xref: /openbmc/linux/drivers/vhost/vhost.c (revision 6c9111bc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2009 Red Hat, Inc.
3  * Copyright (C) 2006 Rusty Russell IBM Corporation
4  *
5  * Author: Michael S. Tsirkin <mst@redhat.com>
6  *
7  * Inspiration, some code, and most witty comments come from
8  * Documentation/virtual/lguest/lguest.c, by Rusty Russell
9  *
10  * Generic code for virtio server in host kernel.
11  */
12 
13 #include <linux/eventfd.h>
14 #include <linux/vhost.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17 #include <linux/miscdevice.h>
18 #include <linux/mutex.h>
19 #include <linux/poll.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/kthread.h>
25 #include <linux/cgroup.h>
26 #include <linux/module.h>
27 #include <linux/sort.h>
28 #include <linux/sched/mm.h>
29 #include <linux/sched/signal.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/nospec.h>
32 #include <linux/kcov.h>
33 
34 #include "vhost.h"
35 
36 static ushort max_mem_regions = 64;
37 module_param(max_mem_regions, ushort, 0444);
38 MODULE_PARM_DESC(max_mem_regions,
39 	"Maximum number of memory regions in memory map. (default: 64)");
40 static int max_iotlb_entries = 2048;
41 module_param(max_iotlb_entries, int, 0444);
42 MODULE_PARM_DESC(max_iotlb_entries,
43 	"Maximum number of iotlb entries. (default: 2048)");
44 
45 enum {
46 	VHOST_MEMORY_F_LOG = 0x1,
47 };
48 
49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num])
50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num])
51 
52 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY
53 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
54 {
55 	vq->user_be = !virtio_legacy_is_little_endian();
56 }
57 
58 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq)
59 {
60 	vq->user_be = true;
61 }
62 
63 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq)
64 {
65 	vq->user_be = false;
66 }
67 
68 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
69 {
70 	struct vhost_vring_state s;
71 
72 	if (vq->private_data)
73 		return -EBUSY;
74 
75 	if (copy_from_user(&s, argp, sizeof(s)))
76 		return -EFAULT;
77 
78 	if (s.num != VHOST_VRING_LITTLE_ENDIAN &&
79 	    s.num != VHOST_VRING_BIG_ENDIAN)
80 		return -EINVAL;
81 
82 	if (s.num == VHOST_VRING_BIG_ENDIAN)
83 		vhost_enable_cross_endian_big(vq);
84 	else
85 		vhost_enable_cross_endian_little(vq);
86 
87 	return 0;
88 }
89 
90 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
91 				   int __user *argp)
92 {
93 	struct vhost_vring_state s = {
94 		.index = idx,
95 		.num = vq->user_be
96 	};
97 
98 	if (copy_to_user(argp, &s, sizeof(s)))
99 		return -EFAULT;
100 
101 	return 0;
102 }
103 
104 static void vhost_init_is_le(struct vhost_virtqueue *vq)
105 {
106 	/* Note for legacy virtio: user_be is initialized at reset time
107 	 * according to the host endianness. If userspace does not set an
108 	 * explicit endianness, the default behavior is native endian, as
109 	 * expected by legacy virtio.
110 	 */
111 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be;
112 }
113 #else
114 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
115 {
116 }
117 
118 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
119 {
120 	return -ENOIOCTLCMD;
121 }
122 
123 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
124 				   int __user *argp)
125 {
126 	return -ENOIOCTLCMD;
127 }
128 
129 static void vhost_init_is_le(struct vhost_virtqueue *vq)
130 {
131 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1)
132 		|| virtio_legacy_is_little_endian();
133 }
134 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */
135 
136 static void vhost_reset_is_le(struct vhost_virtqueue *vq)
137 {
138 	vhost_init_is_le(vq);
139 }
140 
141 struct vhost_flush_struct {
142 	struct vhost_work work;
143 	struct completion wait_event;
144 };
145 
146 static void vhost_flush_work(struct vhost_work *work)
147 {
148 	struct vhost_flush_struct *s;
149 
150 	s = container_of(work, struct vhost_flush_struct, work);
151 	complete(&s->wait_event);
152 }
153 
154 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh,
155 			    poll_table *pt)
156 {
157 	struct vhost_poll *poll;
158 
159 	poll = container_of(pt, struct vhost_poll, table);
160 	poll->wqh = wqh;
161 	add_wait_queue(wqh, &poll->wait);
162 }
163 
164 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync,
165 			     void *key)
166 {
167 	struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait);
168 	struct vhost_work *work = &poll->work;
169 
170 	if (!(key_to_poll(key) & poll->mask))
171 		return 0;
172 
173 	if (!poll->dev->use_worker)
174 		work->fn(work);
175 	else
176 		vhost_poll_queue(poll);
177 
178 	return 0;
179 }
180 
181 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn)
182 {
183 	clear_bit(VHOST_WORK_QUEUED, &work->flags);
184 	work->fn = fn;
185 }
186 EXPORT_SYMBOL_GPL(vhost_work_init);
187 
188 /* Init poll structure */
189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn,
190 		     __poll_t mask, struct vhost_dev *dev)
191 {
192 	init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup);
193 	init_poll_funcptr(&poll->table, vhost_poll_func);
194 	poll->mask = mask;
195 	poll->dev = dev;
196 	poll->wqh = NULL;
197 
198 	vhost_work_init(&poll->work, fn);
199 }
200 EXPORT_SYMBOL_GPL(vhost_poll_init);
201 
202 /* Start polling a file. We add ourselves to file's wait queue. The caller must
203  * keep a reference to a file until after vhost_poll_stop is called. */
204 int vhost_poll_start(struct vhost_poll *poll, struct file *file)
205 {
206 	__poll_t mask;
207 
208 	if (poll->wqh)
209 		return 0;
210 
211 	mask = vfs_poll(file, &poll->table);
212 	if (mask)
213 		vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask));
214 	if (mask & EPOLLERR) {
215 		vhost_poll_stop(poll);
216 		return -EINVAL;
217 	}
218 
219 	return 0;
220 }
221 EXPORT_SYMBOL_GPL(vhost_poll_start);
222 
223 /* Stop polling a file. After this function returns, it becomes safe to drop the
224  * file reference. You must also flush afterwards. */
225 void vhost_poll_stop(struct vhost_poll *poll)
226 {
227 	if (poll->wqh) {
228 		remove_wait_queue(poll->wqh, &poll->wait);
229 		poll->wqh = NULL;
230 	}
231 }
232 EXPORT_SYMBOL_GPL(vhost_poll_stop);
233 
234 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work)
235 {
236 	struct vhost_flush_struct flush;
237 
238 	if (dev->worker) {
239 		init_completion(&flush.wait_event);
240 		vhost_work_init(&flush.work, vhost_flush_work);
241 
242 		vhost_work_queue(dev, &flush.work);
243 		wait_for_completion(&flush.wait_event);
244 	}
245 }
246 EXPORT_SYMBOL_GPL(vhost_work_flush);
247 
248 /* Flush any work that has been scheduled. When calling this, don't hold any
249  * locks that are also used by the callback. */
250 void vhost_poll_flush(struct vhost_poll *poll)
251 {
252 	vhost_work_flush(poll->dev, &poll->work);
253 }
254 EXPORT_SYMBOL_GPL(vhost_poll_flush);
255 
256 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work)
257 {
258 	if (!dev->worker)
259 		return;
260 
261 	if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) {
262 		/* We can only add the work to the list after we're
263 		 * sure it was not in the list.
264 		 * test_and_set_bit() implies a memory barrier.
265 		 */
266 		llist_add(&work->node, &dev->work_list);
267 		wake_up_process(dev->worker);
268 	}
269 }
270 EXPORT_SYMBOL_GPL(vhost_work_queue);
271 
272 /* A lockless hint for busy polling code to exit the loop */
273 bool vhost_has_work(struct vhost_dev *dev)
274 {
275 	return !llist_empty(&dev->work_list);
276 }
277 EXPORT_SYMBOL_GPL(vhost_has_work);
278 
279 void vhost_poll_queue(struct vhost_poll *poll)
280 {
281 	vhost_work_queue(poll->dev, &poll->work);
282 }
283 EXPORT_SYMBOL_GPL(vhost_poll_queue);
284 
285 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq)
286 {
287 	int j;
288 
289 	for (j = 0; j < VHOST_NUM_ADDRS; j++)
290 		vq->meta_iotlb[j] = NULL;
291 }
292 
293 static void vhost_vq_meta_reset(struct vhost_dev *d)
294 {
295 	int i;
296 
297 	for (i = 0; i < d->nvqs; ++i)
298 		__vhost_vq_meta_reset(d->vqs[i]);
299 }
300 
301 static void vhost_vring_call_reset(struct vhost_vring_call *call_ctx)
302 {
303 	call_ctx->ctx = NULL;
304 	memset(&call_ctx->producer, 0x0, sizeof(struct irq_bypass_producer));
305 }
306 
307 static void vhost_vq_reset(struct vhost_dev *dev,
308 			   struct vhost_virtqueue *vq)
309 {
310 	vq->num = 1;
311 	vq->desc = NULL;
312 	vq->avail = NULL;
313 	vq->used = NULL;
314 	vq->last_avail_idx = 0;
315 	vq->avail_idx = 0;
316 	vq->last_used_idx = 0;
317 	vq->signalled_used = 0;
318 	vq->signalled_used_valid = false;
319 	vq->used_flags = 0;
