1 /* Copyright (C) 2009 Red Hat, Inc. 2 * Copyright (C) 2006 Rusty Russell IBM Corporation 3 * 4 * Author: Michael S. Tsirkin <mst@redhat.com> 5 * 6 * Inspiration, some code, and most witty comments come from 7 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * 11 * Generic code for virtio server in host kernel. 12 */ 13 14 #include <linux/eventfd.h> 15 #include <linux/vhost.h> 16 #include <linux/uio.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_context.h> 19 #include <linux/miscdevice.h> 20 #include <linux/mutex.h> 21 #include <linux/poll.h> 22 #include <linux/file.h> 23 #include <linux/highmem.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 #include <linux/kthread.h> 27 #include <linux/cgroup.h> 28 #include <linux/module.h> 29 #include <linux/sort.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/signal.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include "vhost.h" 35 36 static ushort max_mem_regions = 64; 37 module_param(max_mem_regions, ushort, 0444); 38 MODULE_PARM_DESC(max_mem_regions, 39 "Maximum number of memory regions in memory map. (default: 64)"); 40 static int max_iotlb_entries = 2048; 41 module_param(max_iotlb_entries, int, 0444); 42 MODULE_PARM_DESC(max_iotlb_entries, 43 "Maximum number of iotlb entries. (default: 2048)"); 44 45 enum { 46 VHOST_MEMORY_F_LOG = 0x1, 47 }; 48 49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 51 52 INTERVAL_TREE_DEFINE(struct vhost_umem_node, 53 rb, __u64, __subtree_last, 54 START, LAST, static inline, vhost_umem_interval_tree); 55 56 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 57 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 58 { 59 vq->user_be = !virtio_legacy_is_little_endian(); 60 } 61 62 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 63 { 64 vq->user_be = true; 65 } 66 67 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 68 { 69 vq->user_be = false; 70 } 71 72 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 73 { 74 struct vhost_vring_state s; 75 76 if (vq->private_data) 77 return -EBUSY; 78 79 if (copy_from_user(&s, argp, sizeof(s))) 80 return -EFAULT; 81 82 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 83 s.num != VHOST_VRING_BIG_ENDIAN) 84 return -EINVAL; 85 86 if (s.num == VHOST_VRING_BIG_ENDIAN) 87 vhost_enable_cross_endian_big(vq); 88 else 89 vhost_enable_cross_endian_little(vq); 90 91 return 0; 92 } 93 94 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 95 int __user *argp) 96 { 97 struct vhost_vring_state s = { 98 .index = idx, 99 .num = vq->user_be 100 }; 101 102 if (copy_to_user(argp, &s, sizeof(s))) 103 return -EFAULT; 104 105 return 0; 106 } 107 108 static void vhost_init_is_le(struct vhost_virtqueue *vq) 109 { 110 /* Note for legacy virtio: user_be is initialized at reset time 111 * according to the host endianness. If userspace does not set an 112 * explicit endianness, the default behavior is native endian, as 113 * expected by legacy virtio. 114 */ 115 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 116 } 117 #else 118 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 119 { 120 } 121 122 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 123 { 124 return -ENOIOCTLCMD; 125 } 126 127 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 128 int __user *argp) 129 { 130 return -ENOIOCTLCMD; 131 } 132 133 static void vhost_init_is_le(struct vhost_virtqueue *vq) 134 { 135 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 136 || virtio_legacy_is_little_endian(); 137 } 138 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 139 140 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 141 { 142 vhost_init_is_le(vq); 143 } 144 145 struct vhost_flush_struct { 146 struct vhost_work work; 147 struct completion wait_event; 148 }; 149 150 static void vhost_flush_work(struct vhost_work *work) 151 { 152 struct vhost_flush_struct *s; 153 154 s = container_of(work, struct vhost_flush_struct, work); 155 complete(&s->wait_event); 156 } 157 158 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 159 poll_table *pt) 160 { 161 struct vhost_poll *poll; 162 163 poll = container_of(pt, struct vhost_poll, table); 164 poll->wqh = wqh; 165 add_wait_queue(wqh, &poll->wait); 166 } 167 168 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 169 void *key) 170 { 171 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 172 173 if (!(key_to_poll(key) & poll->mask)) 174 return 0; 175 176 vhost_poll_queue(poll); 177 return 0; 178 } 179 180 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 181 { 182 clear_bit(VHOST_WORK_QUEUED, &work->flags); 183 work->fn = fn; 184 } 185 EXPORT_SYMBOL_GPL(vhost_work_init); 186 187 /* Init poll structure */ 188 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 189 __poll_t mask, struct vhost_dev *dev) 190 { 191 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 192 init_poll_funcptr(&poll->table, vhost_poll_func); 193 poll->mask = mask; 194 poll->dev = dev; 195 poll->wqh = NULL; 196 197 vhost_work_init(&poll->work, fn); 198 } 199 EXPORT_SYMBOL_GPL(vhost_poll_init); 200 201 /* Start polling a file. We add ourselves to file's wait queue. The caller must 202 * keep a reference to a file until after vhost_poll_stop is called. */ 203 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 204 { 205 __poll_t mask; 206 int ret = 0; 207 208 if (poll->wqh) 209 return 0; 210 211 mask = vfs_poll(file, &poll->table); 212 if (mask) 213 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 214 if (mask & EPOLLERR) { 215 vhost_poll_stop(poll); 216 ret = -EINVAL; 217 } 218 219 return ret; 220 } 221 EXPORT_SYMBOL_GPL(vhost_poll_start); 222 223 /* Stop polling a file. After this function returns, it becomes safe to drop the 224 * file reference. You must also flush afterwards. */ 225 void vhost_poll_stop(struct vhost_poll *poll) 226 { 227 if (poll->wqh) { 228 remove_wait_queue(poll->wqh, &poll->wait); 229 poll->wqh = NULL; 230 } 231 } 232 EXPORT_SYMBOL_GPL(vhost_poll_stop); 233 234 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work) 235 { 236 struct vhost_flush_struct flush; 237 238 if (dev->worker) { 239 init_completion(&flush.wait_event); 240 vhost_work_init(&flush.work, vhost_flush_work); 241 242 vhost_work_queue(dev, &flush.work); 243 wait_for_completion(&flush.wait_event); 244 } 245 } 246 EXPORT_SYMBOL_GPL(vhost_work_flush); 247 248 /* Flush any work that has been scheduled. When calling this, don't hold any 249 * locks that are also used by the callback. */ 250 void vhost_poll_flush(struct vhost_poll *poll) 251 { 252 vhost_work_flush(poll->dev, &poll->work); 253 } 254 EXPORT_SYMBOL_GPL(vhost_poll_flush); 255 256 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work) 257 { 258 if (!dev->worker) 259 return; 260 261 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 262 /* We can only add the work to the list after we're 263 * sure it was not in the list. 264 * test_and_set_bit() implies a memory barrier. 265 */ 266 llist_add(&work->node, &dev->work_list); 267 wake_up_process(dev->worker); 268 } 269 } 270 EXPORT_SYMBOL_GPL(vhost_work_queue); 271 272 /* A lockless hint for busy polling code to exit the loop */ 273 bool vhost_has_work(struct vhost_dev *dev) 274 { 275 return !llist_empty(&dev->work_list); 276 } 277 EXPORT_SYMBOL_GPL(vhost_has_work); 278 279 void vhost_poll_queue(struct vhost_poll *poll) 280 { 281 vhost_work_queue(poll->dev, &poll->work); 282 } 283 EXPORT_SYMBOL_GPL(vhost_poll_queue); 284 285 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 286 { 287 int j; 288 289 for (j = 0; j < VHOST_NUM_ADDRS; j++) 290 vq->meta_iotlb[j] = NULL; 291 } 292 293 static void vhost_vq_meta_reset(struct vhost_dev *d) 294 { 295 int i; 296 297 for (i = 0; i < d->nvqs; ++i) 298 __vhost_vq_meta_reset(d->vqs[i]); 299 } 300 301 static void vhost_vq_reset(struct vhost_dev *dev, 302 struct vhost_virtqueue *vq) 303 { 304 vq->num = 1; 305 vq->desc = NULL; 306 vq->avail = NULL; 307 vq->used = NULL; 308 vq->last_avail_idx = 0; 309 vq->avail_idx = 0; 310 vq->last_used_idx = 0; 311 vq->signalled_used = 0; 312 vq->signalled_used_valid = false; 313 vq->used_flags = 0; 314 vq->log_used = false; 315 vq->log_addr = -1ull; 316 vq->private_data = NULL; 317 vq->acked_features = 0; 318 vq->acked_backend_features = 0; 319 