1 /* Copyright (C) 2009 Red Hat, Inc. 2 * Copyright (C) 2006 Rusty Russell IBM Corporation 3 * 4 * Author: Michael S. Tsirkin <mst@redhat.com> 5 * 6 * Inspiration, some code, and most witty comments come from 7 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * 11 * Generic code for virtio server in host kernel. 12 */ 13 14 #include <linux/eventfd.h> 15 #include <linux/vhost.h> 16 #include <linux/uio.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_context.h> 19 #include <linux/miscdevice.h> 20 #include <linux/mutex.h> 21 #include <linux/poll.h> 22 #include <linux/file.h> 23 #include <linux/highmem.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 #include <linux/kthread.h> 27 #include <linux/cgroup.h> 28 #include <linux/module.h> 29 #include <linux/sort.h> 30 #include <linux/interval_tree_generic.h> 31 32 #include "vhost.h" 33 34 static ushort max_mem_regions = 64; 35 module_param(max_mem_regions, ushort, 0444); 36 MODULE_PARM_DESC(max_mem_regions, 37 "Maximum number of memory regions in memory map. (default: 64)"); 38 static int max_iotlb_entries = 2048; 39 module_param(max_iotlb_entries, int, 0444); 40 MODULE_PARM_DESC(max_iotlb_entries, 41 "Maximum number of iotlb entries. (default: 2048)"); 42 43 enum { 44 VHOST_MEMORY_F_LOG = 0x1, 45 }; 46 47 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 48 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 49 50 INTERVAL_TREE_DEFINE(struct vhost_umem_node, 51 rb, __u64, __subtree_last, 52 START, LAST, static inline, vhost_umem_interval_tree); 53 54 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 55 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 56 { 57 vq->user_be = !virtio_legacy_is_little_endian(); 58 } 59 60 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 61 { 62 vq->user_be = true; 63 } 64 65 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 66 { 67 vq->user_be = false; 68 } 69 70 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 71 { 72 struct vhost_vring_state s; 73 74 if (vq->private_data) 75 return -EBUSY; 76 77 if (copy_from_user(&s, argp, sizeof(s))) 78 return -EFAULT; 79 80 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 81 s.num != VHOST_VRING_BIG_ENDIAN) 82 return -EINVAL; 83 84 if (s.num == VHOST_VRING_BIG_ENDIAN) 85 vhost_enable_cross_endian_big(vq); 86 else 87 vhost_enable_cross_endian_little(vq); 88 89 return 0; 90 } 91 92 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 93 int __user *argp) 94 { 95 struct vhost_vring_state s = { 96 .index = idx, 97 .num = vq->user_be 98 }; 99 100 if (copy_to_user(argp, &s, sizeof(s))) 101 return -EFAULT; 102 103 return 0; 104 } 105 106 static void vhost_init_is_le(struct vhost_virtqueue *vq) 107 { 108 /* Note for legacy virtio: user_be is initialized at reset time 109 * according to the host endianness. If userspace does not set an 110 * explicit endianness, the default behavior is native endian, as 111 * expected by legacy virtio. 112 */ 113 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 114 } 115 #else 116 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 117 { 118 } 119 120 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 121 { 122 return -ENOIOCTLCMD; 123 } 124 125 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 126 int __user *argp) 127 { 128 return -ENOIOCTLCMD; 129 } 130 131 static void vhost_init_is_le(struct vhost_virtqueue *vq) 132 { 133 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 134 || virtio_legacy_is_little_endian(); 135 } 136 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 137 138 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 139 { 140 vhost_init_is_le(vq); 141 } 142 143 struct vhost_flush_struct { 144 struct vhost_work work; 145 struct completion wait_event; 146 }; 147 148 static void vhost_flush_work(struct vhost_work *work) 149 { 150 struct vhost_flush_struct *s; 151 152 s = container_of(work, struct vhost_flush_struct, work); 153 complete(&s->wait_event); 154 } 155 156 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 157 poll_table *pt) 158 { 159 struct vhost_poll *poll; 160 161 poll = container_of(pt, struct vhost_poll, table); 162 poll->wqh = wqh; 163 add_wait_queue(wqh, &poll->wait); 164 } 165 166 static int vhost_poll_wakeup(wait_queue_t *wait, unsigned mode, int sync, 167 void *key) 168 { 169 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 170 171 if (!((unsigned long)key & poll->mask)) 172 return 0; 173 174 vhost_poll_queue(poll); 175 return 0; 176 } 177 178 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 179 { 180 clear_bit(VHOST_WORK_QUEUED, &work->flags); 181 work->fn = fn; 182 init_waitqueue_head(&work->done); 183 } 184 EXPORT_SYMBOL_GPL(vhost_work_init); 185 186 /* Init poll structure */ 187 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 188 unsigned long mask, struct vhost_dev *dev) 189 { 190 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 191 init_poll_funcptr(&poll->table, vhost_poll_func); 192 poll->mask = mask; 193 poll->dev = dev; 194 poll->wqh = NULL; 195 196 vhost_work_init(&poll->work, fn); 197 } 198 EXPORT_SYMBOL_GPL(vhost_poll_init); 199 200 /* Start polling a file. We add ourselves to file's wait queue. The caller must 201 * keep a reference to a file until after vhost_poll_stop is called. */ 202 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 203 { 204 unsigned long mask; 205 int ret = 0; 206 207 if (poll->wqh) 208 return 0; 209 210 mask = file->f_op->poll(file, &poll->table); 211 if (mask) 212 vhost_poll_wakeup(&poll->wait, 0, 0, (void *)mask); 213 if (mask & POLLERR) { 214 if (poll->wqh) 215 remove_wait_queue(poll->wqh, &poll->wait); 216 ret = -EINVAL; 217 } 218 219 return ret; 220 } 221 EXPORT_SYMBOL_GPL(vhost_poll_start); 222 223 /* Stop polling a file. After this function returns, it becomes safe to drop the 224 * file reference. You must also flush afterwards. */ 225 void vhost_poll_stop(struct vhost_poll *poll) 226 { 227 if (poll->wqh) { 228 remove_wait_queue(poll->wqh, &poll->wait); 229 poll->wqh = NULL; 230 } 231 } 232 EXPORT_SYMBOL_GPL(vhost_poll_stop); 233 234 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work) 235 { 236 struct vhost_flush_struct flush; 237 238 if (dev->worker) { 239 init_completion(&flush.wait_event); 240 vhost_work_init(&flush.work, vhost_flush_work); 241 242 vhost_work_queue(dev, &flush.work); 243 wait_for_completion(&flush.wait_event); 244 } 245 } 246 EXPORT_SYMBOL_GPL(vhost_work_flush); 247 248 /* Flush any work that has been scheduled. When calling this, don't hold any 249 * locks that are also used by the callback. */ 250 void vhost_poll_flush(struct vhost_poll *poll) 251 { 252 vhost_work_flush(poll->dev, &poll->work); 253 } 254 EXPORT_SYMBOL_GPL(vhost_poll_flush); 255 256 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work) 257 { 258 if (!dev->worker) 259 return; 260 261 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 262 /* We can only add the work to the list after we're 263 * sure it was not in the list. 264 * test_and_set_bit() implies a memory barrier. 