1 /* Copyright (C) 2009 Red Hat, Inc. 2 * Copyright (C) 2006 Rusty Russell IBM Corporation 3 * 4 * Author: Michael S. Tsirkin <mst@redhat.com> 5 * 6 * Inspiration, some code, and most witty comments come from 7 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * 11 * Generic code for virtio server in host kernel. 12 */ 13 14 #include <linux/eventfd.h> 15 #include <linux/vhost.h> 16 #include <linux/uio.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_context.h> 19 #include <linux/miscdevice.h> 20 #include <linux/mutex.h> 21 #include <linux/poll.h> 22 #include <linux/file.h> 23 #include <linux/highmem.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 #include <linux/kthread.h> 27 #include <linux/cgroup.h> 28 #include <linux/module.h> 29 #include <linux/sort.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/signal.h> 32 #include <linux/interval_tree_generic.h> 33 #include <linux/nospec.h> 34 35 #include "vhost.h" 36 37 static ushort max_mem_regions = 64; 38 module_param(max_mem_regions, ushort, 0444); 39 MODULE_PARM_DESC(max_mem_regions, 40 "Maximum number of memory regions in memory map. (default: 64)"); 41 static int max_iotlb_entries = 2048; 42 module_param(max_iotlb_entries, int, 0444); 43 MODULE_PARM_DESC(max_iotlb_entries, 44 "Maximum number of iotlb entries. (default: 2048)"); 45 46 enum { 47 VHOST_MEMORY_F_LOG = 0x1, 48 }; 49 50 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 51 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 52 53 INTERVAL_TREE_DEFINE(struct vhost_umem_node, 54 rb, __u64, __subtree_last, 55 START, LAST, static inline, vhost_umem_interval_tree); 56 57 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 58 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 59 { 60 vq->user_be = !virtio_legacy_is_little_endian(); 61 } 62 63 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 64 { 65 vq->user_be = true; 66 } 67 68 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 69 { 70 vq->user_be = false; 71 } 72 73 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 74 { 75 struct vhost_vring_state s; 76 77 if (vq->private_data) 78 return -EBUSY; 79 80 if (copy_from_user(&s, argp, sizeof(s))) 81 return -EFAULT; 82 83 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 84 s.num != VHOST_VRING_BIG_ENDIAN) 85 return -EINVAL; 86 87 if (s.num == VHOST_VRING_BIG_ENDIAN) 88 vhost_enable_cross_endian_big(vq); 89 else 90 vhost_enable_cross_endian_little(vq); 91 92 return 0; 93 } 94 95 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 96 int __user *argp) 97 { 98 struct vhost_vring_state s = { 99 .index = idx, 100 .num = vq->user_be 101 }; 102 103 if (copy_to_user(argp, &s, sizeof(s))) 104 return -EFAULT; 105 106 return 0; 107 } 108 109 static void vhost_init_is_le(struct vhost_virtqueue *vq) 110 { 111 /* Note for legacy virtio: user_be is initialized at reset time 112 * according to the host endianness. If userspace does not set an 113 * explicit endianness, the default behavior is native endian, as 114 * expected by legacy virtio. 115 */ 116 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 117 } 118 #else 119 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 120 { 121 } 122 123 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 124 { 125 return -ENOIOCTLCMD; 126 } 127 128 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 129 int __user *argp) 130 { 131 return -ENOIOCTLCMD; 132 } 133 134 static void vhost_init_is_le(struct vhost_virtqueue *vq) 135 { 136 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 137 || virtio_legacy_is_little_endian(); 138 } 139 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 140 141 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 142 { 143 vhost_init_is_le(vq); 144 } 145 146 struct vhost_flush_struct { 147 struct vhost_work work; 148 struct completion wait_event; 149 }; 150 151 static void vhost_flush_work(struct vhost_work *work) 152 { 153 struct vhost_flush_struct *s; 154 155 s = container_of(work, struct vhost_flush_struct, work); 156 complete(&s->wait_event); 157 } 158 159 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 160 poll_table *pt) 161 { 162 struct vhost_poll *poll; 163 164 poll = container_of(pt, struct vhost_poll, table); 165 poll->wqh = wqh; 166 add_wait_queue(wqh, &poll->wait); 167 } 168 169 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 170 void *key) 171 { 172 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 173 174 if (!(key_to_poll(key) & poll->mask)) 175 return 0; 176 177 vhost_poll_queue(poll); 178 return 0; 179 } 180 181 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 182 { 183 clear_bit(VHOST_WORK_QUEUED, &work->flags); 184 work->fn = fn; 185 } 186 EXPORT_SYMBOL_GPL(vhost_work_init); 187 188 /* Init poll structure */ 189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 190 __poll_t mask, struct vhost_dev *dev) 191 { 192 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 193 init_poll_funcptr(&poll->table, vhost_poll_func); 194 poll->mask = mask; 195 poll->dev = dev; 196 poll->wqh = NULL; 197 198 vhost_work_init(&poll->work, fn); 199 } 200 EXPORT_SYMBOL_GPL(vhost_poll_init); 201 202 /* Start polling a file. We add ourselves to file's wait queue. The caller must 203 * keep a reference to a file until after vhost_poll_stop is called. */ 204 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 205 { 206 __poll_t mask; 207 int ret = 0; 208 209 if (poll->wqh) 210 return 0; 211 212 mask = vfs_poll(file, &poll->table); 213 if (mask) 214 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 215 if (mask & EPOLLERR) { 216 vhost_poll_stop(poll); 217 ret = -EINVAL; 218 } 219 220 return ret; 221 } 222 EXPORT_SYMBOL_GPL(vhost_poll_start); 223 224 /* Stop polling a file. After this function returns, it becomes safe to drop the 225 * file reference. You must also flush afterwards. */ 226 void vhost_poll_stop(struct vhost_poll *poll) 227 { 228 if (poll->wqh) { 229 remove_wait_queue(poll->wqh, &poll->wait); 230 poll->wqh = NULL; 231 } 232 } 233 EXPORT_SYMBOL_GPL(vhost_poll_stop); 234 235 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work) 236 { 237 struct vhost_flush_struct flush; 238 239 if (dev->worker) { 240 init_completion(&flush.wait_event); 241 vhost_work_init(&flush.work, vhost_flush_work); 242 243 vhost_work_queue(dev, &flush.work); 244 wait_for_completion(&flush.wait_event); 245 } 246 } 247 EXPORT_SYMBOL_GPL(vhost_work_flush); 248 249 /* Flush any work that has been scheduled. When calling this, don't hold any 250 * locks that are also used by the callback. */ 251 void vhost_poll_flush(struct vhost_poll *poll) 252 { 253 vhost_work_flush(poll->dev, &poll->work); 254 } 255 EXPORT_SYMBOL_GPL(vhost_poll_flush); 256 257 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work) 258 { 259 if (!dev->worker) 260 return; 261 262 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 263 /* We can only add the work to the list after we're 264 * sure it was not in the list. 265 * test_and_set_bit() implies a memory barrier. 266 */ 267 llist_add(&work->node, &dev->work_list); 268 wake_up_process(dev->worker); 269 } 270 } 271 EXPORT_SYMBOL_GPL(vhost_work_queue); 272 273 /* A lockless hint for busy polling code to exit the loop */ 274 bool vhost_has_work(struct vhost_dev *dev) 275 { 276 return !llist_empty(&dev->work_list); 277 } 278 EXPORT_SYMBOL_GPL(vhost_has_work); 279 280 void vhost_poll_queue(struct vhost_poll *poll) 281 { 282 vhost_work_queue(poll->dev, &poll->work); 283 } 284 EXPORT_SYMBOL_GPL(vhost_poll_queue); 285 286 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 287 { 288 int j; 289 290 for (j = 0; j < VHOST_NUM_ADDRS; j++) 291 vq->meta_iotlb[j] = NULL; 292 } 293 294 static void vhost_vq_meta_reset(struct vhost_dev *d) 295 { 296 int i; 297 298 for (i = 0; i < d->nvqs; ++i) 299 __vhost_vq_meta_reset(d->vqs[i]); 300 } 301 302 static void vhost_vq_reset(struct vhost_dev *dev, 303 struct vhost_virtqueue *vq) 304 { 305 vq->num = 1; 306 vq->desc = NULL; 307 vq->avail = NULL; 308 vq->used = NULL; 309 vq->last_avail_idx = 0; 310 vq->avail_idx = 0; 311 vq->last_used_idx = 0; 312 vq->signalled_used = 0; 313 vq->signalled_used_valid = false; 314 vq->used_flags = 0; 315 vq->log_used = false; 316 vq->log_addr = -1ull; 317 vq->private_data = NULL; 318 vq->acked_features = 0; 319 vq->acked_backend_features = 0; 320 vq->log_base = NULL; 321 vq->error_ctx = NULL; 322 vq->kick = NULL; 323 vq->call_ctx = NULL; 324 vq->log_ctx = NULL; 325 vhost_reset_is_le(vq); 326 vhost_disable_cross_endian(vq); 327 vq->busyloop_timeout = 0; 328 vq->umem = NULL; 329 vq->iotlb = NULL; 330 __vhost_vq_meta_reset(vq); 331 } 332 333 static int vhost_worker(void *data) 334 { 335 struct vhost_dev *dev = data; 336 struct vhost_work *work, *work_next; 337 struct llist_node *node; 338 mm_segment_t oldfs = get_fs(); 339 340 set_fs(USER_DS); 341 use_mm(dev->mm); 342 343 for (;;) { 344 /* mb paired w/ kthread_stop */ 345 set_current_state(TASK_INTERRUPTIBLE); 346 347 if (kthread_should_stop()) { 348 __set_current_state(TASK_RUNNING); 349 break; 350 } 351 352 node = llist_del_all(&dev->work_list); 353 if (!node) 354 schedule(); 355 356 node = llist_reverse_order(node); 357 /* make sure flag is seen after deletion */ 358 smp_wmb(); 359 llist_for_each_entry_safe(work, work_next, node, node) { 360 clear_bit(VHOST_WORK_QUEUED, &work->flags); 361 __set_current_state(TASK_RUNNING); 362 work->fn(work); 363 if (need_resched()) 364 schedule(); 365 } 366 } 367 unuse_mm(dev->mm); 368 set_fs(oldfs); 369 return 0; 370 } 371 372 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 373 { 374 kfree(vq->indirect); 375 vq->indirect = NULL; 376 kfree(vq->log); 377 vq->log = NULL; 378 kfree(vq->heads); 379 vq->heads = NULL; 380 } 381 382 /* Helper to allocate iovec buffers for all vqs. */ 383 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 384 { 385 struct vhost_virtqueue *vq; 386 int i; 387 388 for (i = 0; i < dev->nvqs; ++i) { 389 vq = dev->vqs[i]; 390 vq->indirect = kmalloc_array(UIO_MAXIOV, 391 sizeof(*vq->indirect), 392 GFP_KERNEL); 393 vq->log = kmalloc_array(UIO_MAXIOV, sizeof(*vq->log), 394 GFP_KERNEL); 395 vq->heads = kmalloc_array(UIO_MAXIOV, sizeof(*vq->heads), 396 GFP_KERNEL); 397 if (!vq->indirect || !vq->log || !vq->heads) 398 goto err_nomem; 399 } 400 return 0; 401 402 err_nomem: 403 for (; i >= 0; --i) 404 vhost_vq_free_iovecs(dev->vqs[i]); 405 return -ENOMEM; 406 } 407 408 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 409 { 410 int i; 411 412 for (i = 0; i < dev->nvqs; ++i) 413 vhost_vq_free_iovecs(dev->vqs[i]); 414 } 415 416 void vhost_dev_init(struct vhost_dev *dev, 417 struct vhost_virtqueue **vqs, int nvqs) 418 { 419 struct vhost_virtqueue *vq; 420 int i; 421 422 dev->vqs = vqs; 423 dev->nvqs = nvqs; 424 mutex_init(&dev->mutex); 425 dev->log_ctx = NULL; 426 dev->umem = NULL; 427 dev->iotlb = NULL; 428 dev->mm = NULL; 429 dev->worker = NULL; 430 init_llist_head(&dev->work_list); 431 init_waitqueue_head(&dev->wait); 432 INIT_LIST_HEAD(&dev->read_list); 433 INIT_LIST_HEAD(&dev->pending_list); 434 spin_lock_init(&dev->iotlb_lock); 435 436 437 for (i = 0; i < dev->nvqs; ++i) { 438 vq = dev->vqs[i]; 439 vq->log = NULL; 440 vq->indirect = NULL; 441 vq->heads = NULL; 442 vq->dev = dev; 443 mutex_init(&vq->mutex); 444 vhost_vq_reset(dev, vq); 445 if (vq->handle_kick) 446 vhost_poll_init(&vq->poll, vq->handle_kick, 447 EPOLLIN, dev); 448 } 449 } 450 EXPORT_SYMBOL_GPL(vhost_dev_init); 451 452 /* Caller should have device mutex */ 453 long vhost_dev_check_owner(struct vhost_dev *dev) 454 { 455 /* Are you the owner? If not, I don't think you mean to do that */ 456 return dev->mm == current->mm ? 0 : -EPERM; 457 } 458 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 459 460 struct vhost_attach_cgroups_struct { 461 struct vhost_work work; 462 struct task_struct *owner; 463 int ret; 464 }; 465 466 static void vhost_attach_cgroups_work(struct vhost_work *work) 467 { 468 struct vhost_attach_cgroups_struct *s; 469 470 s = container_of(work, struct vhost_attach_cgroups_struct, work); 471 s->ret = cgroup_attach_task_all(s->owner, current); 472 } 473 474 static int vhost_attach_cgroups(struct vhost_dev *dev) 475 { 476 struct vhost_attach_cgroups_struct attach; 477 478 attach.owner = current; 479 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 480 vhost_work_queue(dev, &attach.work); 481 vhost_work_flush(dev, &attach.work); 482 return attach.ret; 483 } 484 485 /* Caller should have device mutex */ 486 bool vhost_dev_has_owner(struct vhost_dev *dev) 487 { 488 return dev->mm; 489 } 490 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 491 492 /* Caller should have device mutex */ 493 long vhost_dev_set_owner(struct vhost_dev *dev) 494 { 495 struct task_struct *worker; 496 int err; 497 498 /* Is there an owner already? */ 499 if (vhost_dev_has_owner(dev)) { 500 err = -EBUSY; 501 goto err_mm; 502 } 503 504 /* No owner, become one */ 505 dev->mm = get_task_mm(current); 506 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid); 507 if (IS_ERR(worker)) { 508 err = PTR_ERR(worker); 509 goto err_worker; 510 } 511 512 dev->worker = worker; 513 wake_up_process(worker); /* avoid contributing to loadavg */ 514 515 err = vhost_attach_cgroups(dev); 516 if (err) 517 goto err_cgroup; 518 519 err = vhost_dev_alloc_iovecs(dev); 520 if (err) 521 goto err_cgroup; 522 523 return 0; 524 err_cgroup: 525 kthread_stop(worker); 526 dev->worker = NULL; 527 err_worker: 528 if (dev->mm) 529 mmput(dev->mm); 530 dev->mm = NULL; 531 err_mm: 532 return err; 533 } 534 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 535 536 struct vhost_umem *vhost_dev_reset_owner_prepare(void) 537 { 538 return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL); 539 } 540 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 541 542 /* Caller should have device mutex */ 543 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem) 544 { 545 int i; 546 547 vhost_dev_cleanup(dev); 548 549 /* Restore memory to default empty mapping. */ 550 INIT_LIST_HEAD(&umem->umem_list); 551 dev->umem = umem; 552 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 553 * VQs aren't running. 554 */ 555 for (i = 0; i < dev->nvqs; ++i) 556 dev->vqs[i]->umem = umem; 557 } 558 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 559 560 void vhost_dev_stop(struct vhost_dev *dev) 561 { 562 int i; 563 564 for (i = 0; i < dev->nvqs; ++i) { 565 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) { 566 vhost_poll_stop(&dev->vqs[i]->poll); 567 vhost_poll_flush(&dev->vqs[i]->poll); 568 } 569 } 570 } 571 EXPORT_SYMBOL_GPL(vhost_dev_stop); 572 573 static void vhost_umem_free(struct vhost_umem *umem, 574 struct vhost_umem_node *node) 575 { 576 vhost_umem_interval_tree_remove(node, &umem->umem_tree); 577 list_del(&node->link); 578 kfree(node); 579 umem->numem--; 580 } 581 582 static void vhost_umem_clean(struct vhost_umem *umem) 583 { 584 struct vhost_umem_node *node, *tmp; 585 586 if (!umem) 587 return; 588 589 list_for_each_entry_safe(node, tmp, &umem->umem_list, link) 590 vhost_umem_free(umem, node); 591 592 kvfree(umem); 593 } 594 595 static void vhost_clear_msg(struct vhost_dev *dev) 596 { 597 struct vhost_msg_node *node, *n; 598 599 spin_lock(&dev->iotlb_lock); 600 601 list_for_each_entry_safe(node, n, &dev->read_list, node) { 602 list_del(&node->node); 603 kfree(node); 604 } 605 606 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 607 list_del(&node->node); 608 kfree(node); 609 } 610 611 spin_unlock(&dev->iotlb_lock); 612 } 613 614 void vhost_dev_cleanup(struct vhost_dev *dev) 615 { 616 int i; 617 618 for (i = 0; i < dev->nvqs; ++i) { 619 if (dev->vqs[i]->error_ctx) 620 eventfd_ctx_put(dev->vqs[i]->error_ctx); 621 if (dev->vqs[i]->kick) 622 fput(dev->vqs[i]->kick); 623 if (dev->vqs[i]->call_ctx) 624 eventfd_ctx_put(dev->vqs[i]->call_ctx); 625 vhost_vq_reset(dev, dev->vqs[i]); 626 } 627 vhost_dev_free_iovecs(dev); 628 if (dev->log_ctx) 629 eventfd_ctx_put(dev->log_ctx); 630 dev->log_ctx = NULL; 631 /* No one will access memory at this point */ 632 vhost_umem_clean(dev->umem); 633 dev->umem = NULL; 634 vhost_umem_clean(dev->iotlb); 635 dev->iotlb = NULL; 636 vhost_clear_msg(dev); 637 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 638 WARN_ON(!llist_empty(&dev->work_list)); 639 if (dev->worker) { 640 kthread_stop(dev->worker); 641 dev->worker = NULL; 642 } 643 if (dev->mm) 644 mmput(dev->mm); 645 dev->mm = NULL; 646 } 647 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 648 649 