xref: /openbmc/linux/drivers/vhost/vhost.c (revision 0e96cf7f)
1 /* Copyright (C) 2009 Red Hat, Inc.
2  * Copyright (C) 2006 Rusty Russell IBM Corporation
3  *
4  * Author: Michael S. Tsirkin <mst@redhat.com>
5  *
6  * Inspiration, some code, and most witty comments come from
7  * Documentation/virtual/lguest/lguest.c, by Rusty Russell
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.
10  *
11  * Generic code for virtio server in host kernel.
12  */
13 
14 #include <linux/eventfd.h>
15 #include <linux/vhost.h>
16 #include <linux/uio.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_context.h>
19 #include <linux/miscdevice.h>
20 #include <linux/mutex.h>
21 #include <linux/poll.h>
22 #include <linux/file.h>
23 #include <linux/highmem.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/kthread.h>
27 #include <linux/cgroup.h>
28 #include <linux/module.h>
29 #include <linux/sort.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/signal.h>
32 #include <linux/interval_tree_generic.h>
33 #include <linux/nospec.h>
34 
35 #include "vhost.h"
36 
37 static ushort max_mem_regions = 64;
38 module_param(max_mem_regions, ushort, 0444);
39 MODULE_PARM_DESC(max_mem_regions,
40 	"Maximum number of memory regions in memory map. (default: 64)");
41 static int max_iotlb_entries = 2048;
42 module_param(max_iotlb_entries, int, 0444);
43 MODULE_PARM_DESC(max_iotlb_entries,
44 	"Maximum number of iotlb entries. (default: 2048)");
45 
46 enum {
47 	VHOST_MEMORY_F_LOG = 0x1,
48 };
49 
50 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num])
51 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num])
52 
53 INTERVAL_TREE_DEFINE(struct vhost_umem_node,
54 		     rb, __u64, __subtree_last,
55 		     START, LAST, static inline, vhost_umem_interval_tree);
56 
57 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY
58 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
59 {
60 	vq->user_be = !virtio_legacy_is_little_endian();
61 }
62 
63 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq)
64 {
65 	vq->user_be = true;
66 }
67 
68 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq)
69 {
70 	vq->user_be = false;
71 }
72 
73 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
74 {
75 	struct vhost_vring_state s;
76 
77 	if (vq->private_data)
78 		return -EBUSY;
79 
80 	if (copy_from_user(&s, argp, sizeof(s)))
81 		return -EFAULT;
82 
83 	if (s.num != VHOST_VRING_LITTLE_ENDIAN &&
84 	    s.num != VHOST_VRING_BIG_ENDIAN)
85 		return -EINVAL;
86 
87 	if (s.num == VHOST_VRING_BIG_ENDIAN)
88 		vhost_enable_cross_endian_big(vq);
89 	else
90 		vhost_enable_cross_endian_little(vq);
91 
92 	return 0;
93 }
94 
95 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
96 				   int __user *argp)
97 {
98 	struct vhost_vring_state s = {
99 		.index = idx,
100 		.num = vq->user_be
101 	};
102 
103 	if (copy_to_user(argp, &s, sizeof(s)))
104 		return -EFAULT;
105 
106 	return 0;
107 }
108 
109 static void vhost_init_is_le(struct vhost_virtqueue *vq)
110 {
111 	/* Note for legacy virtio: user_be is initialized at reset time
112 	 * according to the host endianness. If userspace does not set an
113 	 * explicit endianness, the default behavior is native endian, as
114 	 * expected by legacy virtio.
115 	 */
116 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be;
117 }
118 #else
119 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
120 {
121 }
122 
123 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
124 {
125 	return -ENOIOCTLCMD;
126 }
127 
128 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
129 				   int __user *argp)
130 {
131 	return -ENOIOCTLCMD;
132 }
133 
134 static void vhost_init_is_le(struct vhost_virtqueue *vq)
135 {
136 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1)
137 		|| virtio_legacy_is_little_endian();
138 }
139 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */
140 
141 static void vhost_reset_is_le(struct vhost_virtqueue *vq)
142 {
143 	vhost_init_is_le(vq);
144 }
145 
146 struct vhost_flush_struct {
147 	struct vhost_work work;
148 	struct completion wait_event;
149 };
150 
151 static void vhost_flush_work(struct vhost_work *work)
152 {
153 	struct vhost_flush_struct *s;
154 
155 	s = container_of(work, struct vhost_flush_struct, work);
156 	complete(&s->wait_event);
157 }
158 
159 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh,
160 			    poll_table *pt)
161 {
162 	struct vhost_poll *poll;
163 
164 	poll = container_of(pt, struct vhost_poll, table);
165 	poll->wqh = wqh;
166 	add_wait_queue(wqh, &poll->wait);
167 }
168 
169 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync,
170 			     void *key)
171 {
172 	struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait);
173 
174 	if (!(key_to_poll(key) & poll->mask))
175 		return 0;
176 
177 	vhost_poll_queue(poll);
178 	return 0;
179 }
180 
181 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn)
182 {
183 	clear_bit(VHOST_WORK_QUEUED, &work->flags);
184 	work->fn = fn;
185 }
186 EXPORT_SYMBOL_GPL(vhost_work_init);
187 
188 /* Init poll structure */
189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn,
190 		     __poll_t mask, struct vhost_dev *dev)
191 {
192 	init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup);
193 	init_poll_funcptr(&poll->table, vhost_poll_func);
194 	poll->mask = mask;
195 	poll->dev = dev;
196 	poll->wqh = NULL;
197 
198 	vhost_work_init(&poll->work, fn);
199 }
200 EXPORT_SYMBOL_GPL(vhost_poll_init);
201 
202 /* Start polling a file. We add ourselves to file's wait queue. The caller must
203  * keep a reference to a file until after vhost_poll_stop is called. */
204 int vhost_poll_start(struct vhost_poll *poll, struct file *file)
205 {
206 	__poll_t mask;
207 	int ret = 0;
208 
209 	if (poll->wqh)
210 		return 0;
211 
212 	mask = vfs_poll(file, &poll->table);
213 	if (mask)
214 		vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask));
215 	if (mask & EPOLLERR) {
216 		vhost_poll_stop(poll);
217 		ret = -EINVAL;
218 	}
219 
220 	return ret;
221 }
222 EXPORT_SYMBOL_GPL(vhost_poll_start);
223 
224 /* Stop polling a file. After this function returns, it becomes safe to drop the
225  * file reference. You must also flush afterwards. */
226 void vhost_poll_stop(struct vhost_poll *poll)
227 {
228 	if (poll->wqh) {
229 		remove_wait_queue(poll->wqh, &poll->wait);
230 		poll->wqh = NULL;
231 	}
232 }
233 EXPORT_SYMBOL_GPL(vhost_poll_stop);
234 
235 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work)
236 {
237 	struct vhost_flush_struct flush;
238 
239 	if (dev->worker) {
240 		init_completion(&flush.wait_event);
241 		vhost_work_init(&flush.work, vhost_flush_work);
242 
243 		vhost_work_queue(dev, &flush.work);
244 		wait_for_completion(&flush.wait_event);
245 	}
246 }
247 EXPORT_SYMBOL_GPL(vhost_work_flush);
248 
249 /* Flush any work that has been scheduled. When calling this, don't hold any
250  * locks that are also used by the callback. */
251 void vhost_poll_flush(struct vhost_poll *poll)
252 {
253 	vhost_work_flush(poll->dev, &poll->work);
254 }
255 EXPORT_SYMBOL_GPL(vhost_poll_flush);
256 
257 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work)
258 {
259 	if (!dev->worker)
260 		return;
261 
262 	if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) {
263 		/* We can only add the work to the list after we're
264 		 * sure it was not in the list.