265 */ 266 llist_add(&work->node, &dev->work_list); 267 wake_up_process(dev->worker); 268 } 269 } 270 EXPORT_SYMBOL_GPL(vhost_work_queue); 271 272 /* A lockless hint for busy polling code to exit the loop */ 273 bool vhost_has_work(struct vhost_dev *dev) 274 { 275 return !llist_empty(&dev->work_list); 276 } 277 EXPORT_SYMBOL_GPL(vhost_has_work); 278 279 void vhost_poll_queue(struct vhost_poll *poll) 280 { 281 vhost_work_queue(poll->dev, &poll->work); 282 } 283 EXPORT_SYMBOL_GPL(vhost_poll_queue); 284 285 static void vhost_vq_reset(struct vhost_dev *dev, 286 struct vhost_virtqueue *vq) 287 { 288 vq->num = 1; 289 vq->desc = NULL; 290 vq->avail = NULL; 291 vq->used = NULL; 292 vq->last_avail_idx = 0; 293 vq->last_used_event = 0; 294 vq->avail_idx = 0; 295 vq->last_used_idx = 0; 296 vq->signalled_used = 0; 297 vq->signalled_used_valid = false; 298 vq->used_flags = 0; 299 vq->log_used = false; 300 vq->log_addr = -1ull; 301 vq->private_data = NULL; 302 vq->acked_features = 0; 303 vq->log_base = NULL; 304 vq->error_ctx = NULL; 305 vq->error = NULL; 306 vq->kick = NULL; 307 vq->call_ctx = NULL; 308 vq->call = NULL; 309 vq->log_ctx = NULL; 310 vhost_reset_is_le(vq); 311 vhost_disable_cross_endian(vq); 312 vq->busyloop_timeout = 0; 313 vq->umem = NULL; 314 vq->iotlb = NULL; 315 } 316 317 static int vhost_worker(void *data) 318 { 319 struct vhost_dev *dev = data; 320 struct vhost_work *work, *work_next; 321 struct llist_node *node; 322 mm_segment_t oldfs = get_fs(); 323 324 set_fs(USER_DS); 325 use_mm(dev->mm); 326 327 for (;;) { 328 /* mb paired w/ kthread_stop */ 329 set_current_state(TASK_INTERRUPTIBLE); 330 331 if (kthread_should_stop()) { 332 __set_current_state(TASK_RUNNING); 333 break; 334 } 335 336 node = llist_del_all(&dev->work_list); 337 if (!node) 338 schedule(); 339 340 node = llist_reverse_order(node); 341 /* make sure flag is seen after deletion */ 342 smp_wmb(); 343 llist_for_each_entry_safe(work, work_next, node, node) { 344 clear_bit(VHOST_WORK_QUEUED, &work->flags); 345 __set_current_state(TASK_RUNNING); 346 work->fn(work); 347 if (need_resched()) 348 schedule(); 349 } 350 } 351 unuse_mm(dev->mm); 352 set_fs(oldfs); 353 return 0; 354 } 355 356 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 357 { 358 kfree(vq->indirect); 359 vq->indirect = NULL; 360 kfree(vq->log); 361 vq->log = NULL; 362 kfree(vq->heads); 363 vq->heads = NULL; 364 } 365 366 /* Helper to allocate iovec buffers for all vqs. */ 367 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 368 { 369 struct vhost_virtqueue *vq; 370 int i; 371 372 for (i = 0; i < dev->nvqs; ++i) { 373 vq = dev->vqs[i]; 374 vq->indirect = kmalloc(sizeof *vq->indirect * UIO_MAXIOV, 375 GFP_KERNEL); 376 vq->log = kmalloc(sizeof *vq->log * UIO_MAXIOV, GFP_KERNEL); 377 vq->heads = kmalloc(sizeof *vq->heads * UIO_MAXIOV, GFP_KERNEL); 378 if (!vq->indirect || !vq->log || !vq->heads) 379 goto err_nomem; 380 } 381 return 0; 382 383 err_nomem: 384 for (; i >= 0; --i) 385 vhost_vq_free_iovecs(dev->vqs[i]); 386 return -ENOMEM; 387 } 388 389 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 390 { 391 int i; 392 393 for (i = 0; i < dev->nvqs; ++i) 394 vhost_vq_free_iovecs(dev->vqs[i]); 395 } 396 397 void vhost_dev_init(struct vhost_dev *dev, 398 struct vhost_virtqueue **vqs, int nvqs) 399 { 400 struct vhost_virtqueue *vq; 401 int i; 402 403 dev->vqs = vqs; 404 dev->nvqs = nvqs; 405 mutex_init(&dev->mutex); 406 dev->log_ctx = NULL; 407 dev->log_file = NULL; 408 dev->umem = NULL; 409 dev->iotlb = NULL; 410 dev->mm = NULL; 411 dev->worker = NULL; 412 init_llist_head(&dev->work_list); 413 init_waitqueue_head(&dev->wait); 414 INIT_LIST_HEAD(&dev->read_list); 415 INIT_LIST_HEAD(&dev->pending_list); 416 spin_lock_init(&dev->iotlb_lock); 417 418 419 for (i = 0; i < dev->nvqs; ++i) { 420 vq = dev->vqs[i]; 421 vq->log = NULL; 422 vq->indirect = NULL; 423 vq->heads = NULL; 424 vq->dev = dev; 425 mutex_init(&vq->mutex); 426 vhost_vq_reset(dev, vq); 427 if (vq->handle_kick) 428 vhost_poll_init(&vq->poll, vq->handle_kick, 429 POLLIN, dev); 430 } 431 } 432 EXPORT_SYMBOL_GPL(vhost_dev_init); 433 434 /* Caller should have device mutex */ 435 long vhost_dev_check_owner(struct vhost_dev *dev) 436 { 437 /* Are you the owner? If not, I don't think you mean to do that */ 438 return dev->mm == current->mm ? 0 : -EPERM; 439 } 440 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 441 442 struct vhost_attach_cgroups_struct { 443 struct vhost_work work; 444 struct task_struct *owner; 445 int ret; 446 }; 447 448 static void vhost_attach_cgroups_work(struct vhost_work *work) 449 { 450 struct vhost_attach_cgroups_struct *s; 451 452 s = container_of(work, struct vhost_attach_cgroups_struct, work); 453 s->ret = cgroup_attach_task_all(s->owner, current); 454 } 455 456 static int vhost_attach_cgroups(struct vhost_dev *dev) 457 { 458 struct vhost_attach_cgroups_struct attach; 459 460 attach.owner = current; 461 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 462 vhost_work_queue(dev, &attach.work); 463 vhost_work_flush(dev, &attach.work); 464 return attach.ret; 465 } 466 467 /* Caller should have device mutex */ 468 bool vhost_dev_has_owner(struct vhost_dev *dev) 469 { 470 return dev->mm; 471 } 472 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 473 474 /* Caller should have device mutex */ 475 long vhost_dev_set_owner(struct vhost_dev *dev) 476 { 477 struct task_struct *worker; 478 int err; 479 480 /* Is there an owner already? */ 481 if (vhost_dev_has_owner(dev)) { 482 err = -EBUSY; 483 goto err_mm; 484 } 485 486 /* No owner, become one */ 487 dev->mm = get_task_mm(current); 488 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid); 489 if (IS_ERR(worker)) { 490 err = PTR_ERR(worker); 491 goto err_worker; 492 } 493 494 dev->worker = worker; 495 wake_up_process(worker); /* avoid contributing to loadavg */ 496 497 err = vhost_attach_cgroups(dev); 498 if (err) 499 goto err_cgroup; 500 501 err = vhost_dev_alloc_iovecs(dev); 502 if (err) 503 goto err_cgroup; 504 505 return 0; 506 err_cgroup: 507 kthread_stop(worker); 508 dev->worker = NULL; 509 err_worker: 510 if (dev->mm) 511 mmput(dev->mm); 512 dev->mm = NULL; 513 err_mm: 514 return err; 515 } 516 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 517 518 static void *vhost_kvzalloc(unsigned long size) 519 { 520 void *n = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 521 522 if (!n) 523 n = vzalloc(size); 524 return n; 525 } 526 527 struct vhost_umem *vhost_dev_reset_owner_prepare(void) 528 { 529 return vhost_kvzalloc(sizeof(struct vhost_umem)); 530 } 531 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 532 533 /* Caller should have device mutex */ 534 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem) 535 { 536 int i; 537 538 vhost_dev_cleanup(dev, true); 539 540 /* Restore memory to default empty mapping. */ 541 INIT_LIST_HEAD(&umem->umem_list); 542 dev->umem = umem; 543 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 544 * VQs aren't running. 545 */ 546 for (i = 0; i < dev->nvqs; ++i) 547 dev->vqs[i]->umem = umem; 548 } 549 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 550 551 void vhost_dev_stop(struct vhost_dev *dev) 552 { 553 int i; 554 555 for (i = 0; i < dev->nvqs; ++i) { 556 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) { 557 vhost_poll_stop(&dev->vqs[i]->poll); 558 vhost_poll_flush(&dev->vqs[i]->poll); 559 } 560 } 561 } 562 EXPORT_SYMBOL_GPL(vhost_dev_stop); 563 564 static void vhost_umem_free(struct vhost_umem *umem, 565 struct vhost_umem_node *node) 566 { 567 vhost_umem_interval_tree_remove(node, &umem->umem_tree); 568 list_del(&node->link); 569 kfree(node); 570 umem->numem--; 571 } 572 573 static void vhost_umem_clean(struct vhost_umem *umem) 574 { 575 struct vhost_umem_node *node, *tmp; 576 577 if (!umem) 578 return; 579 580 list_for_each_entry_safe(node, tmp, &umem->umem_list, link) 581 vhost_umem_free(umem, node); 582 583 kvfree(umem); 584 } 585 586 static void vhost_clear_msg(struct vhost_dev *dev) 587 { 588 struct vhost_msg_node *node, *n; 589 590 spin_lock(&dev->iotlb_lock); 591 592 list_for_each_entry_safe(node, n, &dev->read_list, node) { 593 list_del(&node->node); 594 kfree(node); 595 } 596 597 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 598 list_del(&node->node); 599 kfree(node); 600 } 601 602 spin_unlock(&dev->iotlb_lock); 603 } 604 605 /* Caller should have device mutex if and only if locked is set */ 606 void vhost_dev_cleanup(struct vhost_dev *dev, bool locked) 607 { 608 int i; 609 610 for (i = 0; i < dev->nvqs; ++i) { 611 if (dev->vqs[i]->error_ctx) 612 eventfd_ctx_put(dev->vqs[i]->error_ctx); 613 if (dev->vqs[i]->error) 614 fput(dev->vqs[i]->error); 615 if (dev->vqs[i]->kick) 616 fput(dev->vqs[i]->kick); 617 if (dev->vqs[i]->call_ctx) 618 eventfd_ctx_put(dev->vqs[i]->call_ctx); 619 if (dev->vqs[i]->call) 620 fput(dev->vqs[i]->call); 621 vhost_vq_reset(dev, dev->vqs[i]); 622 } 623 vhost_dev_free_iovecs(dev); 624 if (dev->log_ctx) 625 eventfd_ctx_put(dev->log_ctx); 626 dev->log_ctx = NULL; 627 if (dev->log_file) 628 fput(dev->log_file); 629 dev->log_file = NULL; 630 /* No one will access memory at this point */ 631 vhost_umem_clean(dev->umem); 632 dev->umem = NULL; 633 vhost_umem_clean(dev->iotlb); 634 dev->iotlb = NULL; 635 vhost_clear_msg(dev); 636 wake_up_interruptible_poll(&dev->wait, POLLIN | POLLRDNORM); 637 WARN_ON(!llist_empty(&dev->work_list)); 638 if (dev->worker) { 639 kthread_stop(dev->worker); 640 dev->worker = NULL; 641 } 642 if (dev->mm) 643 mmput(dev->mm); 644 dev->mm = NULL; 645 } 646 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 647 648 static int log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 649 { 650 u64 a = addr / VHOST_PAGE_SIZE / 8; 651 652 /* Make sure 64 bit math will not overflow. */ 653 if (a > ULONG_MAX - (unsigned long)log_base || 654 a + (unsigned long)log_base > ULONG_MAX) 655 return 0; 656 657 return access_ok(VERIFY_WRITE, log_base + a, 658 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 659 } 660 661 static bool vhost_overflow(u64 uaddr, u64 size) 662 { 663 /* Make sure 64 bit math will not overflow. */ 664 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size; 665 } 666 667 /* Caller should have vq mutex and device mutex. */ 668 static int vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem, 669 int log_all) 670 { 671 struct vhost_umem_node *node; 672 673 if (!umem) 674 return 0; 675 676 list_for_each_entry(node, &umem->umem_list, link) { 677 unsigned long a = node->userspace_addr; 678 679 if (vhost_overflow(node->userspace_addr, node->size)) 680 return 0; 681 682 683 if (!access_ok(VERIFY_WRITE, (void __user *)a, 684 node->size)) 685 return 0; 686 else if (log_all && !log_access_ok(log_base, 687 node->start, 688 node->size)) 689 return 0; 690 } 691 return 1; 692 } 693 694 /* Can we switch to this memory table? */ 695 /* Caller should have device mutex but not vq mutex */ 696 static int memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem, 697 int log_all) 698 { 699 int i; 700 701 for (i = 0; i < d->nvqs; ++i) { 702 int ok; 703 bool log; 704 705 mutex_lock(&d->vqs[i]->mutex); 706 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 707 /* If ring is inactive, will check when it's enabled. */ 708 if (d->vqs[i]->private_data) 709 ok = vq_memory_access_ok(d->vqs[i]->log_base, 710 umem, log); 711 else 712 ok = 1; 713 mutex_unlock(&d->vqs[i]->mutex); 714 if (!ok) 715 return 0; 716 } 717 return 1; 718 } 719 720 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 721 struct iovec iov[], int iov_size, int access); 722 723 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 724 const void *from, unsigned size) 725 { 726 int ret; 727 728 if (!vq->iotlb) 729 return __copy_to_user(to, from, size); 730 else { 731 /* This function should be called after iotlb 732 * prefetch, which means we're sure that all vq 733 * could be access through iotlb. So -EAGAIN should 734 * not happen in this case. 735 */ 736 /* TODO: more fast path */ 737 struct iov_iter t; 738 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 739 ARRAY_SIZE(vq->iotlb_iov), 740 VHOST_ACCESS_WO); 741 if (ret < 0) 742 goto out; 743 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size); 744 ret = copy_to_iter(from, size, &t); 745 if (ret == size) 746 ret = 0; 747 } 748 out: 749 return ret; 750 } 751 752 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 753 void __user *from, unsigned size) 754 { 755 int ret; 756 757 if (!vq->iotlb) 758 return __copy_from_user(to, from, size); 759 else { 760 /* This function should be called after iotlb 761 * prefetch, which means we're sure that vq 762 * could be access through iotlb. So -EAGAIN should 763 * not happen in this case. 764 */ 765 /* TODO: more fast path */ 766 struct iov_iter f; 767 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 768 ARRAY_SIZE(vq->iotlb_iov), 769 VHOST_ACCESS_RO); 770 if (ret < 0) { 771 vq_err(vq, "IOTLB translation failure: uaddr " 772 "%p size 0x%llx\n", from, 773 (unsigned long long) size); 774 goto out; 775 } 776 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size); 777 ret = copy_from_iter(to, size, &f); 778 if (ret == size) 779 ret = 0; 780 } 781 782 out: 783 return ret; 784 } 785 786 static void __user *__vhost_get_user(struct vhost_virtqueue *vq, 787 void __user *addr, unsigned size) 788 { 789 int ret; 790 791 /* This function should be called after iotlb 792 * prefetch, which means we're sure that vq 793 * could be access through iotlb. So -EAGAIN should 794 * not happen in this case. 795 */ 796 /* TODO: more fast path */ 797 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 798 ARRAY_SIZE(vq->iotlb_iov), 799 VHOST_ACCESS_RO); 800 if (ret < 0) { 801 vq_err(vq, "IOTLB translation failure: uaddr " 802 "%p size 0x%llx\n", addr, 803 (unsigned long long) size); 804 return NULL; 805 } 806 807 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 808 vq_err(vq, "Non atomic userspace memory access: uaddr " 809 "%p size 0x%llx\n", addr, 810 (unsigned long long) size); 811 return NULL; 812 } 813 814 return vq->iotlb_iov[0].iov_base; 815 } 816 817 #define vhost_put_user(vq, x, ptr) \ 818 ({ \ 819 int ret = -EFAULT; \ 820 if (!vq->iotlb) { \ 821 ret = __put_user(x, ptr); \ 822 } else { \ 823 __typeof__(ptr) to = \ 824 (__typeof__(ptr)) __vhost_get_user(vq, ptr, sizeof(*ptr)); \ 825 if (to != NULL) \ 826 ret = __put_user(x, to); \ 827 else \ 828 ret = -EFAULT; \ 829 } \ 830 ret; \ 831 }) 832 833 #define vhost_get_user(vq, x, ptr) \ 834 ({ \ 835 int ret; \ 836 if (!vq->iotlb) { \ 837 ret = __get_user(x, ptr); \ 838 } else { \ 839 __typeof__(ptr) from = \ 840 (__typeof__(ptr)) __vhost_get_user(vq, ptr, sizeof(*ptr)); \ 841 if (from != NULL) \ 842 ret = __get_user(x, from); \ 843 else \ 844 ret = -EFAULT; \ 845 } \ 846 ret; \ 847 }) 848 849 static void vhost_dev_lock_vqs(struct vhost_dev *d) 850 { 851 int i = 0; 852 for (i = 0; i < d->nvqs; ++i) 853 mutex_lock(&d->vqs[i]->mutex); 854 } 855 856 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 857 { 858 int i = 0; 859 for (i = 0; i < d->nvqs; ++i) 860 mutex_unlock(&d->vqs[i]->mutex); 861 } 862 863 static int vhost_new_umem_range(struct vhost_umem *umem, 864 u64 start, u64 size, u64 end, 865 u64 userspace_addr, int perm) 866 { 867 struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC); 868 869 if (!node) 870 return -ENOMEM; 871 872 if (umem->numem == max_iotlb_entries) { 873 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link); 874 vhost_umem_free(umem, tmp); 875 } 876 877 node->start = start; 878 node->size = size; 879 node->last = end; 880 node->userspace_addr = userspace_addr; 881 node->perm = perm; 882 INIT_LIST_HEAD(&node->link); 883 list_add_tail(&node->link, &umem->umem_list); 884 vhost_umem_interval_tree_insert(node, &umem->umem_tree); 885 umem->numem++; 886 887 return 0; 888 } 889 890 static void vhost_del_umem_range(struct vhost_umem *umem, 891 u64 start, u64 end) 892 { 893 struct vhost_umem_node *node; 894 895 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 896 start, end))) 897 vhost_umem_free(umem, node); 898 } 899 900 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 901 struct vhost_iotlb_msg *msg) 902 { 903 struct vhost_msg_node *node, *n; 904 905 spin_lock(&d->iotlb_lock); 906 907 list_for_each_entry_safe(node, n, &d->pending_list, node) { 908 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 909 if (msg->iova <= vq_msg->iova && 910 msg->iova + msg->size - 1 > vq_msg->iova && 911 vq_msg->type == VHOST_IOTLB_MISS) { 912 vhost_poll_queue(&node->vq->poll); 913 list_del(&node->node); 914 kfree(node); 915 } 916 } 917 918 spin_unlock(&d->iotlb_lock); 919 } 920 921 static int umem_access_ok(u64 uaddr, u64 size, int access) 922 { 923 unsigned long a = uaddr; 924 925 /* Make sure 64 bit math will not overflow. */ 926 if (vhost_overflow(uaddr, size)) 927 return -EFAULT; 928 929 if ((access & VHOST_ACCESS_RO) && 930 !access_ok(VERIFY_READ, (void __user *)a, size)) 931 return -EFAULT; 932 if ((access & VHOST_ACCESS_WO) && 933 !access_ok(VERIFY_WRITE, (void __user *)a, size)) 934 return -EFAULT; 935 return 0; 936 } 937 938 static int vhost_process_iotlb_msg(struct vhost_dev *dev, 939 struct vhost_iotlb_msg *msg) 940 { 941 int ret = 0; 942 943 vhost_dev_lock_vqs(dev); 944 switch (msg->type) { 945 case VHOST_IOTLB_UPDATE: 946 if (!dev->iotlb) { 947 ret = -EFAULT; 948 break; 949 } 950 if (umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 951 ret = -EFAULT; 952 break; 953 } 954 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size, 955 msg->iova + msg->size - 1, 956 msg->uaddr, msg->perm)) { 957 ret = -ENOMEM; 958 break; 959 } 960 vhost_iotlb_notify_vq(dev, msg); 961 break; 962 case VHOST_IOTLB_INVALIDATE: 963 vhost_del_umem_range(dev->iotlb, msg->iova, 964 msg->iova + msg->size - 1); 965 break; 966 default: 967 ret = -EINVAL; 968 break; 969 } 970 971 vhost_dev_unlock_vqs(dev); 972 return ret; 973 } 974 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 975 struct iov_iter *from) 976 { 977 struct vhost_msg_node node; 978 unsigned size = sizeof(struct vhost_msg); 979 size_t ret; 980 int err; 981 982 if (iov_iter_count(from) < size) 983 return 0; 984 ret = copy_from_iter(&node.msg, size, from); 985 if (ret != size) 986 goto done; 987 988 switch (node.msg.type) { 989 case VHOST_IOTLB_MSG: 990 err = vhost_process_iotlb_msg(dev, &node.msg.iotlb); 991 if (err) 992 ret = err; 993 break; 994 default: 995 ret = -EINVAL; 996 break; 997 } 998 999 done: 1000 return ret; 1001 } 1002 EXPORT_SYMBOL(vhost_chr_write_iter); 1003 1004 unsigned int vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1005 poll_table *wait) 1006 { 1007 unsigned int mask = 0; 1008 1009 poll_wait(file, &dev->wait, wait); 1010 1011 if (!list_empty(&dev->read_list)) 1012 mask |= POLLIN | POLLRDNORM; 1013 1014 return mask; 1015 } 1016 EXPORT_SYMBOL(vhost_chr_poll); 1017 1018 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1019 int noblock) 1020 { 1021 DEFINE_WAIT(wait); 1022 struct vhost_msg_node *node; 1023 ssize_t ret = 0; 1024 unsigned size = sizeof(struct vhost_msg); 1025 1026 if (iov_iter_count(to) < size) 1027 return 0; 1028 1029 while (1) { 1030 if (!noblock) 1031 prepare_to_wait(&dev->wait, &wait, 1032 TASK_INTERRUPTIBLE); 1033 1034 node = vhost_dequeue_msg(dev, &dev->read_list); 1035 if (node) 1036 break; 1037 if (noblock) { 1038 ret = -EAGAIN; 1039 break; 1040 } 1041 if (signal_pending(current)) { 1042 ret = -ERESTARTSYS; 1043 break; 1044 } 1045 if (!dev->iotlb) { 1046 ret = -EBADFD; 1047 break; 1048 } 1049 1050 schedule(); 1051 } 1052 1053 if (!noblock) 1054 finish_wait(&dev->wait, &wait); 1055 1056 if (node) { 1057 ret = copy_to_iter(&node->msg, size, to); 1058 1059 if (ret != size || node->msg.type != VHOST_IOTLB_MISS) { 1060 kfree(node); 1061 return ret; 1062 } 1063 1064 vhost_enqueue_msg(dev, &dev->pending_list, node); 1065 } 1066 1067 return ret; 1068 } 1069 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1070 1071 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1072 { 1073 struct vhost_dev *dev = vq->dev; 1074 struct vhost_msg_node *node; 1075 struct vhost_iotlb_msg *msg; 1076 1077 node = vhost_new_msg(vq, VHOST_IOTLB_MISS); 1078 if (!node) 1079 return -ENOMEM; 1080 1081 msg = &node->msg.iotlb; 1082 msg->type = VHOST_IOTLB_MISS; 1083 msg->iova = iova; 1084 msg->perm = access; 1085 1086 vhost_enqueue_msg(dev, &dev->read_list, node); 1087 1088 return 0; 1089 } 1090 1091 static int vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1092 struct vring_desc __user *desc, 1093 struct vring_avail __user *avail, 1094 struct vring_used __user *used) 1095 1096 { 1097 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1098 1099 return access_ok(VERIFY_READ, desc, num * sizeof *desc) && 1100 access_ok(VERIFY_READ, avail, 1101 sizeof *avail + num * sizeof *avail->ring + s) && 1102 access_ok(VERIFY_WRITE, used, 1103 sizeof *used + num * sizeof *used->ring + s); 1104 } 1105 1106 static int iotlb_access_ok(struct vhost_virtqueue *vq, 1107 int access, u64 addr, u64 len) 1108 { 1109 const struct vhost_umem_node *node; 1110 struct vhost_umem *umem = vq->iotlb; 1111 u64 s = 0, size; 1112 1113 while (len > s) { 1114 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1115 addr, 1116 addr + len - 1); 1117 if (node == NULL || node->start > addr) { 1118 vhost_iotlb_miss(vq, addr, access); 1119 return false; 1120 } else if (!(node->perm & access)) { 1121 /* Report the possible access violation by 1122 * request another translation from userspace. 1123 */ 1124 return false; 1125 } 1126 1127 size = node->size - addr + node->start; 1128 s += size; 1129 addr += size; 1130 } 1131 1132 return true; 1133 } 1134 1135 int vq_iotlb_prefetch(struct vhost_virtqueue *vq) 1136 { 1137 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1138 unsigned int num = vq->num; 1139 1140 if (!vq->iotlb) 1141 return 1; 1142 1143 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc, 1144 num * sizeof *vq->desc) && 1145 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail, 1146 sizeof *vq->avail + 1147 num * sizeof *vq->avail->ring + s) && 1148 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used, 1149 sizeof *vq->used + 1150 num * sizeof *vq->used->ring + s); 1151 } 1152 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch); 1153 1154 /* Can we log writes? */ 1155 /* Caller should have device mutex but not vq mutex */ 1156 int vhost_log_access_ok(struct vhost_dev *dev) 1157 { 1158 return memory_access_ok(dev, dev->umem, 1); 1159 } 1160 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1161 1162 /* Verify access for write logging. */ 1163 /* Caller should have vq mutex and device mutex */ 1164 static int vq_log_access_ok(struct vhost_virtqueue *vq, 1165 void __user *log_base) 1166 { 1167 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1168 1169 return vq_memory_access_ok(log_base, vq->umem, 1170 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1171 (!vq->log_used || log_access_ok(log_base, vq->log_addr, 1172 sizeof *vq->used + 1173 vq->num * sizeof *vq->used->ring + s)); 1174 } 1175 1176 /* Can we start vq? */ 1177 /* Caller should have vq mutex and device mutex */ 1178 int vhost_vq_access_ok(struct vhost_virtqueue *vq) 1179 { 1180 if (vq->iotlb) { 1181 /* When device IOTLB was used, the access validation 1182 * will be validated during prefetching. 1183 */ 1184 return 1; 1185 } 1186 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used) && 1187 vq_log_access_ok(vq, vq->log_base); 1188 } 1189 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1190 1191 static struct vhost_umem *vhost_umem_alloc(void) 1192 { 1193 struct vhost_umem *umem = vhost_kvzalloc(sizeof(*umem)); 1194 1195 if (!umem) 1196 return NULL; 1197 1198 umem->umem_tree = RB_ROOT; 1199 umem->numem = 0; 1200 INIT_LIST_HEAD(&umem->umem_list); 1201 1202 return umem; 1203 } 1204 1205 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1206 { 1207 struct vhost_memory mem, *newmem; 1208 struct vhost_memory_region *region; 1209 struct vhost_umem *newumem, *oldumem; 1210 unsigned long size = offsetof(struct vhost_memory, regions); 1211 int i; 1212 1213 if (copy_from_user(&mem, m, size)) 1214 return -EFAULT; 1215 if (mem.padding) 1216 return -EOPNOTSUPP; 1217 if (mem.nregions > max_mem_regions) 1218 return -E2BIG; 1219 newmem = vhost_kvzalloc(size + mem.nregions * sizeof(*m->regions)); 1220 if (!newmem) 1221 return -ENOMEM; 1222 1223 memcpy(newmem, &mem, size); 1224 if (copy_from_user(newmem->regions, m->regions, 1225 mem.nregions * sizeof *m->regions)) { 1226 kvfree(newmem); 1227 return -EFAULT; 1228 } 1229 1230 newumem = vhost_umem_alloc(); 1231 if (!newumem) { 1232 kvfree(newmem); 1233 return -ENOMEM; 1234 } 1235 1236 for (region = newmem->regions; 1237 region < newmem->regions + mem.nregions; 1238 region++) { 1239 if (vhost_new_umem_range(newumem, 1240 region->guest_phys_addr, 1241 region->memory_size, 1242 region->guest_phys_addr + 1243 region->memory_size - 1, 1244 region->userspace_addr, 1245 VHOST_ACCESS_RW)) 1246 goto err; 1247 } 1248 1249 if (!memory_access_ok(d, newumem, 0)) 1250 goto err; 1251 1252 oldumem = d->umem; 1253 d->umem = newumem; 1254 1255 /* All memory accesses are done under some VQ mutex. */ 1256 for (i = 0; i < d->nvqs; ++i) { 1257 mutex_lock(&d->vqs[i]->mutex); 1258 d->vqs[i]->umem = newumem; 1259 mutex_unlock(&d->vqs[i]->mutex); 1260 } 1261 1262 kvfree(newmem); 1263 vhost_umem_clean(oldumem); 1264 return 0; 1265 1266 err: 1267 vhost_umem_clean(newumem); 1268 kvfree(newmem); 1269 return -EFAULT; 1270 } 1271 1272 long vhost_vring_ioctl(struct vhost_dev *d, int ioctl, void __user *argp) 1273 { 1274 struct file *eventfp, *filep = NULL; 1275 bool pollstart = false, pollstop = false; 1276 struct eventfd_ctx *ctx = NULL; 1277 u32 __user *idxp = argp; 1278 struct vhost_virtqueue *vq; 1279 struct vhost_vring_state s; 1280 struct vhost_vring_file f; 1281 struct vhost_vring_addr a; 1282 u32 idx; 1283 long r; 1284 1285 r = get_user(idx, idxp); 1286 if (r < 0) 1287 return r; 1288 if (idx >= d->nvqs) 1289 return -ENOBUFS; 1290 1291 vq = d->vqs[idx]; 1292 1293 mutex_lock(&vq->mutex); 1294 1295 switch (ioctl) { 1296 case VHOST_SET_VRING_NUM: 1297 /* Resizing ring with an active backend? 