xref: /openbmc/linux/drivers/vhost/vhost.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /* Copyright (C) 2009 Red Hat, Inc.
2  * Copyright (C) 2006 Rusty Russell IBM Corporation
3  *
4  * Author: Michael S. Tsirkin <mst@redhat.com>
5  *
6  * Inspiration, some code, and most witty comments come from
7  * Documentation/virtual/lguest/lguest.c, by Rusty Russell
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.
10  *
11  * Generic code for virtio server in host kernel.
12  */
13 
14 #include <linux/eventfd.h>
15 #include <linux/vhost.h>
16 #include <linux/uio.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_context.h>
19 #include <linux/miscdevice.h>
20 #include <linux/mutex.h>
21 #include <linux/poll.h>
22 #include <linux/file.h>
23 #include <linux/highmem.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/kthread.h>
27 #include <linux/cgroup.h>
28 #include <linux/module.h>
29 #include <linux/sort.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/signal.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include "vhost.h"
35 
36 static ushort max_mem_regions = 64;
37 module_param(max_mem_regions, ushort, 0444);
38 MODULE_PARM_DESC(max_mem_regions,
39 	"Maximum number of memory regions in memory map. (default: 64)");
40 static int max_iotlb_entries = 2048;
41 module_param(max_iotlb_entries, int, 0444);
42 MODULE_PARM_DESC(max_iotlb_entries,
43 	"Maximum number of iotlb entries. (default: 2048)");
44 
45 enum {
46 	VHOST_MEMORY_F_LOG = 0x1,
47 };
48 
49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num])
50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num])
51 
52 INTERVAL_TREE_DEFINE(struct vhost_umem_node,
53 		     rb, __u64, __subtree_last,
54 		     START, LAST, static inline, vhost_umem_interval_tree);
55 
56 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY
57 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
58 {
59 	vq->user_be = !virtio_legacy_is_little_endian();
60 }
61 
62 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq)
63 {
64 	vq->user_be = true;
65 }
66 
67 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq)
68 {
69 	vq->user_be = false;
70 }
71 
72 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
73 {
74 	struct vhost_vring_state s;
75 
76 	if (vq->private_data)
77 		return -EBUSY;
78 
79 	if (copy_from_user(&s, argp, sizeof(s)))
80 		return -EFAULT;
81 
82 	if (s.num != VHOST_VRING_LITTLE_ENDIAN &&
83 	    s.num != VHOST_VRING_BIG_ENDIAN)
84 		return -EINVAL;
85 
86 	if (s.num == VHOST_VRING_BIG_ENDIAN)
87 		vhost_enable_cross_endian_big(vq);
88 	else
89 		vhost_enable_cross_endian_little(vq);
90 
91 	return 0;
92 }
93 
94 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
95 				   int __user *argp)
96 {
97 	struct vhost_vring_state s = {
98 		.index = idx,
99 		.num = vq->user_be
100 	};
101 
102 	if (copy_to_user(argp, &s, sizeof(s)))
103 		return -EFAULT;
104 
105 	return 0;
106 }
107 
108 static void vhost_init_is_le(struct vhost_virtqueue *vq)
109 {
110 	/* Note for legacy virtio: user_be is initialized at reset time
111 	 * according to the host endianness. If userspace does not set an
112 	 * explicit endianness, the default behavior is native endian, as
113 	 * expected by legacy virtio.
114 	 */
115 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be;
116 }
117 #else
118 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
119 {
120 }
121 
122 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
123 {
124 	return -ENOIOCTLCMD;
125 }
126 
127 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
128 				   int __user *argp)
129 {
130 	return -ENOIOCTLCMD;
131 }
132 
133 static void vhost_init_is_le(struct vhost_virtqueue *vq)
134 {
135 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1)
136 		|| virtio_legacy_is_little_endian();
137 }
138 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */
139 
140 static void vhost_reset_is_le(struct vhost_virtqueue *vq)
141 {
142 	vhost_init_is_le(vq);
143 }
144 
145 struct vhost_flush_struct {
146 	struct vhost_work work;
147 	struct completion wait_event;
148 };
149 
150 static void vhost_flush_work(struct vhost_work *work)
151 {
152 	struct vhost_flush_struct *s;
153 
154 	s = container_of(work, struct vhost_flush_struct, work);
155 	complete(&s->wait_event);
156 }
157 
158 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh,
159 			    poll_table *pt)
160 {
161 	struct vhost_poll *poll;
162 
163 	poll = container_of(pt, struct vhost_poll, table);
164 	poll->wqh = wqh;
165 	add_wait_queue(wqh, &poll->wait);
166 }
167 
168 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync,
169 			     void *key)
170 {
171 	struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait);
172 
173 	if (!(key_to_poll(key) & poll->mask))
174 		return 0;
175 
176 	vhost_poll_queue(poll);
177 	return 0;
178 }
179 
180 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn)
181 {
182 	clear_bit(VHOST_WORK_QUEUED, &work->flags);
183 	work->fn = fn;
184 }
185 EXPORT_SYMBOL_GPL(vhost_work_init);
186 
187 /* Init poll structure */
188 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn,
189 		     __poll_t mask, struct vhost_dev *dev)
190 {
191 	init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup);
192 	init_poll_funcptr(&poll->table, vhost_poll_func);
193 	poll->mask = mask;
194 	poll->dev = dev;
195 	poll->wqh = NULL;
196 
197 	vhost_work_init(&poll->work, fn);
198 }
199 EXPORT_SYMBOL_GPL(vhost_poll_init);
200 
201 /* Start polling a file. We add ourselves to file's wait queue. The caller must
202  * keep a reference to a file until after vhost_poll_stop is called. */
203 int vhost_poll_start(struct vhost_poll *poll, struct file *file)
204 {
205 	__poll_t mask;
206 	int ret = 0;
207 
208 	if (poll->wqh)
209 		return 0;
210 
211 	mask = vfs_poll(file, &poll->table);
212 	if (mask)
213 		vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask));
214 	if (mask & EPOLLERR) {
215 		vhost_poll_stop(poll);
216 		ret = -EINVAL;
217 	}
218 
219 	return ret;
220 }
221 EXPORT_SYMBOL_GPL(vhost_poll_start);
222 
223 /* Stop polling a file. After this function returns, it becomes safe to drop the
224  * file reference. You must also flush afterwards. */
225 void vhost_poll_stop(struct vhost_poll *poll)
226 {
227 	if (poll->wqh) {
228 		remove_wait_queue(poll->wqh, &poll->wait);
229 		poll->wqh = NULL;
230 	}
231 }
232 EXPORT_SYMBOL_GPL(vhost_poll_stop);
233 
234 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work)
235 {
236 	struct vhost_flush_struct flush;
237 
238 	if (dev->worker) {
239 		init_completion(&flush.wait_event);
240 		vhost_work_init(&flush.work, vhost_flush_work);
241 
242 		vhost_work_queue(dev, &flush.work);
243 		wait_for_completion(&flush.wait_event);
244 	}
245 }
246 EXPORT_SYMBOL_GPL(vhost_work_flush);
247 
248 /* Flush any work that has been scheduled. When calling this, don't hold any
249  * locks that are also used by the callback. */
250 void vhost_poll_flush(struct vhost_poll *poll)
251 {
252 	vhost_work_flush(poll->dev, &poll->work);
253 }
254 EXPORT_SYMBOL_GPL(vhost_poll_flush);
255 
256 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work)
257 {
258 	if (!dev->worker)
259 		return;
260 
261 	if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) {
262 		/* We can only add the work to the list after we're
263 		 * sure it was not in the list.
264 		 * test_and_set_bit() implies a memory barrier.