vq->log_base = NULL; 320 vq->error_ctx = NULL; 321 vq->kick = NULL; 322 vq->call_ctx = NULL; 323 vq->log_ctx = NULL; 324 vhost_reset_is_le(vq); 325 vhost_disable_cross_endian(vq); 326 vq->busyloop_timeout = 0; 327 vq->umem = NULL; 328 vq->iotlb = NULL; 329 __vhost_vq_meta_reset(vq); 330 } 331 332 static int vhost_worker(void *data) 333 { 334 struct vhost_dev *dev = data; 335 struct vhost_work *work, *work_next; 336 struct llist_node *node; 337 mm_segment_t oldfs = get_fs(); 338 339 set_fs(USER_DS); 340 use_mm(dev->mm); 341 342 for (;;) { 343 /* mb paired w/ kthread_stop */ 344 set_current_state(TASK_INTERRUPTIBLE); 345 346 if (kthread_should_stop()) { 347 __set_current_state(TASK_RUNNING); 348 break; 349 } 350 351 node = llist_del_all(&dev->work_list); 352 if (!node) 353 schedule(); 354 355 node = llist_reverse_order(node); 356 /* make sure flag is seen after deletion */ 357 smp_wmb(); 358 llist_for_each_entry_safe(work, work_next, node, node) { 359 clear_bit(VHOST_WORK_QUEUED, &work->flags); 360 __set_current_state(TASK_RUNNING); 361 work->fn(work); 362 if (need_resched()) 363 schedule(); 364 } 365 } 366 unuse_mm(dev->mm); 367 set_fs(oldfs); 368 return 0; 369 } 370 371 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 372 { 373 kfree(vq->indirect); 374 vq->indirect = NULL; 375 kfree(vq->log); 376 vq->log = NULL; 377 kfree(vq->heads); 378 vq->heads = NULL; 379 } 380 381 /* Helper to allocate iovec buffers for all vqs. */ 382 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 383 { 384 struct vhost_virtqueue *vq; 385 int i; 386 387 for (i = 0; i < dev->nvqs; ++i) { 388 vq = dev->vqs[i]; 389 vq->indirect = kmalloc_array(UIO_MAXIOV, 390 sizeof(*vq->indirect), 391 GFP_KERNEL); 392 vq->log = kmalloc_array(UIO_MAXIOV, sizeof(*vq->log), 393 GFP_KERNEL); 394 vq->heads = kmalloc_array(UIO_MAXIOV, sizeof(*vq->heads), 395 GFP_KERNEL); 396 if (!vq->indirect || !vq->log || !vq->heads) 397 goto err_nomem; 398 } 399 return 0; 400 401 err_nomem: 402 for (; i >= 0; --i) 403 vhost_vq_free_iovecs(dev->vqs[i]); 404 return -ENOMEM; 405 } 406 407 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 408 { 409 int i; 410 411 for (i = 0; i < dev->nvqs; ++i) 412 vhost_vq_free_iovecs(dev->vqs[i]); 413 } 414 415 void vhost_dev_init(struct vhost_dev *dev, 416 struct vhost_virtqueue **vqs, int nvqs) 417 { 418 struct vhost_virtqueue *vq; 419 int i; 420 421 dev->vqs = vqs; 422 dev->nvqs = nvqs; 423 mutex_init(&dev->mutex); 424 dev->log_ctx = NULL; 425 dev->umem = NULL; 426 dev->iotlb = NULL; 427 dev->mm = NULL; 428 dev->worker = NULL; 429 init_llist_head(&dev->work_list); 430 init_waitqueue_head(&dev->wait); 431 INIT_LIST_HEAD(&dev->read_list); 432 INIT_LIST_HEAD(&dev->pending_list); 433 spin_lock_init(&dev->iotlb_lock); 434 435 436 for (i = 0; i < dev->nvqs; ++i) { 437 vq = dev->vqs[i]; 438 vq->log = NULL; 439 vq->indirect = NULL; 440 vq->heads = NULL; 441 vq->dev = dev; 442 mutex_init(&vq->mutex); 443 vhost_vq_reset(dev, vq); 444 if (vq->handle_kick) 445 vhost_poll_init(&vq->poll, vq->handle_kick, 446 EPOLLIN, dev); 447 } 448 } 449 EXPORT_SYMBOL_GPL(vhost_dev_init); 450 451 /* Caller should have device mutex */ 452 long vhost_dev_check_owner(struct vhost_dev *dev) 453 { 454 /* Are you the owner? If not, I don't think you mean to do that */ 455 return dev->mm == current->mm ? 0 : -EPERM; 456 } 457 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 458 459 struct vhost_attach_cgroups_struct { 460 struct vhost_work work; 461 struct task_struct *owner; 462 int ret; 463 }; 464 465 static void vhost_attach_cgroups_work(struct vhost_work *work) 466 { 467 struct vhost_attach_cgroups_struct *s; 468 469 s = container_of(work, struct vhost_attach_cgroups_struct, work); 470 s->ret = cgroup_attach_task_all(s->owner, current); 471 } 472 473 static int vhost_attach_cgroups(struct vhost_dev *dev) 474 { 475 struct vhost_attach_cgroups_struct attach; 476 477 attach.owner = current; 478 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 479 vhost_work_queue(dev, &attach.work); 480 vhost_work_flush(dev, &attach.work); 481 return attach.ret; 482 } 483 484 /* Caller should have device mutex */ 485 bool vhost_dev_has_owner(struct vhost_dev *dev) 486 { 487 return dev->mm; 488 } 489 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 490 491 /* Caller should have device mutex */ 492 long vhost_dev_set_owner(struct vhost_dev *dev) 493 { 494 struct task_struct *worker; 495 int err; 496 497 /* Is there an owner already? */ 498 if (vhost_dev_has_owner(dev)) { 499 err = -EBUSY; 500 goto err_mm; 501 } 502 503 /* No owner, become one */ 504 dev->mm = get_task_mm(current); 505 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid); 506 if (IS_ERR(worker)) { 507 err = PTR_ERR(worker); 508 goto err_worker; 509 } 510 511 dev->worker = worker; 512 wake_up_process(worker); /* avoid contributing to loadavg */ 513 514 err = vhost_attach_cgroups(dev); 515 if (err) 516 goto err_cgroup; 517 518 err = vhost_dev_alloc_iovecs(dev); 519 if (err) 520 goto err_cgroup; 521 522 return 0; 523 err_cgroup: 524 kthread_stop(worker); 525 dev->worker = NULL; 526 err_worker: 527 if (dev->mm) 528 mmput(dev->mm); 529 dev->mm = NULL; 530 err_mm: 531 return err; 532 } 533 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 534 535 struct vhost_umem *vhost_dev_reset_owner_prepare(void) 536 { 537 return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL); 538 } 539 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 540 541 /* Caller should have device mutex */ 542 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem) 543 { 544 int i; 545 546 vhost_dev_cleanup(dev); 547 548 /* Restore memory to default empty mapping. */ 549 INIT_LIST_HEAD(&umem->umem_list); 550 dev->umem = umem; 551 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 552 * VQs aren't running. 553 */ 554 for (i = 0; i < dev->nvqs; ++i) 555 dev->vqs[i]->umem = umem; 556 } 557 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 558 559 void vhost_dev_stop(struct vhost_dev *dev) 560 { 561 int i; 562 563 for (i = 0; i < dev->nvqs; ++i) { 564 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) { 565 vhost_poll_stop(&dev->vqs[i]->poll); 566 vhost_poll_flush(&dev->vqs[i]->poll); 567 } 568 } 569 } 570 EXPORT_SYMBOL_GPL(vhost_dev_stop); 571 572 static void vhost_umem_free(struct vhost_umem *umem, 573 struct vhost_umem_node *node) 574 { 575 vhost_umem_interval_tree_remove(node, &umem->umem_tree); 576 list_del(&node->link); 577 kfree(node); 578 umem->numem--; 579 } 580 581 static void vhost_umem_clean(struct vhost_umem *umem) 582 { 583 struct vhost_umem_node *node, *tmp; 584 585 if (!umem) 586 return; 587 588 list_for_each_entry_safe(node, tmp, &umem->umem_list, link) 589 vhost_umem_free(umem, node); 590 591 kvfree(umem); 592 } 593 594 static void vhost_clear_msg(struct vhost_dev *dev) 595 { 596 struct vhost_msg_node *node, *n; 597 598 spin_lock(&dev->iotlb_lock); 599 600 list_for_each_entry_safe(node, n, &dev->read_list, node) { 601 list_del(&node->node); 602 kfree(node); 603 } 604 605 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 606 list_del(&node->node); 607 kfree(node); 608 } 609 610 spin_unlock(&dev->iotlb_lock); 611 } 612 613 void vhost_dev_cleanup(struct vhost_dev *dev) 614 { 615 int i; 616 617 for (i = 0; i < dev->nvqs; ++i) { 618 if (dev->vqs[i]->error_ctx) 619 eventfd_ctx_put(dev->vqs[i]->error_ctx); 620 if (dev->vqs[i]->kick) 621 fput(dev->vqs[i]->kick); 622 if (dev->vqs[i]->call_ctx) 623 eventfd_ctx_put(dev->vqs[i]->call_ctx); 624 vhost_vq_reset(dev, dev->vqs[i]); 625 } 626 vhost_dev_free_iovecs(dev); 627 if (dev->log_ctx) 628 eventfd_ctx_put(dev->log_ctx); 629 dev->log_ctx = NULL; 630 /* No one will access memory at this point */ 631 vhost_umem_clean(dev->umem); 632 dev->umem = NULL; 633 vhost_umem_clean(dev->iotlb); 634 dev->iotlb = NULL; 635 vhost_clear_msg(dev); 636 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 637 WARN_ON(!llist_empty(&dev->work_list)); 638 if (dev->worker) { 639 kthread_stop(dev->worker); 640 dev->worker = NULL; 641 } 642 if (dev->mm) 643 mmput(dev->mm); 644 dev->mm = NULL; 645 } 646 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 647 648 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 649 { 650 u64 a = addr / VHOST_PAGE_SIZE / 8; 651 652 /* Make sure 64 bit math will not overflow. */ 653 if (a > ULONG_MAX - (unsigned long)log_base || 654 a + (unsigned long)log_base > ULONG_MAX) 655 return false; 656 657 return access_ok(VERIFY_WRITE, log_base + a, 658 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 659 } 660 661 static bool vhost_overflow(u64 uaddr, u64 size) 662 { 663 /* Make sure 64 bit math will not overflow. */ 664 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size; 665 } 666 667 /* Caller should have vq mutex and device mutex. */ 668 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem, 669 int log_all) 670 { 671 struct vhost_umem_node *node; 672 673 if (!umem) 674 return false; 675 676 list_for_each_entry(node, &umem->umem_list, link) { 677 unsigned long a = node->userspace_addr; 678 679 if (vhost_overflow(node->userspace_addr, node->size)) 680 return false; 681 682 683 if (!access_ok(VERIFY_WRITE, (void __user *)a, 684 node->size)) 685 return false; 686 else if (log_all && !log_access_ok(log_base, 687 node->start, 688 node->size)) 689 return false; 690 } 691 return true; 692 } 693 694 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 695 u64 addr, unsigned int size, 696 int type) 697 { 698 const struct vhost_umem_node *node = vq->meta_iotlb[type]; 699 700 if (!node) 701 return NULL; 702 703 return (void *)(uintptr_t)(node->userspace_addr + addr - node->start); 704 } 705 706 /* Can we switch to this memory table? */ 707 /* Caller should have device mutex but not vq mutex */ 708 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem, 709 int log_all) 710 { 711 int i; 712 713 for (i = 0; i < d->nvqs; ++i) { 714 bool ok; 715 bool log; 716 717 mutex_lock(&d->vqs[i]->mutex); 718 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 719 /* If ring is inactive, will check when it's enabled. */ 720 if (d->vqs[i]->private_data) 721 ok = vq_memory_access_ok(d->vqs[i]->log_base, 722 umem, log); 723 else 724 ok = true; 725 mutex_unlock(&d->vqs[i]->mutex); 726 if (!ok) 727 return false; 728 } 729 return true; 730 } 731 732 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 733 struct iovec iov[], int iov_size, int access); 734 735 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 736 const void *from, unsigned size) 737 { 738 int ret; 739 740 if (!vq->iotlb) 741 return __copy_to_user(to, from, size); 742 else { 743 /* This function should be called after iotlb 744 * prefetch, which means we're sure that all vq 745 * could be access through iotlb. So -EAGAIN should 746 * not happen in this case. 747 */ 748 struct iov_iter t; 749 void __user *uaddr = vhost_vq_meta_fetch(vq, 750 (u64)(uintptr_t)to, size, 751 VHOST_ADDR_USED); 752 753 if (uaddr) 754 return __copy_to_user(uaddr, from, size); 755 756 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 757 ARRAY_SIZE(vq->iotlb_iov), 758 VHOST_ACCESS_WO); 759 if (ret < 0) 760 goto out; 761 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size); 762 ret = copy_to_iter(from, size, &t); 763 if (ret == size) 764 ret = 0; 765 } 766 out: 767 return ret; 768 } 769 770 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 771 void __user *from, unsigned size) 772 { 773 int ret; 774 775 if (!vq->iotlb) 776 return __copy_from_user(to, from, size); 777 else { 778 /* This function should be called after iotlb 779 * prefetch, which means we're sure that vq 780 * could be access through iotlb. So -EAGAIN should 781 * not happen in this case. 782 */ 783 void __user *uaddr = vhost_vq_meta_fetch(vq, 784 (u64)(uintptr_t)from, size, 785 VHOST_ADDR_DESC); 786 struct iov_iter f; 787 788 if (uaddr) 789 return __copy_from_user(to, uaddr, size); 790 791 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 792 ARRAY_SIZE(vq->iotlb_iov), 793 VHOST_ACCESS_RO); 794 if (ret < 0) { 795 vq_err(vq, "IOTLB translation failure: uaddr " 796 "%p size 0x%llx\n", from, 797 (unsigned long long) size); 798 goto out; 799 } 800 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size); 801 ret = copy_from_iter(to, size, &f); 802 if (ret == size) 803 ret = 0; 804 } 805 806 out: 807 return ret; 808 } 809 810 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 811 void __user *addr, unsigned int size, 812 int type) 813 { 814 int ret; 815 816 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 817 ARRAY_SIZE(vq->iotlb_iov), 818 VHOST_ACCESS_RO); 819 if (ret < 0) { 820 vq_err(vq, "IOTLB translation failure: uaddr " 821 "%p size 0x%llx\n", addr, 822 (unsigned long long) size); 823 return NULL; 824 } 825 826 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 827 vq_err(vq, "Non atomic userspace memory access: uaddr " 828 "%p size 0x%llx\n", addr, 829 (unsigned long long) size); 830 return NULL; 831 } 832 833 return vq->iotlb_iov[0].iov_base; 834 } 835 836 /* This function should be called after iotlb 837 * prefetch, which means we're sure that vq 838 * could be access through iotlb. So -EAGAIN should 839 * not happen in this case. 840 */ 841 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 842 void *addr, unsigned int size, 843 int type) 844 { 845 void __user *uaddr = vhost_vq_meta_fetch(vq, 846 (u64)(uintptr_t)addr, size, type); 847 if (uaddr) 848 return uaddr; 849 850 return __vhost_get_user_slow(vq, addr, size, type); 851 } 852 853 #define vhost_put_user(vq, x, ptr) \ 854 ({ \ 855 int ret = -EFAULT; \ 856 if (!vq->iotlb) { \ 857 ret = __put_user(x, ptr); \ 858 } else { \ 859 __typeof__(ptr) to = \ 860 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 861 sizeof(*ptr), VHOST_ADDR_USED); \ 862 if (to != NULL) \ 863 ret = __put_user(x, to); \ 864 else \ 865 ret = -EFAULT; \ 866 } \ 867 ret; \ 868 }) 869 870 #define vhost_get_user(vq, x, ptr, type) \ 871 ({ \ 872 int ret; \ 873 if (!vq->iotlb) { \ 874 ret = __get_user(x, ptr); \ 875 } else { \ 876 __typeof__(ptr) from = \ 877 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 878 sizeof(*ptr), \ 879 type); \ 880 if (from != NULL) \ 881 ret = __get_user(x, from); \ 882 else \ 883 ret = -EFAULT; \ 884 } \ 885 ret; \ 886 }) 887 888 #define vhost_get_avail(vq, x, ptr) \ 889 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 890 891 #define vhost_get_used(vq, x, ptr) \ 892 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 893 894 static void vhost_dev_lock_vqs(struct vhost_dev *d) 895 { 896 int i = 0; 897 for (i = 0; i < d->nvqs; ++i) 898 mutex_lock_nested(&d->vqs[i]->mutex, i); 899 } 900 901 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 902 { 903 int i = 0; 904 for (i = 0; i < d->nvqs; ++i) 905 mutex_unlock(&d->vqs[i]->mutex); 906 } 907 908 static int vhost_new_umem_range(struct vhost_umem *umem, 909 u64 start, u64 size, u64 end, 910 u64 userspace_addr, int perm) 911 { 912 struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC); 913 914 if (!node) 915 return -ENOMEM; 916 917 if (umem->numem == max_iotlb_entries) { 918 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link); 919 vhost_umem_free(umem, tmp); 920 } 921 922 node->start = start; 923 node->size = size; 924 node->last = end; 925 node->userspace_addr = userspace_addr; 926 node->perm = perm; 927 INIT_LIST_HEAD(&node->link); 928 list_add_tail(&node->link, &umem->umem_list); 929 vhost_umem_interval_tree_insert(node, &umem->umem_tree); 930 umem->numem++; 931 932 return 0; 933 } 934 935 static void vhost_del_umem_range(struct vhost_umem *umem, 936 u64 start, u64 end) 937 { 938 struct vhost_umem_node *node; 939 940 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 941 start, end))) 942 vhost_umem_free(umem, node); 943 } 944 945 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 946 struct vhost_iotlb_msg *msg) 947 { 948 struct vhost_msg_node *node, *n; 949 950 spin_lock(&d->iotlb_lock); 951 952 list_for_each_entry_safe(node, n, &d->pending_list, node) { 953 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 954 if (msg->iova <= vq_msg->iova && 955 msg->iova + msg->size - 1 >= vq_msg->iova && 956 vq_msg->type == VHOST_IOTLB_MISS) { 957 vhost_poll_queue(&node->vq->poll); 958 list_del(&node->node); 959 kfree(node); 960 } 961 } 962 963 spin_unlock(&d->iotlb_lock); 964 } 965 966 static bool umem_access_ok(u64 uaddr, u64 size, int access) 967 { 968 unsigned long a = uaddr; 969 970 /* Make sure 64 bit math will not