1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (C) 2009 Red Hat, Inc. 3 * Copyright (C) 2006 Rusty Russell IBM Corporation 4 * 5 * Author: Michael S. Tsirkin <mst@redhat.com> 6 * 7 * Inspiration, some code, and most witty comments come from 8 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 9 * 10 * Generic code for virtio server in host kernel. 11 */ 12 13 #include <linux/eventfd.h> 14 #include <linux/vhost.h> 15 #include <linux/uio.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_context.h> 18 #include <linux/miscdevice.h> 19 #include <linux/mutex.h> 20 #include <linux/poll.h> 21 #include <linux/file.h> 22 #include <linux/highmem.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/kthread.h> 26 #include <linux/cgroup.h> 27 #include <linux/module.h> 28 #include <linux/sort.h> 29 #include <linux/sched/mm.h> 30 #include <linux/sched/signal.h> 31 #include <linux/interval_tree_generic.h> 32 #include <linux/nospec.h> 33 #include <linux/kcov.h> 34 35 #include "vhost.h" 36 37 static ushort max_mem_regions = 64; 38 module_param(max_mem_regions, ushort, 0444); 39 MODULE_PARM_DESC(max_mem_regions, 40 "Maximum number of memory regions in memory map. (default: 64)"); 41 static int max_iotlb_entries = 2048; 42 module_param(max_iotlb_entries, int, 0444); 43 MODULE_PARM_DESC(max_iotlb_entries, 44 "Maximum number of iotlb entries. (default: 2048)"); 45 46 enum { 47 VHOST_MEMORY_F_LOG = 0x1, 48 }; 49 50 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 51 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 52 53 INTERVAL_TREE_DEFINE(struct vhost_umem_node, 54 rb, __u64, __subtree_last, 55 START, LAST, static inline, vhost_umem_interval_tree); 56 57 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 58 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 59 { 60 vq->user_be = !virtio_legacy_is_little_endian(); 61 } 62 63 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 64 { 65 vq->user_be = true; 66 } 67 68 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 69 { 70 vq->user_be = false; 71 } 72 73 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 74 { 75 struct vhost_vring_state s; 76 77 if (vq->private_data) 78 return -EBUSY; 79 80 if (copy_from_user(&s, argp, sizeof(s))) 81 return -EFAULT; 82 83 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 84 s.num != VHOST_VRING_BIG_ENDIAN) 85 return -EINVAL; 86 87 if (s.num == VHOST_VRING_BIG_ENDIAN) 88 vhost_enable_cross_endian_big(vq); 89 else 90 vhost_enable_cross_endian_little(vq); 91 92 return 0; 93 } 94 95 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 96 int __user *argp) 97 { 98 struct vhost_vring_state s = { 99 .index = idx, 100 .num = vq->user_be 101 }; 102 103 if (copy_to_user(argp, &s, sizeof(s))) 104 return -EFAULT; 105 106 return 0; 107 } 108 109 static void vhost_init_is_le(struct vhost_virtqueue *vq) 110 { 111 /* Note for legacy virtio: user_be is initialized at reset time 112 * according to the host endianness. If userspace does not set an 113 * explicit endianness, the default behavior is native endian, as 114 * expected by legacy virtio. 115 */ 116 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 117 } 118 #else 119 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 120 { 121 } 122 123 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 124 { 125 return -ENOIOCTLCMD; 126 } 127 128 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 129 int __user *argp) 130 { 131 return -ENOIOCTLCMD; 132 } 133 134 static void vhost_init_is_le(struct vhost_virtqueue *vq) 135 { 136 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 137 || virtio_legacy_is_little_endian(); 138 } 139 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 140 141 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 142 { 143 vhost_init_is_le(vq); 144 } 145 146 struct vhost_flush_struct { 147 struct vhost_work work; 148 struct completion wait_event; 149 }; 150 151 static void vhost_flush_work(struct vhost_work *work) 152 { 153 struct vhost_flush_struct *s; 154 155 s = container_of(work, struct vhost_flush_struct, work); 156 complete(&s->wait_event); 157 } 158 159 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 160 poll_table *pt) 161 { 162 struct vhost_poll *poll; 163 164 poll = container_of(pt, struct vhost_poll, table); 165 poll->wqh = wqh; 166 add_wait_queue(wqh, &poll->wait); 167 } 168 169 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 170 void *key) 171 { 172 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 173 174 if (!(key_to_poll(key) & poll->mask)) 175 return 0; 176 177 vhost_poll_queue(poll); 178 return 0; 179 } 180 181 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 182 { 183 clear_bit(VHOST_WORK_QUEUED, &work->flags); 184 work->fn = fn; 185 } 186 EXPORT_SYMBOL_GPL(vhost_work_init); 187 188 /* Init poll structure */ 189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 190 __poll_t mask, struct vhost_dev *dev) 191 { 192 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 193 init_poll_funcptr(&poll->table, vhost_poll_func); 194 poll->mask = mask; 195 poll->dev = dev; 196 poll->wqh = NULL; 197 198 vhost_work_init(&poll->work, fn); 199 } 200 EXPORT_SYMBOL_GPL(vhost_poll_init); 201 202 /* Start polling a file. We add ourselves to file's wait queue. The caller must 203 * keep a reference to a file until after vhost_poll_stop is called. */ 204 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 205 { 206 __poll_t mask; 207 208 if (poll->wqh) 209 return 0; 210 211 mask = vfs_poll(file, &poll->table); 212 if (mask) 213 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 214 if (mask & EPOLLERR) { 215 vhost_poll_stop(poll); 216 return -EINVAL; 217 } 218 219 return 0; 220 } 221 EXPORT_SYMBOL_GPL(vhost_poll_start); 222 223 /* Stop polling a file. After this function returns, it becomes safe to drop the 224 * file reference. You must also flush afterwards. */ 225 void vhost_poll_stop(struct vhost_poll *poll) 226 { 227 if (poll->wqh) { 228 remove_wait_queue(poll->wqh, &poll->wait); 229 poll->wqh = NULL; 230 } 231 } 232 EXPORT_SYMBOL_GPL(vhost_poll_stop); 233 234 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work) 235 { 236 struct vhost_flush_struct flush; 237 238 if (dev->worker) { 239 init_completion(&flush.wait_event); 240 vhost_work_init(&flush.work, vhost_flush_work); 241 242 vhost_work_queue(dev, &flush.work); 243 wait_for_completion(&flush.wait_event); 244 } 245 } 246 EXPORT_SYMBOL_GPL(vhost_work_flush); 247 248 /* Flush any work that has been scheduled. When calling this, don't hold any 249 * locks that are also used by the callback. */ 250 void vhost_poll_flush(struct vhost_poll *poll) 251 { 252 vhost_work_flush(poll->dev, &poll->work); 253 } 254 EXPORT_SYMBOL_GPL(vhost_poll_flush); 255 256 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work) 257 { 258 if (!dev->worker) 259 return; 260 261 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 262 /* We can only add the work to the list after we're 263 * sure it was not in the list. 264 * test_and_set_bit() implies a memory barrier. 265 */ 266 llist_add(&work->node, &dev->work_list); 267 wake_up_process(dev->worker); 268 } 269 } 270 EXPORT_SYMBOL_GPL(vhost_work_queue); 271 272 /* A lockless hint for busy polling code to exit the loop */ 273 bool vhost_has_work(struct vhost_dev *dev) 274 { 275 return !llist_empty(&dev->work_list); 276 } 277 EXPORT_SYMBOL_GPL(vhost_has_work); 278 279 void vhost_poll_queue(struct vhost_poll *poll) 280 { 281 vhost_work_queue(poll->dev, &poll->work); 282 } 283 EXPORT_SYMBOL_GPL(vhost_poll_queue); 284 285 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 286 { 287 int j; 288 289 for (j = 0; j < VHOST_NUM_ADDRS; j++) 290 vq->meta_iotlb[j] = NULL; 291 } 292 293 static void vhost_vq_meta_reset(struct vhost_dev *d) 294 { 295 int i; 296 297 for (i = 0; i < d->nvqs; ++i) 298 __vhost_vq_meta_reset(d->vqs[i]); 299 } 300 301 static void vhost_vq_reset(struct vhost_dev *dev, 302 struct vhost_virtqueue *vq) 303 { 304 vq->num = 1; 305 vq->desc = NULL; 306 vq->avail = NULL; 307 vq->used = NULL; 308 vq->last_avail_idx = 0; 309 vq->avail_idx = 0; 310 vq->last_used_idx = 0; 311 vq->signalled_used = 0; 312 vq->signalled_used_valid = false; 313 vq->used_flags = 0; 314 vq->log_used = false; 315 vq->log_addr = -1ull; 316 vq->private_data = NULL; 317 vq->acked_features = 0; 318 vq->acked_backend_features = 0; 319 vq->log_base = NULL; 320 vq->error_ctx = NULL; 321 vq->kick = NULL; 322 vq->call_ctx = NULL; 323 vq->log_ctx = NULL; 324 vhost_reset_is_le(vq); 325 vhost_disable_cross_endian(vq); 326 vq->busyloop_timeout = 0; 327 vq->umem = NULL; 328 vq->iotlb = NULL; 329 __vhost_vq_meta_reset(vq); 330 } 331 332 static int vhost_worker(void *data) 333 { 334 struct vhost_dev *dev = data; 335 struct vhost_work *work, *work_next; 336 struct llist_node *node; 337 mm_segment_t oldfs = get_fs(); 338 339 set_fs(USER_DS); 