265 		 * test_and_set_bit() implies a memory barrier.
266 		 */
267 		llist_add(&work->node, &dev->work_list);
268 		wake_up_process(dev->worker);
269 	}
270 }
271 EXPORT_SYMBOL_GPL(vhost_work_queue);
272 
273 /* A lockless hint for busy polling code to exit the loop */
274 bool vhost_has_work(struct vhost_dev *dev)
275 {
276 	return !llist_empty(&dev->work_list);
277 }
278 EXPORT_SYMBOL_GPL(vhost_has_work);
279 
280 void vhost_poll_queue(struct vhost_poll *poll)
281 {
282 	vhost_work_queue(poll->dev, &poll->work);
283 }
284 EXPORT_SYMBOL_GPL(vhost_poll_queue);
285 
286 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq)
287 {
288 	int j;
289 
290 	for (j = 0; j < VHOST_NUM_ADDRS; j++)
291 		vq->meta_iotlb[j] = NULL;
292 }
293 
294 static void vhost_vq_meta_reset(struct vhost_dev *d)
295 {
296 	int i;
297 
298 	for (i = 0; i < d->nvqs; ++i)
299 		__vhost_vq_meta_reset(d->vqs[i]);
300 }
301 
302 static void vhost_vq_reset(struct vhost_dev *dev,
303 			   struct vhost_virtqueue *vq)
304 {
305 	vq->num = 1;
306 	vq->desc = NULL;
307 	vq->avail = NULL;
308 	vq->used = NULL;
309 	vq->last_avail_idx = 0;
310 	vq->avail_idx = 0;
311 	vq->last_used_idx = 0;
312 	vq->signalled_used = 0;
313 	vq->signalled_used_valid = false;
314 	vq->used_flags = 0;
315 	vq->log_used = false;
316 	vq->log_addr = -1ull;
317 	vq->private_data = NULL;
318 	vq->acked_features = 0;
319 	vq->acked_backend_features = 0;
320 	vq->log_base = NULL;
321 	vq->error_ctx = NULL;
322 	vq->kick = NULL;
323 	vq->call_ctx = NULL;
324 	vq->log_ctx = NULL;
325 	vhost_reset_is_le(vq);
326 	vhost_disable_cross_endian(vq);
327 	vq->busyloop_timeout = 0;
328 	vq->umem = NULL;
329 	vq->iotlb = NULL;
330 	__vhost_vq_meta_reset(vq);
331 }
332 
333 static int vhost_worker(void *data)
334 {
335 	struct vhost_dev *dev = data;
336 	struct vhost_work *work, *work_next;
337 	struct llist_node *node;
338 	mm_segment_t oldfs = get_fs();
339 
340 	set_fs(USER_DS);
341 	use_mm(dev->mm);
342 
343 	for (;;) {
344 		/* mb paired w/ kthread_stop */
345 		set_current_state(TASK_INTERRUPTIBLE);
346 
347 		if (kthread_should_stop()) {
348 			__set_current_state(TASK_RUNNING);
349 			break;
350 		}
351 
352 		node = llist_del_all(&dev->work_list);
353 		if (!node)
354 			schedule();
355 
356 		node = llist_reverse_order(node);
357 		/* make sure flag is seen after deletion */
358 		smp_wmb();
359 		llist_for_each_entry_safe(work, work_next, node, node) {
360 			clear_bit(VHOST_WORK_QUEUED, &work->flags);
361 			__set_current_state(TASK_RUNNING);
362 			work->fn(work);
363 			if (need_resched())
364 				schedule();
365 		}
366 	}
367 	unuse_mm(dev->mm);
368 	set_fs(oldfs);
369 	return 0;
370 }
371 
372 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq)
373 {
374 	kfree(vq->indirect);
375 	vq->indirect = NULL;
376 	kfree(vq->log);
377 	vq->log = NULL;
378 	kfree(vq->heads);
379 	vq->heads = NULL;
380 }
381 
382 /* Helper to allocate iovec buffers for all vqs. */
383 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev)
384 {
385 	struct vhost_virtqueue *vq;
386 	int i;
387 
388 	for (i = 0; i < dev->nvqs; ++i) {
389 		vq = dev->vqs[i];
390 		vq->indirect = kmalloc_array(UIO_MAXIOV,
391 					     sizeof(*vq->indirect),
392 					     GFP_KERNEL);
393 		vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log),
394 					GFP_KERNEL);
395 		vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads),
396 					  GFP_KERNEL);
397 		if (!vq->indirect || !vq->log || !vq->heads)
398 			goto err_nomem;
399 	}
400 	return 0;
401 
402 err_nomem:
403 	for (; i >= 0; --i)
404 		vhost_vq_free_iovecs(dev->vqs[i]);
405 	return -ENOMEM;
406 }
407 
408 static void vhost_dev_free_iovecs(struct vhost_dev *dev)
409 {
410 	int i;
411 
412 	for (i = 0; i < dev->nvqs; ++i)
413 		vhost_vq_free_iovecs(dev->vqs[i]);
414 }
415 
416 bool vhost_exceeds_weight(struct vhost_virtqueue *vq,
417 			  int pkts, int total_len)
418 {
419 	struct vhost_dev *dev = vq->dev;
420 
421 	if ((dev->byte_weight && total_len >= dev->byte_weight) ||