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 650 { 651 u64 a = addr / VHOST_PAGE_SIZE / 8; 652 653 /* Make sure 64 bit math will not overflow. */ 654 if (a > ULONG_MAX - (unsigned long)log_base || 655 a + (unsigned long)log_base > ULONG_MAX) 656 return false; 657 658 return access_ok(log_base + a, 659 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 660 } 661 662 static bool vhost_overflow(u64 uaddr, u64 size) 663 { 664 /* Make sure 64 bit math will not overflow. */ 665 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size; 666 } 667 668 /* Caller should have vq mutex and device mutex. */ 669 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem, 670 int log_all) 671 { 672 struct vhost_umem_node *node; 673 674 if (!umem) 675 return false; 676 677 list_for_each_entry(node, &umem->umem_list, link) { 678 unsigned long a = node->userspace_addr; 679 680 if (vhost_overflow(node->userspace_addr, node->size)) 681 return false; 682 683 684 if (!access_ok((void __user *)a, 685 node->size)) 686 return false; 687 else if (log_all && !log_access_ok(log_base, 688 node->start, 689 node->size)) 690 return false; 691 } 692 return true; 693 } 694 695 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 696 u64 addr, unsigned int size, 697 int type) 698 { 699 const struct vhost_umem_node *node = vq->meta_iotlb[type]; 700 701 if (!node) 702 return NULL; 703 704 return (void *)(uintptr_t)(node->userspace_addr + addr - node->start); 705 } 706 707 /* Can we switch to this memory table? */ 708 /* Caller should have device mutex but not vq mutex */ 709 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem, 710 int log_all) 711 { 712 int i; 713 714 for (i = 0; i < d->nvqs; ++i) { 715 bool ok; 716 bool log; 717 718 mutex_lock(&d->vqs[i]->mutex); 719 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 720 /* If ring is inactive, will check when it's enabled. */ 721 if (d->vqs[i]->private_data) 722 ok = vq_memory_access_ok(d->vqs[i]->log_base, 723 umem, log); 724 else 725 ok = true; 726 mutex_unlock(&d->vqs[i]->mutex); 727 if (!ok) 728 return false; 729 } 730 return true; 731 } 732 733 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 734 struct iovec iov[], int iov_size, int access); 735 736 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 737 const void *from, unsigned size) 738 { 739 int ret; 740 741 if (!vq->iotlb) 742 return __copy_to_user(to, from, size); 743 else { 744 /* This function should be called after iotlb 745 * prefetch, which means we're sure that all vq 746 * could be access through iotlb. So -EAGAIN should 747 * not happen in this case. 748 */ 749 struct iov_iter t; 750 void __user *uaddr = vhost_vq_meta_fetch(vq, 751 (u64)(uintptr_t)to, size, 752 VHOST_ADDR_USED); 753 754 if (uaddr) 755 return __copy_to_user(uaddr, from, size); 756 757 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 758 ARRAY_SIZE(vq->iotlb_iov), 759 VHOST_ACCESS_WO); 760 if (ret < 0) 761 goto out; 762 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size); 763 ret = copy_to_iter(from, size, &t); 764 if (ret == size) 765 ret = 0; 766 } 767 out: 768 return ret; 769 } 770 771 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 772 void __user *from, unsigned size) 773 { 774 int ret; 775 776 if (!vq->iotlb) 777 return __copy_from_user(to, from, size); 778 else { 779 /* This function should be called after iotlb 780 * prefetch, which means we're sure that vq 781 * could be access through iotlb. So -EAGAIN should 782 * not happen in this case. 783 */ 784 void __user *uaddr = vhost_vq_meta_fetch(vq, 785 (u64)(uintptr_t)from, size, 786 VHOST_ADDR_DESC); 787 struct iov_iter f; 788 789 if (uaddr) 790 return __copy_from_user(to, uaddr, size); 791 792 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 793 ARRAY_SIZE(vq->iotlb_iov), 794 VHOST_ACCESS_RO); 795 if (ret < 0) { 796 vq_err(vq, "IOTLB translation failure: uaddr " 797 "%p size 0x%llx\n", from, 798 (unsigned long long) size); 799 goto out; 800 } 801 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size); 802 ret = copy_from_iter(to, size, &f); 803 if (ret == size) 804 ret = 0; 805 } 806 807 out: 808 return ret; 809 } 810 811 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 812 void __user *addr, unsigned int size, 813 int type) 814 { 815 int ret; 816 817 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 818 ARRAY_SIZE(vq->iotlb_iov), 819 VHOST_ACCESS_RO); 820 if (ret < 0) { 821 vq_err(vq, "IOTLB translation failure: uaddr " 822 "%p size 0x%llx\n", addr, 823 (unsigned long long) size); 824 return NULL; 825 } 826 827 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 828 vq_err(vq, "Non atomic userspace memory access: uaddr " 829 "%p size 0x%llx\n", addr, 830 (unsigned long long) size); 831 return NULL; 832 } 833 834 return vq->iotlb_iov[0].iov_base; 835 } 836 837 /* This function should be called after iotlb 838 * prefetch, which means we're sure that vq 839 * could be access through iotlb. So -EAGAIN should 840 * not happen in this case. 841 */ 842 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 843 void *addr, unsigned int size, 844 int type) 845 { 846 void __user *uaddr = vhost_vq_meta_fetch(vq, 847 (u64)(uintptr_t)addr, size, type); 848 if (uaddr) 849 return uaddr; 850 851 return __vhost_get_user_slow(vq, addr, size, type); 852 } 853 854 #define vhost_put_user(vq, x, ptr) \ 855 ({ \ 856 int ret = -EFAULT; \ 857 if (!vq->iotlb) { \ 858 ret = __put_user(x, ptr); \ 859 } else { \ 860 __typeof__(ptr) to = \ 861 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 862 sizeof(*ptr), VHOST_ADDR_USED); \ 863 if (to != NULL) \ 864 ret = __put_user(x, to); \ 865 else \ 866 ret = -EFAULT; \ 867 } \ 868 ret; \ 869 }) 870 871 #define vhost_get_user(vq, x, ptr, type) \ 872 ({ \ 873 int ret; \ 874 if (!vq->iotlb) { \ 875 ret = __get_user(x, ptr); \ 876 } else { \ 877 __typeof__(ptr) from = \ 878 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 879 sizeof(*ptr), \ 880 type); \ 881 if (from != NULL) \ 882 ret = __get_user(x, from); \ 883 else \ 884 ret = -EFAULT; \ 885 } \ 886 ret; \ 887 }) 888 889 #define vhost_get_avail(vq, x, ptr) \ 890 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 891 892 #define vhost_get_used(vq, x, ptr) \ 893 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 894 895 static void vhost_dev_lock_vqs(struct vhost_dev *d) 896 { 897 int i = 0; 898 for (i = 0; i < d->nvqs; ++i) 899 mutex_lock_nested(&d->vqs[i]->mutex, i); 900 } 901 902 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 903 { 904 int i = 0; 905 for (i = 0; i < d->nvqs; ++i) 906 mutex_unlock(&d->vqs[i]->mutex); 907 } 908 909 static int vhost_new_umem_range(struct vhost_umem *umem, 910 u64 start, u64 size, u64 end, 911 u64 userspace_addr, int perm) 912 { 913 struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC); 914 915 if (!node) 916 return -ENOMEM; 917 918 if (umem->numem == max_iotlb_entries) { 919 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link); 920 vhost_umem_free(umem, tmp); 921 } 922 923 node->start = start; 924 node->size = size; 925 node->last = end; 926 node->userspace_addr = userspace_addr; 927 node->perm = perm; 928 INIT_LIST_HEAD(&node->link); 929 list_add_tail(&node->link, &umem->umem_list); 930 vhost_umem_interval_tree_insert(node, &umem->umem_tree); 931 umem->numem++; 932 933 return 0; 934 } 935 936 static void vhost_del_umem_range(struct vhost_umem *umem, 937 u64 start, u64 end) 938 { 939 struct vhost_umem_node *node; 940 941 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 942 start, end))) 943 vhost_umem_free(umem, node); 944 } 945 946 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 947 struct vhost_iotlb_msg *msg) 948 { 949 struct vhost_msg_node *node, *n; 950 951 spin_lock(&d->iotlb_lock); 952 953 list_for_each_entry_safe(node, n, &d->pending_list, node) { 954 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 955 if (msg->iova <= vq_msg->iova && 956 msg->iova + msg->size - 1 >= vq_msg->iova && 957 vq_msg->type == VHOST_IOTLB_MISS) { 958 vhost_poll_queue(&node->vq->poll); 959 list_del(&node->node); 960 kfree(node); 961 } 962 } 963 964 spin_unlock(&d->iotlb_lock); 965 } 966 967 static bool umem_access_ok(u64 uaddr, u64 size, int access) 968 { 969 unsigned long a = uaddr; 970 971 /* Make sure 