340 use_mm(dev->mm); 341 342 for (;;) { 343 /* mb paired w/ kthread_stop */ 344 set_current_state(TASK_INTERRUPTIBLE); 345 346 if (kthread_should_stop()) { 347 __set_current_state(TASK_RUNNING); 348 break; 349 } 350 351 node = llist_del_all(&dev->work_list); 352 if (!node) 353 schedule(); 354 355 node = llist_reverse_order(node); 356 /* make sure flag is seen after deletion */ 357 smp_wmb(); 358 llist_for_each_entry_safe(work, work_next, node, node) { 359 clear_bit(VHOST_WORK_QUEUED, &work->flags); 360 __set_current_state(TASK_RUNNING); 361 kcov_remote_start_common(dev->kcov_handle); 362 work->fn(work); 363 kcov_remote_stop(); 364 if (need_resched()) 365 schedule(); 366 } 367 } 368 unuse_mm(dev->mm); 369 set_fs(oldfs); 370 return 0; 371 } 372 373 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 374 { 375 kfree(vq->indirect); 376 vq->indirect = NULL; 377 kfree(vq->log); 378 vq->log = NULL; 379 kfree(vq->heads); 380 vq->heads = NULL; 381 } 382 383 /* Helper to allocate iovec buffers for all vqs. */ 384 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 385 { 386 struct vhost_virtqueue *vq; 387 int i; 388 389 for (i = 0; i < dev->nvqs; ++i) { 390 vq = dev->vqs[i]; 391 vq->indirect = kmalloc_array(UIO_MAXIOV, 392 sizeof(*vq->indirect), 393 GFP_KERNEL); 394 vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log), 395 GFP_KERNEL); 396 vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads), 397 GFP_KERNEL); 398 if (!vq->indirect || !vq->log || !vq->heads) 399 goto err_nomem; 400 } 401 return 0; 402 403 err_nomem: 404 for (; i >= 0; --i) 405 vhost_vq_free_iovecs(dev->vqs[i]); 406 return -ENOMEM; 407 } 408 409 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 410 { 411 int i; 412 413 for (i = 0; i < dev->nvqs; ++i) 414 vhost_vq_free_iovecs(dev->vqs[i]); 415 } 416 417 bool vhost_exceeds_weight(struct vhost_virtqueue *vq, 418 int pkts, int total_len) 419 { 420 struct vhost_dev *dev = vq->dev; 421 422 if ((dev->byte_weight && total_len >= dev->byte_weight) || 423 pkts >= dev->weight) { 424 vhost_poll_queue(&vq->poll); 425 return true; 426 } 427 428 return false; 429 } 430 EXPORT_SYMBOL_GPL(vhost_exceeds_weight); 431 432 static size_t vhost_get_avail_size(struct vhost_virtqueue *vq, 433 unsigned int num) 434 { 435 size_t event __maybe_unused = 436 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 437 438 return sizeof(*vq->avail) + 439 sizeof(*vq->avail->ring) * num + event; 440 } 441 442 static size_t vhost_get_used_size(struct vhost_virtqueue *vq, 443 unsigned int num) 444 { 445 size_t event __maybe_unused = 446 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 447 448 return sizeof(*vq->used) + 449 sizeof(*vq->used->ring) * num + event; 450 } 451 452 static size_t vhost_get_desc_size(struct vhost_virtqueue *vq, 453 unsigned int num) 454 { 455 return sizeof(*vq->desc) * num; 456 } 457 458 void vhost_dev_init(struct vhost_dev *dev, 459 struct vhost_virtqueue **vqs, int nvqs, 460 int iov_limit, int weight, int byte_weight) 461 { 462 struct vhost_virtqueue *vq; 463 int i; 464 465 dev->vqs = vqs; 466 dev->nvqs = nvqs; 467 mutex_init(&dev->mutex); 468 dev->log_ctx = NULL; 469 dev->umem = NULL; 470 dev->iotlb = NULL; 471 dev->mm = NULL; 472 dev->worker = NULL; 473 dev->iov_limit = iov_limit; 474 dev->weight = weight; 475 dev->byte_weight = byte_weight; 476 init_llist_head(&dev->work_list); 477 init_waitqueue_head(&dev->wait); 478 INIT_LIST_HEAD(&dev->read_list); 479 INIT_LIST_HEAD(&dev->pending_list); 480 spin_lock_init(&dev->iotlb_lock); 481 482 483 for (i = 0; i < dev->nvqs; ++i) { 484 vq = dev->vqs[i]; 485 vq->log = NULL; 486 vq->indirect = NULL; 487 vq->heads = NULL; 488 vq->dev = dev; 489 mutex_init(&vq->mutex); 490 vhost_vq_reset(dev, vq); 491 if (vq->handle_kick) 492 vhost_poll_init(&vq->poll, vq->handle_kick, 493 EPOLLIN, dev); 494 } 495 } 496 EXPORT_SYMBOL_GPL(vhost_dev_init); 497 498 /* Caller should have device mutex */ 499 long vhost_dev_check_owner(struct vhost_dev *dev) 500 { 501 /* Are you the owner? If not, I don't think you mean to do that */ 502 return dev->mm == current->mm ? 0 : -EPERM; 503 } 504 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 505 506 struct vhost_attach_cgroups_struct { 507 struct vhost_work work; 508 struct task_struct *owner; 509 int ret; 510 }; 511 512 static void vhost_attach_cgroups_work(struct vhost_work *work) 513 { 514 struct vhost_attach_cgroups_struct *s; 515 516 s = container_of(work, struct vhost_attach_cgroups_struct, work); 517 s->ret = cgroup_attach_task_all(s->owner, current); 518 } 519 520 static int vhost_attach_cgroups(struct vhost_dev *dev) 521 { 522 struct vhost_attach_cgroups_struct attach; 523 524 attach.owner = current; 525 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 526 vhost_work_queue(dev, &attach.work); 527 vhost_work_flush(dev, &attach.work); 528 return attach.ret; 529 } 530 531 /* Caller should have device mutex */ 532 bool vhost_dev_has_owner(struct vhost_dev *dev) 533 { 534 return dev->mm; 535 } 536 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 537 538 /* Caller should have device mutex */ 539 long vhost_dev_set_owner(struct vhost_dev *dev) 540 { 541 struct task_struct *worker; 542 int err; 543 544 /* Is there an owner already? */ 545 if (vhost_dev_has_owner(dev)) { 546 err = -EBUSY; 547 goto err_mm; 548 } 549 550 /* No owner, become one */ 551 dev->mm = get_task_mm(current); 552 dev->kcov_handle = kcov_common_handle(); 553 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid); 554 if (IS_ERR(worker)) { 555 err = PTR_ERR(worker); 556 goto err_worker; 557 } 558 559 dev->worker = worker; 560 wake_up_process(worker); /* avoid contributing to loadavg */ 561 562 err = vhost_attach_cgroups(dev); 563 if (err) 564 goto err_cgroup; 565 566 err = vhost_dev_alloc_iovecs(dev); 567 if (err) 568 goto err_cgroup; 569 570 return 0; 571 err_cgroup: 572 kthread_stop(worker); 573 dev->worker = NULL; 574 err_worker: 575 if (dev->mm) 576 mmput(dev->mm); 577 dev->mm = NULL; 578 dev->kcov_handle = 0; 579 err_mm: 580 return err; 581 } 582 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 583 584 struct vhost_umem *vhost_dev_reset_owner_prepare(void) 585 { 586 return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL); 587 } 588 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 589 590 /* Caller should have device mutex */ 591 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem) 592 { 593 int i; 594 595 vhost_dev_cleanup(dev); 596 597 /* Restore memory to default empty mapping. */ 598 INIT_LIST_HEAD(&umem->umem_list); 599 dev->umem = umem; 600 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 601 * VQs aren't running. 602 */ 603 for (i = 0; i < dev->nvqs; ++i) 604 dev->vqs[i]->umem = umem; 605 } 606 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 607 608 void vhost_dev_stop(struct vhost_dev *dev) 609 { 610 int i; 611 612 for (i = 0; i < dev->nvqs; ++i) { 613 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) { 614 vhost_poll_stop(&dev->vqs[i]->poll); 615 vhost_poll_flush(&dev->vqs[i]->poll); 616 } 617 } 618 } 619 EXPORT_SYMBOL_GPL(vhost_dev_stop); 620 621 static void vhost_umem_free(struct vhost_umem *umem, 622 struct vhost_umem_node *node) 623 { 624 vhost_umem_interval_tree_remove(node, &umem->umem_tree); 625 list_del(&node->link); 626 kfree(node); 627 umem->numem--; 628 } 629 630 static void vhost_umem_clean(struct vhost_umem *umem) 631 { 632 struct vhost_umem_node *node, *tmp; 633 634 if (!umem) 635 return; 636 637 list_for_each_entry_safe(node, tmp, &umem->umem_list, link) 638 vhost_umem_free(umem, node); 639 640 kvfree(umem); 641 } 642 643 static void vhost_clear_msg(struct vhost_dev *dev) 644 { 645 struct vhost_msg_node *node, *n; 646 647 spin_lock(&dev->iotlb_lock); 648 649 list_for_each_entry_safe(node, n, &dev->read_list, node) { 650 list_del(&node->node); 651 kfree(node); 652 } 653 654 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 655 list_del(&node->node); 656 kfree(node); 657 } 658 659 spin_unlock(&dev->iotlb_lock); 660 } 661 662 void vhost_dev_cleanup(struct vhost_dev *dev) 663 { 664 int i; 665 666 for (i = 0; i < dev->nvqs; ++i) { 667 if (dev->vqs[i]->error_ctx) 668 eventfd_ctx_put(dev->vqs[i]->error_ctx); 669 if (dev->vqs[i]->kick) 670 fput(dev->vqs[i]->kick); 671 if (dev->vqs[i]->call_ctx) 672 eventfd_ctx_put(dev->vqs[i]->call_ctx); 673 vhost_vq_reset(dev, dev->vqs[i]); 674 } 675 vhost_dev_free_iovecs(dev); 676 if (dev->log_ctx) 677 eventfd_ctx_put(dev->log_ctx); 678 dev->log_ctx = NULL; 679 /* No one will access memory at this point */ 680 vhost_umem_clean(dev->umem); 681 dev->umem = NULL; 682 vhost_umem_clean(dev->iotlb); 683 dev->iotlb = NULL; 684 vhost_clear_msg(dev); 685 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 686 WARN_ON(!llist_empty(&dev->work_list)); 687 if (dev->worker) { 688 kthread_stop(dev->worker); 689 dev->worker = NULL; 690 