if (unlikely(ret < 0)) {
2050 			if (ret != -EAGAIN)
2051 				vq_err(vq, "Translation failure %d indirect idx %d\n",
2052 					ret, i);
2053 			return ret;
2054 		}
2055 		/* If this is an input descriptor, increment that count. */
2056 		if (access == VHOST_ACCESS_WO) {
2057 			*in_num += ret;
2058 			if (unlikely(log)) {
2059 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2060 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2061 				++*log_num;
2062 			}
2063 		} else {
2064 			/* If it's an output descriptor, they're all supposed
2065 			 * to come before any input descriptors. */
2066 			if (unlikely(*in_num)) {
2067 				vq_err(vq, "Indirect descriptor "
2068 				       "has out after in: idx %d\n", i);
2069 				return -EINVAL;
2070 			}
2071 			*out_num += ret;
2072 		}
2073 	} while ((i = next_desc(vq, &desc)) != -1);
2074 	return 0;
2075 }
2076 
2077 /* This looks in the virtqueue and for the first available buffer, and converts
2078  * it to an iovec for convenient access.  Since descriptors consist of some
2079  * number of output then some number of input descriptors, it's actually two
2080  * iovecs, but we pack them into one and note how many of each there were.
2081  *
2082  * This function returns the descriptor number found, or vq->num (which is
2083  * never a valid descriptor number) if none was found.  A negative code is
2084  * returned on error. */
2085 int vhost_get_vq_desc(struct vhost_virtqueue *vq,
2086 		      struct iovec iov[], unsigned int iov_size,
2087 		      unsigned int *out_num, unsigned int *in_num,
2088 		      struct vhost_log *log, unsigned int *log_num)
2089 {
2090 	struct vring_desc desc;
2091 	unsigned int i, head, found = 0;
2092 	u16 last_avail_idx;
2093 	__virtio16 avail_idx;
2094 	__virtio16 ring_head;
2095 	int ret, access;
2096 
2097 	/* Check it isn't doing very strange things with descriptor numbers. */
2098 	last_avail_idx = vq->last_avail_idx;
2099 
2100 	if (vq->avail_idx == vq->last_avail_idx) {
2101 		if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) {
2102 			vq_err(vq, "Failed to access avail idx at %p\n",
2103 				&vq->avail->idx);
2104 			return -EFAULT;
2105 		}
2106 		vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2107 
2108 		if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) {
2109 			vq_err(vq, "Guest moved used index from %u to %u",
2110 				last_avail_idx, vq->avail_idx);
2111 			return -EFAULT;
2112 		}
2113 
2114 		/* If there's nothing new since last we looked, return
2115 		 * invalid.
2116 		 */
2117 		if (vq->avail_idx == last_avail_idx)
2118 			return vq->num;
2119 
2120 		/* Only get avail ring entries after they have been
2121 		 * exposed by guest.
2122 		 */
2123 		smp_rmb();
2124 	}
2125 
2126 	/* Grab the next descriptor number they're advertising, and increment
2127 	 * the index we've seen. */
2128 	if (unlikely(vhost_get_avail(vq, ring_head,
2129 		     &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) {
2130 		vq_err(vq, "Failed to read head: idx %d address %p\n",
2131 		       last_avail_idx,
2132 		       &vq->avail->ring[last_avail_idx % vq->num]);
2133 		return -EFAULT;
2134 	}
2135 
2136 	head = vhost16_to_cpu(vq, ring_head);
2137 
2138 	/* If their number is silly, that's an error. */
2139 	if (unlikely(head >= vq->num)) {
2140 		vq_err(vq, "Guest says index %u > %u is available",
2141 		       head, vq->num);
2142 		return -EINVAL;
2143 	}
2144 
2145 	/* When we start there are none of either input nor output. */
2146 	*out_num = *in_num = 0;
2147 	if (unlikely(log))
2148 		*log_num = 0;
2149 
2150 	i = head;
2151 	do {
2152 		unsigned iov_count = *in_num + *out_num;
2153 		if (unlikely(i >= vq->num)) {
2154 			vq_err(vq, "Desc index is %u > %u, head = %u",
2155 			       i, vq->num, head);
2156 			return -EINVAL;
2157 		}
2158 		if (unlikely(++found > vq->num)) {
2159 			vq_err(vq, "Loop detected: last one at %u "