1298 * You don't want to do that. */ 1299 if (vq->private_data) { 1300 r = -EBUSY; 1301 break; 1302 } 1303 if (copy_from_user(&s, argp, sizeof s)) { 1304 r = -EFAULT; 1305 break; 1306 } 1307 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) { 1308 r = -EINVAL; 1309 break; 1310 } 1311 vq->num = s.num; 1312 break; 1313 case VHOST_SET_VRING_BASE: 1314 /* Moving base with an active backend? 1315 * You don't want to do that. */ 1316 if (vq->private_data) { 1317 r = -EBUSY; 1318 break; 1319 } 1320 if (copy_from_user(&s, argp, sizeof s)) { 1321 r = -EFAULT; 1322 break; 1323 } 1324 if (s.num > 0xffff) { 1325 r = -EINVAL; 1326 break; 1327 } 1328 vq->last_avail_idx = vq->last_used_event = s.num; 1329 /* Forget the cached index value. */ 1330 vq->avail_idx = vq->last_avail_idx; 1331 break; 1332 case VHOST_GET_VRING_BASE: 1333 s.index = idx; 1334 s.num = vq->last_avail_idx; 1335 if (copy_to_user(argp, &s, sizeof s)) 1336 r = -EFAULT; 1337 break; 1338 case VHOST_SET_VRING_ADDR: 1339 if (copy_from_user(&a, argp, sizeof a)) { 1340 r = -EFAULT; 1341 break; 1342 } 1343 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) { 1344 r = -EOPNOTSUPP; 1345 break; 1346 } 1347 /* For 32bit, verify that the top 32bits of the user 1348 data are set to zero. */ 1349 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1350 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1351 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) { 1352 r = -EFAULT; 1353 break; 1354 } 1355 1356 /* Make sure it's safe to cast pointers to vring types. */ 1357 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1358 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1359 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1360 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1361 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) { 1362 r = -EINVAL; 1363 break; 1364 } 1365 1366 /* We only verify access here if backend is configured. 1367 * If it is not, we don't as size might not have been setup. 1368 * We will verify when backend is configured. */ 1369 if (vq->private_data) { 1370 if (!vq_access_ok(vq, vq->num, 1371 (void __user *)(unsigned long)a.desc_user_addr, 1372 (void __user *)(unsigned long)a.avail_user_addr, 1373 (void __user *)(unsigned long)a.used_user_addr)) { 1374 r = -EINVAL; 1375 break; 1376 } 1377 1378 /* Also validate log access for used ring if enabled. */ 1379 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) && 1380 !log_access_ok(vq->log_base, a.log_guest_addr, 1381 sizeof *vq->used + 1382 vq->num * sizeof *vq->used->ring)) { 1383 r = -EINVAL; 1384 break; 1385 } 1386 } 1387 1388 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1389 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1390 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1391 vq->log_addr = a.log_guest_addr; 1392 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1393 break; 1394 case VHOST_SET_VRING_KICK: 1395 if (copy_from_user(&f, argp, sizeof f)) { 1396 r = -EFAULT; 1397 break; 1398 } 1399 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1400 if (IS_ERR(eventfp)) { 1401 r = PTR_ERR(eventfp); 1402 break; 1403 } 1404 if (eventfp != vq->kick) { 1405 pollstop = (filep = vq->kick) != NULL; 1406 pollstart = (vq->kick = eventfp) != NULL; 1407 } else 1408 filep = eventfp; 1409 break; 1410 case VHOST_SET_VRING_CALL: 1411 if (copy_from_user(&f, argp, sizeof f)) { 1412 r = -EFAULT; 1413 break; 1414 } 1415 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1416 if (IS_ERR(eventfp)) { 1417 r = PTR_ERR(eventfp); 1418 break; 1419 } 1420 if (eventfp != vq->call) { 1421 filep = vq->call; 1422 ctx = vq->call_ctx; 1423 vq->call = eventfp; 1424 vq->call_ctx = eventfp ? 1425 eventfd_ctx_fileget(eventfp) : NULL; 1426 } else 1427 filep = eventfp; 1428 break; 1429 case VHOST_SET_VRING_ERR: 1430 if (copy_from_user(&f, argp, sizeof f)) { 1431 r = -EFAULT; 1432 break; 1433 } 1434 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1435 if (IS_ERR(eventfp)) { 1436 r = PTR_ERR(eventfp); 1437 break; 1438 } 1439 if (eventfp != vq->error) { 1440 filep = vq->error; 1441 vq->error = eventfp; 1442 ctx = vq->error_ctx; 1443 vq->error_ctx = eventfp ? 1444 eventfd_ctx_fileget(eventfp) : NULL; 1445 } else 1446 filep = eventfp; 1447 break; 1448 case VHOST_SET_VRING_ENDIAN: 1449 r = vhost_set_vring_endian(vq, argp); 1450 break; 1451 case VHOST_GET_VRING_ENDIAN: 1452 r = vhost_get_vring_endian(vq, idx, argp); 1453 break; 1454 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1455 if (copy_from_user(&s, argp, sizeof(s))) { 1456 r = -EFAULT; 1457 break; 1458 } 1459 vq->busyloop_timeout = s.num; 1460 break; 1461 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1462 s.index = idx; 1463 s.num = vq->busyloop_timeout; 1464 if (copy_to_user(argp, &s, sizeof(s))) 1465 r = -EFAULT; 1466 break; 1467 default: 1468 r = -ENOIOCTLCMD; 1469 } 1470 1471 if (pollstop && vq->handle_kick) 1472 vhost_poll_stop(&vq->poll); 1473 1474 if (ctx) 1475 eventfd_ctx_put(ctx); 1476 if (filep) 1477 fput(filep); 1478 1479 if (pollstart && vq->handle_kick) 1480 r = vhost_poll_start(&vq->poll, vq->kick); 1481 1482 mutex_unlock(&vq->mutex); 1483 1484 if (pollstop && vq->handle_kick) 1485 vhost_poll_flush(&vq->poll); 1486 return r; 1487 } 1488 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 1489 1490 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled) 1491 { 1492 struct vhost_umem *niotlb, *oiotlb; 1493 int i; 1494 1495 niotlb = vhost_umem_alloc(); 1496 if (!niotlb) 1497 return -ENOMEM; 1498 1499 oiotlb = d->iotlb; 1500 d->iotlb = niotlb; 1501 1502 for (i = 0; i < d->nvqs; ++i) { 1503 mutex_lock(&d->vqs[i]->mutex); 1504 d->vqs[i]->iotlb = niotlb; 1505 mutex_unlock(&d->vqs[i]->mutex); 1506 } 1507 1508 vhost_umem_clean(oiotlb); 1509 1510 return 0; 1511 } 1512 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 1513 1514 /* Caller must have device mutex */ 1515 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1516 { 1517 struct file *eventfp, *filep = NULL; 1518 struct eventfd_ctx *ctx = NULL; 1519 u64 p; 1520 long r; 1521 int i, fd; 1522 1523 /* If you are not the owner, you can become one */ 1524 if (ioctl == VHOST_SET_OWNER) { 1525 r = vhost_dev_set_owner(d); 1526 goto done; 1527 } 1528 1529 /* You must be the owner to do anything else */ 1530 r = vhost_dev_check_owner(d); 1531 if (r) 1532 goto done; 1533 1534 switch (ioctl) { 1535 case VHOST_SET_MEM_TABLE: 1536 r = vhost_set_memory(d, argp); 1537 break; 1538 case VHOST_SET_LOG_BASE: 1539 if (copy_from_user(&p, argp, sizeof p)) { 1540 r = -EFAULT; 1541 break; 1542 } 1543 if ((u64)(unsigned long)p != p) { 1544 r = -EFAULT; 1545 break; 1546 } 1547 for (i = 0; i < d->nvqs; ++i) { 1548 struct vhost_virtqueue *vq; 1549 void __user *base = (void __user *)(unsigned long)p; 1550 vq = d->vqs[i]; 1551 mutex_lock(&vq->mutex); 1552 /* If ring is inactive, will check when it's enabled. */ 1553 if (vq->private_data && !vq_log_access_ok(vq, base)) 1554 r = -EFAULT; 1555 else 1556 vq->log_base = base; 1557 mutex_unlock(&vq->mutex); 1558 } 1559 break; 1560 case VHOST_SET_LOG_FD: 1561 r = get_user(fd, (int __user *)argp); 1562 if (r < 0) 1563 break; 1564 eventfp = fd == -1 ? NULL : eventfd_fget(fd); 1565 if (IS_ERR(eventfp)) { 1566 r = PTR_ERR(eventfp); 1567 break; 1568 } 1569 if (eventfp != d->log_file) { 1570 filep = d->log_file; 1571 d->log_file = eventfp; 1572 ctx = d->log_ctx; 1573 d->log_ctx = eventfp ? 