265 		 */
266 		llist_add(&work->node, &dev->work_list);
267 		wake_up_process(dev->worker);
268 	}
269 }
270 EXPORT_SYMBOL_GPL(vhost_work_queue);
271 
272 /* A lockless hint for busy polling code to exit the loop */
273 bool vhost_has_work(struct vhost_dev *dev)
274 {
275 	return !llist_empty(&dev->work_list);
276 }
277 EXPORT_SYMBOL_GPL(vhost_has_work);
278 
279 void vhost_poll_queue(struct vhost_poll *poll)
280 {
281 	vhost_work_queue(poll->dev, &poll->work);
282 }
283 EXPORT_SYMBOL_GPL(vhost_poll_queue);
284 
285 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq)
286 {
287 	int j;
288 
289 	for (j = 0; j < VHOST_NUM_ADDRS; j++)
290 		vq->meta_iotlb[j] = NULL;
291 }
292 
293 static void vhost_vq_meta_reset(struct vhost_dev *d)
294 {
295 	int i;
296 
297 	for (i = 0; i < d->nvqs; ++i)
298 		__vhost_vq_meta_reset(d->vqs[i]);
299 }
300 
301 static void vhost_vq_reset(struct vhost_dev *dev,
302 			   struct vhost_virtqueue *vq)
303 {
304 	vq->num = 1;
305 	vq->desc = NULL;
306 	vq->avail = NULL;
307 	vq->used = NULL;
308 	vq->last_avail_idx = 0;
309 	vq->avail_idx = 0;
310 	vq->last_used_idx = 0;
311 	vq->signalled_used = 0;
312 	vq->signalled_used_valid = false;
313 	vq->used_flags = 0;
314 	vq->log_used = false;
315 	vq->log_addr = -1ull;
316 	vq->private_data = NULL;
317 	vq->acked_features = 0;
318 	vq->acked_backend_features = 0;
319 	vq->log_base = NULL;
320 	vq->error_ctx = NULL;
321 	vq->kick = NULL;
322 	vq->call_ctx = NULL;
323 	vq->log_ctx = NULL;
324 	vhost_reset_is_le(vq);
325 	vhost_disable_cross_endian(vq);
326 	vq->busyloop_timeout = 0;
327 	vq->umem = NULL;
328 	vq->iotlb = NULL;
329 	__vhost_vq_meta_reset(vq);
330 }
331 
332 static int vhost_worker(void *data)
333 {
334 	struct vhost_dev *dev = data;
335 	struct vhost_work *work, *work_next;
336 	struct llist_node *node;
337 	mm_segment_t oldfs = get_fs();
338 
339 	set_fs(USER_DS);
340 	use_mm(dev->mm);
341 
342 	for (;;) {
343 		/* mb paired w/ kthread_stop */
344 		set_current_state(TASK_INTERRUPTIBLE);
345 
346 		if (kthread_should_stop()) {
347 			__set_current_state(TASK_RUNNING);
348 			break;
349 		}
350 
351 		node = llist_del_all(&dev->work_list);
352 		if (!node)
353 			schedule();
354 
355 		node = llist_reverse_order(node);
356 		/* make sure flag is seen after deletion */
357 		smp_wmb();
358 		llist_for_each_entry_safe(work, work_next, node, node) {
359 			clear_bit(VHOST_WORK_QUEUED, &work->flags);
360 			__set_current_state(TASK_RUNNING);
361 			work->fn(work);
362 			if (need_resched())
363 				schedule();
364 		}
365 	}
366 	unuse_mm(dev->mm);
367 	set_fs(oldfs);
368 	return 0;
369 }
370 
371 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq)
372 {
373 	kfree(vq->indirect);
374 	vq->indirect = NULL;
375 	kfree(vq->log);
376 	vq->log = NULL;
377 	kfree(vq->heads);
378 	vq->heads = NULL;
379 }
380 
381 /* Helper to allocate iovec buffers for all vqs. */
382 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev)
383 {
384 	struct vhost_virtqueue *vq;
385 	int i;
386 
387 	for (i = 0; i < dev->nvqs; ++i) {
388 		vq = dev->vqs[i];
389 		vq->indirect = kmalloc_array(UIO_MAXIOV,
390 					     sizeof(*vq->indirect),
391 					     GFP_KERNEL);
392 		vq->log = kmalloc_array(UIO_MAXIOV, sizeof(*vq->log),
393 					GFP_KERNEL);
394 		vq->heads = kmalloc_array(UIO_MAXIOV, sizeof(*vq->heads),
395 					  GFP_KERNEL);
396 		if (!vq->indirect || !vq->log || !vq->heads)
397 			goto err_nomem;
398 	}
399 	return 0;
400 
401 err_nomem:
402 	for (; i >= 0; --i)
403 		vhost_vq_free_iovecs(dev->vqs[i]);
404 	return -ENOMEM;
405 }
406 
407 static void vhost_dev_free_iovecs(struct vhost_dev *dev)
408 {
409 	int i;
410 
411 	for (i = 0; i < dev->nvqs; ++i)
412 		vhost_vq_free_iovecs(dev->vqs[i]);
413 }
414 
415 void vhost_dev_init(struct vhost_dev *dev,
416 		    struct vhost_virtqueue **vqs, int nvqs)
417 {
418 	struct vhost_virtqueue *vq;
419 	int i;
420 
421 	dev->vqs = vqs;
422 	dev->nvqs = nvqs;
423 	mutex_init(&dev->mutex);
424 	dev->log_ctx = NULL;
425 	dev->umem = NULL;
426 	dev->iotlb = NULL;
427 	dev->mm = NULL;
428 	dev->worker = NULL;
429 	init_llist_head(&dev->work_list);
430 	init_waitqueue_head(&dev->wait);
431 	INIT_LIST_HEAD(&dev->read_list);
432 	INIT_LIST_HEAD(&dev->pending_list);
433 	spin_lock_init(&dev->iotlb_lock);
434 
435 
436 	for (i = 0; i < dev->nvqs; ++i) {
437 		vq = dev->vqs[i];
438 		vq->log = NULL;
439 		vq->indirect = NULL;
440 		vq->heads = NULL;
441 		vq->dev = dev;
442 		mutex_init(&vq->mutex);
443 		vhost_vq_reset(dev, vq);
444 		if (vq->handle_kick)
445 			vhost_poll_init(&vq->poll, vq->handle_kick,
446 					EPOLLIN, dev);
447 	}
448 }
449 EXPORT_SYMBOL_GPL(vhost_dev_init);
450 
451 /* Caller should have device mutex */
452 long vhost_dev_check_owner(struct vhost_dev *dev)
453 {
454 	/* Are you the owner? If not, I don't think you mean to do that */
455 	return dev->mm == current->mm ? 0 : -EPERM;
456 }
457 EXPORT_SYMBOL_GPL(vhost_dev_check_owner);
458 
459 struct vhost_attach_cgroups_struct {
460 	struct vhost_work work;
461 	struct task_struct *owner;
462 	int ret;
463 };
464 
465 static void vhost_attach_cgroups_work(struct vhost_work *work)
466 {
467 	struct vhost_attach_cgroups_struct *s;
468 
469 	s = container_of(work, struct vhost_attach_cgroups_struct, work);
470 	s->ret = cgroup_attach_task_all(s->owner, current);
471 }
472 
473 static int vhost_attach_cgroups(struct vhost_dev *dev)
474 {
475 	struct vhost_attach_cgroups_struct attach;
476 
477 	attach.owner = current;
478 	vhost_work_init(&attach.work, vhost_attach_cgroups_work);
479 	vhost_work_queue(dev, &attach.work);
480 	vhost_work_flush(dev, &attach.work);
481 	return attach.ret;
482 }
483 
484 /* Caller should have device mutex */
485 bool vhost_dev_has_owner(struct vhost_dev *dev)
486 {
487 	return dev->mm;
488 }
489 EXPORT_SYMBOL_GPL(vhost_dev_has_owner);
490 
491 /* Caller should have device mutex */
492 long vhost_dev_set_owner(struct vhost_dev *dev)
493 {
494 	struct task_struct *worker;
495 	int err;
496 
497 	/* Is there an owner already? */
498 	if (vhost_dev_has_owner(dev)) {
499 		err = -EBUSY;
500 		goto err_mm;
501 	}
502 
503 	/* No owner, become one */
504 	dev->mm = get_task_mm(current);
505 	worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid);
506 	if (IS_ERR(worker)) {
507 		err = PTR_ERR(worker);
508 		goto err_worker;
509 	}
510 
511 	dev->worker = worker;
512 	wake_up_process(worker);	/* avoid contributing to loadavg */
513 
514 	err = vhost_attach_cgroups(dev);
515 	if (err)
516 		goto err_cgroup;
517 
518 	err = vhost_dev_alloc_iovecs(dev);
519 	if (err)
520 		goto err_cgroup;
521 
522 	return 0;
523 err_cgroup:
524 	kthread_stop(worker);
525 	dev->worker = NULL;
526 err_worker:
527 	if (dev->mm)
528 		mmput(dev->mm);
529 	dev->mm = NULL;
530 err_mm:
531 	return err;
532 }
533 EXPORT_SYMBOL_GPL(vhost_dev_set_owner);
534 
535 struct vhost_umem *vhost_dev_reset_owner_prepare(void)
536 {
537 	return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL);
538 }
539 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare);
540 
541 /* Caller should have device mutex */
542 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem)
543 {
544 	int i;
545 
546 	vhost_dev_cleanup(dev);
547 
548 	/* Restore memory to default empty mapping. */
549 	INIT_LIST_HEAD(&umem->umem_list);
550 	dev->umem = umem;
551 	/* We don't need VQ locks below since vhost_dev_cleanup makes sure
552 	 * VQs aren't running.
553 	 */
554 	for (i = 0; i < dev->nvqs; ++i)
555 		dev->vqs[i]->umem = umem;
556 }
557 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner);
558 
559 void vhost_dev_stop(struct vhost_dev *dev)
560 {
561 	int i;
562 
563 	for (i = 0; i < dev->nvqs; ++i) {
564 		if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) {
565 			vhost_poll_stop(&dev->vqs[i]->poll);
566 			vhost_poll_flush(&dev->vqs[i]->poll);
567 		}
568 	}
569 }
570 EXPORT_SYMBOL_GPL(vhost_dev_stop);
571 
572 static void vhost_umem_free(struct vhost_umem *umem,
573 			    struct vhost_umem_node *node)
574 {
575 	vhost_umem_interval_tree_remove(node, &umem->umem_tree);
576 	list_del(&node->link);
577 	kfree(node);
578 	umem->numem--;
579 }
580 
581 static void vhost_umem_clean(struct vhost_umem *umem)
582 {
583 	struct vhost_umem_node *node, *tmp;
584 
585 	if (!umem)
586 		return;
587 
588 	list_for_each_entry_safe(node, tmp, &umem->umem_list, link)
589 		vhost_umem_free(umem, node);
590 
591 	kvfree(umem);
592 }
593 
594 static void vhost_clear_msg(struct vhost_dev *dev)
595 {
596 	struct vhost_msg_node *node, *n;
597 
598 	spin_lock(&dev->iotlb_lock);
599 
600 	list_for_each_entry_safe(node, n, &dev->read_list, node) {
601 		list_del(&node->node);
602 		kfree(node);
603 	}
604 
605 	list_for_each_entry_safe(node, n, &dev->pending_list, node) {
606 		list_del(&node->node);
607 		kfree(node);
608 	}
609 
610 	spin_unlock(&dev->iotlb_lock);
611 }
612 
613 void vhost_dev_cleanup(struct vhost_dev *dev)
614 {
615 	int i;
616 
617 	for (i = 0; i < dev->nvqs; ++i) {
618 		if (dev->vqs[i]->error_ctx)
619 			eventfd_ctx_put(dev->vqs[i]->error_ctx);
620 		if (dev->vqs[i]->kick)
621 			fput(dev->vqs[i]->kick);
622 		if (dev->vqs[i]->call_ctx)
623 			eventfd_ctx_put(dev->vqs[i]->call_ctx);
624 		vhost_vq_reset(dev, dev->vqs[i]);
625 	}
626 	vhost_dev_free_iovecs(dev);
627 	if (dev->log_ctx)
628 		eventfd_ctx_put(dev->log_ctx);
629 	dev->log_ctx = NULL;
630 	/* No one will access memory at this point */
631 	vhost_umem_clean(dev->umem);
632 	dev->umem = NULL;
633 	vhost_umem_clean(dev->iotlb);
634 	dev->iotlb = NULL;
635 	vhost_clear_msg(dev);
636 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
637 	WARN_ON(!llist_empty(&dev->work_list));
638 	if (dev->worker) {
639 		kthread_stop(dev->worker);
640 		dev->worker = NULL;
641 	}
642 	if (dev->mm)
643 		mmput(dev->mm);
644 	dev->mm = NULL;
645 }
646 EXPORT_SYMBOL_GPL(vhost_dev_cleanup);
647 
648 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz)
649 {
650 	u64 a = addr / VHOST_PAGE_SIZE / 8;
651 
652 	/* Make sure 64 bit math will not overflow. */
653 	if (a > ULONG_MAX - (unsigned long)log_base ||
654 	    a + (unsigned long)log_base > ULONG_MAX)
655 		return false;
656 
657 	return access_ok(VERIFY_WRITE, log_base + a,
658 			 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8);
659 }
660 
661 static bool vhost_overflow(u64 uaddr, u64 size)
662 {
663 	/* Make sure 64 bit math will not overflow. */
664 	return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size;
665 }
666 
667 /* Caller should have vq mutex and device mutex. */
668 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem,
669 				int log_all)
670 {
671 	struct vhost_umem_node *node;
672 
673 	if (!umem)
674 		return false;
675 
676 	list_for_each_entry(node, &umem->umem_list, link) {
677 		unsigned long a = node->userspace_addr;
678 
679 		if (vhost_overflow(node->userspace_addr, node->size))
680 			return false;
681 
682 
683 		if (!access_ok(VERIFY_WRITE, (void __user *)a,
684 				    node->size))
685 			return false;
686 		else if (log_all && !log_access_ok(log_base,
687 						   node->start,
688 						   node->size))
689 			return false;
690 	}
691 	return true;
692 }
693 
694 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq,
695 					       u64 addr, unsigned int size,
696 					       int type)
697 {
698 	const struct vhost_umem_node *node = vq->meta_iotlb[type];
699 
700 	if (!node)
701 		return NULL;
702 
703 	return (void *)(uintptr_t)(node->userspace_addr + addr - node->start);
704 }
705 
706 /* Can we switch to this memory table? */
707 /* Caller should have device mutex but not vq mutex */
708 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem,
709 			     int log_all)
710 {
711 	int i;
712 
713 	for (i = 0; i < d->nvqs; ++i) {
714 		bool ok;
715 		bool log;
716 
717 		mutex_lock(&d->vqs[i]->mutex);
718 		log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL);
719 		/* If ring is inactive, will check when it's enabled. */
720 		if (d->vqs[i]->private_data)
721 			ok = vq_memory_access_ok(d->vqs[i]->log_base,
722 						 umem, log);
723 		else
724 			ok = true;
725 		mutex_unlock(&d->vqs[i]->mutex);
726 		if (!ok)
727 			return false;
728 	}
729 	return true;
730 }
731 
732 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
733 			  struct iovec iov[], int iov_size, int access);
734 
735 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to,
736 			      const void *from, unsigned size)
737 {
738 	int ret;
739 
740 	if (!vq->iotlb)
741 		return __copy_to_user(to, from, size);
742 	else {
743 		/* This function should be called after iotlb
744 		 * prefetch, which means we're sure that all vq
745 		 * could be access through iotlb. So -EAGAIN should
746 		 * not happen in this case.