dev->kcov_handle = 0; 691 } 692 if (dev->mm) 693 mmput(dev->mm); 694 dev->mm = NULL; 695 } 696 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 697 698 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 699 { 700 u64 a = addr / VHOST_PAGE_SIZE / 8; 701 702 /* Make sure 64 bit math will not overflow. */ 703 if (a > ULONG_MAX - (unsigned long)log_base || 704 a + (unsigned long)log_base > ULONG_MAX) 705 return false; 706 707 return access_ok(log_base + a, 708 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 709 } 710 711 static bool vhost_overflow(u64 uaddr, u64 size) 712 { 713 /* Make sure 64 bit math will not overflow. */ 714 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size; 715 } 716 717 /* Caller should have vq mutex and device mutex. */ 718 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem, 719 int log_all) 720 { 721 struct vhost_umem_node *node; 722 723 if (!umem) 724 return false; 725 726 list_for_each_entry(node, &umem->umem_list, link) { 727 unsigned long a = node->userspace_addr; 728 729 if (vhost_overflow(node->userspace_addr, node->size)) 730 return false; 731 732 733 if (!access_ok((void __user *)a, 734 node->size)) 735 return false; 736 else if (log_all && !log_access_ok(log_base, 737 node->start, 738 node->size)) 739 return false; 740 } 741 return true; 742 } 743 744 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 745 u64 addr, unsigned int size, 746 int type) 747 { 748 const struct vhost_umem_node *node = vq->meta_iotlb[type]; 749 750 if (!node) 751 return NULL; 752 753 return (void *)(uintptr_t)(node->userspace_addr + addr - node->start); 754 } 755 756 /* Can we switch to this memory table? */ 757 /* Caller should have device mutex but not vq mutex */ 758 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem, 759 int log_all) 760 { 761 int i; 762 763 for (i = 0; i < d->nvqs; ++i) { 764 bool ok; 765 bool log; 766 767 mutex_lock(&d->vqs[i]->mutex); 768 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 769 /* If ring is inactive, will check when it's enabled. */ 770 if (d->vqs[i]->private_data) 771 ok = vq_memory_access_ok(d->vqs[i]->log_base, 772 umem, log); 773 else 774 ok = true; 775 mutex_unlock(&d->vqs[i]->mutex); 776 if (!ok) 777 return false; 778 } 779 return true; 780 } 781 782 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 783 struct iovec iov[], int iov_size, int access); 784 785 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 786 const void *from, unsigned size) 787 { 788 int ret; 789 790 if (!vq->iotlb) 791 return __copy_to_user(to, from, size); 792 else { 793 /* This function should be called after iotlb 794 * prefetch, which means we're sure that all vq 795 * could be access through iotlb. So -EAGAIN should 796 * not happen in this case. 797 */ 798 struct iov_iter t; 799 void __user *uaddr = vhost_vq_meta_fetch(vq, 800 (u64)(uintptr_t)to, size, 801 VHOST_ADDR_USED); 802 803 if (uaddr) 804 return __copy_to_user(uaddr, from, size); 805 806 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 807 ARRAY_SIZE(vq->iotlb_iov), 808 VHOST_ACCESS_WO); 809 if (ret < 0) 810 goto out; 811 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size); 812 ret = copy_to_iter(from, size, &t); 813 if (ret == size) 814 ret = 0; 815 } 816 out: 817 return ret; 818 } 819 820 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 821 void __user *from, unsigned size) 822 { 823 int ret; 824 825 if (!vq->iotlb) 826 return __copy_from_user(to, from, size); 827 else { 828 /* This function should be called after iotlb 829 * prefetch, which means we're sure that vq 830 * could be access through iotlb. So -EAGAIN should 831 * not happen in this case. 832 */ 833 void __user *uaddr = vhost_vq_meta_fetch(vq, 834 (u64)(uintptr_t)from, size, 835 VHOST_ADDR_DESC); 836 struct iov_iter f; 837 838 if (uaddr) 839 return __copy_from_user(to, uaddr, size); 840 841 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 842 ARRAY_SIZE(vq->iotlb_iov), 843 VHOST_ACCESS_RO); 844 if (ret < 0) { 845 vq_err(vq, "IOTLB translation failure: uaddr " 846 "%p size 0x%llx\n", from, 847 (unsigned long long) size); 848 goto out; 849 } 850 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size); 851 ret = copy_from_iter(to, size, &f); 852 if (ret == size) 853 ret = 0; 854 } 855 856 out: 857 return ret; 858 } 859 860 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 861 void __user *addr, unsigned int size, 862 int type) 863 { 864 int ret; 865 866 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 867 ARRAY_SIZE(vq->iotlb_iov), 868 VHOST_ACCESS_RO); 869 if (ret < 0) { 870 vq_err(vq, "IOTLB translation failure: uaddr " 871 "%p size 0x%llx\n", addr, 872 (unsigned long long) size); 873 return NULL; 874 } 875 876 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 877 vq_err(vq, "Non atomic userspace memory access: uaddr " 878 "%p size 0x%llx\n", addr, 879 (unsigned long long) size); 880 return NULL; 881 } 882 883 return vq->iotlb_iov[0].iov_base; 884 } 885 886 /* This function should be called after iotlb 887 * prefetch, which means we're sure that vq 888 * could be access through iotlb. So -EAGAIN should 889 * not happen in this case. 890 */ 891 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 892 void *addr, unsigned int size, 893 int type) 894 { 895 void __user *uaddr = vhost_vq_meta_fetch(vq, 896 (u64)(uintptr_t)addr, size, type); 897 if (uaddr) 898 return uaddr; 899 900 return __vhost_get_user_slow(vq, addr, size, type); 901 } 902 903 #define vhost_put_user(vq, x, ptr) \ 904 ({ \ 905 int ret = -EFAULT; \ 906 if (!vq->iotlb) { \ 907 ret = __put_user(x, ptr); \ 908 } else { \ 909 __typeof__(ptr) to = \ 910 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 911 sizeof(*ptr), VHOST_ADDR_USED); \ 912 if (to != NULL) \ 913 ret = __put_user(x, to); \ 914 else \ 915 ret = -EFAULT; \ 916 } \ 917 ret; \ 918 }) 919 920 static inline int vhost_put_avail_event(struct vhost_virtqueue *vq) 921 { 922 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 923 vhost_avail_event(vq)); 924 } 925 926 static inline int vhost_put_used(struct vhost_virtqueue *vq, 927 struct vring_used_elem *head, int idx, 928 int count) 929 { 930 return vhost_copy_to_user(vq, vq->used->ring + idx, head, 931 count * sizeof(*head)); 932 } 933 934 static inline int vhost_put_used_flags(struct vhost_virtqueue *vq) 935 936 { 937 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 938 &vq->used->flags); 939 } 940 941 static inline int vhost_put_used_idx(struct vhost_virtqueue *vq) 942 943 { 944 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 945 &vq->used->idx); 946 } 947 948 #define vhost_get_user(vq, x, ptr, type) \ 949 ({ \ 950 int ret; \ 951 if (!vq->iotlb) { \ 952 ret = __get_user(x, ptr); \ 953 } else { \ 954 __typeof__(ptr) from = \ 955 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 956 sizeof(*ptr), \ 957 type); \ 958 if (from != NULL) \ 959 ret = __get_user(x, from); \ 960 else \ 961 ret = -EFAULT; \ 962 } \ 963 ret; \ 964 }) 965 966 #define vhost_get_avail(vq, x, ptr) \ 967 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 968 969 #define vhost_get_used(vq, x, ptr) \ 970 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 971 972 static void vhost_dev_lock_vqs(struct vhost_dev *d) 973 { 974 int i = 0; 975 for (i = 0; i < d->nvqs; ++i) 976 mutex_lock_nested(&d->vqs[i]->mutex, i); 977 } 978 979 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 980 { 981 int i = 0; 982 for (i = 0; i < d->nvqs; ++i) 983 mutex_unlock(&d->vqs[i]->mutex); 984 } 985 986 static inline int vhost_get_avail_idx(struct vhost_virtqueue *vq, 987 __virtio16 *idx) 988 { 989 return vhost_get_avail(vq, *idx, &vq->avail->idx); 990 } 991 992 static inline int vhost_get_avail_head(struct vhost_virtqueue *vq, 993 __virtio16 *head, int idx) 994 { 995 return vhost_get_avail(vq, *head, 996 &vq->avail->ring[idx & (vq->num - 1)]); 997 } 998 999 static inline int vhost_get_avail_flags(struct vhost_virtqueue *vq, 1000 __virtio16 *flags) 1001 { 1002 return vhost_get_avail(vq, *flags, &vq->avail->flags); 1003 } 1004 1005 static inline int vhost_get_used_event(struct vhost_virtqueue *vq, 1006 __virtio16 *event) 1007 { 1008 return vhost_get_avail(vq, *event, vhost_used_event(vq)); 1009 } 1010 1011 static inline int vhost_get_used_idx(struct vhost_virtqueue *vq, 1012 __virtio16 *idx) 1013 { 1014 return vhost_get_used(vq, *idx, &vq->used->idx); 1015 } 1016 1017 static inline int vhost_get_desc(struct vhost_virtqueue *vq, 1018 struct vring_desc *desc, int idx) 1019 { 1020 return vhost_copy_from_user(vq, desc, vq->desc + idx, sizeof(*desc)); 1021 } 1022 1023 static int vhost_new_umem_range(struct vhost_umem *umem, 1024 u64 start, u64 size, u64 end, 1025 u64 userspace_addr, int perm) 1026 { 1027 struct vhost_umem_node *tmp, *node; 1028 1029 if (!size) 1030 return -EFAULT; 1031 1032 node = kmalloc(sizeof(*node), GFP_ATOMIC); 