422 	    pkts >= dev->weight) {
423 		vhost_poll_queue(&vq->poll);
424 		return true;
425 	}
426 
427 	return false;
428 }
429 EXPORT_SYMBOL_GPL(vhost_exceeds_weight);
430 
431 void vhost_dev_init(struct vhost_dev *dev,
432 		    struct vhost_virtqueue **vqs, int nvqs,
433 		    int iov_limit, int weight, int byte_weight)
434 {
435 	struct vhost_virtqueue *vq;
436 	int i;
437 
438 	dev->vqs = vqs;
439 	dev->nvqs = nvqs;
440 	mutex_init(&dev->mutex);
441 	dev->log_ctx = NULL;
442 	dev->umem = NULL;
443 	dev->iotlb = NULL;
444 	dev->mm = NULL;
445 	dev->worker = NULL;
446 	dev->iov_limit = iov_limit;
447 	dev->weight = weight;
448 	dev->byte_weight = byte_weight;
449 	init_llist_head(&dev->work_list);
450 	init_waitqueue_head(&dev->wait);
451 	INIT_LIST_HEAD(&dev->read_list);
452 	INIT_LIST_HEAD(&dev->pending_list);
453 	spin_lock_init(&dev->iotlb_lock);
454 
455 
456 	for (i = 0; i < dev->nvqs; ++i) {
457 		vq = dev->vqs[i];
458 		vq->log = NULL;
459 		vq->indirect = NULL;
460 		vq->heads = NULL;
461 		vq->dev = dev;
462 		mutex_init(&vq->mutex);
463 		vhost_vq_reset(dev, vq);
464 		if (vq->handle_kick)
465 			vhost_poll_init(&vq->poll, vq->handle_kick,
466 					EPOLLIN, dev);
467 	}
468 }
469 EXPORT_SYMBOL_GPL(vhost_dev_init);
470 
471 /* Caller should have device mutex */
472 long vhost_dev_check_owner(struct vhost_dev *dev)
473 {
474 	/* Are you the owner? If not, I don't think you mean to do that */
475 	return dev->mm == current->mm ? 0 : -EPERM;
476 }
477 EXPORT_SYMBOL_GPL(vhost_dev_check_owner);
478 
479 struct vhost_attach_cgroups_struct {
480 	struct vhost_work work;
481 	struct task_struct *owner;
482 	int ret;
483 };
484 
485 static void vhost_attach_cgroups_work(struct vhost_work *work)
486 {
487 	struct vhost_attach_cgroups_struct *s;
488 
489 	s = container_of(work, struct vhost_attach_cgroups_struct, work);
490 	s->ret = cgroup_attach_task_all(s->owner, current);
491 }
492 
493 static int vhost_attach_cgroups(struct vhost_dev *dev)
494 {
495 	struct vhost_attach_cgroups_struct attach;
496 
497 	attach.owner = current;
498 	vhost_work_init(&attach.work, vhost_attach_cgroups_work);
499 	vhost_work_queue(dev, &attach.work);
500 	vhost_work_flush(dev, &attach.work);
501 	return attach.ret;
502 }
503 
504 /* Caller should have device mutex */
505 bool vhost_dev_has_owner(struct vhost_dev *dev)
506 {
507 	return dev->mm;
508 }
509 EXPORT_SYMBOL_GPL(vhost_dev_has_owner);
510 
511 /* Caller should have device mutex */
512 long vhost_dev_set_owner(struct vhost_dev *dev)
513 {
514 	struct task_struct *worker;
515 	int err;
516 
517 	/* Is there an owner already? */
518 	if (vhost_dev_has_owner(dev)) {
519 		err = -EBUSY;
520 		goto err_mm;
521 	}
522 
523 	/* No owner, become one */
524 	dev->mm = get_task_mm(current);
525 	worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid);
526 	if (IS_ERR(worker)) {
527 		err = PTR_ERR(worker);
528 		goto err_worker;
529 	}
530 
531 	dev->worker = worker;
532 	wake_up_process(worker);	/* avoid contributing to loadavg */
533 
534 	err = vhost_attach_cgroups(dev);
535 	if (err)
536 		goto err_cgroup;
537 
538 	err = vhost_dev_alloc_iovecs(dev);
539 	if (err)
540 		goto err_cgroup;
541 
542 	return 0;
543 err_cgroup:
544 	kthread_stop(worker);
545 	dev->worker = NULL;
546 err_worker:
547 	if (dev->mm)
548 		mmput(dev->mm);
549 	dev->mm = NULL;
550 err_mm:
551 	return err;
552 }
553 EXPORT_SYMBOL_GPL(vhost_dev_set_owner);
554 
555 struct vhost_umem *vhost_dev_reset_owner_prepare(void)
556 {
557 	return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL);
558 }
559 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare);
560 
561 /* Caller should have device mutex */
562 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem)
563 {
564 	int i;
565 
566 	vhost_dev_cleanup(dev);
567 
568 	/* Restore memory to default empty mapping. */
569 	INIT_LIST_HEAD(&umem->umem_list);
570 	dev->umem = umem;
571 	/* We don't need VQ locks below since vhost_dev_cleanup makes sure
572 	 * VQs aren't running.