320 	vq->log_used = false;
321 	vq->log_addr = -1ull;
322 	vq->private_data = NULL;
323 	vq->acked_features = 0;
324 	vq->acked_backend_features = 0;
325 	vq->log_base = NULL;
326 	vq->error_ctx = NULL;
327 	vq->kick = NULL;
328 	vq->log_ctx = NULL;
329 	vhost_reset_is_le(vq);
330 	vhost_disable_cross_endian(vq);
331 	vq->busyloop_timeout = 0;
332 	vq->umem = NULL;
333 	vq->iotlb = NULL;
334 	vhost_vring_call_reset(&vq->call_ctx);
335 	__vhost_vq_meta_reset(vq);
336 }
337 
338 static int vhost_worker(void *data)
339 {
340 	struct vhost_dev *dev = data;
341 	struct vhost_work *work, *work_next;
342 	struct llist_node *node;
343 
344 	kthread_use_mm(dev->mm);
345 
346 	for (;;) {
347 		/* mb paired w/ kthread_stop */
348 		set_current_state(TASK_INTERRUPTIBLE);
349 
350 		if (kthread_should_stop()) {
351 			__set_current_state(TASK_RUNNING);
352 			break;
353 		}
354 
355 		node = llist_del_all(&dev->work_list);
356 		if (!node)
357 			schedule();
358 
359 		node = llist_reverse_order(node);
360 		/* make sure flag is seen after deletion */
361 		smp_wmb();
362 		llist_for_each_entry_safe(work, work_next, node, node) {
363 			clear_bit(VHOST_WORK_QUEUED, &work->flags);
364 			__set_current_state(TASK_RUNNING);
365 			kcov_remote_start_common(dev->kcov_handle);
366 			work->fn(work);
367 			kcov_remote_stop();
368 			if (need_resched())
369 				schedule();
370 		}
371 	}
372 	kthread_unuse_mm(dev->mm);
373 	return 0;
374 }
375 
376 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq)
377 {
378 	kfree(vq->indirect);
379 	vq->indirect = NULL;
380 	kfree(vq->log);
381 	vq->log = NULL;
382 	kfree(vq->heads);
383 	vq->heads = NULL;
384 }
385 
386 /* Helper to allocate iovec buffers for all vqs. */
387 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev)
388 {
389 	struct vhost_virtqueue *vq;
390 	int i;
391 
392 	for (i = 0; i < dev->nvqs; ++i) {
393 		vq = dev->vqs[i];
394 		vq->indirect = kmalloc_array(UIO_MAXIOV,
395 					     sizeof(*vq->indirect),
396 					     GFP_KERNEL);
397 		vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log),
398 					GFP_KERNEL);
399 		vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads),
400 					  GFP_KERNEL);
401 		if (!vq->indirect || !vq->log || !vq->heads)
402 			goto err_nomem;
403 	}
404 	return 0;
405 
406 err_nomem:
407 	for (; i >= 0; --i)
408 		vhost_vq_free_iovecs(dev->vqs[i]);
409 	return -ENOMEM;
410 }
411 
412 static void vhost_dev_free_iovecs(struct vhost_dev *dev)
413 {
414 	int i;
415 
416 	for (i = 0; i < dev->nvqs; ++i)
417 		vhost_vq_free_iovecs(dev->vqs[i]);
418 }
419 
420 bool vhost_exceeds_weight(struct vhost_virtqueue *vq,
421 			  int pkts, int total_len)
422 {
423 	struct vhost_dev *dev = vq->dev;
424 
425 	if ((dev->byte_weight && total_len >= dev->byte_weight) ||
426 	    pkts >= dev->weight) {
427 		vhost_poll_queue(&vq->poll);
428 		return true;
429 	}
430 
431 	return false;
432 }
433 EXPORT_SYMBOL_GPL(vhost_exceeds_weight);
434 
435 static size_t vhost_get_avail_size(struct vhost_virtqueue *vq,
436 				   unsigned int num)
437 {
438 	size_t event __maybe_unused =
439 	       vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
440 
441 	return sizeof(*vq->avail) +
442 	       sizeof(*vq->avail->ring) * num + event;
443 }
444 
445 static size_t vhost_get_used_size(struct vhost_virtqueue *vq,
446 				  unsigned int num)
447 {
448 	size_t event __maybe_unused =
449 	       vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
450 
451 	return sizeof(*vq->used) +
452 	       sizeof(*vq->used->ring) * num + event;
453 }
454 
455 static size_t vhost_get_desc_size(struct vhost_virtqueue *vq,
456 				  unsigned int num)
457 {
458 	return sizeof(*vq->desc) * num;
459 }
460 
461 void vhost_dev_init(struct vhost_dev *dev,
462 		    struct vhost_virtqueue **vqs, int nvqs,
463 		    int iov_limit, int weight, int byte_weight,
464 		    bool use_worker,
465 		    int (*msg_handler)(struct vhost_dev *dev,
466 				       struct vhost_iotlb_msg *msg))
467 {
468 	struct vhost_virtqueue *vq;
469 	int i;
470 
471 	dev->vqs = vqs;
472 	dev->nvqs = nvqs;
473 	mutex_init(&dev->mutex);
474 	dev->log_ctx = NULL;
475 	dev->umem = NULL;
476 	dev->iotlb = NULL;
477 	dev->mm = NULL;
478 	dev->worker = NULL;
479 	dev->iov_limit = iov_limit;
480 	dev->weight = weight;
481 	dev->byte_weight = byte_weight;
482 	dev->use_worker = use_worker;
483 	dev->msg_handler = msg_handler;
484 	init_llist_head(&dev->work_list);
485 	init_waitqueue_head(&dev->wait);
486 	INIT_LIST_HEAD(&dev->read_list);
487 	INIT_LIST_HEAD(&dev->pending_list);
488 	spin_lock_init(&dev->iotlb_lock);
489 
490 
491 	for (i = 0; i < dev->nvqs; ++i) {
492 		vq = dev->vqs[i];
493 		vq->log = NULL;
494 		vq->indirect = NULL;
495 		vq->heads = NULL;
496 		vq->dev = dev;
497 		mutex_init(&vq->mutex);
498 		vhost_vq_reset(dev, vq);
499 		if (vq->handle_kick)
500 			vhost_poll_init(&vq->poll, vq->handle_kick,
501 					EPOLLIN, dev);
502 	}
503 }
504 EXPORT_SYMBOL_GPL(vhost_dev_init);
505 
506 /* Caller should have device mutex */
507 long vhost_dev_check_owner(struct vhost_dev *dev)
508 {
509 	/* Are you the owner? If not, I don't think you mean to do that */
510 	return dev->mm == current->mm ? 0 : -EPERM;
511 }
512 EXPORT_SYMBOL_GPL(vhost_dev_check_owner);
513 
514 struct vhost_attach_cgroups_struct {
515 	struct vhost_work work;
516 	struct task_struct *owner;
517 	int ret;
518 };
519 
520 static void vhost_attach_cgroups_work(struct vhost_work *work)
521 {
522 	struct vhost_attach_cgroups_struct *s;
523 
524 	s = container_of(work, struct vhost_attach_cgroups_struct, work);
525 	s->ret = cgroup_attach_task_all(s->owner, current);
526 }
527 
528 static int vhost_attach_cgroups(struct vhost_dev *dev)
529 {
530 	struct vhost_attach_cgroups_struct attach;
531 
532 	attach.owner = current;
533 	vhost_work_init(&attach.work, vhost_attach_cgroups_work);
534 	vhost_work_queue(dev, &attach.work);
535 	vhost_work_flush(dev, &attach.work);
536 	return attach.ret;
537 }
538 
539 /* Caller should have device mutex */
540 bool vhost_dev_has_owner(struct vhost_dev *dev)
541 {
542 	return dev->mm;
543 }
544 EXPORT_SYMBOL_GPL(vhost_dev_has_owner);
545 
546 static void vhost_attach_mm(struct vhost_dev *dev)
547 {
548 	/* No owner, become one */
549 	if (dev->use_worker) {
550 		dev->mm = get_task_mm(current);
551 	} else {
552 		/* vDPA device does not use worker thead, so there's
553 		 * no need to hold the address space for mm. This help
554 		 * to avoid deadlock in the case of mmap() which may
555 		 * held the refcnt of the file and depends on release
556 		 * method to remove vma.
557 		 */
558 		dev->mm = current->mm;
559 		mmgrab(dev->mm);
560 	}
561 }
562 
563 static void vhost_detach_mm(struct vhost_dev *dev)
564 {
565 	if (!dev->mm)
566 		return;
567 
568 	if (dev->use_worker)
569 		mmput(dev->mm);
570 	else
571 		mmdrop(dev->mm);
572 
573 	dev->mm = NULL;
574 }
575 
576 /* Caller should have device mutex */
577 long vhost_dev_set_owner(struct vhost_dev *dev)
578 {
579 	struct task_struct *worker;
580 	int err;
581 
582 	/* Is there an owner already? */
583 	if (vhost_dev_has_owner(dev)) {
584 		err = -EBUSY;
585 		goto err_mm;
586 	}
587 
588 	vhost_attach_mm(dev);
589 
590 	dev->kcov_handle = kcov_common_handle();
591 	if (dev->use_worker) {
592 		worker = kthread_create(vhost_worker, dev,
593 					"vhost-%d", current->pid);
594 		if (IS_ERR(worker)) {
595 			err = PTR_ERR(worker);
596 			goto err_worker;
597 		}
598 
599 		dev->worker = worker;
600 		wake_up_process(worker); /* avoid contributing to loadavg */
601 
602 		err = vhost_attach_cgroups(dev);
603 		if (err)
604 			goto err_cgroup;
605 	}
606 
607 	err = vhost_dev_alloc_iovecs(dev);
608 	if (err)
609 		goto err_cgroup;
610 
611 	return 0;
612 err_cgroup:
613 	if (dev->worker) {
614 		kthread_stop(dev->worker);
615 		dev->worker = NULL;
616 	}
617 err_worker:
618 	vhost_detach_mm(dev);
619 	dev->kcov_handle = 0;
620 err_mm:
621 	return err;
622 }
623 EXPORT_SYMBOL_GPL(vhost_dev_set_owner);
624 
625 static struct vhost_iotlb *iotlb_alloc(void)
626 {
627 	return vhost_iotlb_alloc(max_iotlb_entries,
628 				 VHOST_IOTLB_FLAG_RETIRE);
629 }
630 
631 struct vhost_iotlb *vhost_dev_reset_owner_prepare(void)
632 {
633 	return iotlb_alloc();
634 }
635 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare);
636 
637 /* Caller should have device mutex */
638 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_iotlb *umem)
639 {
640 	int i;
641 
642 	vhost_dev_cleanup(dev);
643 
644 	dev->umem = umem;
645 	/* We don't need VQ locks below since vhost_dev_cleanup makes sure
646 	 * VQs aren't running.