1033 if (!node) 1034 return -ENOMEM; 1035 1036 if (umem->numem == max_iotlb_entries) { 1037 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link); 1038 vhost_umem_free(umem, tmp); 1039 } 1040 1041 node->start = start; 1042 node->size = size; 1043 node->last = end; 1044 node->userspace_addr = userspace_addr; 1045 node->perm = perm; 1046 INIT_LIST_HEAD(&node->link); 1047 list_add_tail(&node->link, &umem->umem_list); 1048 vhost_umem_interval_tree_insert(node, &umem->umem_tree); 1049 umem->numem++; 1050 1051 return 0; 1052 } 1053 1054 static void vhost_del_umem_range(struct vhost_umem *umem, 1055 u64 start, u64 end) 1056 { 1057 struct vhost_umem_node *node; 1058 1059 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1060 start, end))) 1061 vhost_umem_free(umem, node); 1062 } 1063 1064 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 1065 struct vhost_iotlb_msg *msg) 1066 { 1067 struct vhost_msg_node *node, *n; 1068 1069 spin_lock(&d->iotlb_lock); 1070 1071 list_for_each_entry_safe(node, n, &d->pending_list, node) { 1072 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 1073 if (msg->iova <= vq_msg->iova && 1074 msg->iova + msg->size - 1 >= vq_msg->iova && 1075 vq_msg->type == VHOST_IOTLB_MISS) { 1076 vhost_poll_queue(&node->vq->poll); 1077 list_del(&node->node); 1078 kfree(node); 1079 } 1080 } 1081 1082 spin_unlock(&d->iotlb_lock); 1083 } 1084 1085 static bool umem_access_ok(u64 uaddr, u64 size, int access) 1086 { 1087 unsigned long a = uaddr; 1088 1089 /* Make sure 64 bit math will not overflow. */ 1090 if (vhost_overflow(uaddr, size)) 1091 return false; 1092 1093 if ((access & VHOST_ACCESS_RO) && 1094 !access_ok((void __user *)a, size)) 1095 return false; 1096 if ((access & VHOST_ACCESS_WO) && 1097 !access_ok((void __user *)a, size)) 1098 return false; 1099 return true; 1100 } 1101 1102 static int vhost_process_iotlb_msg(struct vhost_dev *dev, 1103 struct vhost_iotlb_msg *msg) 1104 { 1105 int ret = 0; 1106 1107 mutex_lock(&dev->mutex); 1108 vhost_dev_lock_vqs(dev); 1109 switch (msg->type) { 1110 case VHOST_IOTLB_UPDATE: 1111 if (!dev->iotlb) { 1112 ret = -EFAULT; 1113 break; 1114 } 1115 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 1116 ret = -EFAULT; 1117 break; 1118 } 1119 vhost_vq_meta_reset(dev); 1120 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size, 1121 msg->iova + msg->size - 1, 1122 msg->uaddr, msg->perm)) { 1123 ret = -ENOMEM; 1124 break; 1125 } 1126 vhost_iotlb_notify_vq(dev, msg); 1127 break; 1128 case VHOST_IOTLB_INVALIDATE: 1129 if (!dev->iotlb) { 1130 ret = -EFAULT; 1131 break; 1132 } 1133 vhost_vq_meta_reset(dev); 1134 vhost_del_umem_range(dev->iotlb, msg->iova, 1135 msg->iova + msg->size - 1); 1136 break; 1137 default: 1138 ret = -EINVAL; 1139 break; 1140 } 1141 1142 vhost_dev_unlock_vqs(dev); 1143 mutex_unlock(&dev->mutex); 1144 1145 return ret; 1146 } 1147 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1148 struct iov_iter *from) 1149 { 1150 struct vhost_iotlb_msg msg; 1151 size_t offset; 1152 int type, ret; 1153 1154 ret = copy_from_iter(&type, sizeof(type), from); 1155 if (ret != sizeof(type)) { 1156 ret = -EINVAL; 1157 goto done; 1158 } 1159 1160 switch (type) { 1161 case VHOST_IOTLB_MSG: 1162 /* There maybe a hole after type for V1 message type, 1163 * so skip it here. 1164 */ 1165 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int); 1166 break; 1167 case VHOST_IOTLB_MSG_V2: 1168 offset = sizeof(__u32); 1169 break; 1170 default: 1171 ret = -EINVAL; 1172 goto done; 1173 } 1174 1175 iov_iter_advance(from, offset); 1176 ret = copy_from_iter(&msg, sizeof(msg), from); 1177 if (ret != sizeof(msg)) { 1178 ret = -EINVAL; 1179 goto done; 1180 } 1181 if (vhost_process_iotlb_msg(dev, &msg)) { 1182 ret = -EFAULT; 1183 goto done; 1184 } 1185 1186 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) : 1187 sizeof(struct vhost_msg_v2); 1188 done: 1189 return ret; 1190 } 1191 EXPORT_SYMBOL(vhost_chr_write_iter); 1192 1193 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1194 poll_table *wait) 1195 { 1196 __poll_t mask = 0; 1197 1198 poll_wait(file, &dev->wait, wait); 1199 1200 if (!list_empty(&dev->read_list)) 1201 mask |= EPOLLIN | EPOLLRDNORM; 1202 1203 return mask; 1204 } 1205 EXPORT_SYMBOL(vhost_chr_poll); 1206 1207 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1208 int noblock) 1209 { 1210 DEFINE_WAIT(wait); 1211 struct vhost_msg_node *node; 1212 ssize_t ret = 0; 1213 unsigned size = sizeof(struct vhost_msg); 1214 1215 if (iov_iter_count(to) < size) 1216 return 0; 1217 1218 while (1) { 1219 if (!noblock) 1220 prepare_to_wait(&dev->wait, &wait, 1221 TASK_INTERRUPTIBLE); 1222 1223 node = vhost_dequeue_msg(dev, &dev->read_list); 1224 if (node) 1225 break; 1226 if (noblock) { 1227 ret = -EAGAIN; 1228 break; 1229 } 1230 if (signal_pending(current)) { 1231 ret = -ERESTARTSYS; 1232 break; 1233 } 1234 if (!dev->iotlb) { 1235 ret = -EBADFD; 1236 break; 1237 } 1238 1239 schedule(); 1240 } 1241 1242 if (!noblock) 1243 finish_wait(&dev->wait, &wait); 1244 1245 if (node) { 1246 struct vhost_iotlb_msg *msg; 1247 void *start = &node->msg; 1248 1249 switch (node->msg.type) { 1250 case VHOST_IOTLB_MSG: 1251 size = sizeof(node->msg); 1252 msg = &node->msg.iotlb; 1253 break; 1254 case VHOST_IOTLB_MSG_V2: 1255 size = sizeof(node->msg_v2); 1256 msg = &node->msg_v2.iotlb; 1257 break; 1258 default: 1259 BUG(); 1260 break; 1261 } 1262 1263 ret = copy_to_iter(start, size, to); 1264 if (ret != size || msg->type != VHOST_IOTLB_MISS) { 1265 kfree(node); 1266 return ret; 1267 } 1268 vhost_enqueue_msg(dev, &dev->pending_list, node); 1269 } 1270 1271 return ret; 1272 } 1273 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1274 1275 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1276 { 1277 struct vhost_dev *dev = vq->dev; 1278 struct vhost_msg_node *node; 1279 struct vhost_iotlb_msg *msg; 1280 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2); 1281 1282 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG); 1283 if (!node) 1284 return -ENOMEM; 1285 1286 if (v2) { 1287 node->msg_v2.type = VHOST_IOTLB_MSG_V2; 1288 msg = &node->msg_v2.iotlb; 1289 } else { 1290 msg = &node->msg.iotlb; 1291 } 1292 1293 msg->type = VHOST_IOTLB_MISS; 1294 msg->iova = iova; 1295 msg->perm = access; 1296 1297 vhost_enqueue_msg(dev, &dev->read_list, node); 1298 1299 return 0; 1300 } 1301 1302 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1303 struct vring_desc __user *desc, 1304 struct vring_avail __user *avail, 1305 struct vring_used __user *used) 1306 1307 { 1308 return access_ok(desc, vhost_get_desc_size(vq, num)) && 1309 access_ok(avail, vhost_get_avail_size(vq, num)) && 1310 access_ok(used, vhost_get_used_size(vq, num)); 1311 } 1312 1313 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1314 const struct vhost_umem_node *node, 1315 int type) 1316 { 1317 int access = (type == VHOST_ADDR_USED) ? 1318 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1319 1320 if (likely(node->perm & access)) 1321 vq->meta_iotlb[type] = node; 1322 } 1323 1324 static bool iotlb_access_ok(struct vhost_virtqueue *vq, 1325 int access, u64 addr, u64 len, int type) 1326 { 1327 const struct vhost_umem_node *node; 1328 struct vhost_umem *umem = vq->iotlb; 1329 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1330 1331 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1332 return true; 1333 1334 while (len > s) { 1335 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1336 addr, 1337 last); 1338 if (node == NULL || node->start > addr) { 1339 vhost_iotlb_miss(vq, addr, access); 1340 return false; 1341 } else if (!(node->perm & access)) { 1342 /* Report the possible access violation by 1343 * request another translation from userspace. 