573 	 */
574 	for (i = 0; i < dev->nvqs; ++i)
575 		dev->vqs[i]->umem = umem;
576 }
577 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner);
578 
579 void vhost_dev_stop(struct vhost_dev *dev)
580 {
581 	int i;
582 
583 	for (i = 0; i < dev->nvqs; ++i) {
584 		if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) {
585 			vhost_poll_stop(&dev->vqs[i]->poll);
586 			vhost_poll_flush(&dev->vqs[i]->poll);
587 		}
588 	}
589 }
590 EXPORT_SYMBOL_GPL(vhost_dev_stop);
591 
592 static void vhost_umem_free(struct vhost_umem *umem,
593 			    struct vhost_umem_node *node)
594 {
595 	vhost_umem_interval_tree_remove(node, &umem->umem_tree);
596 	list_del(&node->link);
597 	kfree(node);
598 	umem->numem--;
599 }
600 
601 static void vhost_umem_clean(struct vhost_umem *umem)
602 {
603 	struct vhost_umem_node *node, *tmp;
604 
605 	if (!umem)
606 		return;
607 
608 	list_for_each_entry_safe(node, tmp, &umem->umem_list, link)
609 		vhost_umem_free(umem, node);
610 
611 	kvfree(umem);
612 }
613 
614 static void vhost_clear_msg(struct vhost_dev *dev)
615 {
616 	struct vhost_msg_node *node, *n;
617 
618 	spin_lock(&dev->iotlb_lock);
619 
620 	list_for_each_entry_safe(node, n, &dev->read_list, node) {
621 		list_del(&node->node);
622 		kfree(node);
623 	}
624 
625 	list_for_each_entry_safe(node, n, &dev->pending_list, node) {
626 		list_del(&node->node);
627 		kfree(node);
628 	}
629 
630 	spin_unlock(&dev->iotlb_lock);
631 }
632 
633 void vhost_dev_cleanup(struct vhost_dev *dev)
634 {
635 	int i;
636 
637 	for (i = 0; i < dev->nvqs; ++i) {
638 		if (dev->vqs[i]->error_ctx)
639 			eventfd_ctx_put(dev->vqs[i]->error_ctx);
640 		if (dev->vqs[i]->kick)
641 			fput(dev->vqs[i]->kick);
642 		if (dev->vqs[i]->call_ctx)
643 			eventfd_ctx_put(dev->vqs[i]->call_ctx);
644 		vhost_vq_reset(dev, dev->vqs[i]);
645 	}
646 	vhost_dev_free_iovecs(dev);
647 	if (dev->log_ctx)
648 		eventfd_ctx_put(dev->log_ctx);
649 	dev->log_ctx = NULL;
650 	/* No one will access memory at this point */
651 	vhost_umem_clean(dev->umem);
652 	dev->umem = NULL;
653 	vhost_umem_clean(dev->iotlb);
654 	dev->iotlb = NULL;
655 	vhost_clear_msg(dev);
656 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
657 	WARN_ON(!llist_empty(&dev->work_list));
658 	if (dev->worker) {
659 		kthread_stop(dev->worker);
660 		dev->worker = NULL;
661 	}
662 	if (dev->mm)
663 		mmput(dev->mm);
664 	dev->mm = NULL;
665 }
666 EXPORT_SYMBOL_GPL(vhost_dev_cleanup);
667 
668 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz)
669 {
670 	u64 a = addr / VHOST_PAGE_SIZE / 8;
671 
672 	/* Make sure 64 bit math will not overflow. */
673 	if (a > ULONG_MAX - (unsigned long)log_base ||
674 	    a + (unsigned long)log_base > ULONG_MAX)
675 		return false;
676 
677 	return access_ok(log_base + a,
678 			 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8);
679 }
680 
681 static bool vhost_overflow(u64 uaddr, u64 size)
682 {
683 	/* Make sure 64 bit math will not overflow. */
684 	return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size;
685 }
686 
687 /* Caller should have vq mutex and device mutex. */
688 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem,
689 				int log_all)
690 {
691 	struct vhost_umem_node *node;
692 
693 	if (!umem)
694 		return false;
695 
696 	list_for_each_entry(node, &umem->umem_list, link) {
697 		unsigned long a = node->userspace_addr;
698 
699 		if (vhost_overflow(node->userspace_addr, node->size))
700 			return false;
701 
702 
703 		if (!access_ok((void __user *)a,
704 				    node->size))
705 			return false;
706 		else if (log_all && !log_access_ok(log_base,
707 						   node->start,
708 						   node->size))
709 			return false;
710 	}
711 	return true;
712 }
713 
714 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq,
715 					       u64 addr, unsigned int size,
716 					       int type)
717 {
718 	const struct vhost_umem_node *node = vq->meta_iotlb[type];
719 
720 	if (!node)
721 		return NULL;
722 
723 	return (void *)(uintptr_t)(node->userspace_addr + addr - node->start);
724 }
725 
726 /* Can we switch to this memory table? */
727 /* Caller should have device mutex but not vq mutex */
728 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem,
729 			     int log_all)
730 {
731 	int i;
732 
733 	for (i = 0; i < d->nvqs; ++i) {
734 		bool ok;
735 		bool log;
736 
737 		mutex_lock(&d->vqs[i]->mutex);
738 		log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL);
739 		/* If ring is inactive, will check when it's enabled. */
740 		if (d->vqs[i]->private_data)
741 			ok = vq_memory_access_ok(d->vqs[i]->log_base,
742 						 umem, log);
743 		else
744 			ok = true;
745 		mutex_unlock(&d->vqs[i]->mutex);
746 		if (!ok)
747 			return false;
748 	}
749 	return true;
750 }
751 
752 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
753 			  struct iovec iov[], int iov_size, int access);
754 
755 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to,
756 			      const void *from, unsigned size)
757 {
758 	int ret;
759 
760 	if (!vq->iotlb)
761 		return __copy_to_user(to, from, size);
762 	else {
763 		/* This function should be called after iotlb
764 		 * prefetch, which means we're sure that all vq
765 		 * could be access through iotlb. So -EAGAIN should
766 		 * not happen in this case.
767 		 */
768 		struct iov_iter t;
769 		void __user *uaddr = vhost_vq_meta_fetch(vq,
770 				     (u64)(uintptr_t)to, size,
771 				     VHOST_ADDR_USED);
772 
773 		if (uaddr)
774 			return __copy_to_user(uaddr, from, size);
775 
776 		ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov,
777 				     ARRAY_SIZE(vq->iotlb_iov),
778 				     VHOST_ACCESS_WO);
779 		if (ret < 0)
780 			goto out;
781 		iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size);
782 		ret = copy_to_iter(from, size, &t);
783 		if (ret == size)
784 			ret = 0;
785 	}
786 out:
787 	return ret;
788 }
789 
790 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to,
791 				void __user *from, unsigned size)
792 {
793 	int ret;
794 
795 	if (!vq->iotlb)
796 		return __copy_from_user(to, from, size);
797 	else {
798 		/* This function should be called after iotlb
799 		 * prefetch, which means we're sure that vq
800 		 * could be access through iotlb. So -EAGAIN should
801 		 * not happen in this case.