647 	 */
648 	for (i = 0; i < dev->nvqs; ++i)
649 		dev->vqs[i]->umem = umem;
650 }
651 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner);
652 
653 void vhost_dev_stop(struct vhost_dev *dev)
654 {
655 	int i;
656 
657 	for (i = 0; i < dev->nvqs; ++i) {
658 		if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) {
659 			vhost_poll_stop(&dev->vqs[i]->poll);
660 			vhost_poll_flush(&dev->vqs[i]->poll);
661 		}
662 	}
663 }
664 EXPORT_SYMBOL_GPL(vhost_dev_stop);
665 
666 static void vhost_clear_msg(struct vhost_dev *dev)
667 {
668 	struct vhost_msg_node *node, *n;
669 
670 	spin_lock(&dev->iotlb_lock);
671 
672 	list_for_each_entry_safe(node, n, &dev->read_list, node) {
673 		list_del(&node->node);
674 		kfree(node);
675 	}
676 
677 	list_for_each_entry_safe(node, n, &dev->pending_list, node) {
678 		list_del(&node->node);
679 		kfree(node);
680 	}
681 
682 	spin_unlock(&dev->iotlb_lock);
683 }
684 
685 void vhost_dev_cleanup(struct vhost_dev *dev)
686 {
687 	int i;
688 
689 	for (i = 0; i < dev->nvqs; ++i) {
690 		if (dev->vqs[i]->error_ctx)
691 			eventfd_ctx_put(dev->vqs[i]->error_ctx);
692 		if (dev->vqs[i]->kick)
693 			fput(dev->vqs[i]->kick);
694 		if (dev->vqs[i]->call_ctx.ctx)
695 			eventfd_ctx_put(dev->vqs[i]->call_ctx.ctx);
696 		vhost_vq_reset(dev, dev->vqs[i]);
697 	}
698 	vhost_dev_free_iovecs(dev);
699 	if (dev->log_ctx)
700 		eventfd_ctx_put(dev->log_ctx);
701 	dev->log_ctx = NULL;
702 	/* No one will access memory at this point */
703 	vhost_iotlb_free(dev->umem);
704 	dev->umem = NULL;
705 	vhost_iotlb_free(dev->iotlb);
706 	dev->iotlb = NULL;
707 	vhost_clear_msg(dev);
708 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
709 	WARN_ON(!llist_empty(&dev->work_list));
710 	if (dev->worker) {
711 		kthread_stop(dev->worker);
712 		dev->worker = NULL;
713 		dev->kcov_handle = 0;
714 	}
715 	vhost_detach_mm(dev);
716 }
717 EXPORT_SYMBOL_GPL(vhost_dev_cleanup);
718 
719 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz)
720 {
721 	u64 a = addr / VHOST_PAGE_SIZE / 8;
722 
723 	/* Make sure 64 bit math will not overflow. */
724 	if (a > ULONG_MAX - (unsigned long)log_base ||
725 	    a + (unsigned long)log_base > ULONG_MAX)
726 		return false;
727 
728 	return access_ok(log_base + a,
729 			 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8);
730 }
731 
732 static bool vhost_overflow(u64 uaddr, u64 size)
733 {
734 	/* Make sure 64 bit math will not overflow. */
735 	return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size;
736 }
737 
738 /* Caller should have vq mutex and device mutex. */
739 static bool vq_memory_access_ok(void __user *log_base, struct vhost_iotlb *umem,
740 				int log_all)
741 {
742 	struct vhost_iotlb_map *map;
743 
744 	if (!umem)
745 		return false;
746 
747 	list_for_each_entry(map, &umem->list, link) {
748 		unsigned long a = map->addr;
749 
750 		if (vhost_overflow(map->addr, map->size))
751 			return false;
752 
753 
754 		if (!access_ok((void __user *)a, map->size))
755 			return false;
756 		else if (log_all && !log_access_ok(log_base,
757 						   map->start,
758 						   map->size))
759 			return false;
760 	}
761 	return true;
762 }
763 
764 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq,
765 					       u64 addr, unsigned int size,
766 					       int type)
767 {
768 	const struct vhost_iotlb_map *map = vq->meta_iotlb[type];
769 
770 	if (!map)
771 		return NULL;
772 
773 	return (void __user *)(uintptr_t)(map->addr + addr - map->start);
774 }
775 
776 /* Can we switch to this memory table? */
777 /* Caller should have device mutex but not vq mutex */
778 static bool memory_access_ok(struct vhost_dev *d, struct vhost_iotlb *umem,
779 			     int log_all)
780 {
781 	int i;
782 
783 	for (i = 0; i < d->nvqs; ++i) {
784 		bool ok;
785 		bool log;
786 
787 		mutex_lock(&d->vqs[i]->mutex);
788 		log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL);
789 		/* If ring is inactive, will check when it's enabled. */
790 		if (d->vqs[i]->private_data)
791 			ok = vq_memory_access_ok(d->vqs[i]->log_base,
792 						 umem, log);
793 		else
794 			ok = true;
795 		mutex_unlock(&d->vqs[i]->mutex);
796 		if (!ok)
797 			return false;
798 	}
799 	return true;
800 }
801 
802 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
803 			  struct iovec iov[], int iov_size, int access);
804 
805 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to,
806 			      const void *from, unsigned size)
807 {
808 	int ret;
809 
810 	if (!vq->iotlb)
811 		return __copy_to_user(to, from, size);
812 	else {
813 		/* This function should be called after iotlb
814 		 * prefetch, which means we're sure that all vq
815 		 * could be access through iotlb. So -EAGAIN should
816 		 * not happen in this case.
817 		 */
818 		struct iov_iter t;
819 		void __user *uaddr = vhost_vq_meta_fetch(vq,
820 				     (u64)(uintptr_t)to, size,
821 				     VHOST_ADDR_USED);
822 
823 		if (uaddr)
824 			return __copy_to_user(uaddr, from, size);
825 
826 		ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov,
827 				     ARRAY_SIZE(vq->iotlb_iov),
828 				     VHOST_ACCESS_WO);
829 		if (ret < 0)
830 			goto out;
831 		iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size);
832 		ret = copy_to_iter(from, size, &t);
833 		if (ret == size)
834 			ret = 0;
835 	}
836 out:
837 	return ret;
838 }
839 
840 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to,
841 				void __user *from, unsigned size)
842 {
843 	int ret;
844 
845 	if (!vq->iotlb)
846 		return __copy_from_user(to, from, size);
847 	else {
848 		/* This function should be called after iotlb
849 		 * prefetch, which means we're sure that vq
850 		 * could be access through iotlb. So -EAGAIN should
851 		 * not happen in this case.
852 		 */
853 		void __user *uaddr = vhost_vq_meta_fetch(vq,
854 				     (u64)(uintptr_t)from, size,
855 				     VHOST_ADDR_DESC);
856 		struct iov_iter f;
857 
858 		if (uaddr)
859 			return __copy_from_user(to, uaddr, size);
860 
861 		ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov,
862 				     ARRAY_SIZE(vq->iotlb_iov),
863 				     VHOST_ACCESS_RO);
864 		if (ret < 0) {
865 			vq_err(vq, "IOTLB translation failure: uaddr "
866 			       "%p size 0x%llx\n", from,
867 			       (unsigned long long) size);
868 			goto out;
869 		}
870 		iov_iter_init(&f, READ, vq->iotlb_iov, ret, size);
871 		ret = copy_from_iter(to, size, &f);
872 		if (ret == size)
873 			ret = 0;
874 	}
875 
876 out:
877 	return ret;
878 }
879 
880 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq,
881 					  void __user *addr, unsigned int size,
882 					  int type)
883 {
884 	int ret;
885 
886 	ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov,
887 			     ARRAY_SIZE(vq->iotlb_iov),
888 			     VHOST_ACCESS_RO);
889 	if (ret < 0) {
890 		vq_err(vq, "IOTLB translation failure: uaddr "
891 			"%p size 0x%llx\n", addr,
892 			(unsigned long long) size);
893 		return NULL;
894 	}
895 
896 	if (ret != 1 || vq->iotlb_iov[0].iov_len != size) {
897 		vq_err(vq, "Non atomic userspace memory access: uaddr "
898 			"%p size 0x%llx\n", addr,
899 			(unsigned long long) size);
900 		return NULL;
901 	}
902 
903 	return vq->iotlb_iov[0].iov_base;
904 }
905 
906 /* This function should be called after iotlb
907  * prefetch, which means we're sure that vq
908  * could be access through iotlb. So -EAGAIN should
909  * not happen in this case.
910  */
911 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq,
912 					    void __user *addr, unsigned int size,
913 					    int type)
914 {
915 	void __user *uaddr = vhost_vq_meta_fetch(vq,
916 			     (u64)(uintptr_t)addr, size, type);
917 	if (uaddr)
918 		return uaddr;
919 
920 	return __vhost_get_user_slow(vq, addr, size, type);
921 }
922 
923 #define vhost_put_user(vq, x, ptr)		\
924 ({ \
925 	int ret; \
926 	if (!vq->iotlb) { \
927 		ret = __put_user(x, ptr); \
928 	} else { \
929 		__typeof__(ptr) to = \
930 			(__typeof__(ptr)) __vhost_get_user(vq, ptr,	\
931 					  sizeof(*ptr), VHOST_ADDR_USED); \
932 		if (to != NULL) \
933 			ret = __put_user(x, to); \
934 		else \
935 			ret = -EFAULT;	\
936 	} \
937 	ret; \
938 })
939 
940 static inline int vhost_put_avail_event(struct vhost_virtqueue *vq)
941 {
942 	return vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx),
943 			      vhost_avail_event(vq));
944 }
945 
946 static inline int vhost_put_used(struct vhost_virtqueue *vq,
947 				 struct vring_used_elem *head, int idx,
948 				 int count)
949 {
950 	return vhost_copy_to_user(vq, vq->used->ring + idx, head,
951 				  count * sizeof(*head));
952 }
953 
954 static inline int vhost_put_used_flags(struct vhost_virtqueue *vq)
955 
956 {
957 	return vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags),
958 			      &vq->used->flags);
959 }
960 
961 static inline int vhost_put_used_idx(struct vhost_virtqueue *vq)
962 
963 {
964 	return vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx),
965 			      &vq->used->idx);
966 }
967 
968 #define vhost_get_user(vq, x, ptr, type)		\
969 ({ \
970 	int ret; \
971 	if (!vq->iotlb) { \
972 		ret = __get_user(x, ptr); \
973 	} else { \
974 		__typeof__(ptr) from = \
975 			(__typeof__(ptr)) __vhost_get_user(vq, ptr, \
976 							   sizeof(*ptr), \
977 							   type); \
978 		if (from != NULL) \
979 			ret = __get_user(x, from); \
980 		else \
981 			ret = -EFAULT; \
982 	} \
983 	ret; \
984 })
985 
986 #define vhost_get_avail(vq, x, ptr) \
987 	vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL)
988 
989 #define vhost_get_used(vq, x, ptr) \
990 	vhost_get_user(vq, x, ptr, VHOST_ADDR_USED)
991 
992 static void vhost_dev_lock_vqs(struct vhost_dev *d)
993 {
994 	int i = 0;
995 	for (i = 0; i < d->nvqs; ++i)
996 		mutex_lock_nested(&d->vqs[i]->mutex, i);
997 }
998 
999 static void vhost_dev_unlock_vqs(struct vhost_dev *d)
1000 {
1001 	int i = 0;
1002 	for (i = 0; i < d->nvqs; ++i)
1003 		mutex_unlock(&d->vqs[i]->mutex);
1004 }
1005 
1006 static inline int vhost_get_avail_idx(struct vhost_virtqueue *vq,
1007 				      __virtio16 *idx)
1008 {
1009 	return vhost_get_avail(vq, *idx, &vq->avail->idx);
1010 }
1011 
1012 static inline int vhost_get_avail_head(struct vhost_virtqueue *vq,
1013 				       __virtio16 *head, int idx)
1014 {
1015 	return vhost_get_avail(vq, *head,
1016 			       &vq->avail->ring[idx & (vq->num - 1)]);
1017 }
1018 
1019 static inline int vhost_get_avail_flags(struct vhost_virtqueue *vq,
1020 					__virtio16 *flags)
1021 {
1022 	return vhost_get_avail(vq, *flags, &vq->avail->flags);
1023 }
1024 
1025 static inline int vhost_get_used_event(struct vhost_virtqueue *vq,
1026 				       __virtio16 *event)
1027 {
1028 	return vhost_get_avail(vq, *event, vhost_used_event(vq));
1029 }
1030 
1031 static inline int vhost_get_used_idx(struct vhost_virtqueue *vq,
1032 				     __virtio16 *idx)
1033 {
1034 	return vhost_get_used(vq, *idx, &vq->used->idx);
1035 }
1036 
1037 static inline int vhost_get_desc(struct vhost_virtqueue *vq,
1038 				 struct vring_desc *desc, int idx)
1039 {
1040 	return vhost_copy_from_user(vq, desc, vq->desc + idx, sizeof(*desc));
1041 }
1042 
1043 static void vhost_iotlb_notify_vq(struct vhost_dev *d,
1044 				  struct vhost_iotlb_msg *msg)
1045 {
1046 	struct vhost_msg_node *node, *n;
1047 
1048 	spin_lock(&d->iotlb_lock);
1049 
1050 	list_for_each_entry_safe(node, n, &d->pending_list, node) {
1051 		struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb;
1052 		if (msg->iova <= vq_msg->iova &&
1053 		    msg->iova + msg->size - 1 >= vq_msg->iova &&
1054 		    vq_msg->type == VHOST_IOTLB_MISS) {
1055 			vhost_poll_queue(&node->vq->poll);
1056 			list_del(&node->node);
1057 			kfree(node);
1058 		}
1059 	}
1060 
1061 	spin_unlock(&d->iotlb_lock);
1062 }
1063 
1064 static bool umem_access_ok(u64 uaddr, u64 size, int access)
1065 {
1066 	unsigned long a = uaddr;
1067 
1068 	/* Make sure 64 bit math will not overflow. */
1069 	if (vhost_overflow(uaddr, size))
1070 		return false;
1071 
1072 	if ((access & VHOST_ACCESS_RO) &&
1073 	    !access_ok((void __user *)a, size))
1074 		return false;
1075 	if ((access & VHOST_ACCESS_WO) &&
1076 	    !access_ok((void __user *)a, size))
1077 		return false;
1078 	return true;
1079 }
1080 
1081 static int vhost_process_iotlb_msg(struct vhost_dev *dev,
1082 				   struct vhost_iotlb_msg *msg)
1083 {
1084 	int ret = 0;
1085 
1086 	mutex_lock(&dev->mutex);
1087 	vhost_dev_lock_vqs(dev);
1088 	switch (msg->type) {
1089 	case VHOST_IOTLB_UPDATE:
1090 		if (!dev->iotlb) {
1091 			ret = -EFAULT;
1092 			break;
1093 		}
1094 		if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) {
1095 			ret = -EFAULT;
1096 			break;
1097 		}
1098 		vhost_vq_meta_reset(dev);
1099 		if (vhost_iotlb_add_range(dev->iotlb, msg->iova,
1100 					  msg->iova + msg->size - 1,
1101 					  msg->uaddr, msg->perm)) {
1102 			ret = -ENOMEM;
1103 			break;
1104 		}
1105 		vhost_iotlb_notify_vq(dev, msg);
1106 		break;
1107 	case VHOST_IOTLB_INVALIDATE:
1108 		if (!dev->iotlb) {
1109 			ret = -EFAULT;
1110 			break;
1111 		}
1112 		vhost_vq_meta_reset(dev);
1113 		vhost_iotlb_del_range(dev->iotlb, msg->iova,
1114 				      msg->iova + msg->size - 1);
1115 		break;
1116 	default:
1117 		ret = -EINVAL;
1118 		break;
1119 	}
1120 
1121 	vhost_dev_unlock_vqs(dev);
1122 	mutex_unlock(&dev->mutex);
1123 
1124 	return ret;
1125 }
1126 ssize_t vhost_chr_write_iter(struct vhost_dev *dev,
1127 			     struct iov_iter *from)
1128 {
1129 	struct vhost_iotlb_msg msg;
1130 	size_t offset;
1131 	int type, ret;
1132 
1133 	ret = copy_from_iter(&type, sizeof(type), from);
1134 	if (ret != sizeof(type)) {
1135 		ret = -EINVAL;
1136 		goto done;
1137 	}
1138 
1139 	switch (type) {
1140 	case VHOST_IOTLB_MSG:
1141 		/* There maybe a hole after type for V1 message type,
1142 		 * so skip it here.