1344 */ 1345 return false; 1346 } 1347 1348 size = node->size - addr + node->start; 1349 1350 if (orig_addr == addr && size >= len) 1351 vhost_vq_meta_update(vq, node, type); 1352 1353 s += size; 1354 addr += size; 1355 } 1356 1357 return true; 1358 } 1359 1360 int vq_meta_prefetch(struct vhost_virtqueue *vq) 1361 { 1362 unsigned int num = vq->num; 1363 1364 if (!vq->iotlb) 1365 return 1; 1366 1367 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc, 1368 vhost_get_desc_size(vq, num), VHOST_ADDR_DESC) && 1369 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail, 1370 vhost_get_avail_size(vq, num), 1371 VHOST_ADDR_AVAIL) && 1372 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used, 1373 vhost_get_used_size(vq, num), VHOST_ADDR_USED); 1374 } 1375 EXPORT_SYMBOL_GPL(vq_meta_prefetch); 1376 1377 /* Can we log writes? */ 1378 /* Caller should have device mutex but not vq mutex */ 1379 bool vhost_log_access_ok(struct vhost_dev *dev) 1380 { 1381 return memory_access_ok(dev, dev->umem, 1); 1382 } 1383 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1384 1385 /* Verify access for write logging. */ 1386 /* Caller should have vq mutex and device mutex */ 1387 static bool vq_log_access_ok(struct vhost_virtqueue *vq, 1388 void __user *log_base) 1389 { 1390 return vq_memory_access_ok(log_base, vq->umem, 1391 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1392 (!vq->log_used || log_access_ok(log_base, vq->log_addr, 1393 vhost_get_used_size(vq, vq->num))); 1394 } 1395 1396 /* Can we start vq? */ 1397 /* Caller should have vq mutex and device mutex */ 1398 bool vhost_vq_access_ok(struct vhost_virtqueue *vq) 1399 { 1400 if (!vq_log_access_ok(vq, vq->log_base)) 1401 return false; 1402 1403 /* Access validation occurs at prefetch time with IOTLB */ 1404 if (vq->iotlb) 1405 return true; 1406 1407 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1408 } 1409 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1410 1411 static struct vhost_umem *vhost_umem_alloc(void) 1412 { 1413 struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL); 1414 1415 if (!umem) 1416 return NULL; 1417 1418 umem->umem_tree = RB_ROOT_CACHED; 1419 umem->numem = 0; 1420 INIT_LIST_HEAD(&umem->umem_list); 1421 1422 return umem; 1423 } 1424 1425 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1426 { 1427 struct vhost_memory mem, *newmem; 1428 struct vhost_memory_region *region; 1429 struct vhost_umem *newumem, *oldumem; 1430 unsigned long size = offsetof(struct vhost_memory, regions); 1431 int i; 1432 1433 if (copy_from_user(&mem, m, size)) 1434 return -EFAULT; 1435 if (mem.padding) 1436 return -EOPNOTSUPP; 1437 if (mem.nregions > max_mem_regions) 1438 return -E2BIG; 1439 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), 1440 GFP_KERNEL); 1441 if (!newmem) 1442 return -ENOMEM; 1443 1444 memcpy(newmem, &mem, size); 1445 if (copy_from_user(newmem->regions, m->regions, 1446 mem.nregions * sizeof *m->regions)) { 1447 kvfree(newmem); 1448 return -EFAULT; 1449 } 1450 1451 newumem = vhost_umem_alloc(); 1452 if (!newumem) { 1453 kvfree(newmem); 1454 return -ENOMEM; 1455 } 1456 1457 for (region = newmem->regions; 1458 region < newmem->regions + mem.nregions; 1459 region++) { 1460 if (vhost_new_umem_range(newumem, 1461 region->guest_phys_addr, 1462 region->memory_size, 1463 region->guest_phys_addr + 1464 region->memory_size - 1, 1465 region->userspace_addr, 1466 VHOST_ACCESS_RW)) 1467 goto err; 1468 } 1469 1470 if (!memory_access_ok(d, newumem, 0)) 1471 goto err; 1472 1473 oldumem = d->umem; 1474 d->umem = newumem; 1475 1476 /* All memory accesses are done under some VQ mutex. */ 1477 for (i = 0; i < d->nvqs; ++i) { 1478 mutex_lock(&d->vqs[i]->mutex); 1479 d->vqs[i]->umem = newumem; 1480 mutex_unlock(&d->vqs[i]->mutex); 1481 } 1482 1483 kvfree(newmem); 1484 vhost_umem_clean(oldumem); 1485 return 0; 1486 1487 err: 1488 vhost_umem_clean(newumem); 1489 kvfree(newmem); 1490 return -EFAULT; 1491 } 1492 1493 static long vhost_vring_set_num(struct vhost_dev *d, 1494 struct vhost_virtqueue *vq, 1495 void __user *argp) 1496 { 1497 struct vhost_vring_state s; 1498 1499 /* Resizing ring with an active backend? 1500 * You don't want to do that. */ 1501 if (vq->private_data) 1502 return -EBUSY; 1503 1504 if (copy_from_user(&s, argp, sizeof s)) 1505 return -EFAULT; 1506 1507 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) 1508 return -EINVAL; 1509 vq->num = s.num; 1510 1511 return 0; 1512 } 1513 1514 static long vhost_vring_set_addr(struct vhost_dev *d, 1515 struct vhost_virtqueue *vq, 1516 void __user *argp) 1517 { 1518 struct vhost_vring_addr a; 1519 1520 if (copy_from_user(&a, argp, sizeof a)) 1521 return -EFAULT; 1522 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) 1523 return -EOPNOTSUPP; 1524 1525 /* For 32bit, verify that the top 32bits of the user 1526 data are set to zero. */ 1527 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1528 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1529 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) 1530 return -EFAULT; 1531 1532 /* Make sure it's safe to cast pointers to vring types. */ 1533 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1534 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1535 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1536 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1537 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) 1538 return -EINVAL; 1539 1540 /* We only verify access here if backend is configured. 1541 * If it is not, we don't as size might not have been setup. 1542 * We will verify when backend is configured. */ 1543 if (vq->private_data) { 1544 if (!vq_access_ok(vq, vq->num, 1545 (void __user *)(unsigned long)a.desc_user_addr, 1546 (void __user *)(unsigned long)a.avail_user_addr, 1547 (void __user *)(unsigned long)a.used_user_addr)) 1548 return -EINVAL; 1549 1550 /* Also validate log access for used ring if enabled. */ 1551 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) && 1552 !log_access_ok(vq->log_base, a.log_guest_addr, 1553 sizeof *vq->used + 1554 vq->num * sizeof *vq->used->ring)) 1555 return -EINVAL; 1556 } 1557 1558 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1559 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1560 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1561 vq->log_addr = a.log_guest_addr; 1562 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1563 1564 return 0; 1565 } 1566 1567 static long vhost_vring_set_num_addr(struct vhost_dev *d, 1568 struct vhost_virtqueue *vq, 1569 unsigned int ioctl, 1570 void __user *argp) 1571 { 1572 long r; 1573 1574 mutex_lock(&vq->mutex); 1575 1576 switch (ioctl) { 1577 case VHOST_SET_VRING_NUM: 1578 r = vhost_vring_set_num(d, vq, argp); 1579 break; 1580 case VHOST_SET_VRING_ADDR: 1581 r = vhost_vring_set_addr(d, vq, argp); 1582 break; 1583 default: 1584 BUG(); 1585 } 1586 1587 mutex_unlock(&vq->mutex); 1588 1589 return r; 1590 } 1591 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1592 { 1593 struct file *eventfp, *filep = NULL; 1594 bool pollstart = false, pollstop = false; 1595 struct eventfd_ctx *ctx = NULL; 1596 u32 __user *idxp = argp; 1597 struct vhost_virtqueue *vq; 1598 struct vhost_vring_state s; 1599 struct vhost_vring_file f; 1600 u32 idx; 1601 long r; 1602 1603 r = get_user(idx, idxp); 1604 if (r < 0) 1605 return r; 1606 if (idx >= d->nvqs) 1607 return -ENOBUFS; 1608 1609 idx = array_index_nospec(idx, d->nvqs); 1610 vq = d->vqs[idx]; 1611 1612 if (ioctl == VHOST_SET_VRING_NUM || 1613 ioctl == VHOST_SET_VRING_ADDR) { 1614 return vhost_vring_set_num_addr(d, vq, ioctl, argp); 1615 } 1616 1617 mutex_lock(&vq->mutex); 1618 1619 switch (ioctl) { 1620 case VHOST_SET_VRING_BASE: 1621 /* Moving base with an active backend? 1622 * You don't want to do that. */ 1623 if (vq->private_data) { 1624 r = -EBUSY; 1625 break; 1626 } 1627 if (copy_from_user(&s, argp, sizeof s)) { 1628 r = -EFAULT; 1629 break; 1630 } 1631 if (s.num > 0xffff) { 1632 r = -EINVAL; 1633 break; 1634 } 1635 vq->last_avail_idx = s.num; 1636 /* Forget the cached index value. */ 1637 vq->avail_idx = vq->last_avail_idx; 1638 break; 1639 case VHOST_GET_VRING_BASE: 1640 s.index = idx; 1641 s.num = vq->last_avail_idx; 1642 if (copy_to_user(argp, &s, sizeof s)) 1643 r = -EFAULT; 1644 break; 1645 case VHOST_SET_VRING_KICK: 1646 if (copy_from_user(&f, argp, sizeof f)) { 1647 r = -EFAULT; 1648 break; 1649 } 1650 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1651 if (IS_ERR(eventfp)) { 1652 r = PTR_ERR(eventfp); 1653 break; 1654 } 1655 if (eventfp != vq->kick) { 1656 pollstop = (filep = vq->kick) != NULL; 1657 pollstart = (vq->kick = eventfp) != NULL; 1658 } else 1659 filep = eventfp; 1660 break; 1661 case VHOST_SET_VRING_CALL: 1662 if (copy_from_user(&f, argp, sizeof f)) { 1663 r = -EFAULT; 1664 break; 1665 } 1666 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1667 if (IS_ERR(ctx)) { 1668 r = PTR_ERR(ctx); 1669 break; 1670 } 1671 swap(ctx, vq->call_ctx); 1672 break; 1673 case VHOST_SET_VRING_ERR: 1674 if (copy_from_user(&f, argp, sizeof f)) { 1675 r = -EFAULT; 1676 break; 1677 } 1678 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1679 if (IS_ERR(ctx)) { 1680 r = PTR_ERR(ctx); 1681 break; 1682 } 1683 swap(ctx, vq->error_ctx); 1684 break; 1685 case VHOST_SET_VRING_ENDIAN: 1686 r = vhost_set_vring_endian(vq, argp); 1687 break; 1688 case VHOST_GET_VRING_ENDIAN: 1689 r = vhost_get_vring_endian(vq, idx, argp); 1690 break; 1691 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1692 if (copy_from_user(&s, argp, sizeof(s))) { 1693 r = -EFAULT; 1694 break; 1695 } 1696 vq->busyloop_timeout = s.num; 1697 break; 1698 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1699 s.index = idx; 1700 s.num = vq->busyloop_timeout; 1701 if (copy_to_user(argp, &s, sizeof(s))) 1702 r = -EFAULT; 1703 break; 1704 default: 1705 r = -ENOIOCTLCMD; 1706 } 1707 1708 if (pollstop && vq->handle_kick) 1709 vhost_poll_stop(&vq->poll); 1710 1711 if (!IS_ERR_OR_NULL(ctx)) 1712 