2160 			       "vq size %u head %u\n",
2161 			       i, vq->num, head);
2162 			return -EINVAL;
2163 		}
2164 		ret = vhost_copy_from_user(vq, &desc, vq->desc + i,
2165 					   sizeof desc);
2166 		if (unlikely(ret)) {
2167 			vq_err(vq, "Failed to get descriptor: idx %d addr %p\n",
2168 			       i, vq->desc + i);
2169 			return -EFAULT;
2170 		}
2171 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) {
2172 			ret = get_indirect(vq, iov, iov_size,
2173 					   out_num, in_num,
2174 					   log, log_num, &desc);
2175 			if (unlikely(ret < 0)) {
2176 				if (ret != -EAGAIN)
2177 					vq_err(vq, "Failure detected "
2178 						"in indirect descriptor at idx %d\n", i);
2179 				return ret;
2180 			}
2181 			continue;
2182 		}
2183 
2184 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2185 			access = VHOST_ACCESS_WO;
2186 		else
2187 			access = VHOST_ACCESS_RO;
2188 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2189 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
2190 				     iov_size - iov_count, access);
2191 		if (unlikely(ret < 0)) {
2192 			if (ret != -EAGAIN)
2193 				vq_err(vq, "Translation failure %d descriptor idx %d\n",
2194 					ret, i);
2195 			return ret;
2196 		}
2197 		if (access == VHOST_ACCESS_WO) {
2198 			/* If this is an input descriptor,
2199 			 * increment that count. */
2200 			*in_num += ret;
2201 			if (unlikely(log)) {
2202 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2203 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2204 				++*log_num;
2205 			}
2206 		} else {
2207 			/* If it's an output descriptor, they're all supposed
2208 			 * to come before any input descriptors. */
2209 			if (unlikely(*in_num)) {
2210 				vq_err(vq, "Descriptor has out after in: "
2211 				       "idx %d\n", i);
2212 				return -EINVAL;
2213 			}
2214 			*out_num += ret;
2215 		}
2216 	} while ((i = next_desc(vq, &desc)) != -1);
2217 
2218 	/* On success, increment avail index. */
2219 	vq->last_avail_idx++;
2220 
2221 	/* Assume notifications from guest are disabled at this point,
2222 	 * if they aren't we would need to update avail_event index. */
2223 	BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY));
2224 	return head;
2225 }
2226 EXPORT_SYMBOL_GPL(vhost_get_vq_desc);
2227 
2228 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */
2229 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n)
2230 {
2231 	vq->last_avail_idx -= n;
2232 }
2233 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc);
2234 
2235 /* After we've used one of their buffers, we tell them about it.  We'll then
2236  * want to notify the guest, using eventfd. */
2237 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len)
2238 {
2239 	struct vring_used_elem heads = {
2240 		cpu_to_vhost32(vq, head),
2241 		cpu_to_vhost32(vq, len)
2242 	};
2243 
2244 	return vhost_add_used_n(vq, &heads, 1);
2245 }
2246 EXPORT_SYMBOL_GPL(vhost_add_used);
2247 
2248 static int __vhost_add_used_n(struct vhost_virtqueue *vq,
2249 			    struct vring_used_elem *heads,
2250 			    unsigned count)
2251 {
2252 	struct vring_used_elem __user *used;
2253 	u16 old, new;
2254 	int start;
2255 
2256 	start = vq->last_used_idx & (vq->num - 1);
2257 	used = vq->used->ring + start;
2258 	if (count == 1) {
2259 		if (vhost_put_user(vq, heads[0].id, &used->id)) {
2260 			vq_err(vq, "Failed to write used id");
2261 			return -EFAULT;
2262 		}
2263 		if (vhost_put_user(vq, heads[0].len, &used->len)) {
2264 			vq_err(vq, "Failed to write used len");
2265 			return -EFAULT;
2266 		}
2267 	} else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) {
2268 		vq_err(vq, "Failed to write used");
2269 		return -EFAULT;
2270 	}
2271 	if (unlikely(vq->log_used)) {
2272 		/* Make sure data is seen before log. */
2273 		smp_wmb();
2274 		/* Log used ring entry write. */
2275 		log_used(vq, ((void __user *)used - (void __user *)vq->used),