1574 eventfd_ctx_fileget(eventfp) : NULL; 1575 } else 1576 filep = eventfp; 1577 for (i = 0; i < d->nvqs; ++i) { 1578 mutex_lock(&d->vqs[i]->mutex); 1579 d->vqs[i]->log_ctx = d->log_ctx; 1580 mutex_unlock(&d->vqs[i]->mutex); 1581 } 1582 if (ctx) 1583 eventfd_ctx_put(ctx); 1584 if (filep) 1585 fput(filep); 1586 break; 1587 default: 1588 r = -ENOIOCTLCMD; 1589 break; 1590 } 1591 done: 1592 return r; 1593 } 1594 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 1595 1596 /* TODO: This is really inefficient. We need something like get_user() 1597 * (instruction directly accesses the data, with an exception table entry 1598 * returning -EFAULT). See Documentation/x86/exception-tables.txt. 1599 */ 1600 static int set_bit_to_user(int nr, void __user *addr) 1601 { 1602 unsigned long log = (unsigned long)addr; 1603 struct page *page; 1604 void *base; 1605 int bit = nr + (log % PAGE_SIZE) * 8; 1606 int r; 1607 1608 r = get_user_pages_fast(log, 1, 1, &page); 1609 if (r < 0) 1610 return r; 1611 BUG_ON(r != 1); 1612 base = kmap_atomic(page); 1613 set_bit(bit, base); 1614 kunmap_atomic(base); 1615 set_page_dirty_lock(page); 1616 put_page(page); 1617 return 0; 1618 } 1619 1620 static int log_write(void __user *log_base, 1621 u64 write_address, u64 write_length) 1622 { 1623 u64 write_page = write_address / VHOST_PAGE_SIZE; 1624 int r; 1625 1626 if (!write_length) 1627 return 0; 1628 write_length += write_address % VHOST_PAGE_SIZE; 1629 for (;;) { 1630 u64 base = (u64)(unsigned long)log_base; 1631 u64 log = base + write_page / 8; 1632 int bit = write_page % 8; 1633 if ((u64)(unsigned long)log != log) 1634 return -EFAULT; 1635 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 1636 if (r < 0) 1637 return r; 1638 if (write_length <= VHOST_PAGE_SIZE) 1639 break; 1640 write_length -= VHOST_PAGE_SIZE; 1641 write_page += 1; 1642 } 1643 return r; 1644 } 1645 1646 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 1647 unsigned int log_num, u64 len) 1648 { 1649 int i, r; 1650 1651 /* Make sure data written is seen before log. */ 1652 smp_wmb(); 1653 for (i = 0; i < log_num; ++i) { 1654 u64 l = min(log[i].len, len); 1655 r = log_write(vq->log_base, log[i].addr, l); 1656 if (r < 0) 1657 return r; 1658 len -= l; 1659 if (!len) { 1660 if (vq->log_ctx) 1661 eventfd_signal(vq->log_ctx, 1); 1662 return 0; 1663 } 1664 } 1665 /* Length written exceeds what we have stored. This is a bug. */ 1666 BUG(); 1667 return 0; 1668 } 1669 EXPORT_SYMBOL_GPL(vhost_log_write); 1670 1671 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 1672 { 1673 void __user *used; 1674 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1675 &vq->used->flags) < 0) 1676 return -EFAULT; 1677 if (unlikely(vq->log_used)) { 1678 /* Make sure the flag is seen before log. */ 1679 smp_wmb(); 1680 /* Log used flag write. */ 1681 used = &vq->used->flags; 1682 log_write(vq->log_base, vq->log_addr + 1683 (used - (void __user *)vq->used), 1684 sizeof vq->used->flags); 1685 if (vq->log_ctx) 1686 eventfd_signal(vq->log_ctx, 1); 1687 } 1688 return 0; 1689 } 1690 1691 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event) 1692 { 1693 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1694 vhost_avail_event(vq))) 1695 return -EFAULT; 1696 if (unlikely(vq->log_used)) { 1697 void __user *used; 1698 /* Make sure the event is seen before log. */ 1699 smp_wmb(); 1700 /* Log avail event write */ 1701 used = vhost_avail_event(vq); 1702 log_write(vq->log_base, vq->log_addr + 1703 (used - (void __user *)vq->used), 1704 sizeof *vhost_avail_event(vq)); 1705 if (vq->log_ctx) 1706 eventfd_signal(vq->log_ctx, 1); 1707 } 1708 return 0; 1709 } 1710 1711 int vhost_vq_init_access(struct vhost_virtqueue *vq) 1712 { 1713 __virtio16 last_used_idx; 1714 int r; 1715 bool is_le = vq->is_le; 1716 1717 if (!vq->private_data) 1718 return 0; 1719 1720 vhost_init_is_le(vq); 1721 1722 r = vhost_update_used_flags(vq); 1723 if (r) 1724 goto err; 1725 vq->signalled_used_valid = false; 1726 if (!vq->iotlb && 1727 !access_ok(VERIFY_READ, &vq->used->idx, sizeof vq->used->idx)) { 1728 r = -EFAULT; 1729 goto err; 1730 } 1731 r = vhost_get_user(vq, last_used_idx, &vq->used->idx); 1732 if (r) { 1733 vq_err(vq, "Can't access used idx at %p\n", 1734 &vq->used->idx); 1735 goto err; 1736 } 1737 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 1738 return 0; 1739 1740 err: 1741 vq->is_le = is_le; 1742 return r; 1743 } 1744 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 1745 1746 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1747 struct iovec iov[], int iov_size, int access) 1748 { 1749 const struct vhost_umem_node *node; 1750 struct vhost_dev *dev = vq->dev; 1751 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem; 1752 struct iovec *_iov; 1753 u64 s = 0; 1754 int ret = 0; 1755 1756 while ((u64)len > s) { 1757 u64 size; 1758 if (unlikely(ret >= iov_size)) { 1759 ret = -ENOBUFS; 1760 break; 1761 } 1762 1763 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1764 addr, addr + len - 1); 1765 if (node == NULL || node->start > addr) { 1766 if (umem != dev->iotlb) { 1767 ret = -EFAULT; 1768 break; 1769 } 1770 ret = -EAGAIN; 1771 break; 1772 } else if (!(node->perm & access)) { 1773 ret = -EPERM; 1774 break; 1775 } 1776 1777 _iov = iov + ret; 1778 size = node->size - addr + node->start; 1779 _iov->iov_len = min((u64)len - s, size); 1780 _iov->iov_base = (void __user *)(unsigned long) 1781 (node->userspace_addr + addr - node->start); 1782 s += size; 1783 addr += size; 1784 ++ret; 1785 } 1786 1787 if (ret == -EAGAIN) 1788 vhost_iotlb_miss(vq, addr, access); 1789 return ret; 1790 } 1791 1792 /* Each buffer in the virtqueues is actually a chain of descriptors. This 1793 * function returns the next descriptor in the chain, 1794 * or -1U if we're at the end. */ 1795 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 1796 { 1797 unsigned int next; 1798 1799 /* If this descriptor says it doesn't chain, we're done. */ 1800 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 1801 return -1U; 1802 1803 /* Check they're not leading us off end of descriptors. */ 1804 next = vhost16_to_cpu(vq, desc->next); 1805 /* Make sure compiler knows to grab that: we don't want it changing! */ 1806 /* We will use the result as an index in an array, so most 1807 * architectures only need a compiler barrier here. */ 1808 read_barrier_depends(); 1809 1810 return next; 1811 } 1812 1813 static int get_indirect(struct vhost_virtqueue *vq, 1814 struct iovec iov[], unsigned int iov_size, 1815 unsigned int *out_num, unsigned int *in_num, 1816 struct vhost_log *log, unsigned int *log_num, 1817 struct vring_desc *indirect) 1818 { 1819 struct vring_desc desc; 1820 unsigned int i = 0, count, found = 0; 1821 u32 len = vhost32_to_cpu(vq, indirect->len); 1822 struct iov_iter from; 1823 int ret, access; 1824 1825 /* Sanity check */ 1826 if (unlikely(len % sizeof desc)) { 1827 vq_err(vq, "Invalid length in indirect descriptor: " 1828 "len 0x%llx not multiple of 0x%zx\n", 1829 (unsigned long long)len, 1830 sizeof desc); 1831 return -EINVAL; 1832 } 1833 1834 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 1835 UIO_MAXIOV, VHOST_ACCESS_RO); 1836 if (unlikely(ret < 0)) { 1837 if (ret != -EAGAIN) 1838 vq_err(vq, "Translation failure %d in indirect.