747 		 */
748 		struct iov_iter t;
749 		void __user *uaddr = vhost_vq_meta_fetch(vq,
750 				     (u64)(uintptr_t)to, size,
751 				     VHOST_ADDR_USED);
752 
753 		if (uaddr)
754 			return __copy_to_user(uaddr, from, size);
755 
756 		ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov,
757 				     ARRAY_SIZE(vq->iotlb_iov),
758 				     VHOST_ACCESS_WO);
759 		if (ret < 0)
760 			goto out;
761 		iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size);
762 		ret = copy_to_iter(from, size, &t);
763 		if (ret == size)
764 			ret = 0;
765 	}
766 out:
767 	return ret;
768 }
769 
770 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to,
771 				void __user *from, unsigned size)
772 {
773 	int ret;
774 
775 	if (!vq->iotlb)
776 		return __copy_from_user(to, from, size);
777 	else {
778 		/* This function should be called after iotlb
779 		 * prefetch, which means we're sure that vq
780 		 * could be access through iotlb. So -EAGAIN should
781 		 * not happen in this case.
782 		 */
783 		void __user *uaddr = vhost_vq_meta_fetch(vq,
784 				     (u64)(uintptr_t)from, size,
785 				     VHOST_ADDR_DESC);
786 		struct iov_iter f;
787 
788 		if (uaddr)
789 			return __copy_from_user(to, uaddr, size);
790 
791 		ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov,
792 				     ARRAY_SIZE(vq->iotlb_iov),
793 				     VHOST_ACCESS_RO);
794 		if (ret < 0) {
795 			vq_err(vq, "IOTLB translation failure: uaddr "
796 			       "%p size 0x%llx\n", from,
797 			       (unsigned long long) size);
798 			goto out;
799 		}
800 		iov_iter_init(&f, READ, vq->iotlb_iov, ret, size);
801 		ret = copy_from_iter(to, size, &f);
802 		if (ret == size)
803 			ret = 0;
804 	}
805 
806 out:
807 	return ret;
808 }
809 
810 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq,
811 					  void __user *addr, unsigned int size,
812 					  int type)
813 {
814 	int ret;
815 
816 	ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov,
817 			     ARRAY_SIZE(vq->iotlb_iov),
818 			     VHOST_ACCESS_RO);
819 	if (ret < 0) {
820 		vq_err(vq, "IOTLB translation failure: uaddr "
821 			"%p size 0x%llx\n", addr,
822 			(unsigned long long) size);
823 		return NULL;
824 	}
825 
826 	if (ret != 1 || vq->iotlb_iov[0].iov_len != size) {
827 		vq_err(vq, "Non atomic userspace memory access: uaddr "
828 			"%p size 0x%llx\n", addr,
829 			(unsigned long long) size);
830 		return NULL;
831 	}
832 
833 	return vq->iotlb_iov[0].iov_base;
834 }
835 
836 /* This function should be called after iotlb
837  * prefetch, which means we're sure that vq
838  * could be access through iotlb. So -EAGAIN should
839  * not happen in this case.
840  */
841 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq,
842 					    void *addr, unsigned int size,
843 					    int type)
844 {
845 	void __user *uaddr = vhost_vq_meta_fetch(vq,
846 			     (u64)(uintptr_t)addr, size, type);
847 	if (uaddr)
848 		return uaddr;
849 
850 	return __vhost_get_user_slow(vq, addr, size, type);
851 }
852 
853 #define vhost_put_user(vq, x, ptr)		\
854 ({ \
855 	int ret = -EFAULT; \
856 	if (!vq->iotlb) { \
857 		ret = __put_user(x, ptr); \
858 	} else { \
859 		__typeof__(ptr) to = \
860 			(__typeof__(ptr)) __vhost_get_user(vq, ptr,	\
861 					  sizeof(*ptr), VHOST_ADDR_USED); \
862 		if (to != NULL) \
863 			ret = __put_user(x, to); \
864 		else \
865 			ret = -EFAULT;	\
866 	} \
867 	ret; \
868 })
869 
870 #define vhost_get_user(vq, x, ptr, type)		\
871 ({ \
872 	int ret; \
873 	if (!vq->iotlb) { \
874 		ret = __get_user(x, ptr); \
875 	} else { \
876 		__typeof__(ptr) from = \
877 			(__typeof__(ptr)) __vhost_get_user(vq, ptr, \
878 							   sizeof(*ptr), \
879 							   type); \
880 		if (from != NULL) \
881 			ret = __get_user(x, from); \
882 		else \
883 			ret = -EFAULT; \
884 	} \
885 	ret; \
886 })
887 
888 #define vhost_get_avail(vq, x, ptr) \
889 	vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL)
890 
891 #define vhost_get_used(vq, x, ptr) \
892 	vhost_get_user(vq, x, ptr, VHOST_ADDR_USED)
893 
894 static void vhost_dev_lock_vqs(struct vhost_dev *d)
895 {
896 	int i = 0;
897 	for (i = 0; i < d->nvqs; ++i)
898 		mutex_lock_nested(&d->vqs[i]->mutex, i);
899 }
900 
901 static void vhost_dev_unlock_vqs(struct vhost_dev *d)
902 {
903 	int i = 0;
904 	for (i = 0; i < d->nvqs; ++i)
905 		mutex_unlock(&d->vqs[i]->mutex);
906 }
907 
908 static int vhost_new_umem_range(struct vhost_umem *umem,
909 				u64 start, u64 size, u64 end,
910 				u64 userspace_addr, int perm)
911 {
912 	struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC);
913 
914 	if (!node)
915 		return -ENOMEM;
916 
917 	if (umem->numem == max_iotlb_entries) {
918 		tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link);
919 		vhost_umem_free(umem, tmp);
920 	}
921 
922 	node->start = start;
923 	node->size = size;
924 	node->last = end;
925 	node->userspace_addr = userspace_addr;
926 	node->perm = perm;
927 	INIT_LIST_HEAD(&node->link);
928 	list_add_tail(&node->link, &umem->umem_list);
929 	vhost_umem_interval_tree_insert(node, &umem->umem_tree);
930 	umem->numem++;
931 
932 	return 0;
933 }
934 
935 static void vhost_del_umem_range(struct vhost_umem *umem,
936 				 u64 start, u64 end)
937 {
938 	struct vhost_umem_node *node;
939 
940 	while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
941 							   start, end)))
942 		vhost_umem_free(umem, node);
943 }
944 
945 static void vhost_iotlb_notify_vq(struct vhost_dev *d,
946 				  struct vhost_iotlb_msg *msg)
947 {
948 	struct vhost_msg_node *node, *n;
949 
950 	spin_lock(&d->iotlb_lock);
951 
952 	list_for_each_entry_safe(node, n, &d->pending_list, node) {
953 		struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb;
954 		if (msg->iova <= vq_msg->iova &&
955 		    msg->iova + msg->size - 1 >= vq_msg->iova &&
956 		    vq_msg->type == VHOST_IOTLB_MISS) {
957 			vhost_poll_queue(&node->vq->poll);
958 			list_del(&node->node);
959 			kfree(node);
960 		}
961 	}
962 
963 	spin_unlock(&d->iotlb_lock);
964 }
965 
966 static bool umem_access_ok(u64 uaddr, u64 size, int access)
967 {
968 	unsigned long a = uaddr;
969 
970 	/* Make sure 64 bit math will not overflow. */
971 	if (vhost_overflow(uaddr, size))
972 		return false;
973 
974 	if ((access & VHOST_ACCESS_RO) &&
975 	    !access_ok(VERIFY_READ, (void __user *)a, size))
976 		return false;
977 	if ((access & VHOST_ACCESS_WO) &&
978 	    !access_ok(VERIFY_WRITE, (void __user *)a, size))
979 		return false;
980 	return true;
981 }
982 
983 static int vhost_process_iotlb_msg(struct vhost_dev *dev,
984 				   struct vhost_iotlb_msg *msg)
985 {
986 	int ret = 0;
987 
988 	mutex_lock(&dev->mutex);
989 	vhost_dev_lock_vqs(dev);
990 	switch (msg->type) {
991 	case VHOST_IOTLB_UPDATE:
992 		if (!dev->iotlb) {
993 			ret = -EFAULT;
994 			break;
995 		}
996 		if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) {
997 			ret = -EFAULT;
998 			break;
999 		}
1000 		vhost_vq_meta_reset(dev);
1001 		if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size,
1002 					 msg->iova + msg->size - 1,
1003 					 msg->uaddr, msg->perm)) {
1004 			ret = -ENOMEM;
1005 			break;
1006 		}
1007 		vhost_iotlb_notify_vq(dev, msg);
1008 		break;
1009 	case VHOST_IOTLB_INVALIDATE:
1010 		if (!dev->iotlb) {
1011 			ret = -EFAULT;
1012 			break;
1013 		}
1014 		vhost_vq_meta_reset(dev);
1015 		vhost_del_umem_range(dev->iotlb, msg->iova,
1016 				     msg->iova + msg->size - 1);
1017 		break;
1018 	default:
1019 		ret = -EINVAL;
1020 		break;
1021 	}
1022 
1023 	vhost_dev_unlock_vqs(dev);
1024 	mutex_unlock(&dev->mutex);
1025 
1026 	return ret;
1027 }
1028 ssize_t vhost_chr_write_iter(struct vhost_dev *dev,
1029 			     struct iov_iter *from)
1030 {
1031 	struct vhost_iotlb_msg msg;
1032 	size_t offset;
1033 	int type, ret;
1034 
1035 	ret = copy_from_iter(&type, sizeof(type), from);
1036 	if (ret != sizeof(type))
1037 		goto done;
1038 
1039 	switch (type) {
1040 	case VHOST_IOTLB_MSG:
1041 		/* There maybe a hole after type for V1 message type,
1042 		 * so skip it here.