overflow. */ 971 if (vhost_overflow(uaddr, size)) 972 return false; 973 974 if ((access & VHOST_ACCESS_RO) && 975 !access_ok(VERIFY_READ, (void __user *)a, size)) 976 return false; 977 if ((access & VHOST_ACCESS_WO) && 978 !access_ok(VERIFY_WRITE, (void __user *)a, size)) 979 return false; 980 return true; 981 } 982 983 static int vhost_process_iotlb_msg(struct vhost_dev *dev, 984 struct vhost_iotlb_msg *msg) 985 { 986 int ret = 0; 987 988 mutex_lock(&dev->mutex); 989 vhost_dev_lock_vqs(dev); 990 switch (msg->type) { 991 case VHOST_IOTLB_UPDATE: 992 if (!dev->iotlb) { 993 ret = -EFAULT; 994 break; 995 } 996 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 997 ret = -EFAULT; 998 break; 999 } 1000 vhost_vq_meta_reset(dev); 1001 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size, 1002 msg->iova + msg->size - 1, 1003 msg->uaddr, msg->perm)) { 1004 ret = -ENOMEM; 1005 break; 1006 } 1007 vhost_iotlb_notify_vq(dev, msg); 1008 break; 1009 case VHOST_IOTLB_INVALIDATE: 1010 if (!dev->iotlb) { 1011 ret = -EFAULT; 1012 break; 1013 } 1014 vhost_vq_meta_reset(dev); 1015 vhost_del_umem_range(dev->iotlb, msg->iova, 1016 msg->iova + msg->size - 1); 1017 break; 1018 default: 1019 ret = -EINVAL; 1020 break; 1021 } 1022 1023 vhost_dev_unlock_vqs(dev); 1024 mutex_unlock(&dev->mutex); 1025 1026 return ret; 1027 } 1028 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1029 struct iov_iter *from) 1030 { 1031 struct vhost_iotlb_msg msg; 1032 size_t offset; 1033 int type, ret; 1034 1035 ret = copy_from_iter(&type, sizeof(type), from); 1036 if (ret != sizeof(type)) 1037 goto done; 1038 1039 switch (type) { 1040 case VHOST_IOTLB_MSG: 1041 /* There maybe a hole after type for V1 message type, 1042 * so skip it here. 1043 */ 1044 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int); 1045 break; 1046 case VHOST_IOTLB_MSG_V2: 1047 offset = sizeof(__u32); 1048 break; 1049 default: 1050 ret = -EINVAL; 1051 goto done; 1052 } 1053 1054 iov_iter_advance(from, offset); 1055 ret = copy_from_iter(&msg, sizeof(msg), from); 1056 if (ret != sizeof(msg)) 1057 goto done; 1058 if (vhost_process_iotlb_msg(dev, &msg)) { 1059 ret = -EFAULT; 1060 goto done; 1061 } 1062 1063 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) : 1064 sizeof(struct vhost_msg_v2); 1065 done: 1066 return ret; 1067 } 1068 EXPORT_SYMBOL(vhost_chr_write_iter); 1069 1070 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1071 poll_table *wait) 1072 { 1073 __poll_t mask = 0; 1074 1075 poll_wait(file, &dev->wait, wait); 1076 1077 if (!list_empty(&dev->read_list)) 1078 mask |= EPOLLIN | EPOLLRDNORM; 1079 1080 return mask; 1081 } 1082 EXPORT_SYMBOL(vhost_chr_poll); 1083 1084 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1085 int noblock) 1086 { 1087 DEFINE_WAIT(wait); 1088 struct vhost_msg_node *node; 1089 ssize_t ret = 0; 1090 unsigned size = sizeof(struct vhost_msg); 1091 1092 if (iov_iter_count(to) < size) 1093 return 0; 1094 1095 while (1) { 1096 if (!noblock) 1097 prepare_to_wait(&dev->wait, &wait, 1098 TASK_INTERRUPTIBLE); 1099 1100 node = vhost_dequeue_msg(dev, &dev->read_list); 1101 if (node) 1102 break; 1103 if (noblock) { 1104 ret = -EAGAIN; 1105 break; 1106 } 1107 if (signal_pending(current)) { 1108 ret = -ERESTARTSYS; 1109 break; 1110 } 1111 if (!dev->iotlb) { 1112 ret = -EBADFD; 1113 break; 1114 } 1115 1116 schedule(); 1117 } 1118 1119 if (!noblock) 1120 finish_wait(&dev->wait, &wait); 1121 1122 if (node) { 1123 struct vhost_iotlb_msg *msg; 1124 void *start = &node->msg; 1125 1126 switch (node->msg.type) { 1127 case VHOST_IOTLB_MSG: 1128 size = sizeof(node->msg); 1129 msg = &node->msg.iotlb; 1130 break; 1131 case VHOST_IOTLB_MSG_V2: 1132 size = sizeof(node->msg_v2); 1133 msg = &node->msg_v2.iotlb; 1134 break; 1135 default: 1136 BUG(); 1137 break; 1138 } 1139 1140 ret = copy_to_iter(start, size, to); 1141 if (ret != size || msg->type != VHOST_IOTLB_MISS) { 1142 kfree(node); 1143 return ret; 1144 } 1145 vhost_enqueue_msg(dev, &dev->pending_list, node); 1146 } 1147 1148 return ret; 1149 } 1150 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1151 1152 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1153 { 1154 struct vhost_dev *dev = vq->dev; 1155 struct vhost_msg_node *node; 1156 struct vhost_iotlb_msg *msg; 1157 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2); 1158 1159 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG); 1160 if (!node) 1161 return -ENOMEM; 1162 1163 if (v2) { 1164 node->msg_v2.type = VHOST_IOTLB_MSG_V2; 1165 msg = &node->msg_v2.iotlb; 1166 } else { 1167 msg = &node->msg.iotlb; 1168 } 1169 1170 msg->type = VHOST_IOTLB_MISS; 1171 msg->iova = iova; 1172 msg->perm = access; 1173 1174 vhost_enqueue_msg(dev, &dev->read_list, node); 1175 1176 return 0; 1177 } 1178 1179 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1180 struct vring_desc __user *desc, 1181 struct vring_avail __user *avail, 1182 struct vring_used __user *used) 1183 1184 { 1185 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1186 1187 return access_ok(VERIFY_READ, desc, num * sizeof *desc) && 1188 access_ok(VERIFY_READ, avail, 1189 sizeof *avail + num * sizeof *avail->ring + s) && 1190 access_ok(VERIFY_WRITE, used, 1191 sizeof *used + num * sizeof *used->ring + s); 1192 } 1193 1194 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1195 const struct vhost_umem_node *node, 1196 int type) 1197 { 1198 int access = (type == VHOST_ADDR_USED) ? 1199 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1200 1201 if (likely(node->perm & access)) 1202 vq->meta_iotlb[type] = node; 1203 } 1204 1205 static bool iotlb_access_ok(struct vhost_virtqueue *vq, 1206 int access, u64 addr, u64 len, int type) 1207 { 1208 const struct vhost_umem_node *node; 1209 struct vhost_umem *umem = vq->iotlb; 1210 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1211 1212 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1213 return true; 1214 1215 while (len > s) { 1216 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1217 addr, 1218 last); 1219 if (node == NULL || node->start > addr) { 1220 vhost_iotlb_miss(vq, addr, access); 1221 return false; 1222 } else if (!(node->perm & access)) { 1223 /* Report the possible access violation by 1224 * request another translation from userspace. 1225 */ 1226 return false; 1227 } 1228 1229 size = node->size - addr + node->start; 1230 1231 if (orig_addr == addr && size >= len) 1232 vhost_vq_meta_update(vq, node, type); 1233 1234 s += size; 1235 addr += size; 1236 } 1237 1238 return true; 1239 } 1240 1241 int vq_iotlb_prefetch(struct vhost_virtqueue *vq) 1242 { 1243 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1244 unsigned int num = vq->num; 1245 1246 if (!vq->iotlb) 1247 return 1; 1248 1249 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc, 1250 num * sizeof(*vq->desc), VHOST_ADDR_DESC) && 1251 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail, 1252 sizeof *vq->avail + 1253 num * sizeof(*vq->avail->ring) + s, 1254 VHOST_ADDR_AVAIL) && 1255 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used, 1256 sizeof *vq->used + 1257 num * sizeof(*vq->used->ring) + s, 1258 VHOST_ADDR_USED); 1259 } 1260 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch); 1261 1262 /* Can we log writes? */ 1263 /* Caller should have device mutex but not vq mutex */ 1264 bool vhost_log_access_ok(struct vhost_dev *dev) 1265 { 1266 return memory_access_ok(dev, dev->umem, 1); 1267 } 1268 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1269 1270 /* Verify access for write logging. */ 1271 /* Caller should have vq mutex and device mutex */ 1272 static bool vq_log_access_ok(struct vhost_virtqueue *vq, 1273 void __user *log_base) 1274 { 1275 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1276 1277 return vq_memory_access_ok(log_base, vq->umem, 1278 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1279 (!vq->log_used || log_access_ok(log_base, vq->log_addr, 1280 sizeof *vq->used + 1281 vq->num * sizeof *vq->used->ring + s)); 1282 } 1283 1284 /* Can we start vq? */ 1285 /* Caller should have vq mutex and device mutex */ 1286 bool vhost_vq_access_ok(struct vhost_virtqueue *vq) 1287 { 1288 if (!vq_log_access_ok(vq, vq->log_base)) 1289 return false; 1290 1291 /* Access validation