1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (C) 2009 Red Hat, Inc. 3 * Copyright (C) 2006 Rusty Russell IBM Corporation 4 * 5 * Author: Michael S. Tsirkin <mst@redhat.com> 6 * 7 * Inspiration, some code, and most witty comments come from 8 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 9 * 10 * Generic code for virtio server in host kernel. 11 */ 12 13 #include <linux/eventfd.h> 14 #include <linux/vhost.h> 15 #include <linux/uio.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_context.h> 18 #include <linux/miscdevice.h> 19 #include <linux/mutex.h> 20 #include <linux/poll.h> 21 #include <linux/file.h> 22 #include <linux/highmem.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/kthread.h> 26 #include <linux/cgroup.h> 27 #include <linux/module.h> 28 #include <linux/sort.h> 29 #include <linux/sched/mm.h> 30 #include <linux/sched/signal.h> 31 #include <linux/interval_tree_generic.h> 32 #include <linux/nospec.h> 33 34 #include "vhost.h" 35 36 static ushort max_mem_regions = 64; 37 module_param(max_mem_regions, ushort, 0444); 38 MODULE_PARM_DESC(max_mem_regions, 39 "Maximum number of memory regions in memory map. (default: 64)"); 40 static int max_iotlb_entries = 2048; 41 module_param(max_iotlb_entries, int, 0444); 42 MODULE_PARM_DESC(max_iotlb_entries, 43 "Maximum number of iotlb entries. (default: 2048)"); 44 45 enum { 46 VHOST_MEMORY_F_LOG = 0x1, 47 }; 48 49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 51 52 INTERVAL_TREE_DEFINE(struct vhost_umem_node, 53 rb, __u64, __subtree_last, 54 START, LAST, static inline, vhost_umem_interval_tree); 55 56 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 57 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 58 { 59 vq->user_be = !virtio_legacy_is_little_endian(); 60 } 61 62 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 63 { 64 vq->user_be = true; 65 } 66 67 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 68 { 69 vq->user_be = false; 70 } 71 72 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 73 { 74 struct vhost_vring_state s; 75 76 if (vq->private_data) 77 return -EBUSY; 78 79 if (copy_from_user(&s, argp, sizeof(s))) 80 return -EFAULT; 81 82 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 83 s.num != VHOST_VRING_BIG_ENDIAN) 84 return -EINVAL; 85 86 if (s.num == VHOST_VRING_BIG_ENDIAN) 87 vhost_enable_cross_endian_big(vq); 88 else 89 vhost_enable_cross_endian_little(vq); 90 91 return 0; 92 } 93 94 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 95 int __user *argp) 96 { 97 struct vhost_vring_state s = { 98 .index = idx, 99 .num = vq->user_be 100 }; 101 102 if (copy_to_user(argp, &s, sizeof(s))) 103 return -EFAULT; 104 105 return 0; 106 } 107 108 static void vhost_init_is_le(struct vhost_virtqueue *vq) 109 { 110 /* Note for legacy virtio: user_be is initialized at reset time 111 * according to the host endianness. If userspace does not set an 112 * explicit endianness, the default behavior is native endian, as 113 * expected by legacy virtio. 114 */ 115 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 116 } 117 #else 118 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 119 { 120 } 121 122 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 123 { 124 return -ENOIOCTLCMD; 125 } 126 127 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 128 int __user *argp) 129 { 130 return -ENOIOCTLCMD; 131 } 132 133 static void vhost_init_is_le(struct vhost_virtqueue *vq) 134 { 135 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 136 || virtio_legacy_is_little_endian(); 137 } 138 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 139 140 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 141 { 142 vhost_init_is_le(vq); 143 } 144 145 struct vhost_flush_struct { 146 struct vhost_work work; 147 struct completion wait_event; 148 }; 149 150 static void vhost_flush_work(struct vhost_work *work) 151 { 152 struct vhost_flush_struct *s; 153 154 s = container_of(work, struct vhost_flush_struct, work); 155 complete(&s->wait_event); 156 } 157 158 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 159 poll_table *pt) 160 { 161 struct vhost_poll *poll; 162 163 poll = container_of(pt, struct vhost_poll, table); 164 poll->wqh = wqh; 165 add_wait_queue(wqh, &poll->wait); 166 } 167 168 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 169 void *key) 170 { 171 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 172 173 if (!(key_to_poll(key) & poll->mask)) 174 return 0; 175 176 vhost_poll_queue(poll); 177 return 0; 178 } 179 180 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 181 { 182 clear_bit(VHOST_WORK_QUEUED, &work->flags); 183 work->fn = fn; 184 } 185 EXPORT_SYMBOL_GPL(vhost_work_init); 186 187 /* Init poll structure */ 188 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 189 __poll_t mask, struct vhost_dev *dev) 190 { 191 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 192 init_poll_funcptr(&poll->table, vhost_poll_func); 193 poll->mask = mask; 194 poll->dev = dev; 195 poll->wqh = NULL; 196 197 vhost_work_init(&poll->work, fn); 198 } 199 EXPORT_SYMBOL_GPL(vhost_poll_init); 200 201 /* Start polling a file. We add ourselves to file's wait queue. The caller must 202 * keep a reference to a file until after vhost_poll_stop is called. */ 203 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 204 { 205 __poll_t mask; 206 int ret = 0; 207 208 if (poll->wqh) 209 return 0; 210 211 mask = vfs_poll(file, &poll->table); 212 if (mask) 213 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 214 if (mask & EPOLLERR) { 215 vhost_poll_stop(poll); 216 ret = -EINVAL; 217 } 218 219 return ret; 220 } 221 EXPORT_SYMBOL_GPL(vhost_poll_start); 222 223 /* Stop polling a file. After this function returns, it becomes safe to drop the 224 * file reference. You must also flush afterwards. */ 225 void vhost_poll_stop(struct vhost_poll *poll) 226 { 227 if (poll->wqh) { 228 remove_wait_queue(poll->wqh, &poll->wait); 229 poll->wqh = NULL; 230 } 231 } 232 EXPORT_SYMBOL_GPL(vhost_poll_stop); 233 234 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work) 235 { 236 struct vhost_flush_struct flush; 237 238 if (dev->worker) { 239 init_completion(&flush.wait_event); 240 vhost_work_init(&flush.work, vhost_flush_work); 241 242 vhost_work_queue(dev, &flush.work); 243 wait_for_completion(&flush.wait_event); 244 } 245 } 246 EXPORT_SYMBOL_GPL(vhost_work_flush); 247 248 /* Flush any work that has been scheduled. When calling this, don't hold any 249 * locks that are also used by the callback. */ 250 void vhost_poll_flush(struct vhost_poll *poll) 251 { 252 vhost_work_flush(poll->dev, &poll->work); 253 } 254 EXPORT_SYMBOL_GPL(vhost_poll_flush); 255 256 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work) 257 { 258 if (!dev->worker) 259 return; 260 261 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 262 /* We can only add the work to the list after we're 263 * sure it was not in the list. 264 * test_and_set_bit() implies a memory barrier. 265 */ 266 llist_add(&work->node, &dev->work_list); 267 wake_up_process(dev->worker); 268 } 269 } 270 EXPORT_SYMBOL_GPL(vhost_work_queue); 271 272 /* A lockless hint for busy polling code to exit the loop */ 273 bool vhost_has_work(struct vhost_dev *dev) 274 { 275 return !llist_empty(&dev->work_list); 276 } 277 EXPORT_SYMBOL_GPL(vhost_has_work); 278 279 void vhost_poll_queue(struct vhost_poll *poll) 280 { 281 vhost_work_queue(poll->dev, &poll->work); 282 } 283 EXPORT_SYMBOL_GPL(vhost_poll_queue); 284 285 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 286 { 287 int j; 288 289 for (j = 0; j < VHOST_NUM_ADDRS; j++) 290 vq->meta_iotlb[j] = NULL; 291 } 292 293 static void vhost_vq_meta_reset(struct vhost_dev *d) 294 { 295 int i; 296 297 for (i = 0; i < d->nvqs; ++i) 298 __vhost_vq_meta_reset(d->vqs[i]); 299 } 300 301 static void vhost_vq_reset(struct vhost_dev *dev, 302 struct vhost_virtqueue *vq) 303 { 304 vq->num = 1; 305 vq->desc = NULL; 306 vq->avail = NULL; 307 vq->used = NULL; 308 vq->last_avail_idx = 0; 309 vq->avail_idx = 0; 310 vq->last_used_idx = 0; 311 vq->signalled_used = 0; 312 vq->signalled_used_valid = false; 313 vq->used_flags = 0; 314 vq->log_used = false; 315 vq->log_addr = -1ull; 316 vq->private_data = NULL; 317 vq->acked_features = 0; 318 vq->acked_backend_features = 0; 319 vq->log_base = NULL; 320 vq->error_ctx = NULL; 321 vq->kick = NULL; 322 vq->call_ctx = NULL; 323 vq->log_ctx = NULL; 324 vhost_reset_is_le(vq); 325 vhost_disable_cross_endian(vq); 326 vq->busyloop_timeout = 0; 327 vq->umem = NULL; 328 