1043 		 */
1044 		offset = offsetof(struct vhost_msg, iotlb) - sizeof(int);
1045 		break;
1046 	case VHOST_IOTLB_MSG_V2:
1047 		offset = sizeof(__u32);
1048 		break;
1049 	default:
1050 		ret = -EINVAL;
1051 		goto done;
1052 	}
1053 
1054 	iov_iter_advance(from, offset);
1055 	ret = copy_from_iter(&msg, sizeof(msg), from);
1056 	if (ret != sizeof(msg))
1057 		goto done;
1058 	if (vhost_process_iotlb_msg(dev, &msg)) {
1059 		ret = -EFAULT;
1060 		goto done;
1061 	}
1062 
1063 	ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) :
1064 	      sizeof(struct vhost_msg_v2);
1065 done:
1066 	return ret;
1067 }
1068 EXPORT_SYMBOL(vhost_chr_write_iter);
1069 
1070 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev,
1071 			    poll_table *wait)
1072 {
1073 	__poll_t mask = 0;
1074 
1075 	poll_wait(file, &dev->wait, wait);
1076 
1077 	if (!list_empty(&dev->read_list))
1078 		mask |= EPOLLIN | EPOLLRDNORM;
1079 
1080 	return mask;
1081 }
1082 EXPORT_SYMBOL(vhost_chr_poll);
1083 
1084 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to,
1085 			    int noblock)
1086 {
1087 	DEFINE_WAIT(wait);
1088 	struct vhost_msg_node *node;
1089 	ssize_t ret = 0;
1090 	unsigned size = sizeof(struct vhost_msg);
1091 
1092 	if (iov_iter_count(to) < size)
1093 		return 0;
1094 
1095 	while (1) {
1096 		if (!noblock)
1097 			prepare_to_wait(&dev->wait, &wait,
1098 					TASK_INTERRUPTIBLE);
1099 
1100 		node = vhost_dequeue_msg(dev, &dev->read_list);
1101 		if (node)
1102 			break;
1103 		if (noblock) {
1104 			ret = -EAGAIN;
1105 			break;
1106 		}
1107 		if (signal_pending(current)) {
1108 			ret = -ERESTARTSYS;
1109 			break;
1110 		}
1111 		if (!dev->iotlb) {
1112 			ret = -EBADFD;
1113 			break;
1114 		}
1115 
1116 		schedule();
1117 	}
1118 
1119 	if (!noblock)
1120 		finish_wait(&dev->wait, &wait);
1121 
1122 	if (node) {
1123 		struct vhost_iotlb_msg *msg;
1124 		void *start = &node->msg;
1125 
1126 		switch (node->msg.type) {
1127 		case VHOST_IOTLB_MSG:
1128 			size = sizeof(node->msg);
1129 			msg = &node->msg.iotlb;
1130 			break;
1131 		case VHOST_IOTLB_MSG_V2:
1132 			size = sizeof(node->msg_v2);
1133 			msg = &node->msg_v2.iotlb;
1134 			break;
1135 		default:
1136 			BUG();
1137 			break;
1138 		}
1139 
1140 		ret = copy_to_iter(start, size, to);
1141 		if (ret != size || msg->type != VHOST_IOTLB_MISS) {
1142 			kfree(node);
1143 			return ret;
1144 		}
1145 		vhost_enqueue_msg(dev, &dev->pending_list, node);
1146 	}
1147 
1148 	return ret;
1149 }
1150 EXPORT_SYMBOL_GPL(vhost_chr_read_iter);
1151 
1152 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access)
1153 {
1154 	struct vhost_dev *dev = vq->dev;
1155 	struct vhost_msg_node *node;
1156 	struct vhost_iotlb_msg *msg;
1157 	bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2);
1158 
1159 	node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG);
1160 	if (!node)
1161 		return -ENOMEM;
1162 
1163 	if (v2) {
1164 		node->msg_v2.type = VHOST_IOTLB_MSG_V2;
1165 		msg = &node->msg_v2.iotlb;
1166 	} else {
1167 		msg = &node->msg.iotlb;
1168 	}
1169 
1170 	msg->type = VHOST_IOTLB_MISS;
1171 	msg->iova = iova;
1172 	msg->perm = access;
1173 
1174 	vhost_enqueue_msg(dev, &dev->read_list, node);
1175 
1176 	return 0;
1177 }
1178 
1179 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num,
1180 			 struct vring_desc __user *desc,
1181 			 struct vring_avail __user *avail,
1182 			 struct vring_used __user *used)
1183 
1184 {
1185 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1186 
1187 	return access_ok(VERIFY_READ, desc, num * sizeof *desc) &&
1188 	       access_ok(VERIFY_READ, avail,
1189 			 sizeof *avail + num * sizeof *avail->ring + s) &&
1190 	       access_ok(VERIFY_WRITE, used,
1191 			sizeof *used + num * sizeof *used->ring + s);
1192 }
1193 
1194 static void vhost_vq_meta_update(struct vhost_virtqueue *vq,
1195 				 const struct vhost_umem_node *node,
1196 				 int type)
1197 {
1198 	int access = (type == VHOST_ADDR_USED) ?
1199 		     VHOST_ACCESS_WO : VHOST_ACCESS_RO;
1200 
1201 	if (likely(node->perm & access))
1202 		vq->meta_iotlb[type] = node;
1203 }
1204 
1205 static bool iotlb_access_ok(struct vhost_virtqueue *vq,
1206 			    int access, u64 addr, u64 len, int type)
1207 {
1208 	const struct vhost_umem_node *node;
1209 	struct vhost_umem *umem = vq->iotlb;
1210 	u64 s = 0, size, orig_addr = addr, last = addr + len - 1;
1211 
1212 	if (vhost_vq_meta_fetch(vq, addr, len, type))
1213 		return true;
1214 
1215 	while (len > s) {
1216 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1217 							   addr,
1218 							   last);
1219 		if (node == NULL || node->start > addr) {
1220 			vhost_iotlb_miss(vq, addr, access);
1221 			return false;
1222 		} else if (!(node->perm & access)) {
1223 			/* Report the possible access violation by
1224 			 * request another translation from userspace.