1143 		 */
1144 		offset = offsetof(struct vhost_msg, iotlb) - sizeof(int);
1145 		break;
1146 	case VHOST_IOTLB_MSG_V2:
1147 		offset = sizeof(__u32);
1148 		break;
1149 	default:
1150 		ret = -EINVAL;
1151 		goto done;
1152 	}
1153 
1154 	iov_iter_advance(from, offset);
1155 	ret = copy_from_iter(&msg, sizeof(msg), from);
1156 	if (ret != sizeof(msg)) {
1157 		ret = -EINVAL;
1158 		goto done;
1159 	}
1160 
1161 	if (dev->msg_handler)
1162 		ret = dev->msg_handler(dev, &msg);
1163 	else
1164 		ret = vhost_process_iotlb_msg(dev, &msg);
1165 	if (ret) {
1166 		ret = -EFAULT;
1167 		goto done;
1168 	}
1169 
1170 	ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) :
1171 	      sizeof(struct vhost_msg_v2);
1172 done:
1173 	return ret;
1174 }
1175 EXPORT_SYMBOL(vhost_chr_write_iter);
1176 
1177 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev,
1178 			    poll_table *wait)
1179 {
1180 	__poll_t mask = 0;
1181 
1182 	poll_wait(file, &dev->wait, wait);
1183 
1184 	if (!list_empty(&dev->read_list))
1185 		mask |= EPOLLIN | EPOLLRDNORM;
1186 
1187 	return mask;
1188 }
1189 EXPORT_SYMBOL(vhost_chr_poll);
1190 
1191 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to,
1192 			    int noblock)
1193 {
1194 	DEFINE_WAIT(wait);
1195 	struct vhost_msg_node *node;
1196 	ssize_t ret = 0;
1197 	unsigned size = sizeof(struct vhost_msg);
1198 
1199 	if (iov_iter_count(to) < size)
1200 		return 0;
1201 
1202 	while (1) {
1203 		if (!noblock)
1204 			prepare_to_wait(&dev->wait, &wait,
1205 					TASK_INTERRUPTIBLE);
1206 
1207 		node = vhost_dequeue_msg(dev, &dev->read_list);
1208 		if (node)
1209 			break;
1210 		if (noblock) {
1211 			ret = -EAGAIN;
1212 			break;
1213 		}
1214 		if (signal_pending(current)) {
1215 			ret = -ERESTARTSYS;
1216 			break;
1217 		}
1218 		if (!dev->iotlb) {
1219 			ret = -EBADFD;
1220 			break;
1221 		}
1222 
1223 		schedule();
1224 	}
1225 
1226 	if (!noblock)
1227 		finish_wait(&dev->wait, &wait);
1228 
1229 	if (node) {
1230 		struct vhost_iotlb_msg *msg;
1231 		void *start = &node->msg;
1232 
1233 		switch (node->msg.type) {
1234 		case VHOST_IOTLB_MSG:
1235 			size = sizeof(node->msg);
1236 			msg = &node->msg.iotlb;
1237 			break;
1238 		case VHOST_IOTLB_MSG_V2:
1239 			size = sizeof(node->msg_v2);
1240 			msg = &node->msg_v2.iotlb;
1241 			break;
1242 		default:
1243 			BUG();
1244 			break;
1245 		}
1246 
1247 		ret = copy_to_iter(start, size, to);
1248 		if (ret != size || msg->type != VHOST_IOTLB_MISS) {
1249 			kfree(node);
1250 			return ret;
1251 		}
1252 		vhost_enqueue_msg(dev, &dev->pending_list, node);
1253 	}
1254 
1255 	return ret;
1256 }
1257 EXPORT_SYMBOL_GPL(vhost_chr_read_iter);
1258 
1259 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access)
1260 {
1261 	struct vhost_dev *dev = vq->dev;
1262 	struct vhost_msg_node *node;
1263 	struct vhost_iotlb_msg *msg;
1264 	bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2);
1265 
1266 	node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG);
1267 	if (!node)
1268 		return -ENOMEM;
1269 
1270 	if (v2) {
1271 		node->msg_v2.type = VHOST_IOTLB_MSG_V2;
1272 		msg = &node->msg_v2.iotlb;
1273 	} else {
1274 		msg = &node->msg.iotlb;
1275 	}
1276 
1277 	msg->type = VHOST_IOTLB_MISS;
1278 	msg->iova = iova;
1279 	msg->perm = access;
1280 
1281 	vhost_enqueue_msg(dev, &dev->read_list, node);
1282 
1283 	return 0;
1284 }
1285 
1286 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num,
1287 			 vring_desc_t __user *desc,
1288 			 vring_avail_t __user *avail,
1289 			 vring_used_t __user *used)
1290 
1291 {
1292 	/* If an IOTLB device is present, the vring addresses are
1293 	 * GIOVAs. Access validation occurs at prefetch time. */
1294 	if (vq->iotlb)
1295 		return true;
1296 
1297 	return access_ok(desc, vhost_get_desc_size(vq, num)) &&
1298 	       access_ok(avail, vhost_get_avail_size(vq, num)) &&
1299 	       access_ok(used, vhost_get_used_size(vq, num));
1300 }
1301 
1302 static void vhost_vq_meta_update(struct vhost_virtqueue *vq,
1303 				 const struct vhost_iotlb_map *map,
1304 				 int type)
1305 {
1306 	int access = (type == VHOST_ADDR_USED) ?
1307 		     VHOST_ACCESS_WO : VHOST_ACCESS_RO;
1308 
1309 	if (likely(map->perm & access))
1310 		vq->meta_iotlb[type] = map;
1311 }
1312 
1313 static bool iotlb_access_ok(struct vhost_virtqueue *vq,
1314 			    int access, u64 addr, u64 len, int type)
1315 {
1316 	const struct vhost_iotlb_map *map;
1317 	struct vhost_iotlb *umem = vq->iotlb;
1318 	u64 s = 0, size, orig_addr = addr, last = addr + len - 1;
1319 
1320 	if (vhost_vq_meta_fetch(vq, addr, len, type))
1321 		return true;
1322 
1323 	while (len > s) {
1324 		map = vhost_iotlb_itree_first(umem, addr, last);
1325 		if (map == NULL || map->start > addr) {
1326 			vhost_iotlb_miss(vq, addr, access);
1327 			return false;
1328 		} else if (!(map->perm & access)) {
1329 			/* Report the possible access violation by
1330 			 * request another translation from userspace.