802 		 */
803 		void __user *uaddr = vhost_vq_meta_fetch(vq,
804 				     (u64)(uintptr_t)from, size,
805 				     VHOST_ADDR_DESC);
806 		struct iov_iter f;
807 
808 		if (uaddr)
809 			return __copy_from_user(to, uaddr, size);
810 
811 		ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov,
812 				     ARRAY_SIZE(vq->iotlb_iov),
813 				     VHOST_ACCESS_RO);
814 		if (ret < 0) {
815 			vq_err(vq, "IOTLB translation failure: uaddr "
816 			       "%p size 0x%llx\n", from,
817 			       (unsigned long long) size);
818 			goto out;
819 		}
820 		iov_iter_init(&f, READ, vq->iotlb_iov, ret, size);
821 		ret = copy_from_iter(to, size, &f);
822 		if (ret == size)
823 			ret = 0;
824 	}
825 
826 out:
827 	return ret;
828 }
829 
830 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq,
831 					  void __user *addr, unsigned int size,
832 					  int type)
833 {
834 	int ret;
835 
836 	ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov,
837 			     ARRAY_SIZE(vq->iotlb_iov),
838 			     VHOST_ACCESS_RO);
839 	if (ret < 0) {
840 		vq_err(vq, "IOTLB translation failure: uaddr "
841 			"%p size 0x%llx\n", addr,
842 			(unsigned long long) size);
843 		return NULL;
844 	}
845 
846 	if (ret != 1 || vq->iotlb_iov[0].iov_len != size) {
847 		vq_err(vq, "Non atomic userspace memory access: uaddr "
848 			"%p size 0x%llx\n", addr,
849 			(unsigned long long) size);
850 		return NULL;
851 	}
852 
853 	return vq->iotlb_iov[0].iov_base;
854 }
855 
856 /* This function should be called after iotlb
857  * prefetch, which means we're sure that vq
858  * could be access through iotlb. So -EAGAIN should
859  * not happen in this case.
860  */
861 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq,
862 					    void *addr, unsigned int size,
863 					    int type)
864 {
865 	void __user *uaddr = vhost_vq_meta_fetch(vq,
866 			     (u64)(uintptr_t)addr, size, type);
867 	if (uaddr)
868 		return uaddr;
869 
870 	return __vhost_get_user_slow(vq, addr, size, type);
871 }
872 
873 #define vhost_put_user(vq, x, ptr)		\
874 ({ \
875 	int ret = -EFAULT; \
876 	if (!vq->iotlb) { \
877 		ret = __put_user(x, ptr); \
878 	} else { \
879 		__typeof__(ptr) to = \
880 			(__typeof__(ptr)) __vhost_get_user(vq, ptr,	\
881 					  sizeof(*ptr), VHOST_ADDR_USED); \
882 		if (to != NULL) \
883 			ret = __put_user(x, to); \
884 		else \
885 			ret = -EFAULT;	\
886 	} \
887 	ret; \
888 })
889 
890 #define vhost_get_user(vq, x, ptr, type)		\
891 ({ \
892 	int ret; \
893 	if (!vq->iotlb) { \
894 		ret = __get_user(x, ptr); \
895 	} else { \
896 		__typeof__(ptr) from = \
897 			(__typeof__(ptr)) __vhost_get_user(vq, ptr, \
898 							   sizeof(*ptr), \
899 							   type); \
900 		if (from != NULL) \
901 			ret = __get_user(x, from); \
902 		else \
903 			ret = -EFAULT; \
904 	} \
905 	ret; \
906 })
907 
908 #define vhost_get_avail(vq, x, ptr) \
909 	vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL)
910 
911 #define vhost_get_used(vq, x, ptr) \
912 	vhost_get_user(vq, x, ptr, VHOST_ADDR_USED)
913 
914 static void vhost_dev_lock_vqs(struct vhost_dev *d)
915 {
916 	int i = 0;
917 	for (i = 0; i < d->nvqs; ++i)
918 		mutex_lock_nested(&d->vqs[i]->mutex, i);
919 }
920 
921 static void vhost_dev_unlock_vqs(struct vhost_dev *d)
922 {
923 	int i = 0;
924 	for (i = 0; i < d->nvqs; ++i)
925 		mutex_unlock(&d->vqs[i]->mutex);
926 }
927 
928 static int vhost_new_umem_range(struct vhost_umem *umem,
929 				u64 start, u64 size, u64 end,
930 				u64 userspace_addr, int perm)
931 {
932 	struct vhost_umem_node *tmp, *node;
933 
934 	if (!size)
935 		return -EFAULT;
936 
937 	node = kmalloc(sizeof(*node), GFP_ATOMIC);
938 	if (!node)
939 		return -ENOMEM;
940 
941 	if (umem->numem == max_iotlb_entries) {
942 		tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link);
943 		vhost_umem_free(umem, tmp);
944 	}
945 
946 	node->start = start;
947 	node->size = size;
948 	node->last = end;
949 	node->userspace_addr = userspace_addr;
950 	node->perm = perm;
951 	INIT_LIST_HEAD(&node->link);
952 	list_add_tail(&node->link, &umem->umem_list);
953 	vhost_umem_interval_tree_insert(node, &umem->umem_tree);
954 	umem->numem++;
955 
956 	return 0;
957 }
958 
959 static void vhost_del_umem_range(struct vhost_umem *umem,
960 				 u64 start, u64 end)
961 {
962 	struct vhost_umem_node *node;
963 
964 	while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
965 							   start, end)))
966 		vhost_umem_free(umem, node);
967 }
968 
969 static void vhost_iotlb_notify_vq(struct vhost_dev *d,
970 				  struct vhost_iotlb_msg *msg)
971 {
972 	struct vhost_msg_node *node, *n;
973 
974 	spin_lock(&d->iotlb_lock);
975 
976 	list_for_each_entry_safe(node, n, &d->pending_list, node) {
977 		struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb;
978 		if (msg->iova <= vq_msg->iova &&
979 		    msg->iova + msg->size - 1 >= vq_msg->iova &&
980 		    vq_msg->type == VHOST_IOTLB_MISS) {
981 			vhost_poll_queue(&node->vq->poll);
982 			list_del(&node->node);
983 			kfree(node);
984 		}
985 	}
986 
987 	spin_unlock(&d->iotlb_lock);
988 }
989 
990 static bool umem_access_ok(u64 uaddr, u64 size, int access)
991 {
992 	unsigned long a = uaddr;
993 
994 	/* Make sure 64 bit math will not overflow. */
995 	if (vhost_overflow(uaddr, size))
996 		return false;
997 
998 	if ((access & VHOST_ACCESS_RO) &&
999 	    !access_ok((void __user *)a, size))
1000 		return false;
1001 	if ((access & VHOST_ACCESS_WO) &&
1002 	    !access_ok((void __user *)a, size))
1003 		return false;
1004 	return true;
1005 }
1006 