vq->iotlb = NULL; 329 __vhost_vq_meta_reset(vq); 330 } 331 332 static int vhost_worker(void *data) 333 { 334 struct vhost_dev *dev = data; 335 struct vhost_work *work, *work_next; 336 struct llist_node *node; 337 mm_segment_t oldfs = get_fs(); 338 339 set_fs(USER_DS); 340 use_mm(dev->mm); 341 342 for (;;) { 343 /* mb paired w/ kthread_stop */ 344 set_current_state(TASK_INTERRUPTIBLE); 345 346 if (kthread_should_stop()) { 347 __set_current_state(TASK_RUNNING); 348 break; 349 } 350 351 node = llist_del_all(&dev->work_list); 352 if (!node) 353 schedule(); 354 355 node = llist_reverse_order(node); 356 /* make sure flag is seen after deletion */ 357 smp_wmb(); 358 llist_for_each_entry_safe(work, work_next, node, node) { 359 clear_bit(VHOST_WORK_QUEUED, &work->flags); 360 __set_current_state(TASK_RUNNING); 361 work->fn(work); 362 if (need_resched()) 363 schedule(); 364 } 365 } 366 unuse_mm(dev->mm); 367 set_fs(oldfs); 368 return 0; 369 } 370 371 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 372 { 373 kfree(vq->indirect); 374 vq->indirect = NULL; 375 kfree(vq->log); 376 vq->log = NULL; 377 kfree(vq->heads); 378 vq->heads = NULL; 379 } 380 381 /* Helper to allocate iovec buffers for all vqs. */ 382 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 383 { 384 struct vhost_virtqueue *vq; 385 int i; 386 387 for (i = 0; i < dev->nvqs; ++i) { 388 vq = dev->vqs[i]; 389 vq->indirect = kmalloc_array(UIO_MAXIOV, 390 sizeof(*vq->indirect), 391 GFP_KERNEL); 392 vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log), 393 GFP_KERNEL); 394 vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads), 395 GFP_KERNEL); 396 if (!vq->indirect || !vq->log || !vq->heads) 397 goto err_nomem; 398 } 399 return 0; 400 401 err_nomem: 402 for (; i >= 0; --i) 403 vhost_vq_free_iovecs(dev->vqs[i]); 404 return -ENOMEM; 405 } 406 407 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 408 { 409 int i; 410 411 for (i = 0; i < dev->nvqs; ++i) 412 vhost_vq_free_iovecs(dev->vqs[i]); 413 } 414 415 bool vhost_exceeds_weight(struct vhost_virtqueue *vq, 416 int pkts, int total_len) 417 { 418 struct vhost_dev *dev = vq->dev; 419 420 if ((dev->byte_weight && total_len >= dev->byte_weight) || 421 pkts >= dev->weight) { 422 vhost_poll_queue(&vq->poll); 423 return true; 424 } 425 426 return false; 427 } 428 EXPORT_SYMBOL_GPL(vhost_exceeds_weight); 429 430 void vhost_dev_init(struct vhost_dev *dev, 431 struct vhost_virtqueue **vqs, int nvqs, 432 int iov_limit, int weight, int byte_weight) 433 { 434 struct vhost_virtqueue *vq; 435 int i; 436 437 dev->vqs = vqs; 438 dev->nvqs = nvqs; 439 mutex_init(&dev->mutex); 440 dev->log_ctx = NULL; 441 dev->umem = NULL; 442 dev->iotlb = NULL; 443 dev->mm = NULL; 444 dev->worker = NULL; 445 dev->iov_limit = iov_limit; 446 dev->weight = weight; 447 dev->byte_weight = byte_weight; 448 init_llist_head(&dev->work_list); 449 init_waitqueue_head(&dev->wait); 450 INIT_LIST_HEAD(&dev->read_list); 451 INIT_LIST_HEAD(&dev->pending_list); 452 spin_lock_init(&dev->iotlb_lock); 453 454 455 for (i = 0; i < dev->nvqs; ++i) { 456 vq = dev->vqs[i]; 457 vq->log = NULL; 458 vq->indirect = NULL; 459 vq->heads = NULL; 460 vq->dev = dev; 461 mutex_init(&vq->mutex); 462 vhost_vq_reset(dev, vq); 463 if (vq->handle_kick) 464 vhost_poll_init(&vq->poll, vq->handle_kick, 465 EPOLLIN, dev); 466 } 467 } 468 EXPORT_SYMBOL_GPL(vhost_dev_init); 469 470 /* Caller should have device mutex */ 471 long vhost_dev_check_owner(struct vhost_dev *dev) 472 { 473 /* Are you the owner? If not, I don't think you mean to do that */ 474 return dev->mm == current->mm ? 0 : -EPERM; 475 } 476 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 477 478 struct vhost_attach_cgroups_struct { 479 struct vhost_work work; 480 struct task_struct *owner; 481 int ret; 482 }; 483 484 static void vhost_attach_cgroups_work(struct vhost_work *work) 485 { 486 struct vhost_attach_cgroups_struct *s; 487 488 s = container_of(work, struct vhost_attach_cgroups_struct, work); 489 s->ret = cgroup_attach_task_all(s->owner, current); 490 } 491 492 static int vhost_attach_cgroups(struct vhost_dev *dev) 493 { 494 struct vhost_attach_cgroups_struct attach; 495 496 attach.owner = current; 497 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 498 vhost_work_queue(dev, &attach.work); 499 vhost_work_flush(dev, &attach.work); 500 return attach.ret; 501 } 502 503 /* Caller should have device mutex */ 504 bool vhost_dev_has_owner(struct vhost_dev *dev) 505 { 506 return dev->mm; 507 } 508 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 509 510 /* Caller should have device mutex */ 511 long vhost_dev_set_owner(struct vhost_dev *dev) 512 { 513 struct task_struct *worker; 514 int err; 515 516 /* Is there an owner already? */ 517 if (vhost_dev_has_owner(dev)) { 518 err = -EBUSY; 519 goto err_mm; 520 } 521 522 /* No owner, become one */ 523 dev->mm = get_task_mm(current); 524 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid); 525 if (IS_ERR(worker)) { 526 err = PTR_ERR(worker); 527 goto err_worker; 528 } 529 530 dev->worker = worker; 531 wake_up_process(worker); /* avoid contributing to loadavg */ 532 533 err = vhost_attach_cgroups(dev); 534 if (err) 535 goto err_cgroup; 536 537 err = vhost_dev_alloc_iovecs(dev); 538 if (err) 539 goto err_cgroup; 540 541 return 0; 542 err_cgroup: 543 kthread_stop(worker); 544 dev->worker = NULL; 545 err_worker: 546 if (dev->mm) 547 mmput(dev->mm); 548 dev->mm = NULL; 549 err_mm: 550 return err; 551 } 552 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 553 554 struct vhost_umem *vhost_dev_reset_owner_prepare(void) 555 { 556 return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL); 557 } 558 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 559 560 /* Caller should have device mutex */ 561 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem) 562 { 563 int i; 564 565 vhost_dev_cleanup(dev); 566 567 /* Restore memory to default empty mapping. */ 568 INIT_LIST_HEAD(&umem->umem_list); 569 dev->umem = umem; 570 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 571 * VQs aren't running. 572 */ 573 for (i = 0; i < dev->nvqs; ++i) 574 dev->vqs[i]->umem = umem; 575 } 576 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 577 578 void vhost_dev_stop(struct vhost_dev *dev) 579 { 580 int i; 581 582 for (i = 0; i < dev->nvqs; ++i) { 583 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) { 584 vhost_poll_stop(&dev->vqs[i]->poll); 585 vhost_poll_flush(&dev->vqs[i]->poll); 586 } 587 } 588 } 589 EXPORT_SYMBOL_GPL(vhost_dev_stop); 590 591 static void vhost_umem_free(struct vhost_umem *umem, 592 struct vhost_umem_node *node) 593 { 594 vhost_umem_interval_tree_remove(node, &umem->umem_tree); 595 list_del(&node->link); 596 kfree(node); 597 umem->numem--; 598 } 599 600 static void vhost_umem_clean(struct vhost_umem *umem) 601 { 602 struct vhost_umem_node *node, *tmp; 603 604 if (!umem) 605 return; 606 607 list_for_each_entry_safe(node, tmp, &umem->umem_list, link) 608 vhost_umem_free(umem, node); 609 610 kvfree(umem); 611 } 612 613 static void vhost_clear_msg(struct vhost_dev *dev) 614 { 615 struct vhost_msg_node *node, *n; 616 617 spin_lock(&dev->iotlb_lock); 618 619 list_for_each_entry_safe(node, n, &dev->read_list, node) { 620 list_del(&node->node); 621 kfree(node); 622 } 623 624 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 625 list_del(&node->node); 626 kfree(node); 627 } 628 629 spin_unlock(&dev->iotlb_lock); 630 } 631 632 void vhost_dev_cleanup(struct vhost_dev *dev) 633 { 634 int i; 635 636 for (i = 0; i < dev->nvqs; ++i) { 637 if (dev->vqs[i]->error_ctx) 638 eventfd_ctx_put(dev->vqs[i]->error_ctx); 639 if (dev->vqs[i]->kick) 640 fput(dev->vqs[i]->kick); 641 if (dev->vqs[i]->call_ctx) 642 eventfd_ctx_put(dev->vqs[i]->call_ctx); 643 vhost_vq_reset(dev, dev->vqs[i]); 644 } 645 vhost_dev_free_iovecs(dev); 646 if (dev->log_ctx) 647 eventfd_ctx_put(dev->log_ctx); 648 dev->log_ctx = NULL; 649 /* No one will access memory at this point */ 650 vhost_umem_clean(dev->umem); 651 dev->umem = NULL; 652 vhost_umem_clean(dev->iotlb); 653 dev->iotlb = NULL; 654 vhost_clear_msg(dev); 655 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 656 WARN_ON(!llist_empty(&dev->work_list)); 657 if (dev->worker) { 658 kthread_stop(dev->worker); 659 dev->worker = NULL; 660 } 661 if (dev->mm) 662 mmput(dev->mm); 663 dev->mm = NULL; 664 } 665 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 666 667 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 668 { 669 u64 a = addr / VHOST_PAGE_SIZE / 8; 670 