1225 			 */
1226 			return false;
1227 		}
1228 
1229 		size = node->size - addr + node->start;
1230 
1231 		if (orig_addr == addr && size >= len)
1232 			vhost_vq_meta_update(vq, node, type);
1233 
1234 		s += size;
1235 		addr += size;
1236 	}
1237 
1238 	return true;
1239 }
1240 
1241 int vq_iotlb_prefetch(struct vhost_virtqueue *vq)
1242 {
1243 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1244 	unsigned int num = vq->num;
1245 
1246 	if (!vq->iotlb)
1247 		return 1;
1248 
1249 	return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc,
1250 			       num * sizeof(*vq->desc), VHOST_ADDR_DESC) &&
1251 	       iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail,
1252 			       sizeof *vq->avail +
1253 			       num * sizeof(*vq->avail->ring) + s,
1254 			       VHOST_ADDR_AVAIL) &&
1255 	       iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used,
1256 			       sizeof *vq->used +
1257 			       num * sizeof(*vq->used->ring) + s,
1258 			       VHOST_ADDR_USED);
1259 }
1260 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch);
1261 
1262 /* Can we log writes? */
1263 /* Caller should have device mutex but not vq mutex */
1264 bool vhost_log_access_ok(struct vhost_dev *dev)
1265 {
1266 	return memory_access_ok(dev, dev->umem, 1);
1267 }
1268 EXPORT_SYMBOL_GPL(vhost_log_access_ok);
1269 
1270 /* Verify access for write logging. */
1271 /* Caller should have vq mutex and device mutex */
1272 static bool vq_log_access_ok(struct vhost_virtqueue *vq,
1273 			     void __user *log_base)
1274 {
1275 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1276 
1277 	return vq_memory_access_ok(log_base, vq->umem,
1278 				   vhost_has_feature(vq, VHOST_F_LOG_ALL)) &&
1279 		(!vq->log_used || log_access_ok(log_base, vq->log_addr,
1280 					sizeof *vq->used +
1281 					vq->num * sizeof *vq->used->ring + s));
1282 }
1283 
1284 /* Can we start vq? */
1285 /* Caller should have vq mutex and device mutex */
1286 bool vhost_vq_access_ok(struct vhost_virtqueue *vq)
1287 {
1288 	if (!vq_log_access_ok(vq, vq->log_base))
1289 		return false;
1290 
1291 	/* Access validation occurs at prefetch time with IOTLB */
1292 	if (vq->iotlb)
1293 		return true;
1294 
1295 	return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used);
1296 }
1297 EXPORT_SYMBOL_GPL(vhost_vq_access_ok);
1298 
1299 static struct vhost_umem *vhost_umem_alloc(void)
1300 {
1301 	struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL);
1302 
1303 	if (!umem)
1304 		return NULL;
1305 
1306 	umem->umem_tree = RB_ROOT_CACHED;
1307 	umem->numem = 0;
1308 	INIT_LIST_HEAD(&umem->umem_list);
1309 
1310 	return umem;
1311 }
1312 
1313 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
1314 {
1315 	struct vhost_memory mem, *newmem;
1316 	struct vhost_memory_region *region;
1317 	struct vhost_umem *newumem, *oldumem;
1318 	unsigned long size = offsetof(struct vhost_memory, regions);
1319 	int i;
1320 
1321 	if (copy_from_user(&mem, m, size))
1322 		return -EFAULT;
1323 	if (mem.padding)
1324 		return -EOPNOTSUPP;
1325 	if (mem.nregions > max_mem_regions)
1326 		return -E2BIG;
1327 	newmem = kvzalloc(struct_size(newmem, regions, mem.nregions),
1328 			GFP_KERNEL);
1329 	if (!newmem)
1330 		return -ENOMEM;
1331 
1332 	memcpy(newmem, &mem, size);
1333 	if (copy_from_user(newmem->regions, m->regions,
1334 			   mem.nregions * sizeof *m->regions)) {
1335 		kvfree(newmem);
1336 		return -EFAULT;
1337 	}
1338 
1339 	newumem = vhost_umem_alloc();
1340 	if (!newumem) {
1341 		kvfree(newmem);
1342 		return -ENOMEM;
1343 	}
1344 
1345 	for (region = newmem->regions;
1346 	     region < newmem->regions + mem.nregions;
1347 	     region++) {
1348 		if (vhost_new_umem_range(newumem,
1349 					 region->guest_phys_addr,
1350 					 region->memory_size,
1351 					 region->guest_phys_addr +
1352 					 region->memory_size - 1,
1353 					 region->userspace_addr,
1354 					 VHOST_ACCESS_RW))
1355 			goto err;
1356 	}
1357 
1358 	if (!memory_access_ok(d, newumem, 0))
1359 		goto err;
1360 
1361 	oldumem = d->umem;
1362 	d->umem = newumem;
1363 
1364 	/* All memory accesses are done under some VQ mutex. */
1365 	for (i = 0; i < d->nvqs; ++i) {
1366 		mutex_lock(&d->vqs[i]->mutex);
1367 		d->vqs[i]->umem = newumem;
1368 		mutex_unlock(&d->vqs[i]->mutex);
1369 	}
1370 
1371 	kvfree(newmem);
1372 	vhost_umem_clean(oldumem);
1373 	return 0;
1374 
1375 err:
1376 	vhost_umem_clean(newumem);
1377 	kvfree(newmem);
1378 	return -EFAULT;
1379 }
1380 
1381 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1382 {
1383 	struct file *eventfp, *filep = NULL;
1384 	bool pollstart = false, pollstop = false;
1385 	struct eventfd_ctx *ctx = NULL;
1386 	u32 __user *idxp = argp;
1387 	struct vhost_virtqueue *vq;
1388 	struct vhost_vring_state s;
1389 	struct vhost_vring_file f;
1390 	struct vhost_vring_addr a;
1391 	u32 idx;
1392 	long r;
1393 
1394 	r = get_user(idx, idxp);
1395 	if (r < 0)
1396 		return r;
1397 	if (idx >= d->nvqs)
1398 		return -ENOBUFS;
1399 
1400 	vq = d->vqs[idx];
1401 
1402 	mutex_lock(&vq->mutex);
1403 
1404 	switch (ioctl) {
1405 	case VHOST_SET_VRING_NUM:
1406 		/* Resizing ring with an active backend?
1407 		 * You don't want to do that. */
1408 		if (vq->private_data) {
1409 			r = -EBUSY;
1410 			break;
1411 		}
1412 		if (copy_from_user(&s, argp, sizeof s)) {
1413 			r = -EFAULT;
1414 			break;
1415 		}
1416 		if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) {
1417 			r = -EINVAL;
1418 			break;
1419 		}
1420 		vq->num = s.num;
1421 		break;
1422 	case VHOST_SET_VRING_BASE:
1423 		/* Moving base with an active backend?
1424 		 * You don't want to do that. */
1425 		if (vq->private_data) {
1426 			r = -EBUSY;
1427 			break;
1428 		}
1429 		if (copy_from_user(&s, argp, sizeof s)) {
1430 			r = -EFAULT;
1431 			break;
1432 		}
1433 		if (s.num > 0xffff) {
1434 			r = -EINVAL;
1435 			break;
1436 		}
1437 		vq->last_avail_idx = s.num;
1438 		/* Forget the cached index value. */
1439 		vq->avail_idx = vq->last_avail_idx;
1440 		break;
1441 	case VHOST_GET_VRING_BASE:
1442 		s.index = idx;
1443 		s.num = vq->last_avail_idx;
1444 		if (copy_to_user(argp, &s, sizeof s))
1445 			r = -EFAULT;
1446 		break;
1447 	case VHOST_SET_VRING_ADDR:
1448 		if (copy_from_user(&a, argp, sizeof a)) {
1449 			r = -EFAULT;
1450 			break;
1451 		}
1452 		if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) {
1453 			r = -EOPNOTSUPP;
1454 			break;
1455 		}
1456 		/* For 32bit, verify that the top 32bits of the user
1457 		   data are set to zero. */
1458 		if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr ||
1459 		    (u64)(unsigned long)a.used_user_addr != a.used_user_addr ||
1460 		    (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) {
1461 			r = -EFAULT;
1462 			break;
1463 		}
1464 
1465 		/* Make sure it's safe to cast pointers to vring types. */
1466 		BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE);
1467 		BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE);
1468 		if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) ||
1469 		    (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) ||
1470 		    (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) {
1471 			r = -EINVAL;
1472 			break;
1473 		}
1474 
1475 		/* We only verify access here if backend is configured.
1476 		 * If it is not, we don't as size might not have been setup.
1477 		 * We will verify when backend is configured. */
1478 		if (vq->private_data) {
1479 			if (!vq_access_ok(vq, vq->num,
1480 				(void __user *)(unsigned long)a.desc_user_addr,
1481 				(void __user *)(unsigned long)a.avail_user_addr,
1482 				(void __user *)(unsigned long)a.used_user_addr)) {
1483 				r = -EINVAL;
1484 				break;
1485 			}
1486 
1487 			/* Also validate log access for used ring if enabled. */
1488 			if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) &&
1489 			    !log_access_ok(vq->log_base, a.log_guest_addr,
1490 					   sizeof *vq->used +
1491 					   vq->num * sizeof *vq->used->ring)) {
1492 				r = -EINVAL;
1493 				break;
1494 			}
1495 		}
1496 
1497 		vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG));
1498 		vq->desc = (void __user *)(unsigned long)a.desc_user_addr;
1499 		vq->avail = (void __user *)(unsigned long)a.avail_user_addr;
1500 		vq->log_addr = a.log_guest_addr;
1501 		vq->used = (void __user *)(unsigned long)a.used_user_addr;
1502 		break;
1503 	case VHOST_SET_VRING_KICK:
1504 		if (copy_from_user(&f, argp, sizeof f)) {
1505 			r = -EFAULT;
1506 			break;
1507 		}
1508 		eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd);
1509 		if (IS_ERR(eventfp)) {
1510 			r = PTR_ERR(eventfp);
1511 			break;
1512 		}
1513 		if (eventfp != vq->kick) {
1514 			pollstop = (filep = vq->kick) != NULL;
1515 			pollstart = (vq->kick = eventfp) != NULL;
1516 		} else
1517 			filep = eventfp;
1518 		break;
1519 	case VHOST_SET_VRING_CALL:
1520 		if (copy_from_user(&f, argp, sizeof f)) {
1521 			r = -EFAULT;
1522 			break;
1523 		}
1524 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1525 		if (IS_ERR(ctx)) {
1526 			r = PTR_ERR(ctx);
1527 			break;
1528 		}
1529 		swap(ctx, vq->call_ctx);
1530 		break;
1531 	case VHOST_SET_VRING_ERR:
1532 		if (copy_from_user(&f, argp, sizeof f)) {
1533 			r = -EFAULT;
1534 			break;
1535 		}
1536 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1537 		if (IS_ERR(ctx)) {