eventfd_ctx_put(ctx); 1713 if (filep) 1714 fput(filep); 1715 1716 if (pollstart && vq->handle_kick) 1717 r = vhost_poll_start(&vq->poll, vq->kick); 1718 1719 mutex_unlock(&vq->mutex); 1720 1721 if (pollstop && vq->handle_kick) 1722 vhost_poll_flush(&vq->poll); 1723 return r; 1724 } 1725 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 1726 1727 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled) 1728 { 1729 struct vhost_umem *niotlb, *oiotlb; 1730 int i; 1731 1732 niotlb = vhost_umem_alloc(); 1733 if (!niotlb) 1734 return -ENOMEM; 1735 1736 oiotlb = d->iotlb; 1737 d->iotlb = niotlb; 1738 1739 for (i = 0; i < d->nvqs; ++i) { 1740 struct vhost_virtqueue *vq = d->vqs[i]; 1741 1742 mutex_lock(&vq->mutex); 1743 vq->iotlb = niotlb; 1744 __vhost_vq_meta_reset(vq); 1745 mutex_unlock(&vq->mutex); 1746 } 1747 1748 vhost_umem_clean(oiotlb); 1749 1750 return 0; 1751 } 1752 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 1753 1754 /* Caller must have device mutex */ 1755 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1756 { 1757 struct eventfd_ctx *ctx; 1758 u64 p; 1759 long r; 1760 int i, fd; 1761 1762 /* If you are not the owner, you can become one */ 1763 if (ioctl == VHOST_SET_OWNER) { 1764 r = vhost_dev_set_owner(d); 1765 goto done; 1766 } 1767 1768 /* You must be the owner to do anything else */ 1769 r = vhost_dev_check_owner(d); 1770 if (r) 1771 goto done; 1772 1773 switch (ioctl) { 1774 case VHOST_SET_MEM_TABLE: 1775 r = vhost_set_memory(d, argp); 1776 break; 1777 case VHOST_SET_LOG_BASE: 1778 if (copy_from_user(&p, argp, sizeof p)) { 1779 r = -EFAULT; 1780 break; 1781 } 1782 if ((u64)(unsigned long)p != p) { 1783 r = -EFAULT; 1784 break; 1785 } 1786 for (i = 0; i < d->nvqs; ++i) { 1787 struct vhost_virtqueue *vq; 1788 void __user *base = (void __user *)(unsigned long)p; 1789 vq = d->vqs[i]; 1790 mutex_lock(&vq->mutex); 1791 /* If ring is inactive, will check when it's enabled. */ 1792 if (vq->private_data && !vq_log_access_ok(vq, base)) 1793 r = -EFAULT; 1794 else 1795 vq->log_base = base; 1796 mutex_unlock(&vq->mutex); 1797 } 1798 break; 1799 case VHOST_SET_LOG_FD: 1800 r = get_user(fd, (int __user *)argp); 1801 if (r < 0) 1802 break; 1803 ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd); 1804 if (IS_ERR(ctx)) { 1805 r = PTR_ERR(ctx); 1806 break; 1807 } 1808 swap(ctx, d->log_ctx); 1809 for (i = 0; i < d->nvqs; ++i) { 1810 mutex_lock(&d->vqs[i]->mutex); 1811 d->vqs[i]->log_ctx = d->log_ctx; 1812 mutex_unlock(&d->vqs[i]->mutex); 1813 } 1814 if (ctx) 1815 eventfd_ctx_put(ctx); 1816 break; 1817 default: 1818 r = -ENOIOCTLCMD; 1819 break; 1820 } 1821 done: 1822 return r; 1823 } 1824 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 1825 1826 /* TODO: This is really inefficient. We need something like get_user() 1827 * (instruction directly accesses the data, with an exception table entry 1828 * returning -EFAULT). See Documentation/x86/exception-tables.rst. 1829 */ 1830 static int set_bit_to_user(int nr, void __user *addr) 1831 { 1832 unsigned long log = (unsigned long)addr; 1833 struct page *page; 1834 void *base; 1835 int bit = nr + (log % PAGE_SIZE) * 8; 1836 int r; 1837 1838 r = get_user_pages_fast(log, 1, FOLL_WRITE, &page); 1839 if (r < 0) 1840 return r; 1841 BUG_ON(r != 1); 1842 base = kmap_atomic(page); 1843 set_bit(bit, base); 1844 kunmap_atomic(base); 1845 set_page_dirty_lock(page); 1846 put_page(page); 1847 return 0; 1848 } 1849 1850 static int log_write(void __user *log_base, 1851 u64 write_address, u64 write_length) 1852 { 1853 u64 write_page = write_address / VHOST_PAGE_SIZE; 1854 int r; 1855 1856 if (!write_length) 1857 return 0; 1858 write_length += write_address % VHOST_PAGE_SIZE; 1859 for (;;) { 1860 u64 base = (u64)(unsigned long)log_base; 1861 u64 log = base + write_page / 8; 1862 int bit = write_page % 8; 1863 if ((u64)(unsigned long)log != log) 1864 return -EFAULT; 1865 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 1866 if (r < 0) 1867 return r; 1868 if (write_length <= VHOST_PAGE_SIZE) 1869 break; 1870 write_length -= VHOST_PAGE_SIZE; 1871 write_page += 1; 1872 } 1873 return r; 1874 } 1875 1876 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len) 1877 { 1878 struct vhost_umem *umem = vq->umem; 1879 struct vhost_umem_node *u; 1880 u64 start, end, l, min; 1881 int r; 1882 bool hit = false; 1883 1884 while (len) { 1885 min = len; 1886 /* More than one GPAs can be mapped into a single HVA. So 1887 * iterate all possible umems here to be safe. 1888 */ 1889 list_for_each_entry(u, &umem->umem_list, link) { 1890 if (u->userspace_addr > hva - 1 + len || 1891 u->userspace_addr - 1 + u->size < hva) 1892 continue; 1893 start = max(u->userspace_addr, hva); 1894 end = min(u->userspace_addr - 1 + u->size, 1895 hva - 1 + len); 1896 l = end - start + 1; 1897 r = log_write(vq->log_base, 1898 u->start + start - u->userspace_addr, 1899 l); 1900 if (r < 0) 1901 return r; 1902 hit = true; 1903 min = min(l, min); 1904 } 1905 1906 if (!hit) 1907 return -EFAULT; 1908 1909 len -= min; 1910 hva += min; 1911 } 1912 1913 return 0; 1914 } 1915 1916 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len) 1917 { 1918 struct iovec iov[64]; 1919 int i, ret; 1920 1921 if (!vq->iotlb) 1922 return log_write(vq->log_base, vq->log_addr + used_offset, len); 1923 1924 ret = translate_desc(vq, (uintptr_t)vq->used + used_offset, 1925 len, iov, 64, VHOST_ACCESS_WO); 1926 if (ret < 0) 1927 return ret; 1928 1929 for (i = 0; i < ret; i++) { 1930 ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 1931 iov[i].iov_len); 1932 if (ret) 1933 return ret; 1934 } 1935 1936 return 0; 1937 } 1938 1939 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 1940 unsigned int log_num, u64 len, struct iovec *iov, int count) 1941 { 1942 int i, r; 1943 1944 /* Make sure data written is seen before log. */ 1945 smp_wmb(); 1946 1947 if (vq->iotlb) { 1948 for (i = 0; i < count; i++) { 1949 r = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 1950 iov[i].iov_len); 1951 if (r < 0) 1952 return r; 1953 } 1954 return 0; 1955 } 1956 1957 for (i = 0; i < log_num; ++i) { 1958 u64 l = min(log[i].len, len); 1959 r = log_write(vq->log_base, log[i].addr, l); 1960 if (r < 0) 1961 return r; 1962 len -= l; 1963 if (!len) { 1964 if (vq->log_ctx) 1965 eventfd_signal(vq->log_ctx, 1); 1966 return 0; 1967 } 1968 } 1969 /* Length written exceeds what we have stored. This is a bug. */ 1970 BUG(); 1971 return 0; 1972 } 1973 EXPORT_SYMBOL_GPL(vhost_log_write); 1974 1975 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 1976 { 1977 void __user *used; 1978 if (vhost_put_used_flags(vq)) 1979 return -EFAULT; 1980 if (unlikely(vq->log_used)) { 1981 /* Make sure the flag is seen before log. */ 1982 smp_wmb(); 1983 /* Log used flag write. */ 1984 used = &vq->used->flags; 1985 log_used(vq, (used - (void __user *)vq->used), 1986 sizeof vq->used->flags); 1987 if (vq->log_ctx) 1988 eventfd_signal(vq->log_ctx, 1); 1989 } 1990 return 0; 1991 } 1992 1993 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event) 1994 { 1995 if (vhost_put_avail_event(vq)) 1996 return -EFAULT; 1997 if (unlikely(vq->log_used)) { 1998 void __user *used; 1999 /* Make sure the event is seen before log. */ 2000 smp_wmb(); 2001 /* Log avail event write */ 2002 used = vhost_avail_event(vq); 2003 log_used(vq, (used - (void __user *)vq->used), 2004 sizeof *vhost_avail_event(vq)); 2005 if (vq->log_ctx) 2006 eventfd_signal(vq->log_ctx, 1); 2007 } 2008 return 0; 2009 } 2010 2011 int vhost_vq_init_access(struct vhost_virtqueue *vq) 2012 { 2013 __virtio16 last_used_idx; 2014 int r; 2015 bool is_le = vq->is_le; 2016 2017 if (!vq->private_data) 2018 return 0; 2019 2020 vhost_init_is_le(vq); 2021 2022 r = vhost_update_used_flags(vq); 2023 if (r) 2024 goto err; 2025 vq->signalled_used_valid = false; 2026 if (!vq->iotlb && 2027 !access_ok(&vq->used->idx, sizeof vq->used->idx)) { 2028 r = -EFAULT; 2029 goto err; 2030 } 2031 r = vhost_get_used_idx(vq, &last_used_idx); 2032 if (r) { 2033 vq_err(vq, "Can't access used idx at %p\n", 2034 &vq->used->idx); 2035 goto err; 2036 } 2037 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 2038 return 0; 2039 2040 err: 2041 vq->is_le = is_le; 2042 return r; 2043 } 2044 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 2045 2046 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 2047 struct iovec iov[], int iov_size, int access) 2048 { 2049 const struct vhost_umem_node *node; 2050 struct vhost_dev *dev = vq->dev; 2051 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem; 2052 struct iovec *_iov; 2053 u64 s = 0; 2054 int ret = 0; 2055 2056 while ((u64)len > s) { 2057 u64 size; 2058 if (unlikely(ret >= iov_size)) { 2059 ret = -ENOBUFS; 2060 break; 2061 } 2062 2063 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 2064 addr, addr + len - 1); 2065 if (node == NULL || node->start > addr) { 2066 if (umem != dev->iotlb) { 2067 ret = -EFAULT; 2068 break; 2069 } 2070 ret = -EAGAIN; 2071 break; 2072 } else if (!