occurs at prefetch time with IOTLB */ 1292 if (vq->iotlb) 1293 return true; 1294 1295 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1296 } 1297 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1298 1299 static struct vhost_umem *vhost_umem_alloc(void) 1300 { 1301 struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL); 1302 1303 if (!umem) 1304 return NULL; 1305 1306 umem->umem_tree = RB_ROOT_CACHED; 1307 umem->numem = 0; 1308 INIT_LIST_HEAD(&umem->umem_list); 1309 1310 return umem; 1311 } 1312 1313 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1314 { 1315 struct vhost_memory mem, *newmem; 1316 struct vhost_memory_region *region; 1317 struct vhost_umem *newumem, *oldumem; 1318 unsigned long size = offsetof(struct vhost_memory, regions); 1319 int i; 1320 1321 if (copy_from_user(&mem, m, size)) 1322 return -EFAULT; 1323 if (mem.padding) 1324 return -EOPNOTSUPP; 1325 if (mem.nregions > max_mem_regions) 1326 return -E2BIG; 1327 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), 1328 GFP_KERNEL); 1329 if (!newmem) 1330 return -ENOMEM; 1331 1332 memcpy(newmem, &mem, size); 1333 if (copy_from_user(newmem->regions, m->regions, 1334 mem.nregions * sizeof *m->regions)) { 1335 kvfree(newmem); 1336 return -EFAULT; 1337 } 1338 1339 newumem = vhost_umem_alloc(); 1340 if (!newumem) { 1341 kvfree(newmem); 1342 return -ENOMEM; 1343 } 1344 1345 for (region = newmem->regions; 1346 region < newmem->regions + mem.nregions; 1347 region++) { 1348 if (vhost_new_umem_range(newumem, 1349 region->guest_phys_addr, 1350 region->memory_size, 1351 region->guest_phys_addr + 1352 region->memory_size - 1, 1353 region->userspace_addr, 1354 VHOST_ACCESS_RW)) 1355 goto err; 1356 } 1357 1358 if (!memory_access_ok(d, newumem, 0)) 1359 goto err; 1360 1361 oldumem = d->umem; 1362 d->umem = newumem; 1363 1364 /* All memory accesses are done under some VQ mutex. */ 1365 for (i = 0; i < d->nvqs; ++i) { 1366 mutex_lock(&d->vqs[i]->mutex); 1367 d->vqs[i]->umem = newumem; 1368 mutex_unlock(&d->vqs[i]->mutex); 1369 } 1370 1371 kvfree(newmem); 1372 vhost_umem_clean(oldumem); 1373 return 0; 1374 1375 err: 1376 vhost_umem_clean(newumem); 1377 kvfree(newmem); 1378 return -EFAULT; 1379 } 1380 1381 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1382 { 1383 struct file *eventfp, *filep = NULL; 1384 bool pollstart = false, pollstop = false; 1385 struct eventfd_ctx *ctx = NULL; 1386 u32 __user *idxp = argp; 1387 struct vhost_virtqueue *vq; 1388 struct vhost_vring_state s; 1389 struct vhost_vring_file f; 1390 struct vhost_vring_addr a; 1391 u32 idx; 1392 long r; 1393 1394 r = get_user(idx, idxp); 1395 if (r < 0) 1396 return r; 1397 if (idx >= d->nvqs) 1398 return -ENOBUFS; 1399 1400 vq = d->vqs[idx]; 1401 1402 mutex_lock(&vq->mutex); 1403 1404 switch (ioctl) { 1405 case VHOST_SET_VRING_NUM: 1406 /* Resizing ring with an active backend? 1407 * You don't want to do that. */ 1408 if (vq->private_data) { 1409 r = -EBUSY; 1410 break; 1411 } 1412 if (copy_from_user(&s, argp, sizeof s)) { 1413 r = -EFAULT; 1414 break; 1415 } 1416 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) { 1417 r = -EINVAL; 1418 break; 1419 } 1420 vq->num = s.num; 1421 break; 1422 case VHOST_SET_VRING_BASE: 1423 /* Moving base with an active backend? 1424 * You don't want to do that. */ 1425 if (vq->private_data) { 1426 r = -EBUSY; 1427 break; 1428 } 1429 if (copy_from_user(&s, argp, sizeof s)) { 1430 r = -EFAULT; 1431 break; 1432 } 1433 if (s.num > 0xffff) { 1434 r = -EINVAL; 1435 break; 1436 } 1437 vq->last_avail_idx = s.num; 1438 /* Forget the cached index value. */ 1439 vq->avail_idx = vq->last_avail_idx; 1440 break; 1441 case VHOST_GET_VRING_BASE: 1442 s.index = idx; 1443 s.num = vq->last_avail_idx; 1444 if (copy_to_user(argp, &s, sizeof s)) 1445 r = -EFAULT; 1446 break; 1447 case VHOST_SET_VRING_ADDR: 1448 if (copy_from_user(&a, argp, sizeof a)) { 1449 r = -EFAULT; 1450 break; 1451 } 1452 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) { 1453 r = -EOPNOTSUPP; 1454 break; 1455 } 1456 /* For 32bit, verify that the top 32bits of the user 1457 data are set to zero. */ 1458 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1459 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1460 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) { 1461 r = -EFAULT; 1462 break; 1463 } 1464 1465 /* Make sure it's safe to cast pointers to vring types. */ 1466 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1467 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1468 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1469 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1470 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) { 1471 r = -EINVAL; 1472 break; 1473 } 1474 1475 /* We only verify access here if backend is configured. 1476 * If it is not, we don't as size might not have been setup. 1477 * We will verify when backend is configured. */ 1478 if (vq->private_data) { 1479 if (!vq_access_ok(vq, vq->num, 1480 (void __user *)(unsigned long)a.desc_user_addr, 1481 (void __user *)(unsigned long)a.avail_user_addr, 1482 (void __user *)(unsigned long)a.used_user_addr)) { 1483 r = -EINVAL; 1484 break; 1485 } 1486 1487 /* Also validate log access for used ring if enabled. */ 1488 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) && 1489 !log_access_ok(vq->log_base, a.log_guest_addr, 1490 sizeof *vq->used + 1491 vq->num * sizeof *vq->used->ring)) { 1492 r = -EINVAL; 1493 break; 1494 } 1495 } 1496 1497 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1498 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1499 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1500 vq->log_addr = a.log_guest_addr; 1501 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1502 break; 1503 case VHOST_SET_VRING_KICK: 1504 if (copy_from_user(&f, argp, sizeof f)) { 1505 r = -EFAULT; 1506 break; 1507 } 1508 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1509 if (IS_ERR(eventfp)) { 1510 r = PTR_ERR(eventfp); 1511 break; 1512 } 1513 if (eventfp != vq->kick) { 1514 pollstop = (filep = vq->kick) != NULL; 1515 pollstart = (vq->kick = eventfp) != NULL; 1516 } else 1517 filep = eventfp; 1518 break; 1519 case VHOST_SET_VRING_CALL: 1520 if (copy_from_user(&f, argp, sizeof f)) { 1521 r = -EFAULT; 1522 break; 1523 } 1524 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1525 if (IS_ERR(ctx)) { 1526 r = PTR_ERR(ctx); 1527 break; 1528 } 1529 swap(ctx, vq->call_ctx); 1530 break; 1531 case VHOST_SET_VRING_ERR: 1532 if (copy_from_user(&f, argp, sizeof f)) { 1533 r = -EFAULT; 1534 break; 1535 } 1536 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1537 if (IS_ERR(ctx)) { 1538 r = PTR_ERR(ctx); 1539 break; 1540 } 1541 swap(ctx, vq->error_ctx); 1542 break; 1543 case VHOST_SET_VRING_ENDIAN: 1544 r = vhost_set_vring_endian(vq, argp); 1545 break; 1546 case VHOST_GET_VRING_ENDIAN: 1547 r = vhost_get_vring_endian(vq, idx, argp); 1548 break; 1549 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1550 if (copy_from_user(&s, argp, sizeof(s))) { 1551 r = -EFAULT; 1552 break; 1553 } 1554 vq->busyloop_timeout = s.num; 1555 break; 1556 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1557 s.index = idx; 1558 s.num = vq->busyloop_timeout; 1559 if (copy_to_user(argp, &s, sizeof(s))) 1560 r = -EFAULT; 1561 break; 1562 default: 1563 r = -ENOIOCTLCMD; 1564 } 1565 1566 if (pollstop && vq->handle_kick) 1567 vhost_poll_stop(&vq->poll); 1568 1569 if (!IS_ERR_OR_NULL(ctx)) 1570 eventfd_ctx_put(ctx); 1571 if (filep) 1572 fput(filep); 1573 1574 if (pollstart && vq->handle_kick) 1575 r = vhost_poll_start(&vq->poll, vq->kick); 1576 1577 mutex_unlock(&vq->mutex); 1578 1579 if (pollstop && vq->handle_kick) 1580 vhost_poll_flush(&vq->poll); 1581 return r; 1582 } 1583 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 1584 1585 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled) 1586 { 1587 struct vhost_umem *niotlb, *oiotlb; 1588 int i; 1589 1590 niotlb = vhost_umem_alloc(); 1591 if (!niotlb) 1592 return -ENOMEM; 1593 1594 oiotlb = d->iotlb; 1595 d->iotlb = niotlb; 1596 1597 for (i = 0; i < d->nvqs; ++i) { 1598 struct vhost_virtqueue *vq = d->vqs[i]; 1599 1600 mutex_lock(&vq->mutex); 1601 vq->iotlb = niotlb; 1602 __vhost_vq_meta_reset(vq); 1603 