64 bit math will not overflow. */ 972 if (vhost_overflow(uaddr, size)) 973 return false; 974 975 if ((access & VHOST_ACCESS_RO) && 976 !access_ok((void __user *)a, size)) 977 return false; 978 if ((access & VHOST_ACCESS_WO) && 979 !access_ok((void __user *)a, size)) 980 return false; 981 return true; 982 } 983 984 static int vhost_process_iotlb_msg(struct vhost_dev *dev, 985 struct vhost_iotlb_msg *msg) 986 { 987 int ret = 0; 988 989 mutex_lock(&dev->mutex); 990 vhost_dev_lock_vqs(dev); 991 switch (msg->type) { 992 case VHOST_IOTLB_UPDATE: 993 if (!dev->iotlb) { 994 ret = -EFAULT; 995 break; 996 } 997 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 998 ret = -EFAULT; 999 break; 1000 } 1001 vhost_vq_meta_reset(dev); 1002 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size, 1003 msg->iova + msg->size - 1, 1004 msg->uaddr, msg->perm)) { 1005 ret = -ENOMEM; 1006 break; 1007 } 1008 vhost_iotlb_notify_vq(dev, msg); 1009 break; 1010 case VHOST_IOTLB_INVALIDATE: 1011 if (!dev->iotlb) { 1012 ret = -EFAULT; 1013 break; 1014 } 1015 vhost_vq_meta_reset(dev); 1016 vhost_del_umem_range(dev->iotlb, msg->iova, 1017 msg->iova + msg->size - 1); 1018 break; 1019 default: 1020 ret = -EINVAL; 1021 break; 1022 } 1023 1024 vhost_dev_unlock_vqs(dev); 1025 mutex_unlock(&dev->mutex); 1026 1027 return ret; 1028 } 1029 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1030 struct iov_iter *from) 1031 { 1032 struct vhost_iotlb_msg msg; 1033 size_t offset; 1034 int type, ret; 1035 1036 ret = copy_from_iter(&type, sizeof(type), from); 1037 if (ret != sizeof(type)) 1038 goto done; 1039 1040 switch (type) { 1041 case VHOST_IOTLB_MSG: 1042 /* There maybe a hole after type for V1 message type, 1043 * so skip it here. 1044 */ 1045 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int); 1046 break; 1047 case VHOST_IOTLB_MSG_V2: 1048 offset = sizeof(__u32); 1049 break; 1050 default: 1051 ret = -EINVAL; 1052 goto done; 1053 } 1054 1055 iov_iter_advance(from, offset); 1056 ret = copy_from_iter(&msg, sizeof(msg), from); 1057 if (ret != sizeof(msg)) 1058 goto done; 1059 if (vhost_process_iotlb_msg(dev, &msg)) { 1060 ret = -EFAULT; 1061 goto done; 1062 } 1063 1064 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) : 1065 sizeof(struct vhost_msg_v2); 1066 done: 1067 return ret; 1068 } 1069 EXPORT_SYMBOL(vhost_chr_write_iter); 1070 1071 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1072 poll_table *wait) 1073 { 1074 __poll_t mask = 0; 1075 1076 poll_wait(file, &dev->wait, wait); 1077 1078 if (!list_empty(&dev->read_list)) 1079 mask |= EPOLLIN | EPOLLRDNORM; 1080 1081 return mask; 1082 } 1083 EXPORT_SYMBOL(vhost_chr_poll); 1084 1085 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1086 int noblock) 1087 { 1088 DEFINE_WAIT(wait); 1089 struct vhost_msg_node *node; 1090 ssize_t ret = 0; 1091 unsigned size = sizeof(struct vhost_msg); 1092 1093 if (iov_iter_count(to) < size) 1094 return 0; 1095 1096 while (1) { 1097 if (!noblock) 1098 prepare_to_wait(&dev->wait, &wait, 1099 TASK_INTERRUPTIBLE); 1100 1101 node = vhost_dequeue_msg(dev, &dev->read_list); 1102 if (node) 1103 break; 1104 if (noblock) { 1105 ret = -EAGAIN; 1106 break; 1107 } 1108 if (signal_pending(current)) { 1109 ret = -ERESTARTSYS; 1110 break; 1111 } 1112 if (!dev->iotlb) { 1113 ret = -EBADFD; 1114 break; 1115 } 1116 1117 schedule(); 1118 } 1119 1120 if (!noblock) 1121 finish_wait(&dev->wait, &wait); 1122 1123 if (node) { 1124 struct vhost_iotlb_msg *msg; 1125 void *start = &node->msg; 1126 1127 switch (node->msg.type) { 1128 case VHOST_IOTLB_MSG: 1129 size = sizeof(node->msg); 1130 msg = &node->msg.iotlb; 1131 break; 1132 case VHOST_IOTLB_MSG_V2: 1133 size = sizeof(node->msg_v2); 1134 msg = &node->msg_v2.iotlb; 1135 break; 1136 default: 1137 BUG(); 1138 break; 1139 } 1140 1141 ret = copy_to_iter(start, size, to); 1142 if (ret != size || msg->type != VHOST_IOTLB_MISS) { 1143 kfree(node); 1144 return ret; 1145 } 1146 vhost_enqueue_msg(dev, &dev->pending_list, node); 1147 } 1148 1149 return ret; 1150 } 1151 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1152 1153 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1154 { 1155 struct vhost_dev *dev = vq->dev; 1156 struct vhost_msg_node *node; 1157 struct vhost_iotlb_msg *msg; 1158 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2); 1159 1160 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG); 1161 if (!node) 1162 return -ENOMEM; 1163 1164 if (v2) { 1165 node->msg_v2.type = VHOST_IOTLB_MSG_V2; 1166 msg = &node->msg_v2.iotlb; 1167 } else { 1168 msg = &node->msg.iotlb; 1169 } 1170 1171 msg->type = VHOST_IOTLB_MISS; 1172 msg->iova = iova; 1173 msg->perm = access; 1174 1175 vhost_enqueue_msg(dev, &dev->read_list, node); 1176 1177 return 0; 1178 } 1179 1180 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1181 struct vring_desc __user *desc, 1182 struct vring_avail __user *avail, 1183 struct vring_used __user *used) 1184 1185 { 1186 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1187 1188 return access_ok(desc, num * sizeof *desc) && 1189 access_ok(avail, 1190 sizeof *avail + num * sizeof *avail->ring + s) && 1191 access_ok(used, 1192 sizeof *used + num * sizeof *used->ring + s); 1193 } 1194 1195 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1196 const struct vhost_umem_node *node, 1197 int type) 1198 { 1199 int access = (type == VHOST_ADDR_USED) ? 1200 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1201 1202 if (likely(node->perm & access)) 1203 vq->meta_iotlb[type] = node; 1204 } 1205 1206 static bool iotlb_access_ok(struct vhost_virtqueue *vq, 1207 int access, u64 addr, u64 len, int type) 1208 { 1209 const struct vhost_umem_node *node; 1210 struct vhost_umem *umem = vq->iotlb; 1211 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1212 1213 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1214 return true; 1215 1216 while (len > s) { 1217 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1218 addr, 1219 last); 1220 if (node == NULL || node->start > addr) { 1221 vhost_iotlb_miss(vq, addr, access); 1222 return false; 1223 } else if (!(node->perm & access)) { 1224 /* Report the possible access violation by 1225 * request another translation from userspace. 1226 */ 1227 return false; 1228 } 1229 1230 size = node->size - addr + node->start; 1231 1232 if (orig_addr == addr && size >= len) 1233 vhost_vq_meta_update(vq, node, type); 1234 1235 s += size; 1236 addr += size; 1237 } 1238 1239 return true; 1240 } 1241 1242 int vq_iotlb_prefetch(struct vhost_virtqueue *vq) 1243 { 1244 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1245 unsigned int num = vq->num; 1246 1247 if (!vq->iotlb) 1248 return 1; 1249 1250 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc, 1251 num * sizeof(*vq->desc), VHOST_ADDR_DESC) && 1252 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail, 1253 sizeof *vq->avail + 1254 num * sizeof(*vq->avail->ring) + s, 1255 VHOST_ADDR_AVAIL) && 1256 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used, 1257 sizeof *vq->used + 1258 num * sizeof(*vq->used->ring) + s, 1259 VHOST_ADDR_USED); 1260 } 1261 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch); 1262 1263 /* Can we log writes? */ 1264 /* Caller should have device mutex but not vq mutex */ 1265 bool vhost_log_access_ok(struct vhost_dev *dev) 1266 { 1267 return memory_access_ok(dev, dev->umem, 1); 1268 } 1269 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1270 1271 /* Verify access for write logging. */ 1272 /* Caller should have vq mutex and device mutex */ 1273 static bool vq_log_access_ok(struct vhost_virtqueue *vq, 1274 void __user *log_base) 1275 { 1276 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1277 1278 return vq_memory_access_ok(log_base, vq->umem, 1279 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1280 (!vq->log_used || log_access_ok(log_base, vq->log_addr, 1281 sizeof *vq->used + 1282 vq->num * sizeof *vq->used->ring + s)); 1283 } 1284 1285 /* Can we start vq? */ 1286 /* Caller should have vq mutex and device mutex */ 1287 bool vhost_vq_access_ok(struct vhost_virtqueue *vq) 1288 { 1289 if (!vq_log_access_ok(vq, vq->log_base)) 1290 return false; 1291 1292 /* Access validation occurs at prefetch time with IOTLB */ 1293 if (vq->iotlb) 