(node->perm & access)) { 2073 ret = -EPERM; 2074 break; 2075 } 2076 2077 _iov = iov + ret; 2078 size = node->size - addr + node->start; 2079 _iov->iov_len = min((u64)len - s, size); 2080 _iov->iov_base = (void __user *)(unsigned long) 2081 (node->userspace_addr + addr - node->start); 2082 s += size; 2083 addr += size; 2084 ++ret; 2085 } 2086 2087 if (ret == -EAGAIN) 2088 vhost_iotlb_miss(vq, addr, access); 2089 return ret; 2090 } 2091 2092 /* Each buffer in the virtqueues is actually a chain of descriptors. This 2093 * function returns the next descriptor in the chain, 2094 * or -1U if we're at the end. */ 2095 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 2096 { 2097 unsigned int next; 2098 2099 /* If this descriptor says it doesn't chain, we're done. */ 2100 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 2101 return -1U; 2102 2103 /* Check they're not leading us off end of descriptors. */ 2104 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 2105 return next; 2106 } 2107 2108 static int get_indirect(struct vhost_virtqueue *vq, 2109 struct iovec iov[], unsigned int iov_size, 2110 unsigned int *out_num, unsigned int *in_num, 2111 struct vhost_log *log, unsigned int *log_num, 2112 struct vring_desc *indirect) 2113 { 2114 struct vring_desc desc; 2115 unsigned int i = 0, count, found = 0; 2116 u32 len = vhost32_to_cpu(vq, indirect->len); 2117 struct iov_iter from; 2118 int ret, access; 2119 2120 /* Sanity check */ 2121 if (unlikely(len % sizeof desc)) { 2122 vq_err(vq, "Invalid length in indirect descriptor: " 2123 "len 0x%llx not multiple of 0x%zx\n", 2124 (unsigned long long)len, 2125 sizeof desc); 2126 return -EINVAL; 2127 } 2128 2129 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 2130 UIO_MAXIOV, VHOST_ACCESS_RO); 2131 if (unlikely(ret < 0)) { 2132 if (ret != -EAGAIN) 2133 vq_err(vq, "Translation failure %d in indirect.\n", ret); 2134 return ret; 2135 } 2136 iov_iter_init(&from, READ, vq->indirect, ret, len); 2137 2138 /* We will use the result as an address to read from, so most 2139 * architectures only need a compiler barrier here. */ 2140 read_barrier_depends(); 2141 2142 count = len / sizeof desc; 2143 /* Buffers are chained via a 16 bit next field, so 2144 * we can have at most 2^16 of these. */ 2145 if (unlikely(count > USHRT_MAX + 1)) { 2146 vq_err(vq, "Indirect buffer length too big: %d\n", 2147 indirect->len); 2148 return -E2BIG; 2149 } 2150 2151 do { 2152 unsigned iov_count = *in_num + *out_num; 2153 if (unlikely(++found > count)) { 2154 vq_err(vq, "Loop detected: last one at %u " 2155 "indirect size %u\n", 2156 i, count); 2157 return -EINVAL; 2158 } 2159 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 2160 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 2161 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2162 return -EINVAL; 2163 } 2164 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 2165 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 2166 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2167 return -EINVAL; 2168 } 2169 2170 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2171 access = VHOST_ACCESS_WO; 2172 else 2173 access = VHOST_ACCESS_RO; 2174 2175 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2176 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2177 iov_size - iov_count, access); 2178 if (unlikely(ret < 0)) { 2179 if (ret != -EAGAIN) 2180 vq_err(vq, "Translation failure %d indirect idx %d\n", 2181 ret, i); 2182 return ret; 2183 } 2184 /* If this is an input descriptor, increment that count. */ 2185 if (access == VHOST_ACCESS_WO) { 2186 *in_num += ret; 2187 if (unlikely(log && ret)) { 2188 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2189 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2190 ++*log_num; 2191 } 2192 } else { 2193 /* If it's an output descriptor, they're all supposed 2194 * to come before any input descriptors. */ 2195 if (unlikely(*in_num)) { 2196 vq_err(vq, "Indirect descriptor " 2197 "has out after in: idx %d\n", i); 2198 return -EINVAL; 2199 } 2200 *out_num += ret; 2201 } 2202 } while ((i = next_desc(vq, &desc)) != -1); 2203 return 0; 2204 } 2205 2206 /* This looks in the virtqueue and for the first available buffer, and converts 2207 * it to an iovec for convenient access. Since descriptors consist of some 2208 * number of output then some number of input descriptors, it's actually two 2209 * iovecs, but we pack them into one and note how many of each there were. 2210 * 2211 * This function returns the descriptor number found, or vq->num (which is 2212 * never a valid descriptor number) if none was found. A negative code is 2213 * returned on error. */ 2214 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 2215 struct iovec iov[], unsigned int iov_size, 2216 unsigned int *out_num, unsigned int *in_num, 2217 struct vhost_log *log, unsigned int *log_num) 2218 { 2219 struct vring_desc desc; 2220 unsigned int i, head, found = 0; 2221 u16 last_avail_idx; 2222 __virtio16 avail_idx; 2223 __virtio16 ring_head; 2224 int ret, access; 2225 2226 /* Check it isn't doing very strange things with descriptor numbers. */ 2227 last_avail_idx = vq->last_avail_idx; 2228 2229 if (vq->avail_idx == vq->last_avail_idx) { 2230 if (unlikely(vhost_get_avail_idx(vq, &avail_idx))) { 2231 vq_err(vq, "Failed to access avail idx at %p\n", 2232 &vq->avail->idx); 2233 return -EFAULT; 2234 } 2235 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2236 2237 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 2238 vq_err(vq, "Guest moved used index from %u to %u", 2239 last_avail_idx, vq->avail_idx); 2240 return -EFAULT; 2241 } 2242 2243 /* If there's nothing new since last we looked, return 2244 * invalid. 2245 */ 2246 if (vq->avail_idx == last_avail_idx) 2247 return vq->num; 2248 2249 /* Only get avail ring entries after they have been 2250 * exposed by guest. 2251 */ 2252 smp_rmb(); 2253 } 2254 2255 /* Grab the next descriptor number they're advertising, and increment 2256 * the index we've seen. */ 2257 if (unlikely(vhost_get_avail_head(vq, &ring_head, last_avail_idx))) { 2258 vq_err(vq, "Failed to read head: idx %d address %p\n", 2259 last_avail_idx, 2260 &vq->avail->ring[last_avail_idx % vq->num]); 2261 return -EFAULT; 2262 } 2263 2264 head = vhost16_to_cpu(vq, ring_head); 2265 2266 /* If their number is silly, that's an error. */ 2267 if (unlikely(head >= vq->num)) { 2268 vq_err(vq, "Guest says index %u > %u is available", 2269 head, vq->num); 2270 return -EINVAL; 2271 } 2272 2273 /* When we start there are none of either input nor output. */ 2274 *out_num = *in_num = 0; 2275 if (unlikely(log)) 2276 *log_num = 0; 2277 2278 i = head; 2279 do { 2280 unsigned iov_count = *in_num + *out_num; 2281 if (unlikely(i >= vq->num)) { 2282 vq_err(vq, "Desc index is %u > %u, head = %u", 2283 i, vq->num, head); 2284 return -EINVAL; 2285 } 2286 if (unlikely(++found > vq->num)) { 2287 vq_err(vq, "Loop detected: last one at %u " 2288 "vq size %u head %u\n", 2289 i, vq->num, head); 2290 return -EINVAL; 2291 } 2292 ret = vhost_get_desc(vq, &desc, i); 2293 if (unlikely(ret)) { 2294 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2295 i, vq->desc + i); 2296 return -EFAULT; 2297 } 2298 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2299 ret = get_indirect(vq, iov, iov_size, 2300 out_num, in_num, 2301 log, log_num, &desc); 2302 if (unlikely(ret < 0)) { 2303 if (ret != -EAGAIN) 2304 vq_err(vq, "Failure detected " 2305 "in indirect descriptor at idx %d\n", i); 2306 return ret; 2307 } 2308 continue; 2309 } 2310 2311 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2312 access = VHOST_ACCESS_WO; 2313 else 2314 access = VHOST_ACCESS_RO; 2315 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2316 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2317 iov_size - iov_count, access); 2318 if (unlikely(ret < 0)) { 2319 if (ret != -EAGAIN) 2320 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2321 ret, i); 2322 return ret; 2323 } 2324 if (access == VHOST_ACCESS_WO) { 2325 /* If this is an input descriptor, 2326 * increment that count. */ 2327 *in_num += ret; 2328 if (unlikely(log && ret)) { 2329 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2330 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2331 ++*log_num; 2332 } 2333 } else { 2334 /* If it's an output descriptor, they're all supposed 2335 * to come before any input descriptors. */ 2336 if (unlikely(*in_num)) { 2337 vq_err(vq, "Descriptor has out after in: " 2338 "idx %d\n", i); 2339 return -EINVAL; 2340 } 2341 *out_num += ret; 2342 } 2343 } while ((i = next_desc(vq, &desc)) != -1); 2344 2345 /* On success, increment avail index. */ 2346 vq->last_avail_idx++; 2347 2348 /* Assume notifications from guest are disabled at this