671 /* Make sure 64 bit math will not overflow. */ 672 if (a > ULONG_MAX - (unsigned long)log_base || 673 a + (unsigned long)log_base > ULONG_MAX) 674 return false; 675 676 return access_ok(log_base + a, 677 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 678 } 679 680 static bool vhost_overflow(u64 uaddr, u64 size) 681 { 682 /* Make sure 64 bit math will not overflow. */ 683 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size; 684 } 685 686 /* Caller should have vq mutex and device mutex. */ 687 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem, 688 int log_all) 689 { 690 struct vhost_umem_node *node; 691 692 if (!umem) 693 return false; 694 695 list_for_each_entry(node, &umem->umem_list, link) { 696 unsigned long a = node->userspace_addr; 697 698 if (vhost_overflow(node->userspace_addr, node->size)) 699 return false; 700 701 702 if (!access_ok((void __user *)a, 703 node->size)) 704 return false; 705 else if (log_all && !log_access_ok(log_base, 706 node->start, 707 node->size)) 708 return false; 709 } 710 return true; 711 } 712 713 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 714 u64 addr, unsigned int size, 715 int type) 716 { 717 const struct vhost_umem_node *node = vq->meta_iotlb[type]; 718 719 if (!node) 720 return NULL; 721 722 return (void *)(uintptr_t)(node->userspace_addr + addr - node->start); 723 } 724 725 /* Can we switch to this memory table? */ 726 /* Caller should have device mutex but not vq mutex */ 727 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem, 728 int log_all) 729 { 730 int i; 731 732 for (i = 0; i < d->nvqs; ++i) { 733 bool ok; 734 bool log; 735 736 mutex_lock(&d->vqs[i]->mutex); 737 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 738 /* If ring is inactive, will check when it's enabled. */ 739 if (d->vqs[i]->private_data) 740 ok = vq_memory_access_ok(d->vqs[i]->log_base, 741 umem, log); 742 else 743 ok = true; 744 mutex_unlock(&d->vqs[i]->mutex); 745 if (!ok) 746 return false; 747 } 748 return true; 749 } 750 751 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 752 struct iovec iov[], int iov_size, int access); 753 754 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 755 const void *from, unsigned size) 756 { 757 int ret; 758 759 if (!vq->iotlb) 760 return __copy_to_user(to, from, size); 761 else { 762 /* This function should be called after iotlb 763 * prefetch, which means we're sure that all vq 764 * could be access through iotlb. So -EAGAIN should 765 * not happen in this case. 766 */ 767 struct iov_iter t; 768 void __user *uaddr = vhost_vq_meta_fetch(vq, 769 (u64)(uintptr_t)to, size, 770 VHOST_ADDR_USED); 771 772 if (uaddr) 773 return __copy_to_user(uaddr, from, size); 774 775 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 776 ARRAY_SIZE(vq->iotlb_iov), 777 VHOST_ACCESS_WO); 778 if (ret < 0) 779 goto out; 780 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size); 781 ret = copy_to_iter(from, size, &t); 782 if (ret == size) 783 ret = 0; 784 } 785 out: 786 return ret; 787 } 788 789 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 790 void __user *from, unsigned size) 791 { 792 int ret; 793 794 if (!vq->iotlb) 795 return __copy_from_user(to, from, size); 796 else { 797 /* This function should be called after iotlb 798 * prefetch, which means we're sure that vq 799 * could be access through iotlb. So -EAGAIN should 800 * not happen in this case. 801 */ 802 void __user *uaddr = vhost_vq_meta_fetch(vq, 803 (u64)(uintptr_t)from, size, 804 VHOST_ADDR_DESC); 805 struct iov_iter f; 806 807 if (uaddr) 808 return __copy_from_user(to, uaddr, size); 809 810 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 811 ARRAY_SIZE(vq->iotlb_iov), 812 VHOST_ACCESS_RO); 813 if (ret < 0) { 814 vq_err(vq, "IOTLB translation failure: uaddr " 815 "%p size 0x%llx\n", from, 816 (unsigned long long) size); 817 goto out; 818 } 819 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size); 820 ret = copy_from_iter(to, size, &f); 821 if (ret == size) 822 ret = 0; 823 } 824 825 out: 826 return ret; 827 } 828 829 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 830 void __user *addr, unsigned int size, 831 int type) 832 { 833 int ret; 834 835 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 836 ARRAY_SIZE(vq->iotlb_iov), 837 VHOST_ACCESS_RO); 838 if (ret < 0) { 839 vq_err(vq, "IOTLB translation failure: uaddr " 840 "%p size 0x%llx\n", addr, 841 (unsigned long long) size); 842 return NULL; 843 } 844 845 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 846 vq_err(vq, "Non atomic userspace memory access: uaddr " 847 "%p size 0x%llx\n", addr, 848 (unsigned long long) size); 849 return NULL; 850 } 851 852 return vq->iotlb_iov[0].iov_base; 853 } 854 855 /* This function should be called after iotlb 856 * prefetch, which means we're sure that vq 857 * could be access through iotlb. So -EAGAIN should 858 * not happen in this case. 859 */ 860 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 861 void *addr, unsigned int size, 862 int type) 863 { 864 void __user *uaddr = vhost_vq_meta_fetch(vq, 865 (u64)(uintptr_t)addr, size, type); 866 if (uaddr) 867 return uaddr; 868 869 return __vhost_get_user_slow(vq, addr, size, type); 870 } 871 872 #define vhost_put_user(vq, x, ptr) \ 873 ({ \ 874 int ret = -EFAULT; \ 875 if (!vq->iotlb) { \ 876 ret = __put_user(x, ptr); \ 877 } else { \ 878 __typeof__(ptr) to = \ 879 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 880 sizeof(*ptr), VHOST_ADDR_USED); \ 881 if (to != NULL) \ 882 ret = __put_user(x, to); \ 883 else \ 884 ret = -EFAULT; \ 885 } \ 886 ret; \ 887 }) 888 889 #define vhost_get_user(vq, x, ptr, type) \ 890 ({ \ 891 int ret; \ 892 if (!vq->iotlb) { \ 893 ret = __get_user(x, ptr); \ 894 } else { \ 895 __typeof__(ptr) from = \ 896 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 897 sizeof(*ptr), \ 898 type); \ 899 if (from != NULL) \ 900 ret = __get_user(x, from); \ 901 else \ 902 ret = -EFAULT; \ 903 } \ 904 ret; \ 905 }) 906 907 #define vhost_get_avail(vq, x, ptr) \ 908 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 909 910 #define vhost_get_used(vq, x, ptr) \ 911 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 912 913 static void vhost_dev_lock_vqs(struct vhost_dev *d) 914 { 915 int i = 0; 916 for (i = 0; i < d->nvqs; ++i) 917 mutex_lock_nested(&d->vqs[i]->mutex, i); 918 } 919 920 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 921 { 922 int i = 0; 923 for (i = 0; i < d->nvqs; ++i) 924 mutex_unlock(&d->vqs[i]->mutex); 925 } 926 927 static int vhost_new_umem_range(struct vhost_umem *umem, 928 u64 start, u64 size, u64 end, 929 u64 userspace_addr, int perm) 930 { 931 struct vhost_umem_node *tmp, *node; 932 933 if (!size) 934 return -EFAULT; 935 936 node = kmalloc(sizeof(*node), GFP_ATOMIC); 937 if (!node) 938 return -ENOMEM; 939 940 if (umem->numem == max_iotlb_entries) { 941 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link); 942 vhost_umem_free(umem, tmp); 943 } 944 945 node->start = start; 946 node->size = size; 947 node->last = end; 948 node->userspace_addr = userspace_addr; 949 node->perm = perm; 950 INIT_LIST_HEAD(&node->link); 951 list_add_tail(&node->link, &umem->umem_list); 952 vhost_umem_interval_tree_insert(node, &umem->umem_tree); 953 umem->numem++; 954 955 return 0; 956 } 957 958 static void vhost_del_umem_range(struct vhost_umem *umem, 959 u64 start, u64 end) 960 { 961 struct vhost_umem_node *node; 962 963 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 964 start, end))) 965 vhost_umem_free(umem, node); 966 } 967 968 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 969 struct vhost_iotlb_msg *msg) 970 { 971 struct vhost_msg_node *node, *n; 972 973 spin_lock(&d->iotlb_lock); 974 975 list_for_each_entry_safe(node, n, &d->pending_list, node) { 976 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 977 if (msg->iova <= vq_msg->iova && 978 msg->iova + msg->size - 1 >= vq_msg->iova && 979 vq_msg->type == VHOST_IOTLB_MISS) { 980 vhost_poll_queue(&node->vq->poll); 981 list_del(&node->node); 982 kfree(node); 983 } 984 } 985 986 spin_unlock(&d->iotlb_lock); 987 } 988 989 static bool umem_access_ok(u64 uaddr, u64 size, int access) 990 { 991 unsigned long a = uaddr; 992 993 /* Make sure 64 bit math will not overflow. */ 994 if (vhost_overflow(uaddr, size)) 995 return false; 996 997 if ((access & VHOST_ACCESS_RO) && 998 !access_ok((void __user *)a, size)) 999 return false; 1000 if ((access & VHOST_ACCESS_WO) && 1001 !access_ok((void __user *)a, size)) 1002 return false; 1003 return true; 