1538 			r = PTR_ERR(ctx);
1539 			break;
1540 		}
1541 		swap(ctx, vq->error_ctx);
1542 		break;
1543 	case VHOST_SET_VRING_ENDIAN:
1544 		r = vhost_set_vring_endian(vq, argp);
1545 		break;
1546 	case VHOST_GET_VRING_ENDIAN:
1547 		r = vhost_get_vring_endian(vq, idx, argp);
1548 		break;
1549 	case VHOST_SET_VRING_BUSYLOOP_TIMEOUT:
1550 		if (copy_from_user(&s, argp, sizeof(s))) {
1551 			r = -EFAULT;
1552 			break;
1553 		}
1554 		vq->busyloop_timeout = s.num;
1555 		break;
1556 	case VHOST_GET_VRING_BUSYLOOP_TIMEOUT:
1557 		s.index = idx;
1558 		s.num = vq->busyloop_timeout;
1559 		if (copy_to_user(argp, &s, sizeof(s)))
1560 			r = -EFAULT;
1561 		break;
1562 	default:
1563 		r = -ENOIOCTLCMD;
1564 	}
1565 
1566 	if (pollstop && vq->handle_kick)
1567 		vhost_poll_stop(&vq->poll);
1568 
1569 	if (!IS_ERR_OR_NULL(ctx))
1570 		eventfd_ctx_put(ctx);
1571 	if (filep)
1572 		fput(filep);
1573 
1574 	if (pollstart && vq->handle_kick)
1575 		r = vhost_poll_start(&vq->poll, vq->kick);
1576 
1577 	mutex_unlock(&vq->mutex);
1578 
1579 	if (pollstop && vq->handle_kick)
1580 		vhost_poll_flush(&vq->poll);
1581 	return r;
1582 }
1583 EXPORT_SYMBOL_GPL(vhost_vring_ioctl);
1584 
1585 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled)
1586 {
1587 	struct vhost_umem *niotlb, *oiotlb;
1588 	int i;
1589 
1590 	niotlb = vhost_umem_alloc();
1591 	if (!niotlb)
1592 		return -ENOMEM;
1593 
1594 	oiotlb = d->iotlb;
1595 	d->iotlb = niotlb;
1596 
1597 	for (i = 0; i < d->nvqs; ++i) {
1598 		struct vhost_virtqueue *vq = d->vqs[i];
1599 
1600 		mutex_lock(&vq->mutex);
1601 		vq->iotlb = niotlb;
1602 		__vhost_vq_meta_reset(vq);
1603 		mutex_unlock(&vq->mutex);
1604 	}
1605 
1606 	vhost_umem_clean(oiotlb);
1607 
1608 	return 0;
1609 }
1610 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb);
1611 
1612 /* Caller must have device mutex */
1613 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1614 {
1615 	struct eventfd_ctx *ctx;
1616 	u64 p;
1617 	long r;
1618 	int i, fd;
1619 
1620 	/* If you are not the owner, you can become one */
1621 	if (ioctl == VHOST_SET_OWNER) {
1622 		r = vhost_dev_set_owner(d);
1623 		goto done;
1624 	}
1625 
1626 	/* You must be the owner to do anything else */
1627 	r = vhost_dev_check_owner(d);
1628 	if (r)
1629 		goto done;
1630 
1631 	switch (ioctl) {
1632 	case VHOST_SET_MEM_TABLE:
1633 		r = vhost_set_memory(d, argp);
1634 		break;
1635 	case VHOST_SET_LOG_BASE:
1636 		if (copy_from_user(&p, argp, sizeof p)) {
1637 			r = -EFAULT;
1638 			break;
1639 		}
1640 		if ((u64)(unsigned long)p != p) {
1641 			r = -EFAULT;
1642 			break;
1643 		}
1644 		for (i = 0; i < d->nvqs; ++i) {
1645 			struct vhost_virtqueue *vq;
1646 			void __user *base = (void __user *)(unsigned long)p;
1647 			vq = d->vqs[i];
1648 			mutex_lock(&vq->mutex);
1649 			/* If ring is inactive, will check when it's enabled. */
1650 			if (vq->private_data && !vq_log_access_ok(vq, base))
1651 				r = -EFAULT;
1652 			else
1653 				vq->log_base = base;
1654 			mutex_unlock(&vq->mutex);
1655 		}
1656 		break;
1657 	case VHOST_SET_LOG_FD:
1658 		r = get_user(fd, (int __user *)argp);
1659 		if (r < 0)
1660 			break;
1661 		ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd);
1662 		if (IS_ERR(ctx)) {
1663 			r = PTR_ERR(ctx);
1664 			break;
1665 		}
1666 		swap(ctx, d->log_ctx);
1667 		for (i = 0; i < d->nvqs; ++i) {
1668 			mutex_lock(&d->vqs[i]->mutex);
1669 			d->vqs[i]->log_ctx = d->log_ctx;
1670 			mutex_unlock(&d->vqs[i]->mutex);
1671 		}
1672 		if (ctx)
1673 			eventfd_ctx_put(ctx);
1674 		break;
1675 	default:
1676 		r = -ENOIOCTLCMD;
1677 		break;
1678 	}
1679 done:
1680 	return r;
1681 }
1682 EXPORT_SYMBOL_GPL(vhost_dev_ioctl);
1683 
1684 /* TODO: This is really inefficient.  We need something like get_user()
1685  * (instruction directly accesses the data, with an exception table entry
1686  * returning -EFAULT). See Documentation/x86/exception-tables.txt.
1687  */
1688 static int set_bit_to_user(int nr, void __user *addr)
1689 {
1690 	unsigned long log = (unsigned long)addr;
1691 	struct page *page;
1692 	void *base;
1693 	int bit = nr + (log % PAGE_SIZE) * 8;
1694 	int r;
1695 
1696 	r = get_user_pages_fast(log, 1, 1, &page);
1697 	if (r < 0)
1698 		return r;
1699 	BUG_ON(r != 1);
1700 	base = kmap_atomic(page);
1701 	set_bit(bit, base);
1702 	kunmap_atomic(base);
1703 	set_page_dirty_lock(page);
1704 	put_page(page);
1705 	return 0;
1706 }
1707 
1708 static int log_write(void __user *log_base,
1709 		     u64 write_address, u64 write_length)
1710 {
1711 	u64 write_page = write_address / VHOST_PAGE_SIZE;
1712 	int r;
1713 
1714 	if (!write_length)
1715 		return 0;
1716 	write_length += write_address % VHOST_PAGE_SIZE;
1717 	for (;;) {
1718 		u64 base = (u64)(unsigned long)log_base;
1719 		u64 log = base + write_page / 8;
1720 		int bit = write_page % 8;
1721 		if ((u64)(unsigned long)log != log)
1722 			return -EFAULT;
1723 		r = set_bit_to_user(bit, (void __user *)(unsigned long)log);
1724 		if (r < 0)
1725 			return r;
1726 		if (write_length <= VHOST_PAGE_SIZE)
1727 			break;
1728 		write_length -= VHOST_PAGE_SIZE;
1729 		write_page += 1;
1730 	}
1731 	return r;
1732 }
1733 
1734 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log,
1735 		    unsigned int log_num, u64 len)
1736 {
1737 	int i, r;
1738 
1739 	/* Make sure data written is seen before log. */
1740 	smp_wmb();
1741 	for (i = 0; i < log_num; ++i) {
1742 		u64 l = min(log[i].len, len);
1743 		r = log_write(vq->log_base, log[i].addr, l);
1744 		if (r < 0)
1745 			return r;
1746 		len -= l;
1747 		if (!len) {
1748 			if (vq->log_ctx)
1749 				eventfd_signal(vq->log_ctx, 1);
1750 			return 0;
1751 		}
1752 	}
1753 	/* Length written exceeds what we have stored. This is a bug. */
1754 	BUG();
1755 	return 0;
1756 }
1757 EXPORT_SYMBOL_GPL(vhost_log_write);
1758 
1759 static int vhost_update_used_flags(struct vhost_virtqueue *vq)
1760 {
1761 	void __user *used;
1762 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags),
1763 			   &vq->used->flags) < 0)
1764 		return -EFAULT;
1765 	if (unlikely(vq->log_used)) {
1766 		/* Make sure the flag is seen before log. */
1767 		smp_wmb();
1768 		/* Log used flag write. */
1769 		used = &vq->used->flags;
1770 		log_write(vq->log_base, vq->log_addr +
1771 			  (used - (void __user *)vq->used),
1772 			  sizeof vq->used->flags);
1773 		if (vq->log_ctx)
1774 			eventfd_signal(vq->log_ctx, 1);
1775 	}
1776 	return 0;
1777 }
1778 
1779 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event)
1780 {
1781 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx),
1782 			   vhost_avail_event(vq)))
1783 		return -EFAULT;
1784 	if (unlikely(vq->log_used)) {
1785 		void __user *used;
1786 		/* Make sure the event is seen before log. */
1787 		smp_wmb();
1788 		/* Log avail event write */
1789 		used = vhost_avail_event(vq);
1790 		log_write(vq->log_base, vq->log_addr +
1791 			  (used - (void __user *)vq->used),
1792 			  sizeof *vhost_avail_event(vq));
1793 		if (vq->log_ctx)
1794 			eventfd_signal(vq->log_ctx, 1);
1795 	}
1796 	return 0;
1797 }
1798 
1799 int vhost_vq_init_access(struct vhost_virtqueue *vq)
1800 {
1801 	__virtio16 last_used_idx;
1802 	int r;
1803 	bool is_le = vq->is_le;
1804 
1805 	if (!vq->private_data)
1806 		return 0;
1807 
1808 	vhost_init_is_le(vq);
1809 
1810 	r = vhost_update_used_flags(vq);
1811 	if (r)
1812 		goto err;
1813 	vq->signalled_used_valid = false;
1814 	if (!vq->iotlb &&
1815 	    !access_ok(VERIFY_READ, &vq->used->idx, sizeof vq->used->idx)) {
1816 		r = -EFAULT;
1817 		goto err;
1818 	}
1819 	r = vhost_get_used(vq, last_used_idx, &vq->used->idx);
1820 	if (r) {
1821 		vq_err(vq, "Can't access used idx at %p\n",
1822 		       &vq->used->idx);
1823 		goto err;
1824 	}
1825 	vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx);
1826 	return 0;
1827 
1828 err:
1829 	vq->is_le = is_le;
1830 	return r;
1831 }
1832 EXPORT_SYMBOL_GPL(vhost_vq_init_access);
1833 
1834 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
1835 			  struct iovec iov[], int iov_size, int access)
1836 {
1837 	const struct vhost_umem_node *node;
1838 	struct vhost_dev *dev = vq->dev;
1839 	struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem;
1840 	struct iovec *_iov;
1841 	u64 s = 0;
1842 	int ret = 0;
1843 
1844 	while ((u64)len > s) {
1845 		u64 size;
1846 		if (unlikely(ret >= iov_size)) {
1847 			ret = -ENOBUFS;
1848 			break;
1849 		}
1850 
1851 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1852 							addr, addr + len - 1);
1853 		if (node == NULL || node->start > addr) {
1854 			if (umem != dev->iotlb) {
1855 				ret = -EFAULT;
1856 				break;
1857 			}
1858 			ret = -EAGAIN;
1859 			break;
1860 		} else if (!(node->perm & access)) {
1861 			ret = -EPERM;
1862 			break;
1863 		}
1864 
1865 		_iov = iov + ret;
1866 		size = node->size - addr + node->start;
1867 		_iov->iov_len = min((u64)len - s, size);
1868 		_iov->iov_base = (void __user *)(unsigned long)
1869 			(node->userspace_addr + addr - node->start);
1870 		s += size;
1871 		addr += size;
1872 		++ret;
1873 	}
1874 
1875 	if (ret == -EAGAIN)
1876 		vhost_iotlb_miss(vq, addr, access);
1877 	return ret;
1878 }
1879 
1880 /* Each buffer in the virtqueues is actually a chain of descriptors.  This
1881  * function returns the next descriptor in the chain,