1294 return true; 1295 1296 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1297 } 1298 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1299 1300 static struct vhost_umem *vhost_umem_alloc(void) 1301 { 1302 struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL); 1303 1304 if (!umem) 1305 return NULL; 1306 1307 umem->umem_tree = RB_ROOT_CACHED; 1308 umem->numem = 0; 1309 INIT_LIST_HEAD(&umem->umem_list); 1310 1311 return umem; 1312 } 1313 1314 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1315 { 1316 struct vhost_memory mem, *newmem; 1317 struct vhost_memory_region *region; 1318 struct vhost_umem *newumem, *oldumem; 1319 unsigned long size = offsetof(struct vhost_memory, regions); 1320 int i; 1321 1322 if (copy_from_user(&mem, m, size)) 1323 return -EFAULT; 1324 if (mem.padding) 1325 return -EOPNOTSUPP; 1326 if (mem.nregions > max_mem_regions) 1327 return -E2BIG; 1328 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), 1329 GFP_KERNEL); 1330 if (!newmem) 1331 return -ENOMEM; 1332 1333 memcpy(newmem, &mem, size); 1334 if (copy_from_user(newmem->regions, m->regions, 1335 mem.nregions * sizeof *m->regions)) { 1336 kvfree(newmem); 1337 return -EFAULT; 1338 } 1339 1340 newumem = vhost_umem_alloc(); 1341 if (!newumem) { 1342 kvfree(newmem); 1343 return -ENOMEM; 1344 } 1345 1346 for (region = newmem->regions; 1347 region < newmem->regions + mem.nregions; 1348 region++) { 1349 if (vhost_new_umem_range(newumem, 1350 region->guest_phys_addr, 1351 region->memory_size, 1352 region->guest_phys_addr + 1353 region->memory_size - 1, 1354 region->userspace_addr, 1355 VHOST_ACCESS_RW)) 1356 goto err; 1357 } 1358 1359 if (!memory_access_ok(d, newumem, 0)) 1360 goto err; 1361 1362 oldumem = d->umem; 1363 d->umem = newumem; 1364 1365 /* All memory accesses are done under some VQ mutex. */ 1366 for (i = 0; i < d->nvqs; ++i) { 1367 mutex_lock(&d->vqs[i]->mutex); 1368 d->vqs[i]->umem = newumem; 1369 mutex_unlock(&d->vqs[i]->mutex); 1370 } 1371 1372 kvfree(newmem); 1373 vhost_umem_clean(oldumem); 1374 return 0; 1375 1376 err: 1377 vhost_umem_clean(newumem); 1378 kvfree(newmem); 1379 return -EFAULT; 1380 } 1381 1382 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1383 { 1384 struct file *eventfp, *filep = NULL; 1385 bool pollstart = false, pollstop = false; 1386 struct eventfd_ctx *ctx = NULL; 1387 u32 __user *idxp = argp; 1388 struct vhost_virtqueue *vq; 1389 struct vhost_vring_state s; 1390 struct vhost_vring_file f; 1391 struct vhost_vring_addr a; 1392 u32 idx; 1393 long r; 1394 1395 r = get_user(idx, idxp); 1396 if (r < 0) 1397 return r; 1398 if (idx >= d->nvqs) 1399 return -ENOBUFS; 1400 1401 idx = array_index_nospec(idx, d->nvqs); 1402 vq = d->vqs[idx]; 1403 1404 mutex_lock(&vq->mutex); 1405 1406 switch (ioctl) { 1407 case VHOST_SET_VRING_NUM: 1408 /* Resizing ring with an active backend? 1409 * You don't want to do that. */ 1410 if (vq->private_data) { 1411 r = -EBUSY; 1412 break; 1413 } 1414 if (copy_from_user(&s, argp, sizeof s)) { 1415 r = -EFAULT; 1416 break; 1417 } 1418 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) { 1419 r = -EINVAL; 1420 break; 1421 } 1422 vq->num = s.num; 1423 break; 1424 case VHOST_SET_VRING_BASE: 1425 /* Moving base with an active backend? 1426 * You don't want to do that. */ 1427 if (vq->private_data) { 1428 r = -EBUSY; 1429 break; 1430 } 1431 if (copy_from_user(&s, argp, sizeof s)) { 1432 r = -EFAULT; 1433 break; 1434 } 1435 if (s.num > 0xffff) { 1436 r = -EINVAL; 1437 break; 1438 } 1439 vq->last_avail_idx = s.num; 1440 /* Forget the cached index value. */ 1441 vq->avail_idx = vq->last_avail_idx; 1442 break; 1443 case VHOST_GET_VRING_BASE: 1444 s.index = idx; 1445 s.num = vq->last_avail_idx; 1446 if (copy_to_user(argp, &s, sizeof s)) 1447 r = -EFAULT; 1448 break; 1449 case VHOST_SET_VRING_ADDR: 1450 if (copy_from_user(&a, argp, sizeof a)) { 1451 r = -EFAULT; 1452 break; 1453 } 1454 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) { 1455 r = -EOPNOTSUPP; 1456 break; 1457 } 1458 /* For 32bit, verify that the top 32bits of the user 1459 data are set to zero. */ 1460 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1461 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1462 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) { 1463 r = -EFAULT; 1464 break; 1465 } 1466 1467 /* Make sure it's safe to cast pointers to vring types. */ 1468 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1469 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1470 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1471 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1472 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) { 1473 r = -EINVAL; 1474 break; 1475 } 1476 1477 /* We only verify access here if backend is configured. 1478 * If it is not, we don't as size might not have been setup. 1479 * We will verify when backend is configured. */ 1480 if (vq->private_data) { 1481 if (!vq_access_ok(vq, vq->num, 1482 (void __user *)(unsigned long)a.desc_user_addr, 1483 (void __user *)(unsigned long)a.avail_user_addr, 1484 (void __user *)(unsigned long)a.used_user_addr)) { 1485 r = -EINVAL; 1486 break; 1487 } 1488 1489 /* Also validate log access for used ring if enabled. */ 1490 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) && 1491 !log_access_ok(vq->log_base, a.log_guest_addr, 1492 sizeof *vq->used + 1493 vq->num * sizeof *vq->used->ring)) { 1494 r = -EINVAL; 1495 break; 1496 } 1497 } 1498 1499 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1500 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1501 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1502 vq->log_addr = a.log_guest_addr; 1503 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1504 break; 1505 case VHOST_SET_VRING_KICK: 1506 if (copy_from_user(&f, argp, sizeof f)) { 1507 r = -EFAULT; 1508 break; 1509 } 1510 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1511 if (IS_ERR(eventfp)) { 1512 r = PTR_ERR(eventfp); 1513 break; 1514 } 1515 if (eventfp != vq->kick) { 1516 pollstop = (filep = vq->kick) != NULL; 1517 pollstart = (vq->kick = eventfp) != NULL; 1518 } else 1519 filep = eventfp; 1520 break; 1521 case VHOST_SET_VRING_CALL: 1522 if (copy_from_user(&f, argp, sizeof f)) { 1523 r = -EFAULT; 1524 break; 1525 } 1526 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1527 if (IS_ERR(ctx)) { 1528 r = PTR_ERR(ctx); 1529 break; 1530 } 1531 swap(ctx, vq->call_ctx); 1532 break; 1533 case VHOST_SET_VRING_ERR: 1534 if (copy_from_user(&f, argp, sizeof f)) { 1535 r = -EFAULT; 1536 break; 1537 } 1538 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1539 if (IS_ERR(ctx)) { 1540 r = PTR_ERR(ctx); 1541 break; 1542 } 1543 swap(ctx, vq->error_ctx); 1544 break; 1545 case VHOST_SET_VRING_ENDIAN: 1546 r = vhost_set_vring_endian(vq, argp); 1547 break; 1548 case VHOST_GET_VRING_ENDIAN: 1549 r = vhost_get_vring_endian(vq, idx, argp); 1550 break; 1551 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1552 if (copy_from_user(&s, argp, sizeof(s))) { 1553 r = -EFAULT; 1554 break; 1555 } 1556 vq->busyloop_timeout = s.num; 1557 break; 1558 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1559 s.index = idx; 1560 s.num = vq->busyloop_timeout; 1561 if (copy_to_user(argp, &s, sizeof(s))) 1562 r = -EFAULT; 1563 break; 1564 default: 1565 r = -ENOIOCTLCMD; 1566 } 1567 1568 if (pollstop && vq->handle_kick) 1569 vhost_poll_stop(&vq->poll); 1570 1571 if (!IS_ERR_OR_NULL(ctx)) 1572 eventfd_ctx_put(ctx); 1573 if (filep) 1574 fput(filep); 1575 1576 if (pollstart && vq->handle_kick) 1577 r = vhost_poll_start(&vq->poll, vq->kick); 1578 1579 mutex_unlock(&vq->mutex); 1580 1581 if (pollstop && vq->handle_kick) 1582 vhost_poll_flush(&vq->poll); 1583 return r; 1584 } 1585 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 1586 1587 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled) 1588 { 1589 struct vhost_umem *niotlb, *oiotlb; 1590 int i; 1591 1592 niotlb = vhost_umem_alloc(); 1593 if (!niotlb) 1594 return -ENOMEM; 1595 1596 oiotlb = d->iotlb; 1597 d->iotlb = niotlb; 1598 1599 for (i = 0; i < d->nvqs; ++i) { 1600 struct vhost_virtqueue *vq = d->vqs[i]; 1601 1602 mutex_lock(&vq->mutex); 1603 vq->iotlb = niotlb; 1604 __vhost_vq_meta_reset(vq); 1605 mutex_unlock(&vq->mutex); 