point, 2349 * if they aren't we would need to update avail_event index. */ 2350 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2351 return head; 2352 } 2353 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2354 2355 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2356 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2357 { 2358 vq->last_avail_idx -= n; 2359 } 2360 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2361 2362 /* After we've used one of their buffers, we tell them about it. We'll then 2363 * want to notify the guest, using eventfd. */ 2364 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2365 { 2366 struct vring_used_elem heads = { 2367 cpu_to_vhost32(vq, head), 2368 cpu_to_vhost32(vq, len) 2369 }; 2370 2371 return vhost_add_used_n(vq, &heads, 1); 2372 } 2373 EXPORT_SYMBOL_GPL(vhost_add_used); 2374 2375 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2376 struct vring_used_elem *heads, 2377 unsigned count) 2378 { 2379 struct vring_used_elem __user *used; 2380 u16 old, new; 2381 int start; 2382 2383 start = vq->last_used_idx & (vq->num - 1); 2384 used = vq->used->ring + start; 2385 if (vhost_put_used(vq, heads, start, count)) { 2386 vq_err(vq, "Failed to write used"); 2387 return -EFAULT; 2388 } 2389 if (unlikely(vq->log_used)) { 2390 /* Make sure data is seen before log. */ 2391 smp_wmb(); 2392 /* Log used ring entry write. */ 2393 log_used(vq, ((void __user *)used - (void __user *)vq->used), 2394 count * sizeof *used); 2395 } 2396 old = vq->last_used_idx; 2397 new = (vq->last_used_idx += count); 2398 /* If the driver never bothers to signal in a very long while, 2399 * used index might wrap around. If that happens, invalidate 2400 * signalled_used index we stored. TODO: make sure driver 2401 * signals at least once in 2^16 and remove this. */ 2402 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2403 vq->signalled_used_valid = false; 2404 return 0; 2405 } 2406 2407 /* After we've used one of their buffers, we tell them about it. We'll then 2408 * want to notify the guest, using eventfd. */ 2409 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2410 unsigned count) 2411 { 2412 int start, n, r; 2413 2414 start = vq->last_used_idx & (vq->num - 1); 2415 n = vq->num - start; 2416 if (n < count) { 2417 r = __vhost_add_used_n(vq, heads, n); 2418 if (r < 0) 2419 return r; 2420 heads += n; 2421 count -= n; 2422 } 2423 r = __vhost_add_used_n(vq, heads, count); 2424 2425 /* Make sure buffer is written before we update index. */ 2426 smp_wmb(); 2427 if (vhost_put_used_idx(vq)) { 2428 vq_err(vq, "Failed to increment used idx"); 2429 return -EFAULT; 2430 } 2431 if (unlikely(vq->log_used)) { 2432 /* Make sure used idx is seen before log. */ 2433 smp_wmb(); 2434 /* Log used index update. */ 2435 log_used(vq, offsetof(struct vring_used, idx), 2436 sizeof vq->used->idx); 2437 if (vq->log_ctx) 2438 eventfd_signal(vq->log_ctx, 1); 2439 } 2440 return r; 2441 } 2442 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2443 2444 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2445 { 2446 __u16 old, new; 2447 __virtio16 event; 2448 bool v; 2449 /* Flush out used index updates. This is paired 2450 * with the barrier that the Guest executes when enabling 2451 * interrupts. */ 2452 smp_mb(); 2453 2454 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2455 unlikely(vq->avail_idx == vq->last_avail_idx)) 2456 return true; 2457 2458 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2459 __virtio16 flags; 2460 if (vhost_get_avail_flags(vq, &flags)) { 2461 vq_err(vq, "Failed to get flags"); 2462 return true; 2463 } 2464 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2465 } 2466 old = vq->signalled_used; 2467 v = vq->signalled_used_valid; 2468 new = vq->signalled_used = vq->last_used_idx; 2469 vq->signalled_used_valid = true; 2470 2471 if (unlikely(!v)) 2472 return true; 2473 2474 if (vhost_get_used_event(vq, &event)) { 2475 vq_err(vq, "Failed to get used event idx"); 2476 return true; 2477 } 2478 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2479 } 2480 2481 /* This actually signals the guest, using eventfd. */ 2482 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2483 { 2484 /* Signal the Guest tell them we used something up. */ 2485 if (vq->call_ctx && vhost_notify(dev, vq)) 2486 eventfd_signal(vq->call_ctx, 1); 2487 } 2488 EXPORT_SYMBOL_GPL(vhost_signal); 2489 2490 /* And here's the combo meal deal. Supersize me! */ 2491 void vhost_add_used_and_signal(struct vhost_dev *dev, 2492 struct vhost_virtqueue *vq, 2493 unsigned int head, int len) 2494 { 2495 vhost_add_used(vq, head, len); 2496 vhost_signal(dev, vq); 2497 } 2498 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2499 2500 /* multi-buffer version of vhost_add_used_and_signal */ 2501 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2502 struct vhost_virtqueue *vq, 2503 struct vring_used_elem *heads, unsigned count) 2504 { 2505 vhost_add_used_n(vq, heads, count); 2506 vhost_signal(dev, vq); 2507 } 2508 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2509 2510 /* return true if we're sure that avaiable ring is empty */ 2511 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2512 { 2513 __virtio16 avail_idx; 2514 int r; 2515 2516 if (vq->avail_idx != vq->last_avail_idx) 2517 return false; 2518 2519 r = vhost_get_avail_idx(vq, &avail_idx); 2520 if (unlikely(r)) 2521 return false; 2522 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2523 2524 return vq->avail_idx == vq->last_avail_idx; 2525 } 2526 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2527 2528 /* OK, now we need to know about added descriptors. */ 2529 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2530 { 2531 __virtio16 avail_idx; 2532 int r; 2533 2534 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2535 return false; 2536 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2537 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2538 r = vhost_update_used_flags(vq); 2539 if (r) { 2540 vq_err(vq, "Failed to enable notification at %p: %d\n", 2541 &vq->used->flags, r); 2542 return false; 2543 } 2544 } else { 2545 r = vhost_update_avail_event(vq, vq->avail_idx); 2546 if (r) { 2547 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2548 vhost_avail_event(vq), r); 2549 return false; 2550 } 2551 } 2552 /* They could have slipped one in as we were doing that: make 2553 * sure it's written, then check again. */ 2554 smp_mb(); 2555 r = vhost_get_avail_idx(vq, &avail_idx); 2556 if (r) { 2557 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2558 &vq->avail->idx, r); 2559 return false; 2560 } 2561 2562 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx; 2563 } 2564 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2565 2566 /* We don't need to be notified again. */ 2567 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2568 { 2569 int r; 2570 2571 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2572 return; 2573 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2574 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2575 r = vhost_update_used_flags(vq); 2576 if (r) 2577 vq_err(vq, "Failed to enable notification at %p: %d\n", 2578 &vq->used->flags, r); 2579 } 2580 } 2581 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2582 2583 /* Create a new message. */ 2584 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2585 { 2586 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL); 2587 if (!node) 2588 return NULL; 2589 2590 /* Make sure all padding within the structure is initialized. */ 2591 memset(&node->msg, 0, sizeof node->msg); 2592 node->vq = vq; 2593 node->msg.type = type; 2594 return node; 2595 } 2596 EXPORT_SYMBOL_GPL(vhost_new_msg); 2597 2598 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2599 struct vhost_msg_node *node) 2600 { 2601 spin_lock(&dev->iotlb_lock); 2602 list_add_tail(&node->node, head); 2603 spin_unlock(&dev->iotlb_lock); 2604 2605 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 2606 } 2607 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2608 2609 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2610 struct list_head *head) 2611 { 2612 struct vhost_msg_node *node = NULL; 2613 2614 spin_lock(&dev->iotlb_lock); 2615 if (!list_empty(head)) { 2616 node = list_first_entry(head, struct vhost_msg_node, 2617 node); 2618 list_del(&node->node); 2619 } 2620 spin_unlock(&dev->iotlb_lock); 2621 2622 return node; 2623 } 2624 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2625 2626 2627 static int __init vhost_init(void) 2628 { 2629 return 0; 2630 } 2631 2632 static void __exit vhost_exit(void) 2633 { 2634 } 2635 2636 module_init(vhost_init); 2637 module_exit(vhost_exit); 2638 2639 MODULE_VERSION("0.0.1"); 2640 MODULE_LICENSE("GPL v2"); 2641 MODULE_AUTHOR("Michael S. Tsirkin"); 2642 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2643