2276 			 count * sizeof *used);
2277 	}
2278 	old = vq->last_used_idx;
2279 	new = (vq->last_used_idx += count);
2280 	/* If the driver never bothers to signal in a very long while,
2281 	 * used index might wrap around. If that happens, invalidate
2282 	 * signalled_used index we stored. TODO: make sure driver
2283 	 * signals at least once in 2^16 and remove this. */
2284 	if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
2285 		vq->signalled_used_valid = false;
2286 	return 0;
2287 }
2288 
2289 /* After we've used one of their buffers, we tell them about it.  We'll then
2290  * want to notify the guest, using eventfd. */
2291 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads,
2292 		     unsigned count)
2293 {
2294 	int start, n, r;
2295 
2296 	start = vq->last_used_idx & (vq->num - 1);
2297 	n = vq->num - start;
2298 	if (n < count) {
2299 		r = __vhost_add_used_n(vq, heads, n);
2300 		if (r < 0)
2301 			return r;
2302 		heads += n;
2303 		count -= n;
2304 	}
2305 	r = __vhost_add_used_n(vq, heads, count);
2306 
2307 	/* Make sure buffer is written before we update index. */
2308 	smp_wmb();
2309 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx),
2310 			   &vq->used->idx)) {
2311 		vq_err(vq, "Failed to increment used idx");
2312 		return -EFAULT;
2313 	}
2314 	if (unlikely(vq->log_used)) {
2315 		/* Make sure used idx is seen before log. */
2316 		smp_wmb();
2317 		/* Log used index update. */
2318 		log_used(vq, offsetof(struct vring_used, idx),
2319 			 sizeof vq->used->idx);
2320 		if (vq->log_ctx)
2321 			eventfd_signal(vq->log_ctx, 1);
2322 	}
2323 	return r;
2324 }
2325 EXPORT_SYMBOL_GPL(vhost_add_used_n);
2326 
2327 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2328 {
2329 	__u16 old, new;
2330 	__virtio16 event;
2331 	bool v;
2332 	/* Flush out used index updates. This is paired
2333 	 * with the barrier that the Guest executes when enabling
2334 	 * interrupts. */
2335 	smp_mb();
2336 
2337 	if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) &&
2338 	    unlikely(vq->avail_idx == vq->last_avail_idx))
2339 		return true;
2340 
2341 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2342 		__virtio16 flags;
2343 		if (vhost_get_avail(vq, flags, &vq->avail->flags)) {
2344 			vq_err(vq, "Failed to get flags");
2345 			return true;
2346 		}
2347 		return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT));
2348 	}
2349 	old = vq->signalled_used;
2350 	v = vq->signalled_used_valid;
2351 	new = vq->signalled_used = vq->last_used_idx;
2352 	vq->signalled_used_valid = true;
2353 
2354 	if (unlikely(!v))
2355 		return true;
2356 
2357 	if (vhost_get_avail(vq, event, vhost_used_event(vq))) {
2358 		vq_err(vq, "Failed to get used event idx");
2359 		return true;
2360 	}
2361 	return vring_need_event(vhost16_to_cpu(vq, event), new, old);
2362 }
2363 
2364 /* This actually signals the guest, using eventfd. */
2365 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2366 {
2367 	/* Signal the Guest tell them we used something up. */
2368 	if (vq->call_ctx && vhost_notify(dev, vq))
2369 		eventfd_signal(vq->call_ctx, 1);
2370 }
2371 EXPORT_SYMBOL_GPL(vhost_signal);
2372 
2373 /* And here's the combo meal deal.  Supersize me! */
2374 void vhost_add_used_and_signal(struct vhost_dev *dev,
2375 			       struct vhost_virtqueue *vq,
2376 			       unsigned int head, int len)
2377 {
2378 	vhost_add_used(vq, head, len);
2379 	vhost_signal(dev, vq);
2380 }
2381 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal);
2382 
2383 /* multi-buffer version of vhost_add_used_and_signal */
2384 void vhost_add_used_and_signal_n(struct vhost_dev *dev,
2385 				 struct vhost_virtqueue *vq,
2386 				 struct vring_used_elem *heads, unsigned count)
2387 {
2388 	vhost_add_used_n(vq, heads, count);
2389 	vhost_signal(dev, vq);
2390 }
2391 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n);
2392 