1606 } 1607 1608 vhost_umem_clean(oiotlb); 1609 1610 return 0; 1611 } 1612 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 1613 1614 /* Caller must have device mutex */ 1615 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1616 { 1617 struct eventfd_ctx *ctx; 1618 u64 p; 1619 long r; 1620 int i, fd; 1621 1622 /* If you are not the owner, you can become one */ 1623 if (ioctl == VHOST_SET_OWNER) { 1624 r = vhost_dev_set_owner(d); 1625 goto done; 1626 } 1627 1628 /* You must be the owner to do anything else */ 1629 r = vhost_dev_check_owner(d); 1630 if (r) 1631 goto done; 1632 1633 switch (ioctl) { 1634 case VHOST_SET_MEM_TABLE: 1635 r = vhost_set_memory(d, argp); 1636 break; 1637 case VHOST_SET_LOG_BASE: 1638 if (copy_from_user(&p, argp, sizeof p)) { 1639 r = -EFAULT; 1640 break; 1641 } 1642 if ((u64)(unsigned long)p != p) { 1643 r = -EFAULT; 1644 break; 1645 } 1646 for (i = 0; i < d->nvqs; ++i) { 1647 struct vhost_virtqueue *vq; 1648 void __user *base = (void __user *)(unsigned long)p; 1649 vq = d->vqs[i]; 1650 mutex_lock(&vq->mutex); 1651 /* If ring is inactive, will check when it's enabled. */ 1652 if (vq->private_data && !vq_log_access_ok(vq, base)) 1653 r = -EFAULT; 1654 else 1655 vq->log_base = base; 1656 mutex_unlock(&vq->mutex); 1657 } 1658 break; 1659 case VHOST_SET_LOG_FD: 1660 r = get_user(fd, (int __user *)argp); 1661 if (r < 0) 1662 break; 1663 ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd); 1664 if (IS_ERR(ctx)) { 1665 r = PTR_ERR(ctx); 1666 break; 1667 } 1668 swap(ctx, d->log_ctx); 1669 for (i = 0; i < d->nvqs; ++i) { 1670 mutex_lock(&d->vqs[i]->mutex); 1671 d->vqs[i]->log_ctx = d->log_ctx; 1672 mutex_unlock(&d->vqs[i]->mutex); 1673 } 1674 if (ctx) 1675 eventfd_ctx_put(ctx); 1676 break; 1677 default: 1678 r = -ENOIOCTLCMD; 1679 break; 1680 } 1681 done: 1682 return r; 1683 } 1684 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 1685 1686 /* TODO: This is really inefficient. We need something like get_user() 1687 * (instruction directly accesses the data, with an exception table entry 1688 * returning -EFAULT). See Documentation/x86/exception-tables.txt. 1689 */ 1690 static int set_bit_to_user(int nr, void __user *addr) 1691 { 1692 unsigned long log = (unsigned long)addr; 1693 struct page *page; 1694 void *base; 1695 int bit = nr + (log % PAGE_SIZE) * 8; 1696 int r; 1697 1698 r = get_user_pages_fast(log, 1, 1, &page); 1699 if (r < 0) 1700 return r; 1701 BUG_ON(r != 1); 1702 base = kmap_atomic(page); 1703 set_bit(bit, base); 1704 kunmap_atomic(base); 1705 set_page_dirty_lock(page); 1706 put_page(page); 1707 return 0; 1708 } 1709 1710 static int log_write(void __user *log_base, 1711 u64 write_address, u64 write_length) 1712 { 1713 u64 write_page = write_address / VHOST_PAGE_SIZE; 1714 int r; 1715 1716 if (!write_length) 1717 return 0; 1718 write_length += write_address % VHOST_PAGE_SIZE; 1719 for (;;) { 1720 u64 base = (u64)(unsigned long)log_base; 1721 u64 log = base + write_page / 8; 1722 int bit = write_page % 8; 1723 if ((u64)(unsigned long)log != log) 1724 return -EFAULT; 1725 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 1726 if (r < 0) 1727 return r; 1728 if (write_length <= VHOST_PAGE_SIZE) 1729 break; 1730 write_length -= VHOST_PAGE_SIZE; 1731 write_page += 1; 1732 } 1733 return r; 1734 } 1735 1736 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 1737 unsigned int log_num, u64 len) 1738 { 1739 int i, r; 1740 1741 /* Make sure data written is seen before log. */ 1742 smp_wmb(); 1743 for (i = 0; i < log_num; ++i) { 1744 u64 l = min(log[i].len, len); 1745 r = log_write(vq->log_base, log[i].addr, l); 1746 if (r < 0) 1747 return r; 1748 len -= l; 1749 if (!len) { 1750 if (vq->log_ctx) 1751 eventfd_signal(vq->log_ctx, 1); 1752 return 0; 1753 } 1754 } 1755 /* Length written exceeds what we have stored. This is a bug. */ 1756 BUG(); 1757 return 0; 1758 } 1759 EXPORT_SYMBOL_GPL(vhost_log_write); 1760 1761 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 1762 { 1763 void __user *used; 1764 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1765 &vq->used->flags) < 0) 1766 return -EFAULT; 1767 if (unlikely(vq->log_used)) { 1768 /* Make sure the flag is seen before log. */ 1769 smp_wmb(); 1770 /* Log used flag write. */ 1771 used = &vq->used->flags; 1772 log_write(vq->log_base, vq->log_addr + 1773 (used - (void __user *)vq->used), 1774 sizeof vq->used->flags); 1775 if (vq->log_ctx) 1776 eventfd_signal(vq->log_ctx, 1); 1777 } 1778 return 0; 1779 } 1780 1781 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event) 1782 { 1783 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1784 vhost_avail_event(vq))) 1785 return -EFAULT; 1786 if (unlikely(vq->log_used)) { 1787 void __user *used; 1788 /* Make sure the event is seen before log. */ 1789 smp_wmb(); 1790 /* Log avail event write */ 1791 used = vhost_avail_event(vq); 1792 log_write(vq->log_base, vq->log_addr + 1793 (used - (void __user *)vq->used), 1794 sizeof *vhost_avail_event(vq)); 1795 if (vq->log_ctx) 1796 eventfd_signal(vq->log_ctx, 1); 1797 } 1798 return 0; 1799 } 1800 1801 int vhost_vq_init_access(struct vhost_virtqueue *vq) 1802 { 1803 __virtio16 last_used_idx; 1804 int r; 1805 bool is_le = vq->is_le; 1806 1807 if (!vq->private_data) 1808 return 0; 1809 1810 vhost_init_is_le(vq); 1811 1812 r = vhost_update_used_flags(vq); 1813 if (r) 1814 goto err; 1815 vq->signalled_used_valid = false; 1816 if (!vq->iotlb && 1817 !access_ok(&vq->used->idx, sizeof vq->used->idx)) { 1818 r = -EFAULT; 1819 goto err; 1820 } 1821 r = vhost_get_used(vq, last_used_idx, &vq->used->idx); 1822 if (r) { 1823 vq_err(vq, "Can't access used idx at %p\n", 1824 &vq->used->idx); 1825 goto err; 1826 } 1827 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 1828 return 0; 1829 1830 err: 1831 vq->is_le = is_le; 1832 return r; 1833 } 1834 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 1835 1836 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1837 struct iovec iov[], int iov_size, int access) 1838 { 1839 const struct vhost_umem_node *node; 1840 struct vhost_dev *dev = vq->dev; 1841 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem; 1842 struct iovec *_iov; 1843 u64 s = 0; 1844 int ret = 0; 1845 1846 while ((u64)len > s) { 1847 u64 size; 1848 if (unlikely(ret >= iov_size)) { 1849 ret = -ENOBUFS; 1850 break; 1851 } 1852 1853 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1854 addr, addr + len - 1); 1855 if (node == NULL || node->start > addr) { 1856 if (umem != dev->iotlb) { 1857 ret = -EFAULT; 1858 break; 1859 } 1860 ret = -EAGAIN; 1861 break; 1862 } else if (!(node->perm & access)) { 1863 ret = -EPERM; 1864 break; 1865 } 1866 1867 _iov = iov + ret; 1868 size = node->size - addr + node->start; 1869 _iov->iov_len = min((u64)len - s, size); 1870 _iov->iov_base = (void __user *)(unsigned long) 1871 (node->userspace_addr + addr - node->start); 1872 s += size; 1873 addr += size; 1874 ++ret; 1875 } 1876 1877 if (ret == -EAGAIN) 1878 vhost_iotlb_miss(vq, addr, access); 1879 return ret; 1880 } 1881 1882 /* Each buffer in the virtqueues is actually a chain of descriptors. This 1883 * function returns the next descriptor in the chain, 1884 * or -1U if we're at the end. */ 1885 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 1886 { 1887 unsigned int next; 1888 1889 /* If this descriptor says it doesn't chain, we're done. */ 1890 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 1891 return -1U; 1892 1893 /* Check they're not leading us off end of descriptors. */ 1894 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 1895 return next; 1896 } 1897 1898 static int get_indirect(struct vhost_virtqueue *vq, 1899 struct iovec iov[], unsigned int iov_size, 1900 unsigned int *out_num, unsigned int *in_num, 1901 struct vhost_log *log, unsigned int *log_num, 1902 struct vring_desc *indirect) 1903 { 1904 struct vring_desc desc; 1905 unsigned int i = 0, count, found = 0; 1906 u32 len = vhost32_to_cpu(vq, indirect->len); 1907 struct iov_iter from; 1908 int ret, access; 1909 1910 /* Sanity check */ 1911 if (unlikely(len % sizeof desc)) { 1912 vq_err(vq, "Invalid length in indirect descriptor: " 1913 "len 0x%llx not multiple of 0x%zx\n", 1914 (unsigned long long)len, 1915 sizeof desc); 1916 return -EINVAL; 1917 } 1918 1919 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 1920 UIO_MAXIOV, VHOST_ACCESS_RO); 1921 if (unlikely(ret < 0)) { 1922 if (ret != -EAGAIN) 1923 vq_err(vq, "Translation failure %d in indirect.