mutex_unlock(&vq->mutex); 1604 } 1605 1606 vhost_umem_clean(oiotlb); 1607 1608 return 0; 1609 } 1610 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 1611 1612 /* Caller must have device mutex */ 1613 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1614 { 1615 struct eventfd_ctx *ctx; 1616 u64 p; 1617 long r; 1618 int i, fd; 1619 1620 /* If you are not the owner, you can become one */ 1621 if (ioctl == VHOST_SET_OWNER) { 1622 r = vhost_dev_set_owner(d); 1623 goto done; 1624 } 1625 1626 /* You must be the owner to do anything else */ 1627 r = vhost_dev_check_owner(d); 1628 if (r) 1629 goto done; 1630 1631 switch (ioctl) { 1632 case VHOST_SET_MEM_TABLE: 1633 r = vhost_set_memory(d, argp); 1634 break; 1635 case VHOST_SET_LOG_BASE: 1636 if (copy_from_user(&p, argp, sizeof p)) { 1637 r = -EFAULT; 1638 break; 1639 } 1640 if ((u64)(unsigned long)p != p) { 1641 r = -EFAULT; 1642 break; 1643 } 1644 for (i = 0; i < d->nvqs; ++i) { 1645 struct vhost_virtqueue *vq; 1646 void __user *base = (void __user *)(unsigned long)p; 1647 vq = d->vqs[i]; 1648 mutex_lock(&vq->mutex); 1649 /* If ring is inactive, will check when it's enabled. */ 1650 if (vq->private_data && !vq_log_access_ok(vq, base)) 1651 r = -EFAULT; 1652 else 1653 vq->log_base = base; 1654 mutex_unlock(&vq->mutex); 1655 } 1656 break; 1657 case VHOST_SET_LOG_FD: 1658 r = get_user(fd, (int __user *)argp); 1659 if (r < 0) 1660 break; 1661 ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd); 1662 if (IS_ERR(ctx)) { 1663 r = PTR_ERR(ctx); 1664 break; 1665 } 1666 swap(ctx, d->log_ctx); 1667 for (i = 0; i < d->nvqs; ++i) { 1668 mutex_lock(&d->vqs[i]->mutex); 1669 d->vqs[i]->log_ctx = d->log_ctx; 1670 mutex_unlock(&d->vqs[i]->mutex); 1671 } 1672 if (ctx) 1673 eventfd_ctx_put(ctx); 1674 break; 1675 default: 1676 r = -ENOIOCTLCMD; 1677 break; 1678 } 1679 done: 1680 return r; 1681 } 1682 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 1683 1684 /* TODO: This is really inefficient. We need something like get_user() 1685 * (instruction directly accesses the data, with an exception table entry 1686 * returning -EFAULT). See Documentation/x86/exception-tables.txt. 1687 */ 1688 static int set_bit_to_user(int nr, void __user *addr) 1689 { 1690 unsigned long log = (unsigned long)addr; 1691 struct page *page; 1692 void *base; 1693 int bit = nr + (log % PAGE_SIZE) * 8; 1694 int r; 1695 1696 r = get_user_pages_fast(log, 1, 1, &page); 1697 if (r < 0) 1698 return r; 1699 BUG_ON(r != 1); 1700 base = kmap_atomic(page); 1701 set_bit(bit, base); 1702 kunmap_atomic(base); 1703 set_page_dirty_lock(page); 1704 put_page(page); 1705 return 0; 1706 } 1707 1708 static int log_write(void __user *log_base, 1709 u64 write_address, u64 write_length) 1710 { 1711 u64 write_page = write_address / VHOST_PAGE_SIZE; 1712 int r; 1713 1714 if (!write_length) 1715 return 0; 1716 write_length += write_address % VHOST_PAGE_SIZE; 1717 for (;;) { 1718 u64 base = (u64)(unsigned long)log_base; 1719 u64 log = base + write_page / 8; 1720 int bit = write_page % 8; 1721 if ((u64)(unsigned long)log != log) 1722 return -EFAULT; 1723 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 1724 if (r < 0) 1725 return r; 1726 if (write_length <= VHOST_PAGE_SIZE) 1727 break; 1728 write_length -= VHOST_PAGE_SIZE; 1729 write_page += 1; 1730 } 1731 return r; 1732 } 1733 1734 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 1735 unsigned int log_num, u64 len) 1736 { 1737 int i, r; 1738 1739 /* Make sure data written is seen before log. */ 1740 smp_wmb(); 1741 for (i = 0; i < log_num; ++i) { 1742 u64 l = min(log[i].len, len); 1743 r = log_write(vq->log_base, log[i].addr, l); 1744 if (r < 0) 1745 return r; 1746 len -= l; 1747 if (!len) { 1748 if (vq->log_ctx) 1749 eventfd_signal(vq->log_ctx, 1); 1750 return 0; 1751 } 1752 } 1753 /* Length written exceeds what we have stored. This is a bug. */ 1754 BUG(); 1755 return 0; 1756 } 1757 EXPORT_SYMBOL_GPL(vhost_log_write); 1758 1759 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 1760 { 1761 void __user *used; 1762 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1763 &vq->used->flags) < 0) 1764 return -EFAULT; 1765 if (unlikely(vq->log_used)) { 1766 /* Make sure the flag is seen before log. */ 1767 smp_wmb(); 1768 /* Log used flag write. */ 1769 used = &vq->used->flags; 1770 log_write(vq->log_base, vq->log_addr + 1771 (used - (void __user *)vq->used), 1772 sizeof vq->used->flags); 1773 if (vq->log_ctx) 1774 eventfd_signal(vq->log_ctx, 1); 1775 } 1776 return 0; 1777 } 1778 1779 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event) 1780 { 1781 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1782 vhost_avail_event(vq))) 1783 return -EFAULT; 1784 if (unlikely(vq->log_used)) { 1785 void __user *used; 1786 /* Make sure the event is seen before log. */ 1787 smp_wmb(); 1788 /* Log avail event write */ 1789 used = vhost_avail_event(vq); 1790 log_write(vq->log_base, vq->log_addr + 1791 (used - (void __user *)vq->used), 1792 sizeof *vhost_avail_event(vq)); 1793 if (vq->log_ctx) 1794 eventfd_signal(vq->log_ctx, 1); 1795 } 1796 return 0; 1797 } 1798 1799 int vhost_vq_init_access(struct vhost_virtqueue *vq) 1800 { 1801 __virtio16 last_used_idx; 1802 int r; 1803 bool is_le = vq->is_le; 1804 1805 if (!vq->private_data) 1806 return 0; 1807 1808 vhost_init_is_le(vq); 1809 1810 r = vhost_update_used_flags(vq); 1811 if (r) 1812 goto err; 1813 vq->signalled_used_valid = false; 1814 if (!vq->iotlb && 1815 !access_ok(VERIFY_READ, &vq->used->idx, sizeof vq->used->idx)) { 1816 r = -EFAULT; 1817 goto err; 1818 } 1819 r = vhost_get_used(vq, last_used_idx, &vq->used->idx); 1820 if (r) { 1821 vq_err(vq, "Can't access used idx at %p\n", 1822 &vq->used->idx); 1823 goto err; 1824 } 1825 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 1826 return 0; 1827 1828 err: 1829 vq->is_le = is_le; 1830 return r; 1831 } 1832 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 1833 1834 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1835 struct iovec iov[], int iov_size, int access) 1836 { 1837 const struct vhost_umem_node *node; 1838 struct vhost_dev *dev = vq->dev; 1839 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem; 1840 struct iovec *_iov; 1841 u64 s = 0; 1842 int ret = 0; 1843 1844 while ((u64)len > s) { 1845 u64 size; 1846 if (unlikely(ret >= iov_size)) { 1847 ret = -ENOBUFS; 1848 break; 1849 } 1850 1851 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1852 addr, addr + len - 1); 1853 if (node == NULL || node->start > addr) { 1854 if (umem != dev->iotlb) { 1855 ret = -EFAULT; 1856 break; 1857 } 1858 ret = -EAGAIN; 1859 break; 1860 } else if (!(node->perm & access)) { 1861 ret = -EPERM; 1862 break; 1863 } 1864 1865 _iov = iov + ret; 1866 size = node->size - addr + node->start; 1867 _iov->iov_len = min((u64)len - s, size); 1868 _iov->iov_base = (void __user *)(unsigned long) 1869 (node->userspace_addr + addr - node->start); 1870 s += size; 1871 addr += size; 1872 ++ret; 1873 } 1874 1875 if (ret == -EAGAIN) 1876 vhost_iotlb_miss(vq, addr, access); 1877 return ret; 1878 } 1879 1880 /* Each buffer in the virtqueues is actually a chain of descriptors. This 1881 * function returns the next descriptor in the chain, 1882 * or -1U if we're at the end. */ 1883 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 1884 { 1885 unsigned int next; 1886 1887 /* If this descriptor says it doesn't chain, we're done. */ 1888 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 1889 return -1U; 1890 1891 /* Check they're not leading us off end of descriptors. */ 1892 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 1893 return next; 1894 } 1895 1896 static int get_indirect(struct vhost_virtqueue *vq, 1897 struct iovec iov[], unsigned int iov_size, 1898 unsigned int *out_num, unsigned int *in_num, 1899 struct vhost_log *log, unsigned int *log_num, 1900 struct vring_desc *indirect) 1901 { 1902 struct vring_desc desc; 1903 unsigned int i = 0, count, found = 0; 1904 u32 len = vhost32_to_cpu(vq, indirect->len); 1905 struct iov_iter from; 1906 int ret, access; 1907 1908 /* Sanity check */ 1909 if (unlikely(len % sizeof desc)) { 1910 vq_err(vq, "Invalid length in indirect descriptor: " 1911 "len 0x%llx not multiple of 0x%zx\n", 1912 (unsigned long long)len, 1913 sizeof desc); 1914 return -EINVAL; 1915 } 1916 1917 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 1918 UIO_MAXIOV, VHOST_ACCESS_RO); 1919 if (unlikely(ret < 0)) { 1920 if (ret != -EAGAIN) 1921 vq_err(vq, "Translation failure %d in indirect.