\n", ret); 1839 return ret; 1840 } 1841 iov_iter_init(&from, READ, vq->indirect, ret, len); 1842 1843 /* We will use the result as an address to read from, so most 1844 * architectures only need a compiler barrier here. */ 1845 read_barrier_depends(); 1846 1847 count = len / sizeof desc; 1848 /* Buffers are chained via a 16 bit next field, so 1849 * we can have at most 2^16 of these. */ 1850 if (unlikely(count > USHRT_MAX + 1)) { 1851 vq_err(vq, "Indirect buffer length too big: %d\n", 1852 indirect->len); 1853 return -E2BIG; 1854 } 1855 1856 do { 1857 unsigned iov_count = *in_num + *out_num; 1858 if (unlikely(++found > count)) { 1859 vq_err(vq, "Loop detected: last one at %u " 1860 "indirect size %u\n", 1861 i, count); 1862 return -EINVAL; 1863 } 1864 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 1865 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 1866 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1867 return -EINVAL; 1868 } 1869 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 1870 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 1871 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1872 return -EINVAL; 1873 } 1874 1875 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 1876 access = VHOST_ACCESS_WO; 1877 else 1878 access = VHOST_ACCESS_RO; 1879 1880 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 1881 vhost32_to_cpu(vq, desc.len), iov + iov_count, 1882 iov_size - iov_count, access); 1883 if (unlikely(ret < 0)) { 1884 if (ret != -EAGAIN) 1885 vq_err(vq, "Translation failure %d indirect idx %d\n", 1886 ret, i); 1887 return ret; 1888 } 1889 /* If this is an input descriptor, increment that count. */ 1890 if (access == VHOST_ACCESS_WO) { 1891 *in_num += ret; 1892 if (unlikely(log)) { 1893 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 1894 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 1895 ++*log_num; 1896 } 1897 } else { 1898 /* If it's an output descriptor, they're all supposed 1899 * to come before any input descriptors. */ 1900 if (unlikely(*in_num)) { 1901 vq_err(vq, "Indirect descriptor " 1902 "has out after in: idx %d\n", i); 1903 return -EINVAL; 1904 } 1905 *out_num += ret; 1906 } 1907 } while ((i = next_desc(vq, &desc)) != -1); 1908 return 0; 1909 } 1910 1911 /* This looks in the virtqueue and for the first available buffer, and converts 1912 * it to an iovec for convenient access. Since descriptors consist of some 1913 * number of output then some number of input descriptors, it's actually two 1914 * iovecs, but we pack them into one and note how many of each there were. 1915 * 1916 * This function returns the descriptor number found, or vq->num (which is 1917 * never a valid descriptor number) if none was found. A negative code is 1918 * returned on error. */ 1919 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 1920 struct iovec iov[], unsigned int iov_size, 1921 unsigned int *out_num, unsigned int *in_num, 1922 struct vhost_log *log, unsigned int *log_num) 1923 { 1924 struct vring_desc desc; 1925 unsigned int i, head, found = 0; 1926 u16 last_avail_idx; 1927 __virtio16 avail_idx; 1928 __virtio16 ring_head; 1929 int ret, access; 1930 1931 /* Check it isn't doing very strange things with descriptor numbers. */ 1932 last_avail_idx = vq->last_avail_idx; 1933 if (unlikely(vhost_get_user(vq, avail_idx, &vq->avail->idx))) { 1934 vq_err(vq, "Failed to access avail idx at %p\n", 1935 &vq->avail->idx); 1936 return -EFAULT; 1937 } 1938 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 1939 1940 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 1941 vq_err(vq, "Guest moved used index from %u to %u", 1942 last_avail_idx, vq->avail_idx); 1943 return -EFAULT; 1944 } 1945 1946 /* If there's nothing new since last we looked, return invalid. */ 1947 if (vq->avail_idx == last_avail_idx) 1948 return vq->num; 1949 1950 /* Only get avail ring entries after they have been exposed by guest. */ 1951 smp_rmb(); 1952 1953 /* Grab the next descriptor number they're advertising, and increment 1954 * the index we've seen. */ 1955 if (unlikely(vhost_get_user(vq, ring_head, 1956 &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) { 1957 vq_err(vq, "Failed to read head: idx %d address %p\n", 1958 last_avail_idx, 1959 &vq->avail->ring[last_avail_idx % vq->num]); 1960 return -EFAULT; 1961 } 1962 1963 head = vhost16_to_cpu(vq, ring_head); 1964 1965 /* If their number is silly, that's an error. */ 1966 if (unlikely(head >= vq->num)) { 1967 vq_err(vq, "Guest says index %u > %u is available", 1968 head, vq->num); 1969 return -EINVAL; 1970 } 1971 1972 /* When we start there are none of either input nor output. */ 1973 *out_num = *in_num = 0; 1974 if (unlikely(log)) 1975 *log_num = 0; 1976 1977 i = head; 1978 do { 1979 unsigned iov_count = *in_num + *out_num; 1980 if (unlikely(i >= vq->num)) { 1981 vq_err(vq, "Desc index is %u > %u, head = %u", 1982 i, vq->num, head); 1983 return -EINVAL; 1984 } 1985 if (unlikely(++found > vq->num)) { 1986 vq_err(vq, "Loop detected: last one at %u " 1987 "vq size %u head %u\n", 1988 i, vq->num, head); 1989 return -EINVAL; 1990 } 1991 ret = vhost_copy_from_user(vq, &desc, vq->desc + i, 1992 sizeof desc); 1993 if (unlikely(ret)) { 1994 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 1995 i, vq->desc + i); 1996 return -EFAULT; 1997 } 1998 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 1999 ret = get_indirect(vq, iov, iov_size, 2000 out_num, in_num, 2001 log, log_num, &desc); 2002 if (unlikely(ret < 0)) { 2003 if (ret != -EAGAIN) 2004 vq_err(vq, "Failure detected " 2005 "in indirect descriptor at idx %d\n", i); 2006 return ret; 2007 } 2008 continue; 2009 } 2010 2011 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2012 access = VHOST_ACCESS_WO; 2013 else 2014 access = VHOST_ACCESS_RO; 2015 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2016 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2017 iov_size - iov_count, access); 2018 if (unlikely(ret < 0)) { 2019 if (ret != -EAGAIN) 2020 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2021 ret, i); 2022 return ret; 2023 } 2024 if (access == VHOST_ACCESS_WO) { 2025 /* If this is an input descriptor, 2026 * increment that count. */ 2027 *in_num += ret; 2028 if (unlikely(log)) { 2029 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2030 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2031 ++*log_num; 2032 } 2033 } else { 2034 /* If it's an output descriptor, they're all supposed 2035 * to come before any input descriptors. */ 2036 if (unlikely(*in_num)) { 2037 vq_err(vq, "Descriptor has out after in: " 2038 "idx %d\n", i); 2039 return -EINVAL; 2040 } 2041 *out_num += ret; 2042 } 2043 } while ((i = next_desc(vq, &desc)) != -1); 2044 2045 /* On success, increment avail index. */ 2046 vq->last_avail_idx++; 2047 2048 /* Assume notifications from guest are disabled at this point, 2049 * if they aren't we would need to update avail_event index. */ 2050 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2051 return head; 2052 } 2053 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2054 2055 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2056 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2057 { 2058 vq->last_avail_idx -= n; 2059 } 2060 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2061 2062 /* After we've used one of their buffers, we tell them about it. We'll then 2063 * want to notify the guest, using eventfd. */ 2064 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2065 { 2066 struct vring_used_elem heads = { 2067 cpu_to_vhost32(vq, head), 2068 cpu_to_vhost32(vq, len) 2069 }; 2070 2071 return vhost_add_used_n(vq, &heads, 1); 2072 } 2073 EXPORT_SYMBOL_GPL(vhost_add_used); 2074 2075 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2076 struct vring_used_elem *heads, 2077 unsigned count) 2078 { 2079 struct vring_used_elem __user *used; 2080 u16 old, new; 2081 int start; 2082 2083 start = vq->last_used_idx & (vq->num - 1); 2084 used = vq->used->ring + start; 2085 if (count == 1) { 2086 if (vhost_put_user(vq, heads[0].id, &used->id)) { 2087 vq_err(vq, "Failed to write used id"); 2088 return -EFAULT; 2089 } 2090 if (vhost_put_user(vq, heads[0].len, &used->len)) { 2091 vq_err(vq, "Failed to write used len"); 2092 return -EFAULT; 2093 } 2094 } else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) { 2095 vq_err(vq, "Failed to write used"); 2096 return -EFAULT; 2097 } 2098 if (unlikely(vq->log_used)) { 2099 /* Make sure data is seen before log. */ 2100 smp_wmb(); 