1007 static int vhost_process_iotlb_msg(struct vhost_dev *dev,
1008 				   struct vhost_iotlb_msg *msg)
1009 {
1010 	int ret = 0;
1011 
1012 	mutex_lock(&dev->mutex);
1013 	vhost_dev_lock_vqs(dev);
1014 	switch (msg->type) {
1015 	case VHOST_IOTLB_UPDATE:
1016 		if (!dev->iotlb) {
1017 			ret = -EFAULT;
1018 			break;
1019 		}
1020 		if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) {
1021 			ret = -EFAULT;
1022 			break;
1023 		}
1024 		vhost_vq_meta_reset(dev);
1025 		if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size,
1026 					 msg->iova + msg->size - 1,
1027 					 msg->uaddr, msg->perm)) {
1028 			ret = -ENOMEM;
1029 			break;
1030 		}
1031 		vhost_iotlb_notify_vq(dev, msg);
1032 		break;
1033 	case VHOST_IOTLB_INVALIDATE:
1034 		if (!dev->iotlb) {
1035 			ret = -EFAULT;
1036 			break;
1037 		}
1038 		vhost_vq_meta_reset(dev);
1039 		vhost_del_umem_range(dev->iotlb, msg->iova,
1040 				     msg->iova + msg->size - 1);
1041 		break;
1042 	default:
1043 		ret = -EINVAL;
1044 		break;
1045 	}
1046 
1047 	vhost_dev_unlock_vqs(dev);
1048 	mutex_unlock(&dev->mutex);
1049 
1050 	return ret;
1051 }
1052 ssize_t vhost_chr_write_iter(struct vhost_dev *dev,
1053 			     struct iov_iter *from)
1054 {
1055 	struct vhost_iotlb_msg msg;
1056 	size_t offset;
1057 	int type, ret;
1058 
1059 	ret = copy_from_iter(&type, sizeof(type), from);
1060 	if (ret != sizeof(type)) {
1061 		ret = -EINVAL;
1062 		goto done;
1063 	}
1064 
1065 	switch (type) {
1066 	case VHOST_IOTLB_MSG:
1067 		/* There maybe a hole after type for V1 message type,
1068 		 * so skip it here.
1069 		 */
1070 		offset = offsetof(struct vhost_msg, iotlb) - sizeof(int);
1071 		break;
1072 	case VHOST_IOTLB_MSG_V2:
1073 		offset = sizeof(__u32);
1074 		break;
1075 	default:
1076 		ret = -EINVAL;
1077 		goto done;
1078 	}
1079 
1080 	iov_iter_advance(from, offset);
1081 	ret = copy_from_iter(&msg, sizeof(msg), from);
1082 	if (ret != sizeof(msg)) {
1083 		ret = -EINVAL;
1084 		goto done;
1085 	}
1086 	if (vhost_process_iotlb_msg(dev, &msg)) {
1087 		ret = -EFAULT;
1088 		goto done;
1089 	}
1090 
1091 	ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) :
1092 	      sizeof(struct vhost_msg_v2);
1093 done:
1094 	return ret;
1095 }
1096 EXPORT_SYMBOL(vhost_chr_write_iter);
1097 
1098 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev,
1099 			    poll_table *wait)
1100 {
1101 	__poll_t mask = 0;
1102 
1103 	poll_wait(file, &dev->wait, wait);
1104 
1105 	if (!list_empty(&dev->read_list))
1106 		mask |= EPOLLIN | EPOLLRDNORM;
1107 
1108 	return mask;
1109 }
1110 EXPORT_SYMBOL(vhost_chr_poll);
1111 
1112 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to,
1113 			    int noblock)
1114 {
1115 	DEFINE_WAIT(wait);
1116 	struct vhost_msg_node *node;
1117 	ssize_t ret = 0;
1118 	unsigned size = sizeof(struct vhost_msg);
1119 
1120 	if (iov_iter_count(to) < size)
1121 		return 0;
1122 
1123 	while (1) {
1124 		if (!noblock)
1125 			prepare_to_wait(&dev->wait, &wait,
1126 					TASK_INTERRUPTIBLE);
1127 
1128 		node = vhost_dequeue_msg(dev, &dev->read_list);
1129 		if (node)
1130 			break;
1131 		if (noblock) {
1132 			ret = -EAGAIN;
1133 			break;
1134 		}
1135 		if (signal_pending(current)) {
1136 			ret = -ERESTARTSYS;
1137 			break;
1138 		}
1139 		if (!dev->iotlb) {
1140 			ret = -EBADFD;
1141 			break;
1142 		}
1143 
1144 		schedule();
1145 	}
1146 
1147 	if (!noblock)
1148 		finish_wait(&dev->wait, &wait);
1149 
1150 	if (node) {
1151 		struct vhost_iotlb_msg *msg;
1152 		void *start = &node->msg;
1153 
1154 		switch (node->msg.type) {
1155 		case VHOST_IOTLB_MSG:
1156 			size = sizeof(node->msg);
1157 			msg = &node->msg.iotlb;
1158 			break;
1159 		case VHOST_IOTLB_MSG_V2:
1160 			size = sizeof(node->msg_v2);
1161 			msg = &node->msg_v2.iotlb;
1162 			break;
1163 		default:
1164 			BUG();
1165 			break;
1166 		}
1167 
1168 		ret = copy_to_iter(start, size, to);
1169 		if (ret != size || msg->type != VHOST_IOTLB_MISS) {
1170 			kfree(node);
1171 			return ret;
1172 		}
1173 		vhost_enqueue_msg(dev, &dev->pending_list, node);
1174 	}
1175 
1176 	return ret;
1177 }
1178 EXPORT_SYMBOL_GPL(vhost_chr_read_iter);
1179 
1180 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access)
1181 {
1182 	struct vhost_dev *dev = vq->dev;
1183 	struct vhost_msg_node *node;
1184 	struct vhost_iotlb_msg *msg;
1185 	bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2);
1186 
1187 	node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG);
1188 	if (!node)
1189 		return -ENOMEM;
1190 
1191 	if (v2) {
1192 		node->msg_v2.type = VHOST_IOTLB_MSG_V2;
1193 		msg = &node->msg_v2.iotlb;
1194 	} else {
1195 		msg = &node->msg.iotlb;
1196 	}
1197 
1198 	msg->type = VHOST_IOTLB_MISS;
1199 	msg->iova = iova;
1200 	msg->perm = access;
1201 
1202 	vhost_enqueue_msg(dev, &dev->read_list, node);
1203 
1204 	return 0;
1205 }
1206 
1207 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num,
1208 			 struct vring_desc __user *desc,
1209 			 struct vring_avail __user *avail,
1210 			 struct vring_used __user *used)
1211 
1212 {
1213 	size_t s __maybe_unused = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1214 
1215 	return access_ok(desc, num * sizeof *desc) &&
1216 	       access_ok(avail,
1217 			 sizeof *avail + num * sizeof *avail->ring + s) &&
1218 	       access_ok(used,
1219 			sizeof *used + num * sizeof *used->ring + s);
1220 }
1221 
1222 static void vhost_vq_meta_update(struct vhost_virtqueue *vq,
1223 				 const struct vhost_umem_node *node,
1224 				 int type)
1225 {
1226 	int access = (type == VHOST_ADDR_USED) ?