1331 			 */
1332 			return false;
1333 		}
1334 
1335 		size = map->size - addr + map->start;
1336 
1337 		if (orig_addr == addr && size >= len)
1338 			vhost_vq_meta_update(vq, map, type);
1339 
1340 		s += size;
1341 		addr += size;
1342 	}
1343 
1344 	return true;
1345 }
1346 
1347 int vq_meta_prefetch(struct vhost_virtqueue *vq)
1348 {
1349 	unsigned int num = vq->num;
1350 
1351 	if (!vq->iotlb)
1352 		return 1;
1353 
1354 	return iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->desc,
1355 			       vhost_get_desc_size(vq, num), VHOST_ADDR_DESC) &&
1356 	       iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->avail,
1357 			       vhost_get_avail_size(vq, num),
1358 			       VHOST_ADDR_AVAIL) &&
1359 	       iotlb_access_ok(vq, VHOST_MAP_WO, (u64)(uintptr_t)vq->used,
1360 			       vhost_get_used_size(vq, num), VHOST_ADDR_USED);
1361 }
1362 EXPORT_SYMBOL_GPL(vq_meta_prefetch);
1363 
1364 /* Can we log writes? */
1365 /* Caller should have device mutex but not vq mutex */
1366 bool vhost_log_access_ok(struct vhost_dev *dev)
1367 {
1368 	return memory_access_ok(dev, dev->umem, 1);
1369 }
1370 EXPORT_SYMBOL_GPL(vhost_log_access_ok);
1371 
1372 static bool vq_log_used_access_ok(struct vhost_virtqueue *vq,
1373 				  void __user *log_base,
1374 				  bool log_used,
1375 				  u64 log_addr)
1376 {
1377 	/* If an IOTLB device is present, log_addr is a GIOVA that
1378 	 * will never be logged by log_used(). */
1379 	if (vq->iotlb)
1380 		return true;
1381 
1382 	return !log_used || log_access_ok(log_base, log_addr,
1383 					  vhost_get_used_size(vq, vq->num));
1384 }
1385 
1386 /* Verify access for write logging. */
1387 /* Caller should have vq mutex and device mutex */
1388 static bool vq_log_access_ok(struct vhost_virtqueue *vq,
1389 			     void __user *log_base)
1390 {
1391 	return vq_memory_access_ok(log_base, vq->umem,
1392 				   vhost_has_feature(vq, VHOST_F_LOG_ALL)) &&
1393 		vq_log_used_access_ok(vq, log_base, vq->log_used, vq->log_addr);
1394 }
1395 
1396 /* Can we start vq? */
1397 /* Caller should have vq mutex and device mutex */
1398 bool vhost_vq_access_ok(struct vhost_virtqueue *vq)
1399 {
1400 	if (!vq_log_access_ok(vq, vq->log_base))
1401 		return false;
1402 
1403 	return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used);
1404 }
1405 EXPORT_SYMBOL_GPL(vhost_vq_access_ok);
1406 
1407 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
1408 {
1409 	struct vhost_memory mem, *newmem;
1410 	struct vhost_memory_region *region;
1411 	struct vhost_iotlb *newumem, *oldumem;
1412 	unsigned long size = offsetof(struct vhost_memory, regions);
1413 	int i;
1414 
1415 	if (copy_from_user(&mem, m, size))
1416 		return -EFAULT;
1417 	if (mem.padding)
1418 		return -EOPNOTSUPP;
1419 	if (mem.nregions > max_mem_regions)
1420 		return -E2BIG;
1421 	newmem = kvzalloc(struct_size(newmem, regions, mem.nregions),
1422 			GFP_KERNEL);
1423 	if (!newmem)
1424 		return -ENOMEM;
1425 
1426 	memcpy(newmem, &mem, size);
1427 	if (copy_from_user(newmem->regions, m->regions,
1428 			   flex_array_size(newmem, regions, mem.nregions))) {
1429 		kvfree(newmem);
1430 		return -EFAULT;
1431 	}
1432 
1433 	newumem = iotlb_alloc();
1434 	if (!newumem) {
1435 		kvfree(newmem);
1436 		return -ENOMEM;
1437 	}
1438 
1439 	for (region = newmem->regions;
1440 	     region < newmem->regions + mem.nregions;
1441 	     region++) {
1442 		if (vhost_iotlb_add_range(newumem,
1443 					  region->guest_phys_addr,
1444 					  region->guest_phys_addr +
1445 					  region->memory_size - 1,
1446 					  region->userspace_addr,
1447 					  VHOST_MAP_RW))
1448 			goto err;
1449 	}
1450 
1451 	if (!memory_access_ok(d, newumem, 0))
1452 		goto err;
1453 
1454 	oldumem = d->umem;
1455 	d->umem = newumem;
1456 
1457 	/* All memory accesses are done under some VQ mutex. */
1458 	for (i = 0; i < d->nvqs; ++i) {
1459 		mutex_lock(&d->vqs[i]->mutex);
1460 		d->vqs[i]->umem = newumem;
1461 		mutex_unlock(&d->vqs[i]->mutex);
1462 	}
1463 
1464 	kvfree(newmem);
1465 	vhost_iotlb_free(oldumem);
1466 	return 0;
1467 
1468 err:
1469 	vhost_iotlb_free(newumem);
1470 	kvfree(newmem);
1471 	return -EFAULT;
1472 }
1473 
1474 static long vhost_vring_set_num(struct vhost_dev *d,
1475 				struct vhost_virtqueue *vq,
1476 				void __user *argp)
1477 {
1478 	struct vhost_vring_state s;
1479 
1480 	/* Resizing ring with an active backend?
1481 	 * You don't want to do that. */
1482 	if (vq->private_data)
1483 		return -EBUSY;
1484 
1485 	if (copy_from_user(&s, argp, sizeof s))
1486 		return -EFAULT;
1487 
1488 	if (!s.num || s.num > 0xffff || (s.num & (s.num - 1)))
1489 		return -EINVAL;
1490 	vq->num = s.num;
1491 
1492 	return 0;
1493 }
1494 
1495 static long vhost_vring_set_addr(struct vhost_dev *d,
1496 				 struct vhost_virtqueue *vq,
1497 				 void __user *argp)
1498 {
1499 	struct vhost_vring_addr a;
1500 
1501 	if (copy_from_user(&a, argp, sizeof a))
1502 		return -EFAULT;
1503 	if (a.flags & ~(0x1 << VHOST_VRING_F_LOG))
1504 		return -EOPNOTSUPP;
1505 
1506 	/* For 32bit, verify that the top 32bits of the user
1507 	   data are set to zero. */
1508 	if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr ||
1509 	    (u64)(unsigned long)a.used_user_addr != a.used_user_addr ||
1510 	    (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr)
1511 		return -EFAULT;
1512 
1513 	/* Make sure it's safe to cast pointers to vring types. */
1514 	BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE);
1515 	BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE);
1516 	if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) ||
1517 	    (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) ||
1518 	    (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1)))
1519 		return -EINVAL;
1520 
1521 	/* We only verify access here if backend is configured.
1522 	 * If it is not, we don't as size might not have been setup.
1523 	 * We will verify when backend is configured. */
1524 	if (vq->private_data) {
1525 		if (!vq_access_ok(vq, vq->num,
1526 			(void __user *)(unsigned long)a.desc_user_addr,
1527 			(void __user *)(unsigned long)a.avail_user_addr,
1528 			(void __user *)(unsigned long)a.used_user_addr))
1529 			return -EINVAL;
1530 
1531 		/* Also validate log access for used ring if enabled. */
1532 		if (!vq_log_used_access_ok(vq, vq->log_base,
1533 				a.flags & (0x1 << VHOST_VRING_F_LOG),
1534 				a.log_guest_addr))
1535 			return -EINVAL;
1536 	}
1537 
1538 	vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG));
1539 	vq->desc = (void __user *)(unsigned long)a.desc_user_addr;
1540 	vq->avail = (void __user *)(unsigned long)a.avail_user_addr;
1541 	vq->log_addr = a.log_guest_addr;
1542 	vq->used = (void __user *)(unsigned long)a.used_user_addr;
1543 
1544 	return 0;
1545 }
1546 
1547 static long vhost_vring_set_num_addr(struct vhost_dev *d,
1548 				     struct vhost_virtqueue *vq,
1549 				     unsigned int ioctl,
1550 				     void __user *argp)
1551 {
1552 	long r;
1553 
1554 	mutex_lock(&vq->mutex);
1555 
1556 	switch (ioctl) {
1557 	case VHOST_SET_VRING_NUM:
1558 		r = vhost_vring_set_num(d, vq, argp);
1559 		break;
1560 	case VHOST_SET_VRING_ADDR:
1561 		r = vhost_vring_set_addr(d, vq, argp);
1562 		break;
1563 	default:
1564 		BUG();
1565 	}
1566 
1567 	mutex_unlock(&vq->mutex);
1568 
1569 	return r;
1570 }
1571 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1572 {
1573 	struct file *eventfp, *filep = NULL;
1574 	bool pollstart = false, pollstop = false;
1575 	struct eventfd_ctx *ctx = NULL;
1576 	u32 __user *idxp = argp;
1577 	struct vhost_virtqueue *vq;
1578 	struct vhost_vring_state s;
1579 	struct vhost_vring_file f;
1580 	u32 idx;
1581 	long r;
1582 
1583 	r = get_user(idx, idxp);
1584 	if (r < 0)
1585 		return r;
1586 	if (idx >= d->nvqs)
1587 		return -ENOBUFS;
1588 
1589 	idx = array_index_nospec(idx, d->nvqs);
1590 	vq = d->vqs[idx];
1591 
1592 	if (ioctl == VHOST_SET_VRING_NUM ||
1593 	    ioctl == VHOST_SET_VRING_ADDR) {
1594 		return vhost_vring_set_num_addr(d, vq, ioctl, argp);
1595 	}
1596 
1597 	mutex_lock(&vq->mutex);
1598 
1599 	switch (ioctl) {
1600 	case VHOST_SET_VRING_BASE:
1601 		/* Moving base with an active backend?