2101 /* Log used ring entry write. */ 2102 log_write(vq->log_base, 2103 vq->log_addr + 2104 ((void __user *)used - (void __user *)vq->used), 2105 count * sizeof *used); 2106 } 2107 old = vq->last_used_idx; 2108 new = (vq->last_used_idx += count); 2109 /* If the driver never bothers to signal in a very long while, 2110 * used index might wrap around. If that happens, invalidate 2111 * signalled_used index we stored. TODO: make sure driver 2112 * signals at least once in 2^16 and remove this. */ 2113 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2114 vq->signalled_used_valid = false; 2115 return 0; 2116 } 2117 2118 /* After we've used one of their buffers, we tell them about it. We'll then 2119 * want to notify the guest, using eventfd. */ 2120 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2121 unsigned count) 2122 { 2123 int start, n, r; 2124 2125 start = vq->last_used_idx & (vq->num - 1); 2126 n = vq->num - start; 2127 if (n < count) { 2128 r = __vhost_add_used_n(vq, heads, n); 2129 if (r < 0) 2130 return r; 2131 heads += n; 2132 count -= n; 2133 } 2134 r = __vhost_add_used_n(vq, heads, count); 2135 2136 /* Make sure buffer is written before we update index. */ 2137 smp_wmb(); 2138 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 2139 &vq->used->idx)) { 2140 vq_err(vq, "Failed to increment used idx"); 2141 return -EFAULT; 2142 } 2143 if (unlikely(vq->log_used)) { 2144 /* Log used index update. */ 2145 log_write(vq->log_base, 2146 vq->log_addr + offsetof(struct vring_used, idx), 2147 sizeof vq->used->idx); 2148 if (vq->log_ctx) 2149 eventfd_signal(vq->log_ctx, 1); 2150 } 2151 return r; 2152 } 2153 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2154 2155 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2156 { 2157 __u16 old, new; 2158 __virtio16 event; 2159 bool v; 2160 2161 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2162 unlikely(vq->avail_idx == vq->last_avail_idx)) 2163 return true; 2164 2165 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2166 __virtio16 flags; 2167 /* Flush out used index updates. This is paired 2168 * with the barrier that the Guest executes when enabling 2169 * interrupts. */ 2170 smp_mb(); 2171 if (vhost_get_user(vq, flags, &vq->avail->flags)) { 2172 vq_err(vq, "Failed to get flags"); 2173 return true; 2174 } 2175 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2176 } 2177 old = vq->signalled_used; 2178 v = vq->signalled_used_valid; 2179 new = vq->signalled_used = vq->last_used_idx; 2180 vq->signalled_used_valid = true; 2181 2182 if (unlikely(!v)) 2183 return true; 2184 2185 /* We're sure if the following conditions are met, there's no 2186 * need to notify guest: 2187 * 1) cached used event is ahead of new 2188 * 2) old to new updating does not cross cached used event. */ 2189 if (vring_need_event(vq->last_used_event, new + vq->num, new) && 2190 !vring_need_event(vq->last_used_event, new, old)) 2191 return false; 2192 2193 /* Flush out used index updates. This is paired 2194 * with the barrier that the Guest executes when enabling 2195 * interrupts. */ 2196 smp_mb(); 2197 2198 if (vhost_get_user(vq, event, vhost_used_event(vq))) { 2199 vq_err(vq, "Failed to get used event idx"); 2200 return true; 2201 } 2202 vq->last_used_event = vhost16_to_cpu(vq, event); 2203 2204 return vring_need_event(vq->last_used_event, new, old); 2205 } 2206 2207 /* This actually signals the guest, using eventfd. */ 2208 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2209 { 2210 /* Signal the Guest tell them we used something up. */ 2211 if (vq->call_ctx && vhost_notify(dev, vq)) 2212 eventfd_signal(vq->call_ctx, 1); 2213 } 2214 EXPORT_SYMBOL_GPL(vhost_signal); 2215 2216 /* And here's the combo meal deal. Supersize me! */ 2217 void vhost_add_used_and_signal(struct vhost_dev *dev, 2218 struct vhost_virtqueue *vq, 2219 unsigned int head, int len) 2220 { 2221 vhost_add_used(vq, head, len); 2222 vhost_signal(dev, vq); 2223 } 2224 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2225 2226 /* multi-buffer version of vhost_add_used_and_signal */ 2227 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2228 struct vhost_virtqueue *vq, 2229 struct vring_used_elem *heads, unsigned count) 2230 { 2231 vhost_add_used_n(vq, heads, count); 2232 vhost_signal(dev, vq); 2233 } 2234 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2235 2236 /* return true if we're sure that avaiable ring is empty */ 2237 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2238 { 2239 __virtio16 avail_idx; 2240 int r; 2241 2242 if (vq->avail_idx != vq->last_avail_idx) 2243 return false; 2244 2245 r = vhost_get_user(vq, avail_idx, &vq->avail->idx); 2246 if (unlikely(r)) 2247 return false; 2248 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2249 2250 return vq->avail_idx == vq->last_avail_idx; 2251 } 2252 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2253 2254 /* OK, now we need to know about added descriptors. */ 2255 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2256 { 2257 __virtio16 avail_idx; 2258 int r; 2259 2260 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2261 return false; 2262 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2263 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2264 r = vhost_update_used_flags(vq); 2265 if (r) { 2266 vq_err(vq, "Failed to enable notification at %p: %d\n", 2267 &vq->used->flags, r); 2268 return false; 2269 } 2270 } else { 2271 r = vhost_update_avail_event(vq, vq->avail_idx); 2272 if (r) { 2273 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2274 vhost_avail_event(vq), r); 2275 return false; 2276 } 2277 } 2278 /* They could have slipped one in as we were doing that: make 2279 * sure it's written, then check again. */ 2280 smp_mb(); 2281 r = vhost_get_user(vq, avail_idx, &vq->avail->idx); 2282 if (r) { 2283 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2284 &vq->avail->idx, r); 2285 return false; 2286 } 2287 2288 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx; 2289 } 2290 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2291 2292 /* We don't need to be notified again. */ 2293 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2294 { 2295 int r; 2296 2297 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2298 return; 2299 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2300 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2301 r = vhost_update_used_flags(vq); 2302 if (r) 2303 vq_err(vq, "Failed to enable notification at %p: %d\n", 2304 &vq->used->flags, r); 2305 } 2306 } 2307 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2308 2309 /* Create a new message. */ 2310 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2311 { 2312 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL); 2313 if (!node) 2314 return NULL; 2315 node->vq = vq; 2316 node->msg.type = type; 2317 return node; 2318 } 2319 EXPORT_SYMBOL_GPL(vhost_new_msg); 2320 2321 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2322 struct vhost_msg_node *node) 2323 { 2324 spin_lock(&dev->iotlb_lock); 2325 list_add_tail(&node->node, head); 2326 spin_unlock(&dev->iotlb_lock); 2327 2328 wake_up_interruptible_poll(&dev->wait, POLLIN | POLLRDNORM); 2329 } 2330 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2331 2332 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2333 struct list_head *head) 2334 { 2335 struct vhost_msg_node *node = NULL; 2336 2337 spin_lock(&dev->iotlb_lock); 2338 if (!list_empty(head)) { 2339 node = list_first_entry(head, struct vhost_msg_node, 2340 node); 2341 list_del(&node->node); 2342 } 2343 spin_unlock(&dev->iotlb_lock); 2344 2345 return node; 2346 } 2347 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2348 2349 2350 static int __init vhost_init(void) 2351 { 2352 return 0; 2353 } 2354 2355 static void __exit vhost_exit(void) 2356 { 2357 } 2358 2359 module_init(vhost_init); 2360 module_exit(vhost_exit); 2361 2362 MODULE_VERSION("0.0.1"); 2363 MODULE_LICENSE("GPL v2"); 2364 MODULE_AUTHOR("Michael S. Tsirkin"); 2365 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2366