1882  * or -1U if we're at the end. */
1883 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc)
1884 {
1885 	unsigned int next;
1886 
1887 	/* If this descriptor says it doesn't chain, we're done. */
1888 	if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT)))
1889 		return -1U;
1890 
1891 	/* Check they're not leading us off end of descriptors. */
1892 	next = vhost16_to_cpu(vq, READ_ONCE(desc->next));
1893 	return next;
1894 }
1895 
1896 static int get_indirect(struct vhost_virtqueue *vq,
1897 			struct iovec iov[], unsigned int iov_size,
1898 			unsigned int *out_num, unsigned int *in_num,
1899 			struct vhost_log *log, unsigned int *log_num,
1900 			struct vring_desc *indirect)
1901 {
1902 	struct vring_desc desc;
1903 	unsigned int i = 0, count, found = 0;
1904 	u32 len = vhost32_to_cpu(vq, indirect->len);
1905 	struct iov_iter from;
1906 	int ret, access;
1907 
1908 	/* Sanity check */
1909 	if (unlikely(len % sizeof desc)) {
1910 		vq_err(vq, "Invalid length in indirect descriptor: "
1911 		       "len 0x%llx not multiple of 0x%zx\n",
1912 		       (unsigned long long)len,
1913 		       sizeof desc);
1914 		return -EINVAL;
1915 	}
1916 
1917 	ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect,
1918 			     UIO_MAXIOV, VHOST_ACCESS_RO);
1919 	if (unlikely(ret < 0)) {
1920 		if (ret != -EAGAIN)
1921 			vq_err(vq, "Translation failure %d in indirect.\n", ret);
1922 		return ret;
1923 	}
1924 	iov_iter_init(&from, READ, vq->indirect, ret, len);
1925 
1926 	/* We will use the result as an address to read from, so most
1927 	 * architectures only need a compiler barrier here. */
1928 	read_barrier_depends();
1929 
1930 	count = len / sizeof desc;
1931 	/* Buffers are chained via a 16 bit next field, so
1932 	 * we can have at most 2^16 of these. */
1933 	if (unlikely(count > USHRT_MAX + 1)) {
1934 		vq_err(vq, "Indirect buffer length too big: %d\n",
1935 		       indirect->len);
1936 		return -E2BIG;
1937 	}
1938 
1939 	do {
1940 		unsigned iov_count = *in_num + *out_num;
1941 		if (unlikely(++found > count)) {
1942 			vq_err(vq, "Loop detected: last one at %u "
1943 			       "indirect size %u\n",
1944 			       i, count);
1945 			return -EINVAL;
1946 		}
1947 		if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) {
1948 			vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n",
1949 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
1950 			return -EINVAL;
1951 		}
1952 		if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) {
1953 			vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n",
1954 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
1955 			return -EINVAL;
1956 		}
1957 
1958 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
1959 			access = VHOST_ACCESS_WO;
1960 		else
1961 			access = VHOST_ACCESS_RO;
1962 
1963 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
1964 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
1965 				     iov_size - iov_count, access);
1966 		if (unlikely(ret < 0)) {
1967 			if (ret != -EAGAIN)
1968 				vq_err(vq, "Translation failure %d indirect idx %d\n",
1969 					ret, i);
1970 			return ret;
1971 		}
1972 		/* If this is an input descriptor, increment that count. */
1973 		if (access == VHOST_ACCESS_WO) {
1974 			*in_num += ret;
1975 			if (unlikely(log)) {
1976 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
1977 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
1978 				++*log_num;
1979 			}
1980 		} else {
1981 			/* If it's an output descriptor, they're all supposed
1982 			 * to come before any input descriptors. */
1983 			if (unlikely(*in_num)) {
1984 				vq_err(vq, "Indirect descriptor "
1985 				       "has out after in: idx %d\n", i);
1986 				return -EINVAL;
1987 			}
1988 			*out_num += ret;
1989 		}
1990 	} while ((i = next_desc(vq, &desc)) != -1);
1991 	return 0;
1992 }
1993 
1994 /* This looks in the virtqueue and for the first available buffer, and converts
1995  * it to an iovec for convenient access.  Since descriptors consist of some
1996  * number of output then some number of input descriptors, it's actually two
1997  * iovecs, but we pack them into one and note how many of each there were.
1998  *
1999  * This function returns the descriptor number found, or vq->num (which is
2000  * never a valid descriptor number) if none was found.  A negative code is
2001  * returned on error. */
2002 int vhost_get_vq_desc(struct vhost_virtqueue *vq,
2003 		      struct iovec iov[], unsigned int iov_size,
2004 		      unsigned int *out_num, unsigned int *in_num,
2005 		      struct vhost_log *log, unsigned int *log_num)
2006 {
2007 	struct vring_desc desc;
2008 	unsigned int i, head, found = 0;
2009 	u16 last_avail_idx;
2010 	__virtio16 avail_idx;
2011 	__virtio16 ring_head;
2012 	int ret, access;
2013 
2014 	/* Check it isn't doing very strange things with descriptor numbers. */
2015 	last_avail_idx = vq->last_avail_idx;
2016 
2017 	if (vq->avail_idx == vq->last_avail_idx) {
2018 		if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) {
2019 			vq_err(vq, "Failed to access avail idx at %p\n",
2020 				&vq->avail->idx);
2021 			return -EFAULT;
2022 		}
2023 		vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2024 
2025 		if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) {
2026 			vq_err(vq, "Guest moved used index from %u to %u",
2027 				last_avail_idx, vq->avail_idx);
2028 			return -EFAULT;
2029 		}
2030 
2031 		/* If there's nothing new since last we looked, return
2032 		 * invalid.
2033 		 */
2034 		if (vq->avail_idx == last_avail_idx)
2035 			return vq->num;
2036 
2037 		/* Only get avail ring entries after they have been
2038 		 * exposed by guest.
2039 		 */
2040 		smp_rmb();
2041 	}
2042 
2043 	/* Grab the next descriptor number they're advertising, and increment
2044 	 * the index we've seen. */
2045 	if (unlikely(vhost_get_avail(vq, ring_head,
2046 		     &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) {
2047 		vq_err(vq, "Failed to read head: idx %d address %p\n",
2048 		       last_avail_idx,
2049 		       &vq->avail->ring[last_avail_idx % vq->num]);
2050 		return -EFAULT;
2051 	}
2052 
2053 	head = vhost16_to_cpu(vq, ring_head);
2054 
2055 	/* If their number is silly, that's an error. */
2056 	if (unlikely(head >= vq->num)) {
2057 		vq_err(vq, "Guest says index %u > %u is available",
2058 		       head, vq->num);
2059 		return -EINVAL;
2060 	}
2061 
2062 	/* When we start there are none of either input nor output. */
2063 	*out_num = *in_num = 0;
2064 	if (unlikely(log))
2065 		*log_num = 0;
2066 
2067 	i = head;
2068 	do {
2069 		unsigned iov_count = *in_num + *out_num;
2070 		if (unlikely(i >= vq->num)) {
2071 			vq_err(vq, "Desc index is %u > %u, head = %u",
2072 			       i, vq->num, head);
2073 			return -EINVAL;
2074 		}
2075 		if (unlikely(++found > vq->num)) {
2076 			vq_err(vq, "Loop detected: last one at %u "
2077 			       "vq size %u head %u\n",
2078 			       i, vq->num, head);
2079 			return -EINVAL;
2080 		}
2081 		ret = vhost_copy_from_user(vq, &desc, vq->desc + i,
2082 					   sizeof desc);
2083 		if (unlikely(ret)) {
2084 			vq_err(vq, "Failed to get descriptor: idx %d addr %p\n",
2085 			       i, vq->desc + i);
2086 			return -EFAULT;
2087 		}
2088 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) {
2089 			ret = get_indirect(vq, iov, iov_size,
2090 					   out_num, in_num,
2091 					   log, log_num, &desc);
2092 			if (unlikely(ret < 0)) {
2093 				if (ret != -EAGAIN)
2094 					vq_err(vq, "Failure detected "
2095 						"in indirect descriptor at idx %d\n", i);
2096 				return ret;
2097 			}
2098 			continue;
2099 		}
2100 
2101 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2102 			access = VHOST_ACCESS_WO;
2103 		else
2104 			access = VHOST_ACCESS_RO;
2105 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2106 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
2107 				     iov_size - iov_count, access);
2108 		if (unlikely(ret < 0)) {
2109 			if (ret != -EAGAIN)
2110 				vq_err(vq, "Translation failure %d descriptor idx %d\n",
2111 					ret, i);
2112 			return ret;
2113 		}
2114 		if (access == VHOST_ACCESS_WO) {
2115 			/* If this is an input descriptor,
2116 			 * increment that count. */
2117 			*in_num += ret;
2118 			if (unlikely(log)) {
2119 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2120 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2121 				++*log_num;
2122 			}
2123 		} else {
2124 			/* If it's an output descriptor, they're all supposed
2125 			 * to come before any input descriptors. */
2126 			if (unlikely(*in_num)) {
2127 				vq_err(vq, "Descriptor has out after in: "
2128 				       "idx %d\n", i);
2129 				return -EINVAL;
2130 			}
2131 			*out_num += ret;
2132 		}
2133 	} while ((i = next_desc(vq, &desc)) != -1);
2134 
2135 	/* On success, increment avail index. */
2136 	vq->last_avail_idx++;
2137 
2138 	/* Assume notifications from guest are disabled at this point,
2139 	 * if they aren't we would need to update avail_event index. */
2140 	BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY));
2141 	return head;
2142 }
2143 EXPORT_SYMBOL_GPL(vhost_get_vq_desc);
2144 
2145 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */
2146 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n)
2147 {