1227 		     VHOST_ACCESS_WO : VHOST_ACCESS_RO;
1228 
1229 	if (likely(node->perm & access))
1230 		vq->meta_iotlb[type] = node;
1231 }
1232 
1233 static bool iotlb_access_ok(struct vhost_virtqueue *vq,
1234 			    int access, u64 addr, u64 len, int type)
1235 {
1236 	const struct vhost_umem_node *node;
1237 	struct vhost_umem *umem = vq->iotlb;
1238 	u64 s = 0, size, orig_addr = addr, last = addr + len - 1;
1239 
1240 	if (vhost_vq_meta_fetch(vq, addr, len, type))
1241 		return true;
1242 
1243 	while (len > s) {
1244 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1245 							   addr,
1246 							   last);
1247 		if (node == NULL || node->start > addr) {
1248 			vhost_iotlb_miss(vq, addr, access);
1249 			return false;
1250 		} else if (!(node->perm & access)) {
1251 			/* Report the possible access violation by
1252 			 * request another translation from userspace.
1253 			 */
1254 			return false;
1255 		}
1256 
1257 		size = node->size - addr + node->start;
1258 
1259 		if (orig_addr == addr && size >= len)
1260 			vhost_vq_meta_update(vq, node, type);
1261 
1262 		s += size;
1263 		addr += size;
1264 	}
1265 
1266 	return true;
1267 }
1268 
1269 int vq_iotlb_prefetch(struct vhost_virtqueue *vq)
1270 {
1271 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1272 	unsigned int num = vq->num;
1273 
1274 	if (!vq->iotlb)
1275 		return 1;
1276 
1277 	return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc,
1278 			       num * sizeof(*vq->desc), VHOST_ADDR_DESC) &&
1279 	       iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail,
1280 			       sizeof *vq->avail +
1281 			       num * sizeof(*vq->avail->ring) + s,
1282 			       VHOST_ADDR_AVAIL) &&
1283 	       iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used,
1284 			       sizeof *vq->used +
1285 			       num * sizeof(*vq->used->ring) + s,
1286 			       VHOST_ADDR_USED);
1287 }
1288 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch);
1289 
1290 /* Can we log writes? */
1291 /* Caller should have device mutex but not vq mutex */
1292 bool vhost_log_access_ok(struct vhost_dev *dev)
1293 {
1294 	return memory_access_ok(dev, dev->umem, 1);
1295 }
1296 EXPORT_SYMBOL_GPL(vhost_log_access_ok);
1297 
1298 /* Verify access for write logging. */
1299 /* Caller should have vq mutex and device mutex */
1300 static bool vq_log_access_ok(struct vhost_virtqueue *vq,
1301 			     void __user *log_base)
1302 {
1303 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1304 
1305 	return vq_memory_access_ok(log_base, vq->umem,
1306 				   vhost_has_feature(vq, VHOST_F_LOG_ALL)) &&
1307 		(!vq->log_used || log_access_ok(log_base, vq->log_addr,
1308 					sizeof *vq->used +
1309 					vq->num * sizeof *vq->used->ring + s));
1310 }
1311 
1312 /* Can we start vq? */
1313 /* Caller should have vq mutex and device mutex */
1314 bool vhost_vq_access_ok(struct vhost_virtqueue *vq)
1315 {
1316 	if (!vq_log_access_ok(vq, vq->log_base))
1317 		return false;
1318 
1319 	/* Access validation occurs at prefetch time with IOTLB */
1320 	if (vq->iotlb)
1321 		return true;
1322 
1323 	return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used);
1324 }
1325 EXPORT_SYMBOL_GPL(vhost_vq_access_ok);
1326 
1327 static struct vhost_umem *vhost_umem_alloc(void)
1328 {
1329 	struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL);
1330 
1331 	if (!umem)
1332 		return NULL;
1333 
1334 	umem->umem_tree = RB_ROOT_CACHED;
1335 	umem->numem = 0;
1336 	INIT_LIST_HEAD(&umem->umem_list);
1337 
1338 	return umem;
1339 }
1340 
1341 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
1342 {
1343 	struct vhost_memory mem, *newmem;
1344 	struct vhost_memory_region *region;
1345 	struct vhost_umem *newumem, *oldumem;
1346 	unsigned long size = offsetof(struct vhost_memory, regions);
1347 	int i;
1348 
1349 	if (copy_from_user(&mem, m, size))
1350 		return -EFAULT;
1351 	if (mem.padding)
1352 		return -EOPNOTSUPP;
1353 	if (mem.nregions > max_mem_regions)
1354 		return -E2BIG;
1355 	newmem = kvzalloc(struct_size(newmem, regions, mem.nregions),
1356 			GFP_KERNEL);
1357 	if (!newmem)
1358 		return -ENOMEM;
1359 
1360 	memcpy(newmem, &mem, size);
1361 	if (copy_from_user(newmem->regions, m->regions,
1362 			   mem.nregions * sizeof *m->regions)) {
1363 		kvfree(newmem);
1364 		return -EFAULT;
1365 	}
1366 
1367 	newumem = vhost_umem_alloc();
1368 	if (!newumem) {
1369 		kvfree(newmem);
1370 		return -ENOMEM;
1371 	}
1372 
1373 	for (region = newmem->regions;
1374 	     region < newmem->regions + mem.nregions;
1375 	     region++) {
1376 		if (vhost_new_umem_range(newumem,
1377 					 region->guest_phys_addr,
1378 					 region->memory_size,
1379 					 region->guest_phys_addr +
1380 					 region->memory_size - 1,
1381 					 region->userspace_addr,
1382 					 VHOST_ACCESS_RW))
1383 			goto err;
1384 	}
1385 
1386 	if (!memory_access_ok(d, newumem, 0))
1387 		goto err;
1388 
1389 	oldumem = d->umem;
1390 	d->umem = newumem;
1391 
1392 	/* All memory accesses are done under some VQ mutex. */
1393 	for (i = 0; i < d->nvqs; ++i) {
1394 		mutex_lock(&d->vqs[i]->mutex);
1395 		d->vqs[i]->umem = newumem;
1396 		mutex_unlock(&d->vqs[i]->mutex);
1397 	}
1398 
1399 	kvfree(newmem);
1400 	vhost_umem_clean(oldumem);
1401 	return 0;
1402 
1403 err:
1404 	vhost_umem_clean(newumem);
1405 	kvfree(newmem);
1406 	return -EFAULT;
1407 }
1408 
1409 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1410 {
1411 	struct file *eventfp, *filep = NULL;
1412 	bool pollstart = false, pollstop = false;
1413 	struct eventfd_ctx *ctx = NULL;
1414 	u32 __user *idxp = argp;
1415 	struct vhost_virtqueue *vq;
1416 	struct vhost_vring_state s;
1417 	struct vhost_vring_file f;
1418 	struct vhost_vring_addr a;
1419 	u32 idx;
1420 	long r;
1421 
1422 	r = get_user(idx, idxp);
1423 	if (r < 0)
1424 		return r;
1425 	if (idx >= d->nvqs)
1426 		return -ENOBUFS;
1427 
1428 	idx = array_index_nospec(idx, d->nvqs);
1429 	vq = d->vqs[idx];
1430 
1431 	mutex_lock(&vq->mutex);
1432 
1433 	switch (ioctl) {
1434 	case VHOST_SET_VRING_NUM:
1435 		/* Resizing ring with an active backend?