1602 		 * You don't want to do that. */
1603 		if (vq->private_data) {
1604 			r = -EBUSY;
1605 			break;
1606 		}
1607 		if (copy_from_user(&s, argp, sizeof s)) {
1608 			r = -EFAULT;
1609 			break;
1610 		}
1611 		if (s.num > 0xffff) {
1612 			r = -EINVAL;
1613 			break;
1614 		}
1615 		vq->last_avail_idx = s.num;
1616 		/* Forget the cached index value. */
1617 		vq->avail_idx = vq->last_avail_idx;
1618 		break;
1619 	case VHOST_GET_VRING_BASE:
1620 		s.index = idx;
1621 		s.num = vq->last_avail_idx;
1622 		if (copy_to_user(argp, &s, sizeof s))
1623 			r = -EFAULT;
1624 		break;
1625 	case VHOST_SET_VRING_KICK:
1626 		if (copy_from_user(&f, argp, sizeof f)) {
1627 			r = -EFAULT;
1628 			break;
1629 		}
1630 		eventfp = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_fget(f.fd);
1631 		if (IS_ERR(eventfp)) {
1632 			r = PTR_ERR(eventfp);
1633 			break;
1634 		}
1635 		if (eventfp != vq->kick) {
1636 			pollstop = (filep = vq->kick) != NULL;
1637 			pollstart = (vq->kick = eventfp) != NULL;
1638 		} else
1639 			filep = eventfp;
1640 		break;
1641 	case VHOST_SET_VRING_CALL:
1642 		if (copy_from_user(&f, argp, sizeof f)) {
1643 			r = -EFAULT;
1644 			break;
1645 		}
1646 		ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd);
1647 		if (IS_ERR(ctx)) {
1648 			r = PTR_ERR(ctx);
1649 			break;
1650 		}
1651 
1652 		swap(ctx, vq->call_ctx.ctx);
1653 		break;
1654 	case VHOST_SET_VRING_ERR:
1655 		if (copy_from_user(&f, argp, sizeof f)) {
1656 			r = -EFAULT;
1657 			break;
1658 		}
1659 		ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd);
1660 		if (IS_ERR(ctx)) {
1661 			r = PTR_ERR(ctx);
1662 			break;
1663 		}
1664 		swap(ctx, vq->error_ctx);
1665 		break;
1666 	case VHOST_SET_VRING_ENDIAN:
1667 		r = vhost_set_vring_endian(vq, argp);
1668 		break;
1669 	case VHOST_GET_VRING_ENDIAN:
1670 		r = vhost_get_vring_endian(vq, idx, argp);
1671 		break;
1672 	case VHOST_SET_VRING_BUSYLOOP_TIMEOUT:
1673 		if (copy_from_user(&s, argp, sizeof(s))) {
1674 			r = -EFAULT;
1675 			break;
1676 		}
1677 		vq->busyloop_timeout = s.num;
1678 		break;
1679 	case VHOST_GET_VRING_BUSYLOOP_TIMEOUT:
1680 		s.index = idx;
1681 		s.num = vq->busyloop_timeout;
1682 		if (copy_to_user(argp, &s, sizeof(s)))
1683 			r = -EFAULT;
1684 		break;
1685 	default:
1686 		r = -ENOIOCTLCMD;
1687 	}
1688 
1689 	if (pollstop && vq->handle_kick)
1690 		vhost_poll_stop(&vq->poll);
1691 
1692 	if (!IS_ERR_OR_NULL(ctx))
1693 		eventfd_ctx_put(ctx);
1694 	if (filep)
1695 		fput(filep);
1696 
1697 	if (pollstart && vq->handle_kick)
1698 		r = vhost_poll_start(&vq->poll, vq->kick);
1699 
1700 	mutex_unlock(&vq->mutex);
1701 
1702 	if (pollstop && vq->handle_kick)
1703 		vhost_poll_flush(&vq->poll);
1704 	return r;
1705 }
1706 EXPORT_SYMBOL_GPL(vhost_vring_ioctl);
1707 
1708 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled)
1709 {
1710 	struct vhost_iotlb *niotlb, *oiotlb;
1711 	int i;
1712 
1713 	niotlb = iotlb_alloc();
1714 	if (!niotlb)
1715 		return -ENOMEM;
1716 
1717 	oiotlb = d->iotlb;
1718 	d->iotlb = niotlb;
1719 
1720 	for (i = 0; i < d->nvqs; ++i) {
1721 		struct vhost_virtqueue *vq = d->vqs[i];
1722 
1723 		mutex_lock(&vq->mutex);
1724 		vq->iotlb = niotlb;
1725 		__vhost_vq_meta_reset(vq);
1726 		mutex_unlock(&vq->mutex);
1727 	}
1728 
1729 	vhost_iotlb_free(oiotlb);
1730 
1731 	return 0;
1732 }
1733 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb);
1734 
1735 /* Caller must have device mutex */
1736 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1737 {
1738 	struct eventfd_ctx *ctx;
1739 	u64 p;
1740 	long r;
1741 	int i, fd;
1742 
1743 	/* If you are not the owner, you can become one */
1744 	if (ioctl == VHOST_SET_OWNER) {
1745 		r = vhost_dev_set_owner(d);
1746 		goto done;
1747 	}
1748 
1749 	/* You must be the owner to do anything else */
1750 	r = vhost_dev_check_owner(d);
1751 	if (r)
1752 		goto done;
1753 
1754 	switch (ioctl) {
1755 	case VHOST_SET_MEM_TABLE:
1756 		r = vhost_set_memory(d, argp);
1757 		break;
1758 	case VHOST_SET_LOG_BASE:
1759 		if (copy_from_user(&p, argp, sizeof p)) {
1760 			r = -EFAULT;
1761 			break;
1762 		}
1763 		if ((u64)(unsigned long)p != p) {
1764 			r = -EFAULT;
1765 			break;
1766 		}
1767 		for (i = 0; i < d->nvqs; ++i) {
1768 			struct vhost_virtqueue *vq;
1769 			void __user *base = (void __user *)(unsigned long)p;
1770 			vq = d->vqs[i];
1771 			mutex_lock(&vq->mutex);
1772 			/* If ring is inactive, will check when it's enabled. */
1773 			if (vq->private_data && !vq_log_access_ok(vq, base))
1774 				r = -EFAULT;
1775 			else
1776 				vq->log_base = base;
1777 			mutex_unlock(&vq->mutex);
1778 		}
1779 		break;
1780 	case VHOST_SET_LOG_FD:
1781 		r = get_user(fd, (int __user *)argp);
1782 		if (r < 0)
1783 			break;
1784 		ctx = fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(fd);
1785 		if (IS_ERR(ctx)) {
1786 			r = PTR_ERR(ctx);
1787 			break;
1788 		}
1789 		swap(ctx, d->log_ctx);
1790 		for (i = 0; i < d->nvqs; ++i) {
1791 			mutex_lock(&d->vqs[i]->mutex);
1792 			d->vqs[i]->log_ctx = d->log_ctx;
1793 			mutex_unlock(&d->vqs[i]->mutex);
1794 		}
1795 		if (ctx)
1796 			eventfd_ctx_put(ctx);
1797 		break;
1798 	default:
1799 		r = -ENOIOCTLCMD;
1800 		break;
1801 	}
1802 done:
1803 	return r;
1804 }
1805 EXPORT_SYMBOL_GPL(vhost_dev_ioctl);
1806 
1807 /* TODO: This is really inefficient.  We need something like get_user()
1808  * (instruction directly accesses the data, with an exception table entry
1809  * returning -EFAULT). See Documentation/x86/exception-tables.rst.
1810  */
1811 static int set_bit_to_user(int nr, void __user *addr)
1812 {
1813 	unsigned long log = (unsigned long)addr;
1814 	struct page *page;
1815 	void *base;
1816 	int bit = nr + (log % PAGE_SIZE) * 8;
1817 	int r;
1818 
1819 	r = pin_user_pages_fast(log, 1, FOLL_WRITE, &page);
1820 	if (r < 0)
1821 		return r;
1822 	BUG_ON(r != 1);
1823 	base = kmap_atomic(page);
1824 	set_bit(bit, base);
1825 	kunmap_atomic(base);
1826 	unpin_user_pages_dirty_lock(&page, 1, true);
1827 	return 0;
1828 }
1829 
1830 static int log_write(void __user *log_base,
1831 		     u64 write_address, u64 write_length)
1832 {
1833 	u64 write_page = write_address / VHOST_PAGE_SIZE;
1834 	int r;
1835 
1836 	if (!write_length)
1837 		return 0;
1838 	write_length += write_address % VHOST_PAGE_SIZE;
1839 	for (;;) {
1840 		u64 base = (u64)(unsigned long)log_base;
1841 		u64 log = base + write_page / 8;
1842 		int bit = write_page % 8;
1843 		if ((u64)(unsigned long)log != log)
1844 			return -EFAULT;
1845 		r = set_bit_to_user(bit, (void __user *)(unsigned long)log);
1846 		if (r < 0)
1847 			return r;
1848 		if (write_length <= VHOST_PAGE_SIZE)
1849 			break;
1850 		write_length -= VHOST_PAGE_SIZE;
1851 		write_page += 1;
1852 	}
1853 	return r;
1854 }
1855 
1856 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len)
1857 {
1858 	struct vhost_iotlb *umem = vq->umem;
1859 	struct vhost_iotlb_map *u;
1860 	u64 start, end, l, min;
1861 	int r;
1862 	bool hit = false;
1863 
1864 	while (len) {
1865 		min = len;
1866 		/* More than one GPAs can be mapped into a single HVA. So
1867 		 * iterate all possible umems here to be safe.
1868 		 */
1869 		list_for_each_entry(u, &umem->list, link) {
1870 			if (u->addr > hva - 1 + len ||
1871 			    u->addr - 1 + u->size < hva)
1872 				continue;
1873 			start = max(u->addr, hva);
1874 			end = min(u->addr - 1 + u->size, hva - 1 + len);
1875 			l = end - start + 1;
1876 			r = log_write(vq->log_base,
1877 				      u->start + start - u->addr,
1878 				      l);
1879 			if (r < 0)
1880 				return r;
1881 			hit = true;
1882 			min = min(l, min);
1883 		}
1884 
1885 		if (!hit)
1886 			return -EFAULT;
1887 
1888 		len -= min;
1889 		hva += min;
1890 	}
1891 
1892 	return 0;
1893 }
1894 
1895 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len)
1896 {
1897 	struct iovec *iov = vq->log_iov;
1898 	int i, ret;
1899 
1900 	if (!vq->iotlb)
1901 		return log_write(vq->log_base, vq->log_addr + used_offset, len);
1902 
1903 	ret = translate_desc(vq, (uintptr_t)vq->used + used_offset,
1904 			     len, iov, 64, VHOST_ACCESS_WO);
1905 	if (ret < 0)
1906 		return ret;
1907 
1908 	for (i = 0; i < ret; i++) {
1909 		ret = log_write_hva(vq,	(uintptr_t)iov[i].iov_base,
1910 				    iov[i].iov_len);
1911 		if (ret)
1912 			return ret;
1913 	}
1914 
1915 	return 0;
1916 }
1917 
1918 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log,
1919 		    unsigned int log_num, u64 len, struct iovec *iov, int count)
1920 {
1921 	int i, r;
1922 
1923 	/* Make sure data written is seen before log. */
1924 	smp_wmb();
1925 
1926 	if (vq->iotlb) {
1927 		for (i = 0; i < count; i++) {
1928 			r = log_write_hva(vq, (uintptr_t)iov[i].iov_base,
1929 					  iov[i].iov_len);
1930 			if (r < 0)
1931 				return r;
1932 		}
1933 		return 0;
1934 	}
1935 
1936 	for (i = 0; i < log_num; ++i) {
1937 		u64 l = min(log[i].len, len);
1938 		r = log_write(vq->log_base, log[i].addr, l);
1939 		if (r < 0)
1940 			return r;
1941 		len -= l;