1004 } 1005 1006 static int vhost_process_iotlb_msg(struct vhost_dev *dev, 1007 struct vhost_iotlb_msg *msg) 1008 { 1009 int ret = 0; 1010 1011 mutex_lock(&dev->mutex); 1012 vhost_dev_lock_vqs(dev); 1013 switch (msg->type) { 1014 case VHOST_IOTLB_UPDATE: 1015 if (!dev->iotlb) { 1016 ret = -EFAULT; 1017 break; 1018 } 1019 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 1020 ret = -EFAULT; 1021 break; 1022 } 1023 vhost_vq_meta_reset(dev); 1024 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size, 1025 msg->iova + msg->size - 1, 1026 msg->uaddr, msg->perm)) { 1027 ret = -ENOMEM; 1028 break; 1029 } 1030 vhost_iotlb_notify_vq(dev, msg); 1031 break; 1032 case VHOST_IOTLB_INVALIDATE: 1033 if (!dev->iotlb) { 1034 ret = -EFAULT; 1035 break; 1036 } 1037 vhost_vq_meta_reset(dev); 1038 vhost_del_umem_range(dev->iotlb, msg->iova, 1039 msg->iova + msg->size - 1); 1040 break; 1041 default: 1042 ret = -EINVAL; 1043 break; 1044 } 1045 1046 vhost_dev_unlock_vqs(dev); 1047 mutex_unlock(&dev->mutex); 1048 1049 return ret; 1050 } 1051 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1052 struct iov_iter *from) 1053 { 1054 struct vhost_iotlb_msg msg; 1055 size_t offset; 1056 int type, ret; 1057 1058 ret = copy_from_iter(&type, sizeof(type), from); 1059 if (ret != sizeof(type)) { 1060 ret = -EINVAL; 1061 goto done; 1062 } 1063 1064 switch (type) { 1065 case VHOST_IOTLB_MSG: 1066 /* There maybe a hole after type for V1 message type, 1067 * so skip it here. 1068 */ 1069 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int); 1070 break; 1071 case VHOST_IOTLB_MSG_V2: 1072 offset = sizeof(__u32); 1073 break; 1074 default: 1075 ret = -EINVAL; 1076 goto done; 1077 } 1078 1079 iov_iter_advance(from, offset); 1080 ret = copy_from_iter(&msg, sizeof(msg), from); 1081 if (ret != sizeof(msg)) { 1082 ret = -EINVAL; 1083 goto done; 1084 } 1085 if (vhost_process_iotlb_msg(dev, &msg)) { 1086 ret = -EFAULT; 1087 goto done; 1088 } 1089 1090 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) : 1091 sizeof(struct vhost_msg_v2); 1092 done: 1093 return ret; 1094 } 1095 EXPORT_SYMBOL(vhost_chr_write_iter); 1096 1097 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1098 poll_table *wait) 1099 { 1100 __poll_t mask = 0; 1101 1102 poll_wait(file, &dev->wait, wait); 1103 1104 if (!list_empty(&dev->read_list)) 1105 mask |= EPOLLIN | EPOLLRDNORM; 1106 1107 return mask; 1108 } 1109 EXPORT_SYMBOL(vhost_chr_poll); 1110 1111 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1112 int noblock) 1113 { 1114 DEFINE_WAIT(wait); 1115 struct vhost_msg_node *node; 1116 ssize_t ret = 0; 1117 unsigned size = sizeof(struct vhost_msg); 1118 1119 if (iov_iter_count(to) < size) 1120 return 0; 1121 1122 while (1) { 1123 if (!noblock) 1124 prepare_to_wait(&dev->wait, &wait, 1125 TASK_INTERRUPTIBLE); 1126 1127 node = vhost_dequeue_msg(dev, &dev->read_list); 1128 if (node) 1129 break; 1130 if (noblock) { 1131 ret = -EAGAIN; 1132 break; 1133 } 1134 if (signal_pending(current)) { 1135 ret = -ERESTARTSYS; 1136 break; 1137 } 1138 if (!dev->iotlb) { 1139 ret = -EBADFD; 1140 break; 1141 } 1142 1143 schedule(); 1144 } 1145 1146 if (!noblock) 1147 finish_wait(&dev->wait, &wait); 1148 1149 if (node) { 1150 struct vhost_iotlb_msg *msg; 1151 void *start = &node->msg; 1152 1153 switch (node->msg.type) { 1154 case VHOST_IOTLB_MSG: 1155 size = sizeof(node->msg); 1156 msg = &node->msg.iotlb; 1157 break; 1158 case VHOST_IOTLB_MSG_V2: 1159 size = sizeof(node->msg_v2); 1160 msg = &node->msg_v2.iotlb; 1161 break; 1162 default: 1163 BUG(); 1164 break; 1165 } 1166 1167 ret = copy_to_iter(start, size, to); 1168 if (ret != size || msg->type != VHOST_IOTLB_MISS) { 1169 kfree(node); 1170 return ret; 1171 } 1172 vhost_enqueue_msg(dev, &dev->pending_list, node); 1173 } 1174 1175 return ret; 1176 } 1177 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1178 1179 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1180 { 1181 struct vhost_dev *dev = vq->dev; 1182 struct vhost_msg_node *node; 1183 struct vhost_iotlb_msg *msg; 1184 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2); 1185 1186 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG); 1187 if (!node) 1188 return -ENOMEM; 1189 1190 if (v2) { 1191 node->msg_v2.type = VHOST_IOTLB_MSG_V2; 1192 msg = &node->msg_v2.iotlb; 1193 } else { 1194 msg = &node->msg.iotlb; 1195 } 1196 1197 msg->type = VHOST_IOTLB_MISS; 1198 msg->iova = iova; 1199 msg->perm = access; 1200 1201 vhost_enqueue_msg(dev, &dev->read_list, node); 1202 1203 return 0; 1204 } 1205 1206 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1207 struct vring_desc __user *desc, 1208 struct vring_avail __user *avail, 1209 struct vring_used __user *used) 1210 1211 { 1212 size_t s __maybe_unused = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1213 1214 return access_ok(desc, num * sizeof *desc) && 1215 access_ok(avail, 1216 sizeof *avail + num * sizeof *avail->ring + s) && 1217 access_ok(used, 1218 sizeof *used + num * sizeof *used->ring + s); 1219 } 1220 1221 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1222 const struct vhost_umem_node *node, 1223 int type) 1224 { 1225 int access = (type == VHOST_ADDR_USED) ? 1226 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1227 1228 if (likely(node->perm & access)) 1229 vq->meta_iotlb[type] = node; 1230 } 1231 1232 static bool iotlb_access_ok(struct vhost_virtqueue *vq, 1233 int access, u64 addr, u64 len, int type) 1234 { 1235 const struct vhost_umem_node *node; 1236 struct vhost_umem *umem = vq->iotlb; 1237 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1238 1239 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1240 return true; 1241 1242 while (len > s) { 1243 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1244 addr, 1245 last); 1246 if (node == NULL || node->start > addr) { 1247 vhost_iotlb_miss(vq, addr, access); 1248 return false; 1249 } else if (!(node->perm & access)) { 1250 /* Report the possible access violation by 1251 * request another translation from userspace. 1252 */ 1253 return false; 1254 } 1255 1256 size = node->size - addr + node->start; 1257 1258 if (orig_addr == addr && size >= len) 1259 vhost_vq_meta_update(vq, node, type); 1260 1261 s += size; 1262 addr += size; 1263 } 1264 1265 return true; 1266 } 1267 1268 int vq_iotlb_prefetch(struct vhost_virtqueue *vq) 1269 { 1270 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1271 unsigned int num = vq->num; 1272 1273 if (!vq->iotlb) 1274 return 1; 1275 1276 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc, 1277 num * sizeof(*vq->desc), VHOST_ADDR_DESC) && 1278 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail, 1279 sizeof *vq->avail + 1280 num * sizeof(*vq->avail->ring) + s, 1281 VHOST_ADDR_AVAIL) && 1282 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used, 1283 sizeof *vq->used + 1284 num * sizeof(*vq->used->ring) + s, 1285 VHOST_ADDR_USED); 1286 } 1287 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch); 1288 1289 /* Can we log writes? */ 1290 /* Caller should have device mutex but not vq mutex */ 1291 bool vhost_log_access_ok(struct vhost_dev *dev) 1292 { 1293 return memory_access_ok(dev, dev->umem, 1); 1294 } 1295 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1296 1297 /* Verify access for write logging. */ 1298 /* Caller should have vq mutex and device mutex */ 1299 static bool vq_log_access_ok(struct vhost_virtqueue *vq, 1300 void __user *log_base) 1301 { 1302 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1303 1304 return vq_memory_access_ok(log_base, vq->umem, 1305 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1306 (!vq->log_used || log_access_ok(log_base, vq->log_addr, 1307 sizeof *vq->used + 1308 vq->num * sizeof *vq->used->ring + s)); 1309 } 1310 1311 /* Can we start vq? */ 1312 /* Caller should have vq mutex and device mutex */ 1313 bool vhost_vq_access_ok(struct vhost_virtqueue *vq) 1314 { 1315 if (!vq_log_access_ok(vq, vq->log_base)) 1316 return false; 1317 1318 /* Access validation occurs at prefetch time with IOTLB */ 1319 if (vq->iotlb) 1320 return true; 1321 1322 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1323 } 1324 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1325 1326 static struct vhost_umem *vhost_umem_alloc(void) 1327 { 1328 struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL); 1329 1330 if (!umem) 1331 return NULL; 1332 1333 umem->umem_tree = RB_ROOT_CACHED; 1334 umem->numem = 0; 1335 INIT_LIST_HEAD(&umem->umem_list); 1336 1337 return umem; 1338 } 1339 1340 