\n", ret); 1922 return ret; 1923 } 1924 iov_iter_init(&from, READ, vq->indirect, ret, len); 1925 1926 /* We will use the result as an address to read from, so most 1927 * architectures only need a compiler barrier here. */ 1928 read_barrier_depends(); 1929 1930 count = len / sizeof desc; 1931 /* Buffers are chained via a 16 bit next field, so 1932 * we can have at most 2^16 of these. */ 1933 if (unlikely(count > USHRT_MAX + 1)) { 1934 vq_err(vq, "Indirect buffer length too big: %d\n", 1935 indirect->len); 1936 return -E2BIG; 1937 } 1938 1939 do { 1940 unsigned iov_count = *in_num + *out_num; 1941 if (unlikely(++found > count)) { 1942 vq_err(vq, "Loop detected: last one at %u " 1943 "indirect size %u\n", 1944 i, count); 1945 return -EINVAL; 1946 } 1947 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 1948 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 1949 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1950 return -EINVAL; 1951 } 1952 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 1953 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 1954 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1955 return -EINVAL; 1956 } 1957 1958 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 1959 access = VHOST_ACCESS_WO; 1960 else 1961 access = VHOST_ACCESS_RO; 1962 1963 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 1964 vhost32_to_cpu(vq, desc.len), iov + iov_count, 1965 iov_size - iov_count, access); 1966 if (unlikely(ret < 0)) { 1967 if (ret != -EAGAIN) 1968 vq_err(vq, "Translation failure %d indirect idx %d\n", 1969 ret, i); 1970 return ret; 1971 } 1972 /* If this is an input descriptor, increment that count. */ 1973 if (access == VHOST_ACCESS_WO) { 1974 *in_num += ret; 1975 if (unlikely(log)) { 1976 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 1977 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 1978 ++*log_num; 1979 } 1980 } else { 1981 /* If it's an output descriptor, they're all supposed 1982 * to come before any input descriptors. */ 1983 if (unlikely(*in_num)) { 1984 vq_err(vq, "Indirect descriptor " 1985 "has out after in: idx %d\n", i); 1986 return -EINVAL; 1987 } 1988 *out_num += ret; 1989 } 1990 } while ((i = next_desc(vq, &desc)) != -1); 1991 return 0; 1992 } 1993 1994 /* This looks in the virtqueue and for the first available buffer, and converts 1995 * it to an iovec for convenient access. Since descriptors consist of some 1996 * number of output then some number of input descriptors, it's actually two 1997 * iovecs, but we pack them into one and note how many of each there were. 1998 * 1999 * This function returns the descriptor number found, or vq->num (which is 2000 * never a valid descriptor number) if none was found. A negative code is 2001 * returned on error. */ 2002 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 2003 struct iovec iov[], unsigned int iov_size, 2004 unsigned int *out_num, unsigned int *in_num, 2005 struct vhost_log *log, unsigned int *log_num) 2006 { 2007 struct vring_desc desc; 2008 unsigned int i, head, found = 0; 2009 u16 last_avail_idx; 2010 __virtio16 avail_idx; 2011 __virtio16 ring_head; 2012 int ret, access; 2013 2014 /* Check it isn't doing very strange things with descriptor numbers. */ 2015 last_avail_idx = vq->last_avail_idx; 2016 2017 if (vq->avail_idx == vq->last_avail_idx) { 2018 if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) { 2019 vq_err(vq, "Failed to access avail idx at %p\n", 2020 &vq->avail->idx); 2021 return -EFAULT; 2022 } 2023 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2024 2025 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 2026 vq_err(vq, "Guest moved used index from %u to %u", 2027 last_avail_idx, vq->avail_idx); 2028 return -EFAULT; 2029 } 2030 2031 /* If there's nothing new since last we looked, return 2032 * invalid. 2033 */ 2034 if (vq->avail_idx == last_avail_idx) 2035 return vq->num; 2036 2037 /* Only get avail ring entries after they have been 2038 * exposed by guest. 2039 */ 2040 smp_rmb(); 2041 } 2042 2043 /* Grab the next descriptor number they're advertising, and increment 2044 * the index we've seen. */ 2045 if (unlikely(vhost_get_avail(vq, ring_head, 2046 &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) { 2047 vq_err(vq, "Failed to read head: idx %d address %p\n", 2048 last_avail_idx, 2049 &vq->avail->ring[last_avail_idx % vq->num]); 2050 return -EFAULT; 2051 } 2052 2053 head = vhost16_to_cpu(vq, ring_head); 2054 2055 /* If their number is silly, that's an error. */ 2056 if (unlikely(head >= vq->num)) { 2057 vq_err(vq, "Guest says index %u > %u is available", 2058 head, vq->num); 2059 return -EINVAL; 2060 } 2061 2062 /* When we start there are none of either input nor output. */ 2063 *out_num = *in_num = 0; 2064 if (unlikely(log)) 2065 *log_num = 0; 2066 2067 i = head; 2068 do { 2069 unsigned iov_count = *in_num + *out_num; 2070 if (unlikely(i >= vq->num)) { 2071 vq_err(vq, "Desc index is %u > %u, head = %u", 2072 i, vq->num, head); 2073 return -EINVAL; 2074 } 2075 if (unlikely(++found > vq->num)) { 2076 vq_err(vq, "Loop detected: last one at %u " 2077 "vq size %u head %u\n", 2078 i, vq->num, head); 2079 return -EINVAL; 2080 } 2081 ret = vhost_copy_from_user(vq, &desc, vq->desc + i, 2082 sizeof desc); 2083 if (unlikely(ret)) { 2084 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2085 i, vq->desc + i); 2086 return -EFAULT; 2087 } 2088 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2089 ret = get_indirect(vq, iov, iov_size, 2090 out_num, in_num, 2091 log, log_num, &desc); 2092 if (unlikely(ret < 0)) { 2093 if (ret != -EAGAIN) 2094 vq_err(vq, "Failure detected " 2095 "in indirect descriptor at idx %d\n", i); 2096 return ret; 2097 } 2098 continue; 2099 } 2100 2101 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2102 access = VHOST_ACCESS_WO; 2103 else 2104 access = VHOST_ACCESS_RO; 2105 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2106 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2107 iov_size - iov_count, access); 2108 if (unlikely(ret < 0)) { 2109 if (ret != -EAGAIN) 2110 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2111 ret, i); 2112 return ret; 2113 } 2114 if (access == VHOST_ACCESS_WO) { 2115 /* If this is an input descriptor, 2116 * increment that count. */ 2117 *in_num += ret; 2118 if (unlikely(log)) { 2119 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2120 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2121 ++*log_num; 2122 } 2123 } else { 2124 /* If it's an output descriptor, they're all supposed 2125 * to come before any input descriptors. */ 2126 if (unlikely(*in_num)) { 2127 vq_err(vq, "Descriptor has out after in: " 2128 "idx %d\n", i); 2129 return -EINVAL; 2130 } 2131 *out_num += ret; 2132 } 2133 } while ((i = next_desc(vq, &desc)) != -1); 2134 2135 /* On success, increment avail index. */ 2136 vq->last_avail_idx++; 2137 2138 /* Assume notifications from guest are disabled at this point, 2139 * if they aren't we would need to update avail_event index. */ 2140 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2141 return head; 2142 } 2143 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2144 2145 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2146 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2147 { 2148 vq->last_avail_idx -= n; 2149 } 2150 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2151 2152 /* After we've used one of their buffers, we tell them about it. We'll then 2153 * want to notify the guest, using eventfd. */ 2154 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2155 { 2156 struct vring_used_elem heads = { 2157 cpu_to_vhost32(vq, head), 2158 cpu_to_vhost32(vq, len) 2159 }; 2160 2161 return vhost_add_used_n(vq, &heads, 1); 2162 } 2163 EXPORT_SYMBOL_GPL(vhost_add_used); 2164 2165 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2166 struct vring_used_elem *heads, 2167 unsigned count) 2168 { 2169 struct vring_used_elem __user *used; 2170 u16 