2393 /* return true if we're sure that avaiable ring is empty */
2394 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2395 {
2396 	__virtio16 avail_idx;
2397 	int r;
2398 
2399 	if (vq->avail_idx != vq->last_avail_idx)
2400 		return false;
2401 
2402 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2403 	if (unlikely(r))
2404 		return false;
2405 	vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2406 
2407 	return vq->avail_idx == vq->last_avail_idx;
2408 }
2409 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty);
2410 
2411 /* OK, now we need to know about added descriptors. */
2412 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2413 {
2414 	__virtio16 avail_idx;
2415 	int r;
2416 
2417 	if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY))
2418 		return false;
2419 	vq->used_flags &= ~VRING_USED_F_NO_NOTIFY;
2420 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2421 		r = vhost_update_used_flags(vq);
2422 		if (r) {
2423 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2424 			       &vq->used->flags, r);
2425 			return false;
2426 		}
2427 	} else {
2428 		r = vhost_update_avail_event(vq, vq->avail_idx);
2429 		if (r) {
2430 			vq_err(vq, "Failed to update avail event index at %p: %d\n",
2431 			       vhost_avail_event(vq), r);
2432 			return false;
2433 		}
2434 	}
2435 	/* They could have slipped one in as we were doing that: make
2436 	 * sure it's written, then check again. */
2437 	smp_mb();
2438 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2439 	if (r) {
2440 		vq_err(vq, "Failed to check avail idx at %p: %d\n",
2441 		       &vq->avail->idx, r);
2442 		return false;
2443 	}
2444 
2445 	return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx;
2446 }
2447 EXPORT_SYMBOL_GPL(vhost_enable_notify);
2448 
2449 /* We don't need to be notified again. */
2450 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2451 {
2452 	int r;
2453 
2454 	if (vq->used_flags & VRING_USED_F_NO_NOTIFY)
2455 		return;
2456 	vq->used_flags |= VRING_USED_F_NO_NOTIFY;
2457 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2458 		r = vhost_update_used_flags(vq);
2459 		if (r)
2460 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2461 			       &vq->used->flags, r);
2462 	}
2463 }
2464 EXPORT_SYMBOL_GPL(vhost_disable_notify);
2465 
2466 /* Create a new message. */
2467 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type)
2468 {
2469 	struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL);
2470 	if (!node)
2471 		return NULL;
2472 
2473 	/* Make sure all padding within the structure is initialized. */
2474 	memset(&node->msg, 0, sizeof node->msg);
2475 	node->vq = vq;
2476 	node->msg.type = type;
2477 	return node;
2478 }
2479 EXPORT_SYMBOL_GPL(vhost_new_msg);
2480 
2481 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head,
2482 		       struct vhost_msg_node *node)
2483 {
2484 	spin_lock(&dev->iotlb_lock);
2485 	list_add_tail(&node->node, head);
2486 	spin_unlock(&dev->iotlb_lock);
2487 
2488 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
2489 }
2490 EXPORT_SYMBOL_GPL(vhost_enqueue_msg);
2491 
2492 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev,
2493 					 struct list_head *head)
2494 {
2495 	struct vhost_msg_node *node = NULL;
2496 
2497 	spin_lock(&dev->iotlb_lock);
2498 	if (!list_empty(head)) {
2499 		node = list_first_entry(head, struct vhost_msg_node,
2500 					node);
2501 		list_del(&node->node);
2502 	}
2503 	spin_unlock(&dev->iotlb_lock);
2504 
2505 	return node;
2506 }
2507 EXPORT_SYMBOL_GPL(vhost_dequeue_msg);
2508 
2509 
2510 static int __init vhost_init(void)
2511 {
2512 	return 0;
2513 }
2514 
2515 static void __exit vhost_exit(void)
2516 {
2517 }
2518 
2519 module_init(vhost_init);
2520 module_exit(vhost_exit);
2521 
2522 MODULE_VERSION("0.0.1");
2523 MODULE_LICENSE("GPL v2");
2524 MODULE_AUTHOR("Michael S. Tsirkin");
2525 MODULE_DESCRIPTION("Host kernel accelerator for virtio");
2526