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1341 { 1342 struct vhost_memory mem, *newmem; 1343 struct vhost_memory_region *region; 1344 struct vhost_umem *newumem, *oldumem; 1345 unsigned long size = offsetof(struct vhost_memory, regions); 1346 int i; 1347 1348 if (copy_from_user(&mem, m, size)) 1349 return -EFAULT; 1350 if (mem.padding) 1351 return -EOPNOTSUPP; 1352 if (mem.nregions > max_mem_regions) 1353 return -E2BIG; 1354 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), 1355 GFP_KERNEL); 1356 if (!newmem) 1357 return -ENOMEM; 1358 1359 memcpy(newmem, &mem, size); 1360 if (copy_from_user(newmem->regions, m->regions, 1361 mem.nregions * sizeof *m->regions)) { 1362 kvfree(newmem); 1363 return -EFAULT; 1364 } 1365 1366 newumem = vhost_umem_alloc(); 1367 if (!newumem) { 1368 kvfree(newmem); 1369 return -ENOMEM; 1370 } 1371 1372 for (region = newmem->regions; 1373 region < newmem->regions + mem.nregions; 1374 region++) { 1375 if (vhost_new_umem_range(newumem, 1376 region->guest_phys_addr, 1377 region->memory_size, 1378 region->guest_phys_addr + 1379 region->memory_size - 1, 1380 region->userspace_addr, 1381 VHOST_ACCESS_RW)) 1382 goto err; 1383 } 1384 1385 if (!memory_access_ok(d, newumem, 0)) 1386 goto err; 1387 1388 oldumem = d->umem; 1389 d->umem = newumem; 1390 1391 /* All memory accesses are done under some VQ mutex. */ 1392 for (i = 0; i < d->nvqs; ++i) { 1393 mutex_lock(&d->vqs[i]->mutex); 1394 d->vqs[i]->umem = newumem; 1395 mutex_unlock(&d->vqs[i]->mutex); 1396 } 1397 1398 kvfree(newmem); 1399 vhost_umem_clean(oldumem); 1400 return 0; 1401 1402 err: 1403 vhost_umem_clean(newumem); 1404 kvfree(newmem); 1405 return -EFAULT; 1406 } 1407 1408 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1409 { 1410 struct file *eventfp, *filep = NULL; 1411 bool pollstart = false, pollstop = false; 1412 struct eventfd_ctx *ctx = NULL; 1413 u32 __user *idxp = argp; 1414 struct vhost_virtqueue *vq; 1415 struct vhost_vring_state s; 1416 struct vhost_vring_file f; 1417 struct vhost_vring_addr a; 1418 u32 idx; 1419 long r; 1420 1421 r = get_user(idx, idxp); 1422 if (r < 0) 1423 return r; 1424 if (idx >= d->nvqs) 1425 return -ENOBUFS; 1426 1427 idx = array_index_nospec(idx, d->nvqs); 1428 vq = d->vqs[idx]; 1429 1430 mutex_lock(&vq->mutex); 1431 1432 switch (ioctl) { 1433 case VHOST_SET_VRING_NUM: 1434 /* Resizing ring with an active backend? 1435 * You don't want to do that. */ 1436 if (vq->private_data) { 1437 r = -EBUSY; 1438 break; 1439 } 1440 if (copy_from_user(&s, argp, sizeof s)) { 1441 r = -EFAULT; 1442 break; 1443 } 1444 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) { 1445 r = -EINVAL; 1446 break; 1447 } 1448 vq->num = s.num; 1449 break; 1450 case VHOST_SET_VRING_BASE: 1451 /* Moving base with an active backend? 1452 * You don't want to do that. */ 1453 if (vq->private_data) { 1454 r = -EBUSY; 1455 break; 1456 } 1457 if (copy_from_user(&s, argp, sizeof s)) { 1458 r = -EFAULT; 1459 break; 1460 } 1461 if (s.num > 0xffff) { 1462 r = -EINVAL; 1463 break; 1464 } 1465 vq->last_avail_idx = s.num; 1466 /* Forget the cached index value. */ 1467 vq->avail_idx = vq->last_avail_idx; 1468 break; 1469 case VHOST_GET_VRING_BASE: 1470 s.index = idx; 1471 s.num = vq->last_avail_idx; 1472 if (copy_to_user(argp, &s, sizeof s)) 1473 r = -EFAULT; 1474 break; 1475 case VHOST_SET_VRING_ADDR: 1476 if (copy_from_user(&a, argp, sizeof a)) { 1477 r = -EFAULT; 1478 break; 1479 } 1480 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) { 1481 r = -EOPNOTSUPP; 1482 break; 1483 } 1484 /* For 32bit, verify that the top 32bits of the user 1485 data are set to zero. */ 1486 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1487 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1488 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) { 1489 r = -EFAULT; 1490 break; 1491 } 1492 1493 /* Make sure it's safe to cast pointers to vring types. */ 1494 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1495 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1496 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1497 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1498 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) { 1499 r = -EINVAL; 1500 break; 1501 } 1502 1503 /* We only verify access here if backend is configured. 1504 * If it is not, we don't as size might not have been setup. 1505 * We will verify when backend is configured. */ 1506 if (vq->private_data) { 1507 if (!vq_access_ok(vq, vq->num, 1508 (void __user *)(unsigned long)a.desc_user_addr, 1509 (void __user *)(unsigned long)a.avail_user_addr, 1510 (void __user *)(unsigned long)a.used_user_addr)) { 1511 r = -EINVAL; 1512 break; 1513 } 1514 1515 /* Also validate log access for used ring if enabled. */ 1516 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) && 1517 !log_access_ok(vq->log_base, a.log_guest_addr, 1518 sizeof *vq->used + 1519 vq->num * sizeof *vq->used->ring)) { 1520 r = -EINVAL; 1521 break; 1522 } 1523 } 1524 1525 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1526 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1527 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1528 vq->log_addr = a.log_guest_addr; 1529 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1530 break; 1531 case VHOST_SET_VRING_KICK: 1532 if (copy_from_user(&f, argp, sizeof f)) { 1533 r = -EFAULT; 1534 break; 1535 } 1536 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1537 if (IS_ERR(eventfp)) { 1538 r = PTR_ERR(eventfp); 1539 break; 1540 } 1541 if (eventfp != vq->kick) { 1542 pollstop = (filep = vq->kick) != NULL; 1543 pollstart = (vq->kick = eventfp) != NULL; 1544 } else 1545 filep = eventfp; 1546 break; 1547 case VHOST_SET_VRING_CALL: 1548 if (copy_from_user(&f, argp, sizeof f)) { 1549 r = -EFAULT; 1550 break; 1551 } 1552 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1553 if (IS_ERR(ctx)) { 1554 r = PTR_ERR(ctx); 1555 break; 1556 } 1557 swap(ctx, vq->call_ctx); 1558 break; 1559 case VHOST_SET_VRING_ERR: 1560 if (copy_from_user(&f, argp, sizeof f)) { 1561 r = -EFAULT; 1562 break; 1563 } 1564 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1565 if (IS_ERR(ctx)) { 1566 r = PTR_ERR(ctx); 1567 break; 1568 } 1569 swap(ctx, vq->error_ctx); 1570 break; 1571 case VHOST_SET_VRING_ENDIAN: 1572 r = vhost_set_vring_endian(vq, argp); 1573 break; 1574 case VHOST_GET_VRING_ENDIAN: 1575 r = vhost_get_vring_endian(vq, idx, argp); 1576 break; 1577 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1578 if (copy_from_user(&s, argp, sizeof(s))) { 1579 r = -EFAULT; 1580 break; 1581 } 1582 vq->busyloop_timeout = s.num; 1583 break; 1584 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1585 s.index = idx; 1586 s.num = vq->busyloop_timeout; 1587 if (copy_to_user(argp, &s, sizeof(s))) 1588 r = -EFAULT; 1589 break; 1590 default: 1591 r = -ENOIOCTLCMD; 1592 } 1593 1594 if (pollstop && vq->handle_kick) 1595 vhost_poll_stop(&vq->poll); 1596 1597 if (!IS_ERR_OR_NULL(ctx)) 1598 eventfd_ctx_put(ctx); 1599 if (filep) 1600 fput(filep); 1601 1602 if (pollstart && vq->handle_kick) 1603 r = vhost_poll_start(&vq->poll, vq->kick); 1604 1605 mutex_unlock(&vq->mutex); 1606 1607 if (pollstop && vq->handle_kick) 1608 vhost_poll_flush(&vq->poll); 1609 return r; 1610 } 1611 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 1612 1613 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled) 1614 { 1615 struct vhost_umem *niotlb, *oiotlb; 1616 int i; 1617 1618 niotlb = vhost_umem_alloc(); 1619 if (!niotlb) 1620 return -ENOMEM; 1621 1622 oiotlb = d->iotlb; 1623 d->iotlb = niotlb; 1624 1625 for (i = 0; i < d->nvqs; ++i) { 1626 struct vhost_virtqueue *vq = d->vqs[i]; 1627 1628 mutex_lock(&vq->mutex); 1629 vq->iotlb = niotlb; 1630 __vhost_vq_meta_reset(vq); 1631 mutex_unlock(&vq->mutex); 1632 } 1633 1634 vhost_umem_clean(oiotlb); 1635 1636 return 0; 1637 } 1638 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 1639 1640 /* Caller must have device mutex */ 1641 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1642 { 1643 struct eventfd_ctx *ctx; 1644 u64 p; 1645 long r; 1646 int i, fd; 1647 1648 /* If you are not the owner, you can become one */ 1649 if (ioctl == VHOST_SET_OWNER) { 1650 r = vhost_dev_set_owner(d); 1651 goto done; 1652 } 1653 1654 /* You must be the owner to do anything else */ 1655 r = vhost_dev_check_owner(d); 1656 if (r) 1657 goto done; 1658 1659 switch (ioctl) { 1660 case VHOST_SET_MEM_TABLE: 1661 r = vhost_set_memory(d, argp); 1662 break; 1663 case VHOST_SET_LOG_BASE: 1664 if (copy_from_user(&p, argp, sizeof