2148 	vq->last_avail_idx -= n;
2149 }
2150 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc);
2151 
2152 /* After we've used one of their buffers, we tell them about it.  We'll then
2153  * want to notify the guest, using eventfd. */
2154 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len)
2155 {
2156 	struct vring_used_elem heads = {
2157 		cpu_to_vhost32(vq, head),
2158 		cpu_to_vhost32(vq, len)
2159 	};
2160 
2161 	return vhost_add_used_n(vq, &heads, 1);
2162 }
2163 EXPORT_SYMBOL_GPL(vhost_add_used);
2164 
2165 static int __vhost_add_used_n(struct vhost_virtqueue *vq,
2166 			    struct vring_used_elem *heads,
2167 			    unsigned count)
2168 {
2169 	struct vring_used_elem __user *used;
2170 	u16 old, new;
2171 	int start;
2172 
2173 	start = vq->last_used_idx & (vq->num - 1);
2174 	used = vq->used->ring + start;
2175 	if (count == 1) {
2176 		if (vhost_put_user(vq, heads[0].id, &used->id)) {
2177 			vq_err(vq, "Failed to write used id");
2178 			return -EFAULT;
2179 		}
2180 		if (vhost_put_user(vq, heads[0].len, &used->len)) {
2181 			vq_err(vq, "Failed to write used len");
2182 			return -EFAULT;
2183 		}
2184 	} else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) {
2185 		vq_err(vq, "Failed to write used");
2186 		return -EFAULT;
2187 	}
2188 	if (unlikely(vq->log_used)) {
2189 		/* Make sure data is seen before log. */
2190 		smp_wmb();
2191 		/* Log used ring entry write. */
2192 		log_write(vq->log_base,
2193 			  vq->log_addr +
2194 			   ((void __user *)used - (void __user *)vq->used),
2195 			  count * sizeof *used);
2196 	}
2197 	old = vq->last_used_idx;
2198 	new = (vq->last_used_idx += count);
2199 	/* If the driver never bothers to signal in a very long while,
2200 	 * used index might wrap around. If that happens, invalidate
2201 	 * signalled_used index we stored. TODO: make sure driver
2202 	 * signals at least once in 2^16 and remove this. */
2203 	if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
2204 		vq->signalled_used_valid = false;
2205 	return 0;
2206 }
2207 
2208 /* After we've used one of their buffers, we tell them about it.  We'll then
2209  * want to notify the guest, using eventfd. */
2210 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads,
2211 		     unsigned count)
2212 {
2213 	int start, n, r;
2214 
2215 	start = vq->last_used_idx & (vq->num - 1);
2216 	n = vq->num - start;
2217 	if (n < count) {
2218 		r = __vhost_add_used_n(vq, heads, n);
2219 		if (r < 0)
2220 			return r;
2221 		heads += n;
2222 		count -= n;
2223 	}
2224 	r = __vhost_add_used_n(vq, heads, count);
2225 
2226 	/* Make sure buffer is written before we update index. */
2227 	smp_wmb();
2228 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx),
2229 			   &vq->used->idx)) {
2230 		vq_err(vq, "Failed to increment used idx");
2231 		return -EFAULT;
2232 	}
2233 	if (unlikely(vq->log_used)) {
2234 		/* Log used index update. */
2235 		log_write(vq->log_base,
2236 			  vq->log_addr + offsetof(struct vring_used, idx),
2237 			  sizeof vq->used->idx);
2238 		if (vq->log_ctx)
2239 			eventfd_signal(vq->log_ctx, 1);
2240 	}
2241 	return r;
2242 }
2243 EXPORT_SYMBOL_GPL(vhost_add_used_n);
2244 
2245 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2246 {
2247 	__u16 old, new;
2248 	__virtio16 event;
2249 	bool v;
2250 	/* Flush out used index updates. This is paired
2251 	 * with the barrier that the Guest executes when enabling
2252 	 * interrupts. */
2253 	smp_mb();
2254 
2255 	if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) &&
2256 	    unlikely(vq->avail_idx == vq->last_avail_idx))
2257 		return true;
2258 
2259 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2260 		__virtio16 flags;
2261 		if (vhost_get_avail(vq, flags, &vq->avail->flags)) {
2262 			vq_err(vq, "Failed to get flags");
2263 			return true;
2264 		}
2265 		return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT));
2266 	}
2267 	old = vq->signalled_used;
2268 	v = vq->signalled_used_valid;
2269 	new = vq->signalled_used = vq->last_used_idx;
2270 	vq->signalled_used_valid = true;
2271 
2272 	if (unlikely(!v))
2273 		return true;
2274 
2275 	if (vhost_get_avail(vq, event, vhost_used_event(vq))) {
2276 		vq_err(vq, "Failed to get used event idx");
2277 		return true;
2278 	}
2279 	return vring_need_event(vhost16_to_cpu(vq, event), new, old);
2280 }
2281 
2282 /* This actually signals the guest, using eventfd. */
2283 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2284 {
2285 	/* Signal the Guest tell them we used something up. */
2286 	if (vq->call_ctx && vhost_notify(dev, vq))
2287 		eventfd_signal(vq->call_ctx, 1);
2288 }
2289 EXPORT_SYMBOL_GPL(vhost_signal);
2290 
2291 /* And here's the combo meal deal.  Supersize me! */
2292 void vhost_add_used_and_signal(struct vhost_dev *dev,
2293 			       struct vhost_virtqueue *vq,
2294 			       unsigned int head, int len)
2295 {
2296 	vhost_add_used(vq, head, len);
2297 	vhost_signal(dev, vq);
2298 }
2299 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal);
2300 
2301 /* multi-buffer version of vhost_add_used_and_signal */
2302 void vhost_add_used_and_signal_n(struct vhost_dev *dev,
2303 				 struct vhost_virtqueue *vq,
2304 				 struct vring_used_elem *heads, unsigned count)
2305 {
2306 	vhost_add_used_n(vq, heads, count);
2307 	vhost_signal(dev, vq);
2308 }
2309 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n);
2310 
2311 /* return true if we're sure that avaiable ring is empty */
2312 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2313 {
2314 	__virtio16 avail_idx;
2315 	int r;
2316 
2317 	if (vq->avail_idx != vq->last_avail_idx)
2318 		return false;
2319 
2320 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2321 	if (unlikely(r))
2322 		return false;
2323 	vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2324 
2325 	return vq->avail_idx == vq->last_avail_idx;
2326 }
2327 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty);
2328 
2329 /* OK, now we need to know about added descriptors. */
2330 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2331 {
2332 	__virtio16 avail_idx;
2333 	int r;
2334 
2335 	if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY))
2336 		return false;
2337 	vq->used_flags &= ~VRING_USED_F_NO_NOTIFY;
2338 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2339 		r = vhost_update_used_flags(vq);
2340 		if (r) {
2341 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2342 			       &vq->used->flags, r);
2343 			return false;
2344 		}
2345 	} else {
2346 		r = vhost_update_avail_event(vq, vq->avail_idx);
2347 		if (r) {
2348 			vq_err(vq, "Failed to update avail event index at %p: %d\n",
2349 			       vhost_avail_event(vq), r);
2350 			return false;
2351 		}
2352 	}
2353 	/* They could have slipped one in as we were doing that: make
2354 	 * sure it's written, then check again. */
2355 	smp_mb();
2356 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2357 	if (r) {
2358 		vq_err(vq, "Failed to check avail idx at %p: %d\n",
2359 		       &vq->avail->idx, r);
2360 		return false;
2361 	}
2362 
2363 	return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx;
2364 }
2365 EXPORT_SYMBOL_GPL(vhost_enable_notify);
2366 
2367 /* We don't need to be notified again. */
2368 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2369 {
2370 	int r;
2371 
2372 	if (vq->used_flags & VRING_USED_F_NO_NOTIFY)
2373 		return;
2374 	vq->used_flags |= VRING_USED_F_NO_NOTIFY;
2375 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2376 		r = vhost_update_used_flags(vq);
2377 		if (r)
2378 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2379 			       &vq->used->flags, r);
2380 	}
2381 }
2382 EXPORT_SYMBOL_GPL(vhost_disable_notify);
2383 
2384 /* Create a new message. */
2385 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type)
2386 {
2387 	struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL);
2388 	if (!node)
2389 		return NULL;
2390 
2391 	/* Make sure all padding within the structure is initialized. */
2392 	memset(&node->msg, 0, sizeof node->msg);
2393 	node->vq = vq;
2394 	node->msg.type = type;
2395 	return node;
2396 }
2397 EXPORT_SYMBOL_GPL(vhost_new_msg);
2398 
2399 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head,
2400 		       struct vhost_msg_node *node)
2401 {
2402 	spin_lock(&dev->iotlb_lock);
2403 	list_add_tail(&node->node, head);
2404 	spin_unlock(&dev->iotlb_lock);
2405 
2406 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
2407 }
2408 EXPORT_SYMBOL_GPL(vhost_enqueue_msg);
2409 
2410 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev,
2411 					 struct list_head *head)
2412 {
2413 	struct vhost_msg_node *node = NULL;
2414 
2415 	spin_lock(&dev->iotlb_lock);
2416 	if (!list_empty(head)) {
2417 		node = list_first_entry(head, struct vhost_msg_node,
2418 					node);
2419 		list_del(&node->node);
2420 	}
2421 	spin_unlock(&dev->iotlb_lock);
2422 
2423 	return node;
2424 }
2425 EXPORT_SYMBOL_GPL(vhost_dequeue_msg);
2426 
2427 
2428 static int __init vhost_init(void)
2429 {
2430 	return 0;
2431 }
2432 
2433 static void __exit vhost_exit(void)
2434 {
2435 }
2436 
2437 module_init(vhost_init);
2438 module_exit(vhost_exit);
2439 
2440 MODULE_VERSION("0.0.1");
2441 MODULE_LICENSE("GPL v2");
2442 MODULE_AUTHOR("Michael S. Tsirkin");
2443 MODULE_DESCRIPTION("Host kernel accelerator for virtio");
2444