old, new; 2171 int start; 2172 2173 start = vq->last_used_idx & (vq->num - 1); 2174 used = vq->used->ring + start; 2175 if (count == 1) { 2176 if (vhost_put_user(vq, heads[0].id, &used->id)) { 2177 vq_err(vq, "Failed to write used id"); 2178 return -EFAULT; 2179 } 2180 if (vhost_put_user(vq, heads[0].len, &used->len)) { 2181 vq_err(vq, "Failed to write used len"); 2182 return -EFAULT; 2183 } 2184 } else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) { 2185 vq_err(vq, "Failed to write used"); 2186 return -EFAULT; 2187 } 2188 if (unlikely(vq->log_used)) { 2189 /* Make sure data is seen before log. */ 2190 smp_wmb(); 2191 /* Log used ring entry write. */ 2192 log_write(vq->log_base, 2193 vq->log_addr + 2194 ((void __user *)used - (void __user *)vq->used), 2195 count * sizeof *used); 2196 } 2197 old = vq->last_used_idx; 2198 new = (vq->last_used_idx += count); 2199 /* If the driver never bothers to signal in a very long while, 2200 * used index might wrap around. If that happens, invalidate 2201 * signalled_used index we stored. TODO: make sure driver 2202 * signals at least once in 2^16 and remove this. */ 2203 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2204 vq->signalled_used_valid = false; 2205 return 0; 2206 } 2207 2208 /* After we've used one of their buffers, we tell them about it. We'll then 2209 * want to notify the guest, using eventfd. */ 2210 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2211 unsigned count) 2212 { 2213 int start, n, r; 2214 2215 start = vq->last_used_idx & (vq->num - 1); 2216 n = vq->num - start; 2217 if (n < count) { 2218 r = __vhost_add_used_n(vq, heads, n); 2219 if (r < 0) 2220 return r; 2221 heads += n; 2222 count -= n; 2223 } 2224 r = __vhost_add_used_n(vq, heads, count); 2225 2226 /* Make sure buffer is written before we update index. */ 2227 smp_wmb(); 2228 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 2229 &vq->used->idx)) { 2230 vq_err(vq, "Failed to increment used idx"); 2231 return -EFAULT; 2232 } 2233 if (unlikely(vq->log_used)) { 2234 /* Log used index update. */ 2235 log_write(vq->log_base, 2236 vq->log_addr + offsetof(struct vring_used, idx), 2237 sizeof vq->used->idx); 2238 if (vq->log_ctx) 2239 eventfd_signal(vq->log_ctx, 1); 2240 } 2241 return r; 2242 } 2243 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2244 2245 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2246 { 2247 __u16 old, new; 2248 __virtio16 event; 2249 bool v; 2250 /* Flush out used index updates. This is paired 2251 * with the barrier that the Guest executes when enabling 2252 * interrupts. */ 2253 smp_mb(); 2254 2255 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2256 unlikely(vq->avail_idx == vq->last_avail_idx)) 2257 return true; 2258 2259 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2260 __virtio16 flags; 2261 if (vhost_get_avail(vq, flags, &vq->avail->flags)) { 2262 vq_err(vq, "Failed to get flags"); 2263 return true; 2264 } 2265 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2266 } 2267 old = vq->signalled_used; 2268 v = vq->signalled_used_valid; 2269 new = vq->signalled_used = vq->last_used_idx; 2270 vq->signalled_used_valid = true; 2271 2272 if (unlikely(!v)) 2273 return true; 2274 2275 if (vhost_get_avail(vq, event, vhost_used_event(vq))) { 2276 vq_err(vq, "Failed to get used event idx"); 2277 return true; 2278 } 2279 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2280 } 2281 2282 /* This actually signals the guest, using eventfd. */ 2283 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2284 { 2285 /* Signal the Guest tell them we used something up. */ 2286 if (vq->call_ctx && vhost_notify(dev, vq)) 2287 eventfd_signal(vq->call_ctx, 1); 2288 } 2289 EXPORT_SYMBOL_GPL(vhost_signal); 2290 2291 /* And here's the combo meal deal. Supersize me! */ 2292 void vhost_add_used_and_signal(struct vhost_dev *dev, 2293 struct vhost_virtqueue *vq, 2294 unsigned int head, int len) 2295 { 2296 vhost_add_used(vq, head, len); 2297 vhost_signal(dev, vq); 2298 } 2299 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2300 2301 /* multi-buffer version of vhost_add_used_and_signal */ 2302 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2303 struct vhost_virtqueue *vq, 2304 struct vring_used_elem *heads, unsigned count) 2305 { 2306 vhost_add_used_n(vq, heads, count); 2307 vhost_signal(dev, vq); 2308 } 2309 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2310 2311 /* return true if we're sure that avaiable ring is empty */ 2312 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2313 { 2314 __virtio16 avail_idx; 2315 int r; 2316 2317 if (vq->avail_idx != vq->last_avail_idx) 2318 return false; 2319 2320 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2321 if (unlikely(r)) 2322 return false; 2323 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2324 2325 return vq->avail_idx == vq->last_avail_idx; 2326 } 2327 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2328 2329 /* OK, now we need to know about added descriptors. */ 2330 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2331 { 2332 __virtio16 avail_idx; 2333 int r; 2334 2335 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2336 return false; 2337 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2338 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2339 r = vhost_update_used_flags(vq); 2340 if (r) { 2341 vq_err(vq, "Failed to enable notification at %p: %d\n", 2342 &vq->used->flags, r); 2343 return false; 2344 } 2345 } else { 2346 r = vhost_update_avail_event(vq, vq->avail_idx); 2347 if (r) { 2348 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2349 vhost_avail_event(vq), r); 2350 return false; 2351 } 2352 } 2353 /* They could have slipped one in as we were doing that: make 2354 * sure it's written, then check again. */ 2355 smp_mb(); 2356 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2357 if (r) { 2358 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2359 &vq->avail->idx, r); 2360 return false; 2361 } 2362 2363 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx; 2364 } 2365 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2366 2367 /* We don't need to be notified again. */ 2368 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2369 { 2370 int r; 2371 2372 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2373 return; 2374 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2375 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2376 r = vhost_update_used_flags(vq); 2377 if (r) 2378 vq_err(vq, "Failed to enable notification at %p: %d\n", 2379 &vq->used->flags, r); 2380 } 2381 } 2382 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2383 2384 /* Create a new message. */ 2385 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2386 { 2387 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL); 2388 if (!node) 2389 return NULL; 2390 2391 /* Make sure all padding within the structure is initialized. */ 2392 memset(&node->msg, 0, sizeof node->msg); 2393 node->vq = vq; 2394 node->msg.type = type; 2395 return node; 2396 } 2397 EXPORT_SYMBOL_GPL(vhost_new_msg); 2398 2399 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2400 struct vhost_msg_node *node) 2401 { 2402 spin_lock(&dev->iotlb_lock); 2403 list_add_tail(&node->node, head); 2404 spin_unlock(&dev->iotlb_lock); 2405 2406 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 2407 } 2408 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2409 2410 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2411 struct list_head *head) 2412 { 2413 struct vhost_msg_node *node = NULL; 2414 2415 spin_lock(&dev->iotlb_lock); 2416 if (!list_empty(head)) { 2417 node = list_first_entry(head, struct vhost_msg_node, 2418 node); 2419 list_del(&node->node); 2420 } 2421 spin_unlock(&dev->iotlb_lock); 2422 2423 return node; 2424 } 2425 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2426 2427 2428 static int __init vhost_init(void) 2429 { 2430 return 0; 2431 } 2432 2433 static void __exit vhost_exit(void) 2434 { 2435 } 2436 2437 module_init(vhost_init); 2438 module_exit(vhost_exit); 2439 2440 MODULE_VERSION("0.0.1"); 2441 MODULE_LICENSE("GPL v2"); 2442 MODULE_AUTHOR("Michael S. Tsirkin"); 2443 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2444