1942 		if (!len) {
1943 			if (vq->log_ctx)
1944 				eventfd_signal(vq->log_ctx, 1);
1945 			return 0;
1946 		}
1947 	}
1948 	/* Length written exceeds what we have stored. This is a bug. */
1949 	BUG();
1950 	return 0;
1951 }
1952 EXPORT_SYMBOL_GPL(vhost_log_write);
1953 
1954 static int vhost_update_used_flags(struct vhost_virtqueue *vq)
1955 {
1956 	void __user *used;
1957 	if (vhost_put_used_flags(vq))
1958 		return -EFAULT;
1959 	if (unlikely(vq->log_used)) {
1960 		/* Make sure the flag is seen before log. */
1961 		smp_wmb();
1962 		/* Log used flag write. */
1963 		used = &vq->used->flags;
1964 		log_used(vq, (used - (void __user *)vq->used),
1965 			 sizeof vq->used->flags);
1966 		if (vq->log_ctx)
1967 			eventfd_signal(vq->log_ctx, 1);
1968 	}
1969 	return 0;
1970 }
1971 
1972 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event)
1973 {
1974 	if (vhost_put_avail_event(vq))
1975 		return -EFAULT;
1976 	if (unlikely(vq->log_used)) {
1977 		void __user *used;
1978 		/* Make sure the event is seen before log. */
1979 		smp_wmb();
1980 		/* Log avail event write */
1981 		used = vhost_avail_event(vq);
1982 		log_used(vq, (used - (void __user *)vq->used),
1983 			 sizeof *vhost_avail_event(vq));
1984 		if (vq->log_ctx)
1985 			eventfd_signal(vq->log_ctx, 1);
1986 	}
1987 	return 0;
1988 }
1989 
1990 int vhost_vq_init_access(struct vhost_virtqueue *vq)
1991 {
1992 	__virtio16 last_used_idx;
1993 	int r;
1994 	bool is_le = vq->is_le;
1995 
1996 	if (!vq->private_data)
1997 		return 0;
1998 
1999 	vhost_init_is_le(vq);
2000 
2001 	r = vhost_update_used_flags(vq);
2002 	if (r)
2003 		goto err;
2004 	vq->signalled_used_valid = false;
2005 	if (!vq->iotlb &&
2006 	    !access_ok(&vq->used->idx, sizeof vq->used->idx)) {
2007 		r = -EFAULT;
2008 		goto err;
2009 	}
2010 	r = vhost_get_used_idx(vq, &last_used_idx);
2011 	if (r) {
2012 		vq_err(vq, "Can't access used idx at %p\n",
2013 		       &vq->used->idx);
2014 		goto err;
2015 	}
2016 	vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx);
2017 	return 0;
2018 
2019 err:
2020 	vq->is_le = is_le;
2021 	return r;
2022 }
2023 EXPORT_SYMBOL_GPL(vhost_vq_init_access);
2024 
2025 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
2026 			  struct iovec iov[], int iov_size, int access)
2027 {
2028 	const struct vhost_iotlb_map *map;
2029 	struct vhost_dev *dev = vq->dev;
2030 	struct vhost_iotlb *umem = dev->iotlb ? dev->iotlb : dev->umem;
2031 	struct iovec *_iov;
2032 	u64 s = 0;
2033 	int ret = 0;
2034 
2035 	while ((u64)len > s) {
2036 		u64 size;
2037 		if (unlikely(ret >= iov_size)) {
2038 			ret = -ENOBUFS;
2039 			break;
2040 		}
2041 
2042 		map = vhost_iotlb_itree_first(umem, addr, addr + len - 1);
2043 		if (map == NULL || map->start > addr) {
2044 			if (umem != dev->iotlb) {
2045 				ret = -EFAULT;
2046 				break;
2047 			}
2048 			ret = -EAGAIN;
2049 			break;
2050 		} else if (!(map->perm & access)) {
2051 			ret = -EPERM;
2052 			break;
2053 		}
2054 
2055 		_iov = iov + ret;
2056 		size = map->size - addr + map->start;
2057 		_iov->iov_len = min((u64)len - s, size);
2058 		_iov->iov_base = (void __user *)(unsigned long)
2059 				 (map->addr + addr - map->start);
2060 		s += size;
2061 		addr += size;
2062 		++ret;
2063 	}
2064 
2065 	if (ret == -EAGAIN)
2066 		vhost_iotlb_miss(vq, addr, access);
2067 	return ret;
2068 }
2069 
2070 /* Each buffer in the virtqueues is actually a chain of descriptors.  This
2071  * function returns the next descriptor in the chain,
2072  * or -1U if we're at the end. */
2073 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc)
2074 {
2075 	unsigned int next;
2076 
2077 	/* If this descriptor says it doesn't chain, we're done. */
2078 	if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT)))
2079 		return -1U;
2080 
2081 	/* Check they're not leading us off end of descriptors. */
2082 	next = vhost16_to_cpu(vq, READ_ONCE(desc->next));
2083 	return next;
2084 }
2085 
2086 static int get_indirect(struct vhost_virtqueue *vq,
2087 			struct iovec iov[], unsigned int iov_size,
2088 			unsigned int *out_num, unsigned int *in_num,
2089 			struct vhost_log *log, unsigned int *log_num,
2090 			struct vring_desc *indirect)
2091 {
2092 	struct vring_desc desc;
2093 	unsigned int i = 0, count, found = 0;
2094 	u32 len = vhost32_to_cpu(vq, indirect->len);
2095 	struct iov_iter from;
2096 	int ret, access;
2097 
2098 	/* Sanity check */
2099 	if (unlikely(len % sizeof desc)) {
2100 		vq_err(vq, "Invalid length in indirect descriptor: "
2101 		       "len 0x%llx not multiple of 0x%zx\n",
2102 		       (unsigned long long)len,
2103 		       sizeof desc);
2104 		return -EINVAL;
2105 	}
2106 
2107 	ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect,
2108 			     UIO_MAXIOV, VHOST_ACCESS_RO);
2109 	if (unlikely(ret < 0)) {
2110 		if (ret != -EAGAIN)
2111 			vq_err(vq, "Translation failure %d in indirect.\n", ret);
2112 		return ret;
2113 	}
2114 	iov_iter_init(&from, READ, vq->indirect, ret, len);
2115 	count = len / sizeof desc;
2116 	/* Buffers are chained via a 16 bit next field, so
2117 	 * we can have at most 2^16 of these. */
2118 	if (unlikely(count > USHRT_MAX + 1)) {
2119 		vq_err(vq, "Indirect buffer length too big: %d\n",
2120 		       indirect->len);
2121 		return -E2BIG;
2122 	}
2123 
2124 	do {
2125 		unsigned iov_count = *in_num + *out_num;
2126 		if (unlikely(++found > count)) {
2127 			vq_err(vq, "Loop detected: last one at %u "
2128 			       "indirect size %u\n",
2129 			       i, count);
2130 			return -EINVAL;
2131 		}
2132 		if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) {
2133 			vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n",
2134 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2135 			return -EINVAL;
2136 		}
2137 		if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) {
2138 			vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n",
2139 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2140 			return -EINVAL;
2141 		}
2142 
2143 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2144 			access = VHOST_ACCESS_WO;
2145 		else
2146 			access = VHOST_ACCESS_RO;
2147 
2148 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2149 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
2150 				     iov_size - iov_count, access);
2151 		if (unlikely(ret < 0)) {
2152 			if (ret != -EAGAIN)
2153 				vq_err(vq, "Translation failure %d indirect idx %d\n",
2154 					ret, i);
2155 			return ret;
2156 		}
2157 		/* If this is an input descriptor, increment that count. */
2158 		if (access == VHOST_ACCESS_WO) {
2159 			*in_num += ret;
2160 			if (unlikely(log && ret)) {
2161 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2162 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2163 				++*log_num;
2164 			}
2165 		} else {
2166 			/* If it's an output descriptor, they're all supposed
2167 			 * to come before any input descriptors. */
2168 			if (unlikely(*in_num)) {
2169 				vq_err(vq, "Indirect descriptor "
2170 				       "has out after in: idx %d\n", i);
2171 				return -EINVAL;
2172 			}
2173 			*out_num += ret;
2174 		}
2175 	} while ((i = next_desc(vq, &desc)) != -1);
2176 	return 0;
2177 }
2178 
2179 /* This looks in the virtqueue and for the first available buffer, and converts
2180  * it to an iovec for convenient access.  Since descriptors consist of some
2181  * number of output then some number of input descriptors, it's actually two
2182  * iovecs, but we pack them into one and note how many of each there were.
2183  *
2184  * This function returns the descriptor number found, or vq->num (which is
2185  * never a valid descriptor number) if none was found.  A negative code is
2186  * returned on error. */
2187 int vhost_get_vq_desc(struct vhost_virtqueue *vq,
2188 		      struct iovec iov[], unsigned int iov_size,
2189 		      unsigned int *out_num, unsigned int *in_num,
2190 		      struct vhost_log *log, unsigned int *log_num)
2191 {
2192 	struct vring_desc desc;
2193 	unsigned int i, head, found = 0;
2194 	u16 last_avail_idx;
2195 	__virtio16 avail_idx;
2196 	__virtio16 ring_head;
2197 	int ret, access;
2198 
2199 	/* Check it isn't doing very strange things with descriptor numbers. */
2200 	last_avail_idx = vq->last_avail_idx;
2201 
2202 	if (vq->avail_idx == vq->last_avail_idx) {
2203 		if (unlikely(vhost_get_avail_idx(vq, &avail_idx))) {
2204 			vq_err(vq, "Failed to access avail idx at %p\n",
2205 				&vq->avail->idx);
2206 			return -EFAULT;
2207 		}
2208 		vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2209 
2210 		if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) {
2211 			vq_err(vq, "Guest moved used index from %u to %u",
2212 				last_avail_idx, vq->avail_idx);
2213 			return -EFAULT;
2214 		}
2215 
2216 		/* If there's nothing new since last we looked, return
2217 		 * invalid.
2218 		 */
2219 		if (vq->avail_idx == last_avail_idx)
2220 			return vq->num;
2221 
2222 		/* Only get avail ring entries after they have been
2223 		 * exposed by guest.