p)) { 1665 r = -EFAULT; 1666 break; 1667 } 1668 if ((u64)(unsigned long)p != p) { 1669 r = -EFAULT; 1670 break; 1671 } 1672 for (i = 0; i < d->nvqs; ++i) { 1673 struct vhost_virtqueue *vq; 1674 void __user *base = (void __user *)(unsigned long)p; 1675 vq = d->vqs[i]; 1676 mutex_lock(&vq->mutex); 1677 /* If ring is inactive, will check when it's enabled. */ 1678 if (vq->private_data && !vq_log_access_ok(vq, base)) 1679 r = -EFAULT; 1680 else 1681 vq->log_base = base; 1682 mutex_unlock(&vq->mutex); 1683 } 1684 break; 1685 case VHOST_SET_LOG_FD: 1686 r = get_user(fd, (int __user *)argp); 1687 if (r < 0) 1688 break; 1689 ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd); 1690 if (IS_ERR(ctx)) { 1691 r = PTR_ERR(ctx); 1692 break; 1693 } 1694 swap(ctx, d->log_ctx); 1695 for (i = 0; i < d->nvqs; ++i) { 1696 mutex_lock(&d->vqs[i]->mutex); 1697 d->vqs[i]->log_ctx = d->log_ctx; 1698 mutex_unlock(&d->vqs[i]->mutex); 1699 } 1700 if (ctx) 1701 eventfd_ctx_put(ctx); 1702 break; 1703 default: 1704 r = -ENOIOCTLCMD; 1705 break; 1706 } 1707 done: 1708 return r; 1709 } 1710 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 1711 1712 /* TODO: This is really inefficient. We need something like get_user() 1713 * (instruction directly accesses the data, with an exception table entry 1714 * returning -EFAULT). See Documentation/x86/exception-tables.rst. 1715 */ 1716 static int set_bit_to_user(int nr, void __user *addr) 1717 { 1718 unsigned long log = (unsigned long)addr; 1719 struct page *page; 1720 void *base; 1721 int bit = nr + (log % PAGE_SIZE) * 8; 1722 int r; 1723 1724 r = get_user_pages_fast(log, 1, FOLL_WRITE, &page); 1725 if (r < 0) 1726 return r; 1727 BUG_ON(r != 1); 1728 base = kmap_atomic(page); 1729 set_bit(bit, base); 1730 kunmap_atomic(base); 1731 set_page_dirty_lock(page); 1732 put_page(page); 1733 return 0; 1734 } 1735 1736 static int log_write(void __user *log_base, 1737 u64 write_address, u64 write_length) 1738 { 1739 u64 write_page = write_address / VHOST_PAGE_SIZE; 1740 int r; 1741 1742 if (!write_length) 1743 return 0; 1744 write_length += write_address % VHOST_PAGE_SIZE; 1745 for (;;) { 1746 u64 base = (u64)(unsigned long)log_base; 1747 u64 log = base + write_page / 8; 1748 int bit = write_page % 8; 1749 if ((u64)(unsigned long)log != log) 1750 return -EFAULT; 1751 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 1752 if (r < 0) 1753 return r; 1754 if (write_length <= VHOST_PAGE_SIZE) 1755 break; 1756 write_length -= VHOST_PAGE_SIZE; 1757 write_page += 1; 1758 } 1759 return r; 1760 } 1761 1762 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len) 1763 { 1764 struct vhost_umem *umem = vq->umem; 1765 struct vhost_umem_node *u; 1766 u64 start, end, l, min; 1767 int r; 1768 bool hit = false; 1769 1770 while (len) { 1771 min = len; 1772 /* More than one GPAs can be mapped into a single HVA. So 1773 * iterate all possible umems here to be safe. 1774 */ 1775 list_for_each_entry(u, &umem->umem_list, link) { 1776 if (u->userspace_addr > hva - 1 + len || 1777 u->userspace_addr - 1 + u->size < hva) 1778 continue; 1779 start = max(u->userspace_addr, hva); 1780 end = min(u->userspace_addr - 1 + u->size, 1781 hva - 1 + len); 1782 l = end - start + 1; 1783 r = log_write(vq->log_base, 1784 u->start + start - u->userspace_addr, 1785 l); 1786 if (r < 0) 1787 return r; 1788 hit = true; 1789 min = min(l, min); 1790 } 1791 1792 if (!hit) 1793 return -EFAULT; 1794 1795 len -= min; 1796 hva += min; 1797 } 1798 1799 return 0; 1800 } 1801 1802 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len) 1803 { 1804 struct iovec iov[64]; 1805 int i, ret; 1806 1807 if (!vq->iotlb) 1808 return log_write(vq->log_base, vq->log_addr + used_offset, len); 1809 1810 ret = translate_desc(vq, (uintptr_t)vq->used + used_offset, 1811 len, iov, 64, VHOST_ACCESS_WO); 1812 if (ret < 0) 1813 return ret; 1814 1815 for (i = 0; i < ret; i++) { 1816 ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 1817 iov[i].iov_len); 1818 if (ret) 1819 return ret; 1820 } 1821 1822 return 0; 1823 } 1824 1825 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 1826 unsigned int log_num, u64 len, struct iovec *iov, int count) 1827 { 1828 int i, r; 1829 1830 /* Make sure data written is seen before log. */ 1831 smp_wmb(); 1832 1833 if (vq->iotlb) { 1834 for (i = 0; i < count; i++) { 1835 r = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 1836 iov[i].iov_len); 1837 if (r < 0) 1838 return r; 1839 } 1840 return 0; 1841 } 1842 1843 for (i = 0; i < log_num; ++i) { 1844 u64 l = min(log[i].len, len); 1845 r = log_write(vq->log_base, log[i].addr, l); 1846 if (r < 0) 1847 return r; 1848 len -= l; 1849 if (!len) { 1850 if (vq->log_ctx) 1851 eventfd_signal(vq->log_ctx, 1); 1852 return 0; 1853 } 1854 } 1855 /* Length written exceeds what we have stored. This is a bug. */ 1856 BUG(); 1857 return 0; 1858 } 1859 EXPORT_SYMBOL_GPL(vhost_log_write); 1860 1861 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 1862 { 1863 void __user *used; 1864 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1865 &vq->used->flags) < 0) 1866 return -EFAULT; 1867 if (unlikely(vq->log_used)) { 1868 /* Make sure the flag is seen before log. */ 1869 smp_wmb(); 1870 /* Log used flag write. */ 1871 used = &vq->used->flags; 1872 log_used(vq, (used - (void __user *)vq->used), 1873 sizeof vq->used->flags); 1874 if (vq->log_ctx) 1875 eventfd_signal(vq->log_ctx, 1); 1876 } 1877 return 0; 1878 } 1879 1880 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event) 1881 { 1882 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1883 vhost_avail_event(vq))) 1884 return -EFAULT; 1885 if (unlikely(vq->log_used)) { 1886 void __user *used; 1887 /* Make sure the event is seen before log. */ 1888 smp_wmb(); 1889 /* Log avail event write */ 1890 used = vhost_avail_event(vq); 1891 log_used(vq, (used - (void __user *)vq->used), 1892 sizeof *vhost_avail_event(vq)); 1893 if (vq->log_ctx) 1894 eventfd_signal(vq->log_ctx, 1); 1895 } 1896 return 0; 1897 } 1898 1899 int vhost_vq_init_access(struct vhost_virtqueue *vq) 1900 { 1901 __virtio16 last_used_idx; 1902 int r; 1903 bool is_le = vq->is_le; 1904 1905 if (!vq->private_data) 1906 return 0; 1907 1908 vhost_init_is_le(vq); 1909 1910 r = vhost_update_used_flags(vq); 1911 if (r) 1912 goto err; 1913 vq->signalled_used_valid = false; 1914 if (!vq->iotlb && 1915 !access_ok(&vq->used->idx, sizeof vq->used->idx)) { 1916 r = -EFAULT; 1917 goto err; 1918 } 1919 r = vhost_get_used(vq, last_used_idx, &vq->used->idx); 1920 if (r) { 1921 vq_err(vq, "Can't access used idx at %p\n", 1922 &vq->used->idx); 1923 goto err; 1924 } 1925 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 1926 return 0; 1927 1928 err: 1929 vq->is_le = is_le; 1930 return r; 1931 } 1932 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 1933 1934 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1935 struct iovec iov[], int iov_size, int access) 1936 { 1937 const struct vhost_umem_node *node; 1938 struct vhost_dev *dev = vq->dev; 1939 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem; 1940 struct iovec *_iov; 1941 u64 s = 0; 1942 int ret = 0; 1943 1944 while ((u64)len > s) { 1945 u64 size; 1946 if (unlikely(ret >= iov_size)) { 1947 ret = -ENOBUFS; 1948 break; 1949 } 1950 1951 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1952 addr, addr + len - 1); 1953 if (node == NULL || node->start > addr) { 1954 if (umem != dev->iotlb) { 1955 ret = -EFAULT; 1956 break; 1957 } 1958 ret = -EAGAIN; 1959 break; 1960 } else if (!(node->perm & access)) { 1961 ret = -EPERM; 1962 break; 1963 } 1964 1965 _iov = iov + ret; 1966 size = node->size - addr + node->start; 1967 _iov->iov_len = min((u64)len - s, size); 1968 _iov->iov_base = (void __user *)(unsigned long) 1969 (node->userspace_addr + addr - node->start); 1970 s += size; 1971 addr += size; 1972 ++ret; 1973 } 1974 1975 if (ret == -EAGAIN) 1976 vhost_iotlb_miss(vq, addr, access); 1977 return ret; 1978 } 1979 1980 /* Each buffer in the virtqueues is actually a chain of descriptors. This 1981 * function returns the next descriptor in the chain, 1982 * or -1U if we're at the end. */ 1983 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 1984 { 1985 unsigned int next; 1986 1987 /* If this descriptor says it doesn't chain, we're done. */ 1988 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 1989 return -1U; 1990 1991 /* Check they're not leading us off end of descriptors. */ 1992 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 1993 return next; 1994 } 1995 1996 static int get_indirect(struct vhost_virtqueue *vq, 1997 struct iovec iov[], unsigned int iov_size, 1998 unsigned int *out_num, unsigned int *in_num, 1999 struct vhost_log *log, unsigned int *log_num, 2000 struct vring_desc *indirect) 2001 { 2002 struct vring_desc desc; 2003 unsigned int i = 0, count, found = 0; 2004 u32 len = vhost32_to_cpu(vq, indirect->len); 2005 struct iov_iter from; 2006 int ret, access; 2007 2008 /* Sanity check */ 2009 if (unlikely(len % sizeof desc)) { 2010 vq_err(vq, "Invalid length in indirect descriptor: " 2011 "len 0x%llx not multiple of 0x%zx\n", 2012 (unsigned long long)len, 2013 sizeof desc); 2014 return -EINVAL; 2015 } 2016 2017 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 2018 UIO_MAXIOV, VHOST_ACCESS_RO); 2019 if (unlikely(ret < 0)) { 2020 if (ret != -EAGAIN) 2021 vq_err(vq, "Translation failure %d in indirect.