\n", ret); 1924 return ret; 1925 } 1926 iov_iter_init(&from, READ, vq->indirect, ret, len); 1927 1928 /* We will use the result as an address to read from, so most 1929 * architectures only need a compiler barrier here. */ 1930 read_barrier_depends(); 1931 1932 count = len / sizeof desc; 1933 /* Buffers are chained via a 16 bit next field, so 1934 * we can have at most 2^16 of these. */ 1935 if (unlikely(count > USHRT_MAX + 1)) { 1936 vq_err(vq, "Indirect buffer length too big: %d\n", 1937 indirect->len); 1938 return -E2BIG; 1939 } 1940 1941 do { 1942 unsigned iov_count = *in_num + *out_num; 1943 if (unlikely(++found > count)) { 1944 vq_err(vq, "Loop detected: last one at %u " 1945 "indirect size %u\n", 1946 i, count); 1947 return -EINVAL; 1948 } 1949 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 1950 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 1951 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1952 return -EINVAL; 1953 } 1954 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 1955 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 1956 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1957 return -EINVAL; 1958 } 1959 1960 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 1961 access = VHOST_ACCESS_WO; 1962 else 1963 access = VHOST_ACCESS_RO; 1964 1965 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 1966 vhost32_to_cpu(vq, desc.len), iov + iov_count, 1967 iov_size - iov_count, access); 1968 if (unlikely(ret < 0)) { 1969 if (ret != -EAGAIN) 1970 vq_err(vq, "Translation failure %d indirect idx %d\n", 1971 ret, i); 1972 return ret; 1973 } 1974 /* If this is an input descriptor, increment that count. */ 1975 if (access == VHOST_ACCESS_WO) { 1976 *in_num += ret; 1977 if (unlikely(log)) { 1978 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 1979 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 1980 ++*log_num; 1981 } 1982 } else { 1983 /* If it's an output descriptor, they're all supposed 1984 * to come before any input descriptors. */ 1985 if (unlikely(*in_num)) { 1986 vq_err(vq, "Indirect descriptor " 1987 "has out after in: idx %d\n", i); 1988 return -EINVAL; 1989 } 1990 *out_num += ret; 1991 } 1992 } while ((i = next_desc(vq, &desc)) != -1); 1993 return 0; 1994 } 1995 1996 /* This looks in the virtqueue and for the first available buffer, and converts 1997 * it to an iovec for convenient access. Since descriptors consist of some 1998 * number of output then some number of input descriptors, it's actually two 1999 * iovecs, but we pack them into one and note how many of each there were. 2000 * 2001 * This function returns the descriptor number found, or vq->num (which is 2002 * never a valid descriptor number) if none was found. A negative code is 2003 * returned on error. */ 2004 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 2005 struct iovec iov[], unsigned int iov_size, 2006 unsigned int *out_num, unsigned int *in_num, 2007 struct vhost_log *log, unsigned int *log_num) 2008 { 2009 struct vring_desc desc; 2010 unsigned int i, head, found = 0; 2011 u16 last_avail_idx; 2012 __virtio16 avail_idx; 2013 __virtio16 ring_head; 2014 int ret, access; 2015 2016 /* Check it isn't doing very strange things with descriptor numbers. */ 2017 last_avail_idx = vq->last_avail_idx; 2018 2019 if (vq->avail_idx == vq->last_avail_idx) { 2020 if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) { 2021 vq_err(vq, "Failed to access avail idx at %p\n", 2022 &vq->avail->idx); 2023 return -EFAULT; 2024 } 2025 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2026 2027 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 2028 vq_err(vq, "Guest moved used index from %u to %u", 2029 last_avail_idx, vq->avail_idx); 2030 return -EFAULT; 2031 } 2032 2033 /* If there's nothing new since last we looked, return 2034 * invalid. 2035 */ 2036 if (vq->avail_idx == last_avail_idx) 2037 return vq->num; 2038 2039 /* Only get avail ring entries after they have been 2040 * exposed by guest. 2041 */ 2042 smp_rmb(); 2043 } 2044 2045 /* Grab the next descriptor number they're advertising, and increment 2046 * the index we've seen. */ 2047 if (unlikely(vhost_get_avail(vq, ring_head, 2048 &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) { 2049 vq_err(vq, "Failed to read head: idx %d address %p\n", 2050 last_avail_idx, 2051 &vq->avail->ring[last_avail_idx % vq->num]); 2052 return -EFAULT; 2053 } 2054 2055 head = vhost16_to_cpu(vq, ring_head); 2056 2057 /* If their number is silly, that's an error. */ 2058 if (unlikely(head >= vq->num)) { 2059 vq_err(vq, "Guest says index %u > %u is available", 2060 head, vq->num); 2061 return -EINVAL; 2062 } 2063 2064 /* When we start there are none of either input nor output. */ 2065 *out_num = *in_num = 0; 2066 if (unlikely(log)) 2067 *log_num = 0; 2068 2069 i = head; 2070 do { 2071 unsigned iov_count = *in_num + *out_num; 2072 if (unlikely(i >= vq->num)) { 2073 vq_err(vq, "Desc index is %u > %u, head = %u", 2074 i, vq->num, head); 2075 return -EINVAL; 2076 } 2077 if (unlikely(++found > vq->num)) { 2078 vq_err(vq, "Loop detected: last one at %u " 2079 "vq size %u head %u\n", 2080 i, vq->num, head); 2081 return -EINVAL; 2082 } 2083 ret = vhost_copy_from_user(vq, &desc, vq->desc + i, 2084 sizeof desc); 2085 if (unlikely(ret)) { 2086 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2087 i, vq->desc + i); 2088 return -EFAULT; 2089 } 2090 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2091 ret = get_indirect(vq, iov, iov_size, 2092 out_num, in_num, 2093 log, log_num, &desc); 2094 if (unlikely(ret < 0)) { 2095 if (ret != -EAGAIN) 2096 vq_err(vq, "Failure detected " 2097 "in indirect descriptor at idx %d\n", i); 2098 return ret; 2099 } 2100 continue; 2101 } 2102 2103 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2104 access = VHOST_ACCESS_WO; 2105 else 2106 access = VHOST_ACCESS_RO; 2107 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2108 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2109 iov_size - iov_count, access); 2110 if (unlikely(ret < 0)) { 2111 if (ret != -EAGAIN) 2112 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2113 ret, i); 2114 return ret; 2115 } 2116 if (access == VHOST_ACCESS_WO) { 2117 /* If this is an input descriptor, 2118 * increment that count. */ 2119 *in_num += ret; 2120 if (unlikely(log)) { 2121 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2122 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2123 ++*log_num; 2124 } 2125 } else { 2126 /* If it's an output descriptor, they're all supposed 2127 * to come before any input descriptors. */ 2128 if (unlikely(*in_num)) { 2129 vq_err(vq, "Descriptor has out after in: " 2130 "idx %d\n", i); 2131 return -EINVAL; 2132 } 2133 *out_num += ret; 2134 } 2135 } while ((i = next_desc(vq, &desc)) != -1); 2136 2137 /* On success, increment avail index. */ 2138 vq->last_avail_idx++; 2139 2140 /* Assume notifications from guest are disabled at this point, 2141 * if they aren't we would need to update avail_event index. */ 2142 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2143 return head; 2144 } 2145 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2146 2147 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2148 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2149 { 2150 vq->last_avail_idx -= n; 2151 } 2152 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2153 2154 /* After we've used one of their buffers, we tell them about it. We'll then 2155 * want to notify the guest, using eventfd. */ 2156 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2157 { 2158 struct vring_used_elem heads = { 2159 cpu_to_vhost32(vq, head), 2160 cpu_to_vhost32(vq, len) 2161 }; 2162 2163 return vhost_add_used_n(vq, &heads, 1); 2164 } 2165 EXPORT_SYMBOL_GPL(vhost_add_used); 2166 2167 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2168 struct vring_used_elem *heads, 2169 unsigned count) 2170 { 2171 struct vring_used_elem __user *used; 2172 u16 old, new; 2173 int start; 2174 2175 start = vq->last_used_idx & (vq->num - 1); 2176 used = vq->used->ring + start; 2177 if (count == 1) { 2178 if (vhost_put_user(vq, heads[0].id, &used->id)) { 2179 vq_err(vq, "Failed to write used id"); 2180 return -EFAULT; 2181 } 2182 if (vhost_put_user(vq, heads[0].len, &used->len)) { 2183 vq_err(vq, "Failed to write used len"); 2184 return -EFAULT; 2185 } 2186 } else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) { 2187 vq_err(vq, "Failed to write used"); 2188 return -EFAULT; 2189 } 2190 if (unlikely(vq->log_used)) { 2191 /* Make sure data is seen before log. */ 2192 smp_wmb(); 2193 /* Log used ring entry write. */ 2194 log_write(vq->log_base, 2195 vq->log_addr + 2196 ((void __user *)used - (void __user *)vq->used), 2197 count * sizeof *used); 2198 } 2199 old = vq->last_used_idx; 2200 new = (vq->last_used_idx += count); 2201 /* If the driver never bothers to signal in a very long while, 2202 * used index might wrap around. If that happens, invalidate 2203 * signalled_used index we stored. TODO: make sure driver 2204 * signals at least once in 2^16 and remove this. */ 2205 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2206 vq->signalled_used_valid = false; 2207 return 0; 2208 } 2209 2210 /* After we've used one of their buffers, we tell them about it. We'll then 2211 * want to notify the guest, using eventfd. */ 2212 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2213 unsigned count) 2214 { 2215 int start, n, r; 2216 2217 start = vq->last_used_idx & (vq->num - 1); 2218 n = vq->num - start; 2219 if (n < count) { 2220 r = __vhost_add_used_n(vq, heads, n); 2221 if (r < 0) 2222 return r; 2223 heads += n; 2224 count -= n; 2225 } 2226 r = __vhost_add_used_n(vq, heads, count); 2227 2228 /* Make sure buffer is written before we update index. */ 2229 smp_wmb(); 2230 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 2231 &vq->used->idx)) { 2232 vq_err(vq, "Failed to increment used idx"); 2233 return -EFAULT; 2234 } 2235 if (unlikely(vq->log_used)) { 2236 /* Make sure used idx is seen before log. */ 2237 smp_wmb(); 2238 /* Log used index update. */ 2239 log_write(vq->log_base, 2240 vq->log_addr + offsetof(struct vring_used, idx), 2241 sizeof vq->used->idx); 2242 if (vq->log_ctx) 2243 eventfd_signal(vq->log_ctx, 1); 2244 } 2245 return r; 2246 } 2247 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2248 2249 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2250 { 2251 __u16 old, new; 2252 __virtio16 event; 2253 bool v; 2254 /* Flush out used index updates. This is paired 2255 * with the barrier that the Guest executes when enabling 2256 * interrupts. */ 2257 smp_mb(); 2258 2259 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2260 unlikely(vq->avail_idx == vq->last_avail_idx)) 2261 return true; 2262 2263 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2264 __virtio16 flags; 2265 if (vhost_get_avail(vq, flags, &vq->avail->flags)) { 2266 vq_err(vq, "Failed to get flags"); 2267 return true; 2268 } 2269 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2270 } 2271 old = vq->signalled_used; 2272 v = vq->signalled_used_valid; 2273 new = vq->signalled_used = vq->last_used_idx; 2274 vq->signalled_used_valid = true; 2275 2276 if (unlikely(!v)) 2277 return true; 2278 2279 if (vhost_get_avail(vq, event, vhost_used_event(vq))) { 2280 vq_err(vq, "Failed to get used event idx"); 2281 return true; 2282 } 2283 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2284 } 2285 2286 /* This actually signals the guest, using eventfd. */ 2287 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2288 { 2289 /* Signal the Guest tell them we used something up. */ 2290 if (vq->call_ctx && vhost_notify(dev, vq)) 2291 eventfd_signal(vq->call_ctx, 1); 2292 } 2293 EXPORT_SYMBOL_GPL(vhost_signal); 2294 2295 /* And here's the combo meal deal. Supersize me! */ 2296 void vhost_add_used_and_signal(struct vhost_dev *dev, 2297 struct vhost_virtqueue *vq, 2298 unsigned int head, int len) 2299 { 2300 vhost_add_used(vq, head, len); 2301 vhost_signal(dev, vq); 2302 } 2303 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2304 2305 /* multi-buffer version of vhost_add_used_and_signal */ 2306 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2307 struct vhost_virtqueue *vq, 2308 struct vring_used_elem *heads, unsigned count) 2309 { 2310 vhost_add_used_n(vq, heads, count); 2311 vhost_signal(dev, vq); 2312 } 2313 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2314 2315 /* return true if we're sure that avaiable ring is empty */ 2316 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2317 { 2318 __virtio16 avail_idx; 2319 int r; 2320 2321 if (vq->avail_idx != vq->last_avail_idx) 2322 return false; 2323 2324 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2325 if (unlikely(r)) 2326 return false; 2327 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2328 2329 return vq->avail_idx == vq->last_avail_idx; 2330 } 2331 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2332 2333 /* OK, now we need to know about added descriptors. */ 2334 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2335 { 2336 __virtio16 avail_idx; 2337 int r; 2338 2339 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2340 return false; 2341 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2342 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2343 r = vhost_update_used_flags(vq); 2344 if (r) { 2345 vq_err(vq, "Failed to enable notification at %p: %d\n", 2346 &vq->used->flags, r); 2347 return false; 2348 } 2349 } else { 2350 r = vhost_update_avail_event(vq, vq->avail_idx); 2351 if (r) { 2352 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2353 vhost_avail_event(vq), r); 2354 return false; 2355 } 2356 } 2357 /* They could have slipped one in as we were doing that: make 2358 * sure it's written, then check again. */ 2359 smp_mb(); 2360 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2361 if (r) { 2362 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2363 &vq->avail->idx, r); 2364 return false; 2365 } 2366 2367 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx; 2368 } 2369 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2370 2371 /* We don't need to be notified again. */ 2372 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2373 { 2374 int r; 2375 2376 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2377 return; 2378 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2379 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2380 r = vhost_update_used_flags(vq); 2381 if (r) 2382 vq_err(vq, "Failed to enable notification at %p: %d\n", 2383 &vq->used->flags, r); 2384 } 2385 } 2386 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2387 2388 /* Create a new message. */ 2389 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2390 { 2391 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL); 2392 if (!node) 2393 return NULL; 2394 2395 /* Make sure all padding within the structure is initialized. */ 2396 memset(&node->msg, 0, sizeof node->msg); 2397 node->vq = vq; 2398 node->msg.type = type; 2399 return node; 2400 } 2401 EXPORT_SYMBOL_GPL(vhost_new_msg); 2402 2403 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2404 struct vhost_msg_node *node) 2405 { 2406 spin_lock(&dev->iotlb_lock); 2407 list_add_tail(&node->node, head); 2408 spin_unlock(&dev->iotlb_lock); 2409 2410 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 2411 } 2412 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2413 2414 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2415 struct list_head *head) 2416 { 2417 struct vhost_msg_node *node = NULL; 2418 2419 spin_lock(&dev->iotlb_lock); 2420 if (!list_empty(head)) { 2421 node = list_first_entry(head, struct vhost_msg_node, 2422 node); 2423 list_del(&node->node); 2424 } 2425 spin_unlock(&dev->iotlb_lock); 2426 2427 return node; 2428 } 2429 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2430 2431 2432 static int __init vhost_init(void) 2433 { 2434 return 0; 2435 } 2436 2437 static void __exit vhost_exit(void) 2438 { 2439 } 2440 2441 module_init(vhost_init); 2442 module_exit(vhost_exit); 2443 2444 MODULE_VERSION("0.0.1"); 2445 MODULE_LICENSE("GPL v2"); 2446 MODULE_AUTHOR("Michael S. Tsirkin"); 2447 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2448