2224 		 */
2225 		smp_rmb();
2226 	}
2227 
2228 	/* Grab the next descriptor number they're advertising, and increment
2229 	 * the index we've seen. */
2230 	if (unlikely(vhost_get_avail_head(vq, &ring_head, last_avail_idx))) {
2231 		vq_err(vq, "Failed to read head: idx %d address %p\n",
2232 		       last_avail_idx,
2233 		       &vq->avail->ring[last_avail_idx % vq->num]);
2234 		return -EFAULT;
2235 	}
2236 
2237 	head = vhost16_to_cpu(vq, ring_head);
2238 
2239 	/* If their number is silly, that's an error. */
2240 	if (unlikely(head >= vq->num)) {
2241 		vq_err(vq, "Guest says index %u > %u is available",
2242 		       head, vq->num);
2243 		return -EINVAL;
2244 	}
2245 
2246 	/* When we start there are none of either input nor output. */
2247 	*out_num = *in_num = 0;
2248 	if (unlikely(log))
2249 		*log_num = 0;
2250 
2251 	i = head;
2252 	do {
2253 		unsigned iov_count = *in_num + *out_num;
2254 		if (unlikely(i >= vq->num)) {
2255 			vq_err(vq, "Desc index is %u > %u, head = %u",
2256 			       i, vq->num, head);
2257 			return -EINVAL;
2258 		}
2259 		if (unlikely(++found > vq->num)) {
2260 			vq_err(vq, "Loop detected: last one at %u "
2261 			       "vq size %u head %u\n",
2262 			       i, vq->num, head);
2263 			return -EINVAL;
2264 		}
2265 		ret = vhost_get_desc(vq, &desc, i);
2266 		if (unlikely(ret)) {
2267 			vq_err(vq, "Failed to get descriptor: idx %d addr %p\n",
2268 			       i, vq->desc + i);
2269 			return -EFAULT;
2270 		}
2271 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) {
2272 			ret = get_indirect(vq, iov, iov_size,
2273 					   out_num, in_num,
2274 					   log, log_num, &desc);
2275 			if (unlikely(ret < 0)) {
2276 				if (ret != -EAGAIN)
2277 					vq_err(vq, "Failure detected "
2278 						"in indirect descriptor at idx %d\n", i);
2279 				return ret;
2280 			}
2281 			continue;
2282 		}
2283 
2284 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2285 			access = VHOST_ACCESS_WO;
2286 		else
2287 			access = VHOST_ACCESS_RO;
2288 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2289 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
2290 				     iov_size - iov_count, access);
2291 		if (unlikely(ret < 0)) {
2292 			if (ret != -EAGAIN)
2293 				vq_err(vq, "Translation failure %d descriptor idx %d\n",
2294 					ret, i);
2295 			return ret;
2296 		}
2297 		if (access == VHOST_ACCESS_WO) {
2298 			/* If this is an input descriptor,
2299 			 * increment that count. */
2300 			*in_num += ret;
2301 			if (unlikely(log && ret)) {
2302 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2303 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2304 				++*log_num;
2305 			}
2306 		} else {
2307 			/* If it's an output descriptor, they're all supposed
2308 			 * to come before any input descriptors. */
2309 			if (unlikely(*in_num)) {
2310 				vq_err(vq, "Descriptor has out after in: "
2311 				       "idx %d\n", i);
2312 				return -EINVAL;
2313 			}
2314 			*out_num += ret;
2315 		}
2316 	} while ((i = next_desc(vq, &desc)) != -1);
2317 
2318 	/* On success, increment avail index. */
2319 	vq->last_avail_idx++;
2320 
2321 	/* Assume notifications from guest are disabled at this point,
2322 	 * if they aren't we would need to update avail_event index. */
2323 	BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY));
2324 	return head;
2325 }
2326 EXPORT_SYMBOL_GPL(vhost_get_vq_desc);
2327 
2328 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */
2329 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n)
2330 {
2331 	vq->last_avail_idx -= n;
2332 }
2333 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc);
2334 
2335 /* After we've used one of their buffers, we tell them about it.  We'll then
2336  * want to notify the guest, using eventfd. */
2337 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len)
2338 {
2339 	struct vring_used_elem heads = {
2340 		cpu_to_vhost32(vq, head),
2341 		cpu_to_vhost32(vq, len)
2342 	};
2343 
2344 	return vhost_add_used_n(vq, &heads, 1);
2345 }
2346 EXPORT_SYMBOL_GPL(vhost_add_used);
2347 
2348 static int __vhost_add_used_n(struct vhost_virtqueue *vq,
2349 			    struct vring_used_elem *heads,
2350 			    unsigned count)
2351 {
2352 	vring_used_elem_t __user *used;
2353 	u16 old, new;
2354 	int start;
2355 
2356 	start = vq->last_used_idx & (vq->num - 1);
2357 	used = vq->used->ring + start;
2358 	if (vhost_put_used(vq, heads, start, count)) {
2359 		vq_err(vq, "Failed to write used");
2360 		return -EFAULT;
2361 	}
2362 	if (unlikely(vq->log_used)) {
2363 		/* Make sure data is seen before log. */
2364 		smp_wmb();
2365 		/* Log used ring entry write. */
2366 		log_used(vq, ((void __user *)used - (void __user *)vq->used),
2367 			 count * sizeof *used);
2368 	}
2369 	old = vq->last_used_idx;
2370 	new = (vq->last_used_idx += count);
2371 	/* If the driver never bothers to signal in a very long while,
2372 	 * used index might wrap around. If that happens, invalidate
2373 	 * signalled_used index we stored. TODO: make sure driver
2374 	 * signals at least once in 2^16 and remove this. */
2375 	if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
2376 		vq->signalled_used_valid = false;
2377 	return 0;
2378 }
2379 
2380 /* After we've used one of their buffers, we tell them about it.  We'll then
2381  * want to notify the guest, using eventfd. */
2382 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads,
2383 		     unsigned count)
2384 {
2385 	int start, n, r;
2386 
2387 	start = vq->last_used_idx & (vq->num - 1);
2388 	n = vq->num - start;
2389 	if (n < count) {
2390 		r = __vhost_add_used_n(vq, heads, n);
2391 		if (r < 0)
2392 			return r;
2393 		heads += n;
2394 		count -= n;
2395 	}
2396 	r = __vhost_add_used_n(vq, heads, count);
2397 
2398 	/* Make sure buffer is written before we update index. */
2399 	smp_wmb();
2400 	if (vhost_put_used_idx(vq)) {
2401 		vq_err(vq, "Failed to increment used idx");
2402 		return -EFAULT;
2403 	}
2404 	if (unlikely(vq->log_used)) {
2405 		/* Make sure used idx is seen before log. */
2406 		smp_wmb();
2407 		/* Log used index update. */
2408 		log_used(vq, offsetof(struct vring_used, idx),
2409 			 sizeof vq->used->idx);
2410 		if (vq->log_ctx)
2411 			eventfd_signal(vq->log_ctx, 1);
2412 	}
2413 	return r;
2414 }
2415 EXPORT_SYMBOL_GPL(vhost_add_used_n);
2416 
2417 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2418 {
2419 	__u16 old, new;
2420 	__virtio16 event;
2421 	bool v;
2422 	/* Flush out used index updates. This is paired
2423 	 * with the barrier that the Guest executes when enabling
2424 	 * interrupts. */
2425 	smp_mb();
2426 
2427 	if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) &&
2428 	    unlikely(vq->avail_idx == vq->last_avail_idx))
2429 		return true;
2430 
2431 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2432 		__virtio16 flags;
2433 		if (vhost_get_avail_flags(vq, &flags)) {
2434 			vq_err(vq, "Failed to get flags");
2435 			return true;
2436 		}
2437 		return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT));
2438 	}
2439 	old = vq->signalled_used;
2440 	v = vq->signalled_used_valid;
2441 	new = vq->signalled_used = vq->last_used_idx;
2442 	vq->signalled_used_valid = true;
2443 
2444 	if (unlikely(!v))
2445 		return true;
2446 
2447 	if (vhost_get_used_event(vq, &event)) {
2448 		vq_err(vq, "Failed to get used event idx");
2449 		return true;
2450 	}
2451 	return vring_need_event(vhost16_to_cpu(vq, event), new, old);
2452 }
2453 
2454 /* This actually signals the guest, using eventfd. */
2455 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2456 {
2457 	/* Signal the Guest tell them we used something up. */
2458 	if (vq->call_ctx.ctx && vhost_notify(dev, vq))
2459 		eventfd_signal(vq->call_ctx.ctx, 1);
2460 }
2461 EXPORT_SYMBOL_GPL(vhost_signal);
2462 
2463 /* And here's the combo meal deal.  Supersize me! */
2464 void vhost_add_used_and_signal(struct vhost_dev *dev,
2465 			       struct vhost_virtqueue *vq,
2466 			       unsigned int head, int len)
2467 {
2468 	vhost_add_used(vq, head, len);
2469 	vhost_signal(dev, vq);
2470 }
2471 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal);
2472 
2473 /* multi-buffer version of vhost_add_used_and_signal */
2474 void vhost_add_used_and_signal_n(struct vhost_dev *dev,
2475 				 struct vhost_virtqueue *vq,
2476 				 struct vring_used_elem *heads, unsigned count)
2477 {
2478 	vhost_add_used_n(vq, heads, count);
2479 	vhost_signal(dev, vq);
2480 }
2481 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n);
2482 
2483 /* return true if we're sure that avaiable ring is empty */
2484 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2485 {
2486 	__virtio16 avail_idx;
2487 	int r;
2488 
2489 	if (vq->avail_idx != vq->last_avail_idx)
2490 		return false;
2491 
2492 	r = vhost_get_avail_idx(vq, &avail_idx);
2493 	if (unlikely(r))
2494 		return false;
2495 	vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2496 
2497 	return vq->avail_idx == vq->last_avail_idx;
2498 }
2499 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty);
2500 
2501 /* OK, now we need to know about added descriptors. */
2502 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2503 {
2504 	__virtio16 avail_idx;
2505 	int r;
2506 
2507 	if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY))
2508 		return false;
2509 	vq->used_flags &= ~VRING_USED_F_NO_NOTIFY;
2510 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2511 		r = vhost_update_used_flags(vq);
2512 		if (r) {
2513 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2514 			       &vq->used->flags, r);
2515 			return false;
2516 		}
2517 	} else {
2518 		r = vhost_update_avail_event(vq, vq->avail_idx);
2519 		if (r) {
2520 			vq_err(vq, "Failed to update avail event index at %p: %d\n",
2521 			       vhost_avail_event(vq), r);
2522 			return false;
2523 		}
2524 	}
2525 	/* They could have slipped one in as we were doing that: make
2526 	 * sure it's written, then check again. */
2527 	smp_mb();
2528 	r = vhost_get_avail_idx(vq, &avail_idx);
2529 	if (r) {
2530 		vq_err(vq, "Failed to check avail idx at %p: %d\n",
2531 		       &vq->avail->idx, r);
2532 		return false;
2533 	}
2534 
2535 	return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx;
2536 }
2537 EXPORT_SYMBOL_GPL(vhost_enable_notify);
2538 
2539 /* We don't need to be notified again. */
2540 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2541 {
2542 	int r;
2543 
2544 	if (vq->used_flags & VRING_USED_F_NO_NOTIFY)
2545 		return;
2546 	vq->used_flags |= VRING_USED_F_NO_NOTIFY;
2547 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2548 		r = vhost_update_used_flags(vq);
2549 		if (r)
2550 			vq_err(vq, "Failed to disable notification at %p: %d\n",
2551 			       &vq->used->flags, r);
2552 	}
2553 }
2554 EXPORT_SYMBOL_GPL(vhost_disable_notify);
2555 
2556 /* Create a new message. */
2557 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type)
2558 {
2559 	struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL);
2560 	if (!node)
2561 		return NULL;
2562 
2563 	/* Make sure all padding within the structure is initialized. */
2564 	memset(&node->msg, 0, sizeof node->msg);
2565 	node->vq = vq;
2566 	node->msg.type = type;
2567 	return node;
2568 }
2569 EXPORT_SYMBOL_GPL(vhost_new_msg);
2570 
2571 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head,
2572 		       struct vhost_msg_node *node)
2573 {
2574 	spin_lock(&dev->iotlb_lock);
2575 	list_add_tail(&node->node, head);
2576 	spin_unlock(&dev->iotlb_lock);
2577 
2578 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
2579 }
2580 EXPORT_SYMBOL_GPL(vhost_enqueue_msg);
2581 
2582 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev,
2583 					 struct list_head *head)
2584 {
2585 	struct vhost_msg_node *node = NULL;
2586 
2587 	spin_lock(&dev->iotlb_lock);
2588 	if (!list_empty(head)) {
2589 		node = list_first_entry(head, struct vhost_msg_node,
2590 					node);
2591 		list_del(&node->node);
2592 	}
2593 	spin_unlock(&dev->iotlb_lock);
2594 
2595 	return node;
2596 }
2597 EXPORT_SYMBOL_GPL(vhost_dequeue_msg);
2598 
2599 void vhost_set_backend_features(struct vhost_dev *dev, u64 features)
2600 {
2601 	struct vhost_virtqueue *vq;
2602 	int i;
2603 
2604 	mutex_lock(&dev->mutex);
2605 	for (i = 0; i < dev->nvqs; ++i) {
2606 		vq = dev->vqs[i];
2607 		mutex_lock(&vq->mutex);
2608 		vq->acked_backend_features = features;
2609 		mutex_unlock(&vq->mutex);
2610 	}
2611 	mutex_unlock(&dev->mutex);
2612 }
2613 EXPORT_SYMBOL_GPL(vhost_set_backend_features);
2614 
2615 static int __init vhost_init(void)
2616 {
2617 	return 0;
2618 }
2619 
2620 static void __exit vhost_exit(void)
2621 {
2622 }
2623 
2624 module_init(vhost_init);
2625 module_exit(vhost_exit);
2626 
2627 MODULE_VERSION("0.0.1");
2628 MODULE_LICENSE("GPL v2");
2629 MODULE_AUTHOR("Michael S. Tsirkin");
2630 MODULE_DESCRIPTION("Host kernel accelerator for virtio");
2631