\n", ret); 2022 return ret; 2023 } 2024 iov_iter_init(&from, READ, vq->indirect, ret, len); 2025 2026 /* We will use the result as an address to read from, so most 2027 * architectures only need a compiler barrier here. */ 2028 read_barrier_depends(); 2029 2030 count = len / sizeof desc; 2031 /* Buffers are chained via a 16 bit next field, so 2032 * we can have at most 2^16 of these. */ 2033 if (unlikely(count > USHRT_MAX + 1)) { 2034 vq_err(vq, "Indirect buffer length too big: %d\n", 2035 indirect->len); 2036 return -E2BIG; 2037 } 2038 2039 do { 2040 unsigned iov_count = *in_num + *out_num; 2041 if (unlikely(++found > count)) { 2042 vq_err(vq, "Loop detected: last one at %u " 2043 "indirect size %u\n", 2044 i, count); 2045 return -EINVAL; 2046 } 2047 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 2048 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 2049 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2050 return -EINVAL; 2051 } 2052 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 2053 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 2054 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2055 return -EINVAL; 2056 } 2057 2058 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2059 access = VHOST_ACCESS_WO; 2060 else 2061 access = VHOST_ACCESS_RO; 2062 2063 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2064 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2065 iov_size - iov_count, access); 2066 if (unlikely(ret < 0)) { 2067 if (ret != -EAGAIN) 2068 vq_err(vq, "Translation failure %d indirect idx %d\n", 2069 ret, i); 2070 return ret; 2071 } 2072 /* If this is an input descriptor, increment that count. */ 2073 if (access == VHOST_ACCESS_WO) { 2074 *in_num += ret; 2075 if (unlikely(log)) { 2076 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2077 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2078 ++*log_num; 2079 } 2080 } else { 2081 /* If it's an output descriptor, they're all supposed 2082 * to come before any input descriptors. */ 2083 if (unlikely(*in_num)) { 2084 vq_err(vq, "Indirect descriptor " 2085 "has out after in: idx %d\n", i); 2086 return -EINVAL; 2087 } 2088 *out_num += ret; 2089 } 2090 } while ((i = next_desc(vq, &desc)) != -1); 2091 return 0; 2092 } 2093 2094 /* This looks in the virtqueue and for the first available buffer, and converts 2095 * it to an iovec for convenient access. Since descriptors consist of some 2096 * number of output then some number of input descriptors, it's actually two 2097 * iovecs, but we pack them into one and note how many of each there were. 2098 * 2099 * This function returns the descriptor number found, or vq->num (which is 2100 * never a valid descriptor number) if none was found. A negative code is 2101 * returned on error. */ 2102 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 2103 struct iovec iov[], unsigned int iov_size, 2104 unsigned int *out_num, unsigned int *in_num, 2105 struct vhost_log *log, unsigned int *log_num) 2106 { 2107 struct vring_desc desc; 2108 unsigned int i, head, found = 0; 2109 u16 last_avail_idx; 2110 __virtio16 avail_idx; 2111 __virtio16 ring_head; 2112 int ret, access; 2113 2114 /* Check it isn't doing very strange things with descriptor numbers. */ 2115 last_avail_idx = vq->last_avail_idx; 2116 2117 if (vq->avail_idx == vq->last_avail_idx) { 2118 if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) { 2119 vq_err(vq, "Failed to access avail idx at %p\n", 2120 &vq->avail->idx); 2121 return -EFAULT; 2122 } 2123 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2124 2125 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 2126 vq_err(vq, "Guest moved used index from %u to %u", 2127 last_avail_idx, vq->avail_idx); 2128 return -EFAULT; 2129 } 2130 2131 /* If there's nothing new since last we looked, return 2132 * invalid. 2133 */ 2134 if (vq->avail_idx == last_avail_idx) 2135 return vq->num; 2136 2137 /* Only get avail ring entries after they have been 2138 * exposed by guest. 2139 */ 2140 smp_rmb(); 2141 } 2142 2143 /* Grab the next descriptor number they're advertising, and increment 2144 * the index we've seen. */ 2145 if (unlikely(vhost_get_avail(vq, ring_head, 2146 &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) { 2147 vq_err(vq, "Failed to read head: idx %d address %p\n", 2148 last_avail_idx, 2149 &vq->avail->ring[last_avail_idx % vq->num]); 2150 return -EFAULT; 2151 } 2152 2153 head = vhost16_to_cpu(vq, ring_head); 2154 2155 /* If their number is silly, that's an error. */ 2156 if (unlikely(head >= vq->num)) { 2157 vq_err(vq, "Guest says index %u > %u is available", 2158 head, vq->num); 2159 return -EINVAL; 2160 } 2161 2162 /* When we start there are none of either input nor output. */ 2163 *out_num = *in_num = 0; 2164 if (unlikely(log)) 2165 *log_num = 0; 2166 2167 i = head; 2168 do { 2169 unsigned iov_count = *in_num + *out_num; 2170 if (unlikely(i >= vq->num)) { 2171 vq_err(vq, "Desc index is %u > %u, head = %u", 2172 i, vq->num, head); 2173 return -EINVAL; 2174 } 2175 if (unlikely(++found > vq->num)) { 2176 vq_err(vq, "Loop detected: last one at %u " 2177 "vq size %u head %u\n", 2178 i, vq->num, head); 2179 return -EINVAL; 2180 } 2181 ret = vhost_copy_from_user(vq, &desc, vq->desc + i, 2182 sizeof desc); 2183 if (unlikely(ret)) { 2184 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2185 i, vq->desc + i); 2186 return -EFAULT; 2187 } 2188 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2189 ret = get_indirect(vq, iov, iov_size, 2190 out_num, in_num, 2191 log, log_num, &desc); 2192 if (unlikely(ret < 0)) { 2193 if (ret != -EAGAIN) 2194 vq_err(vq, "Failure detected " 2195 "in indirect descriptor at idx %d\n", i); 2196 return ret; 2197 } 2198 continue; 2199 } 2200 2201 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2202 access = VHOST_ACCESS_WO; 2203 else 2204 access = VHOST_ACCESS_RO; 2205 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2206 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2207 iov_size - iov_count, access); 2208 if (unlikely(ret < 0)) { 2209 if (ret != -EAGAIN) 2210 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2211 ret, i); 2212 return ret; 2213 } 2214 if (access == VHOST_ACCESS_WO) { 2215 /* If this is an input descriptor, 2216 * increment that count. */ 2217 *in_num += ret; 2218 if (unlikely(log)) { 2219 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2220 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2221 ++*log_num; 2222 } 2223 } else { 2224 /* If it's an output descriptor, they're all supposed 2225 * to come before any input descriptors. */ 2226 if (unlikely(*in_num)) { 2227 vq_err(vq, "Descriptor has out after in: " 2228 "idx %d\n", i); 2229 return -EINVAL; 2230 } 2231 *out_num += ret; 2232 } 2233 } while ((i = next_desc(vq, &desc)) != -1); 2234 2235 /* On success, increment avail index. */ 2236 vq->last_avail_idx++; 2237 2238 /* Assume notifications from guest are disabled at this point, 2239 * if they aren't we would need to update avail_event index. */ 2240 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2241 return head; 2242 } 2243 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2244 2245 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2246 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2247 { 2248 vq->last_avail_idx -= n; 2249 } 2250 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2251 2252 /* After we've used one of their buffers, we tell them about it. We'll then 2253 * want to notify the guest, using eventfd. */ 2254 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2255 { 2256 struct vring_used_elem heads = { 2257 cpu_to_vhost32(vq, head), 2258 cpu_to_vhost32(vq, len) 2259 }; 2260 2261 return vhost_add_used_n(vq, &heads, 1); 2262 } 2263 EXPORT_SYMBOL_GPL(vhost_add_used); 2264 2265 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2266 struct vring_used_elem *heads, 2267 unsigned count) 2268 { 2269 struct vring_used_elem __user *used; 2270 u16 old, new; 2271 int start; 2272 2273 start = vq->last_used_idx & (vq->num - 1); 2274 used = vq->used->ring + start; 2275 if (count == 1) { 2276 if (vhost_put_user(vq, heads[0].id, &used->id)) { 2277 vq_err(vq, "Failed to write used id"); 2278 return -EFAULT; 2279 } 2280 if (vhost_put_user(vq, heads[0].len, &used->len)) { 2281 vq_err(vq, "Failed to write used len"); 2282 return -EFAULT; 2283 } 2284 } else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) { 2285 vq_err(vq, "Failed to write used"); 2286 return -EFAULT; 2287 } 2288 if (unlikely(vq->log_used)) { 2289 /* Make sure data is seen before log. */ 2290 smp_wmb(); 2291 /* Log used ring entry write. */ 2292 log_used(vq, ((void __user *)used - (void __user *)vq->used), 2293 count * sizeof *used); 2294 } 2295 old = vq->last_used_idx; 2296 new = (vq->last_used_idx += count); 2297 /* If the driver never bothers to signal in a very long while, 2298 * used index might wrap around. If that happens, invalidate 2299 * signalled_used index we stored. TODO: make sure driver 2300 * signals at least once in 2^16 and remove this. */ 2301 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2302 vq->signalled_used_valid = false; 2303 return 0; 2304 } 2305 2306 /* After we've used one of their buffers, we tell them about it. We'll then 2307 * want to notify the guest, using eventfd. */ 2308 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2309 unsigned count) 2310 { 2311 int start, n, r; 2312 2313 start = vq->last_used_idx & (vq->num - 1); 2314 n = vq->num - start; 2315 if (n < count) { 2316 r = __vhost_add_used_n(vq, heads, n); 2317 if (r < 0) 2318 return r; 2319 heads += n; 2320 count -= n; 2321 } 2322 r = __vhost_add_used_n(vq, heads, count); 2323 2324 /* Make sure buffer is written before we update index. */ 2325 smp_wmb(); 2326 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 2327 &vq->used->idx)) { 2328 vq_err(vq, "Failed to increment used idx"); 2329 return -EFAULT; 2330 } 2331 if (unlikely(vq->log_used)) { 2332 /* Make sure used idx is seen before log. */ 2333 smp_wmb(); 2334 /* Log used index update. */ 2335 log_used(vq, offsetof(struct vring_used, idx), 2336 sizeof vq->used->idx); 2337 if (vq->log_ctx) 2338 eventfd_signal(vq->log_ctx, 1); 2339 } 2340 return r; 2341 } 2342 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2343 2344 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2345 { 2346 __u16 old, new; 2347 __virtio16 event; 2348 bool v; 2349 /* Flush out used index updates. This is paired 2350 * with the barrier that the Guest executes when enabling 2351 * interrupts. */ 2352 smp_mb(); 2353 2354 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2355 unlikely(vq->avail_idx == vq->last_avail_idx)) 2356 return true; 2357 2358 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2359 __virtio16 flags; 2360 if (vhost_get_avail(vq, flags, &vq->avail->flags)) { 2361 vq_err(vq, "Failed to get flags"); 2362 return true; 2363 } 2364 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2365 } 2366 old = vq->signalled_used; 2367 v = vq->signalled_used_valid; 2368 new = vq->signalled_used = vq->last_used_idx; 2369 vq->signalled_used_valid = true; 2370 2371 if (unlikely(!v)) 2372 return true; 2373 2374 if (vhost_get_avail(vq, event, vhost_used_event(vq))) { 2375 vq_err(vq, "Failed to get used event idx"); 2376 return true; 2377 } 2378 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2379 } 2380 2381 /* This actually signals the guest, using eventfd. */ 2382 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2383 { 2384 /* Signal the Guest tell them we used something up. */ 2385 if (vq->call_ctx && vhost_notify(dev, vq)) 2386 eventfd_signal(vq->call_ctx, 1); 2387 } 2388 EXPORT_SYMBOL_GPL(vhost_signal); 2389 2390 /* And here's the combo meal deal. Supersize me! */ 2391 void vhost_add_used_and_signal(struct vhost_dev *dev, 2392 struct vhost_virtqueue *vq, 2393 unsigned int head, int len) 2394 { 2395 vhost_add_used(vq, head, len); 2396 vhost_signal(dev, vq); 2397 } 2398 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2399 2400 /* multi-buffer version of vhost_add_used_and_signal */ 2401 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2402 struct vhost_virtqueue *vq, 2403 struct vring_used_elem *heads, unsigned count) 2404 { 2405 vhost_add_used_n(vq, heads, count); 2406 vhost_signal(dev, vq); 2407 } 2408 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2409 2410 /* return true if we're sure that avaiable ring is empty */ 2411 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2412 { 2413 __virtio16 avail_idx; 2414 int r; 2415 2416 if (vq->avail_idx != vq->last_avail_idx) 2417 return false; 2418 2419 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2420 if (unlikely(r)) 2421 return false; 2422 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2423 2424 return vq->avail_idx == vq->last_avail_idx; 2425 } 2426 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2427 2428 /* OK, now we need to know about added descriptors. */ 2429 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2430 { 2431 __virtio16 avail_idx; 2432 int r; 2433 2434 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2435 return false; 2436 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2437 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2438 r = vhost_update_used_flags(vq); 2439 if (r) { 2440 vq_err(vq, "Failed to enable notification at %p: %d\n", 2441 &vq->used->flags, r); 2442 return false; 2443 } 2444 } else { 2445 r = vhost_update_avail_event(vq, vq->avail_idx); 2446 if (r) { 2447 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2448 vhost_avail_event(vq), r); 2449 return false; 2450 } 2451 } 2452 /* They could have slipped one in as we were doing that: make 2453 * sure it's written, then check again. */ 2454 smp_mb(); 2455 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2456 if (r) { 2457 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2458 &vq->avail->idx, r); 2459 return false; 2460 } 2461 2462 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx; 2463 } 2464 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2465 2466 /* We don't need to be notified again. */ 2467 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2468 { 2469 int r; 2470 2471 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2472 return; 2473 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2474 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2475 r = vhost_update_used_flags(vq); 2476 if (r) 2477 vq_err(vq, "Failed to enable notification at %p: %d\n", 2478 &vq->used->flags, r); 2479 } 2480 } 2481 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2482 2483 /* Create a new message. */ 2484 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2485 { 2486 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL); 2487 if (!node) 2488 return NULL; 2489 2490 /* Make sure all padding within the structure is initialized. */ 2491 memset(&node->msg, 0, sizeof node->msg); 2492 node->vq = vq; 2493 node->msg.type = type; 2494 return node; 2495 } 2496 EXPORT_SYMBOL_GPL(vhost_new_msg); 2497 2498 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2499 struct vhost_msg_node *node) 2500 { 2501 spin_lock(&dev->iotlb_lock); 2502 list_add_tail(&node->node, head); 2503 spin_unlock(&dev->iotlb_lock); 2504 2505 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 2506 } 2507 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2508 2509 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2510 struct list_head *head) 2511 { 2512 struct vhost_msg_node *node = NULL; 2513 2514 spin_lock(&dev->iotlb_lock); 2515 if (!list_empty(head)) { 2516 node = list_first_entry(head, struct vhost_msg_node, 2517 node); 2518 list_del(&node->node); 2519 } 2520 spin_unlock(&dev->iotlb_lock); 2521 2522 return node; 2523 } 2524 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2525 2526 2527 static int __init vhost_init(void) 2528 { 2529 return 0; 2530 } 2531 2532 static void __exit vhost_exit(void) 2533 { 2534 } 2535 2536 module_init(vhost_init); 2537 module_exit(vhost_exit); 2538 2539 MODULE_VERSION("0.0.1"); 2540 MODULE_LICENSE("GPL v2"); 2541 MODULE_AUTHOR("Michael S. Tsirkin"); 2542 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2543