1436 		 * You don't want to do that. */
1437 		if (vq->private_data) {
1438 			r = -EBUSY;
1439 			break;
1440 		}
1441 		if (copy_from_user(&s, argp, sizeof s)) {
1442 			r = -EFAULT;
1443 			break;
1444 		}
1445 		if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) {
1446 			r = -EINVAL;
1447 			break;
1448 		}
1449 		vq->num = s.num;
1450 		break;
1451 	case VHOST_SET_VRING_BASE:
1452 		/* Moving base with an active backend?
1453 		 * You don't want to do that. */
1454 		if (vq->private_data) {
1455 			r = -EBUSY;
1456 			break;
1457 		}
1458 		if (copy_from_user(&s, argp, sizeof s)) {
1459 			r = -EFAULT;
1460 			break;
1461 		}
1462 		if (s.num > 0xffff) {
1463 			r = -EINVAL;
1464 			break;
1465 		}
1466 		vq->last_avail_idx = s.num;
1467 		/* Forget the cached index value. */
1468 		vq->avail_idx = vq->last_avail_idx;
1469 		break;
1470 	case VHOST_GET_VRING_BASE:
1471 		s.index = idx;
1472 		s.num = vq->last_avail_idx;
1473 		if (copy_to_user(argp, &s, sizeof s))
1474 			r = -EFAULT;
1475 		break;
1476 	case VHOST_SET_VRING_ADDR:
1477 		if (copy_from_user(&a, argp, sizeof a)) {
1478 			r = -EFAULT;
1479 			break;
1480 		}
1481 		if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) {
1482 			r = -EOPNOTSUPP;
1483 			break;
1484 		}
1485 		/* For 32bit, verify that the top 32bits of the user
1486 		   data are set to zero. */
1487 		if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr ||
1488 		    (u64)(unsigned long)a.used_user_addr != a.used_user_addr ||
1489 		    (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) {
1490 			r = -EFAULT;
1491 			break;
1492 		}
1493 
1494 		/* Make sure it's safe to cast pointers to vring types. */
1495 		BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE);
1496 		BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE);
1497 		if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) ||
1498 		    (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) ||
1499 		    (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) {
1500 			r = -EINVAL;
1501 			break;
1502 		}
1503 
1504 		/* We only verify access here if backend is configured.
1505 		 * If it is not, we don't as size might not have been setup.
1506 		 * We will verify when backend is configured. */
1507 		if (vq->private_data) {
1508 			if (!vq_access_ok(vq, vq->num,
1509 				(void __user *)(unsigned long)a.desc_user_addr,
1510 				(void __user *)(unsigned long)a.avail_user_addr,
1511 				(void __user *)(unsigned long)a.used_user_addr)) {
1512 				r = -EINVAL;
1513 				break;
1514 			}
1515 
1516 			/* Also validate log access for used ring if enabled. */
1517 			if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) &&
1518 			    !log_access_ok(vq->log_base, a.log_guest_addr,
1519 					   sizeof *vq->used +
1520 					   vq->num * sizeof *vq->used->ring)) {
1521 				r = -EINVAL;
1522 				break;
1523 			}
1524 		}
1525 
1526 		vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG));
1527 		vq->desc = (void __user *)(unsigned long)a.desc_user_addr;
1528 		vq->avail = (void __user *)(unsigned long)a.avail_user_addr;
1529 		vq->log_addr = a.log_guest_addr;
1530 		vq->used = (void __user *)(unsigned long)a.used_user_addr;
1531 		break;
1532 	case VHOST_SET_VRING_KICK:
1533 		if (copy_from_user(&f, argp, sizeof f)) {
1534 			r = -EFAULT;
1535 			break;
1536 		}
1537 		eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd);
1538 		if (IS_ERR(eventfp)) {
1539 			r = PTR_ERR(eventfp);
1540 			break;
1541 		}
1542 		if (eventfp != vq->kick) {
1543 			pollstop = (filep = vq->kick) != NULL;
1544 			pollstart = (vq->kick = eventfp) != NULL;
1545 		} else
1546 			filep = eventfp;
1547 		break;
1548 	case VHOST_SET_VRING_CALL:
1549 		if (copy_from_user(&f, argp, sizeof f)) {
1550 			r = -EFAULT;
1551 			break;
1552 		}
1553 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1554 		if (IS_ERR(ctx)) {
1555 			r = PTR_ERR(ctx);
1556 			break;
1557 		}
1558 		swap(ctx, vq->call_ctx);
1559 		break;
1560 	case VHOST_SET_VRING_ERR:
1561 		if (copy_from_user(&f, argp, sizeof f)) {
1562 			r = -EFAULT;
1563 			break;
1564 		}
1565 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1566 		if (IS_ERR(ctx)) {
1567 			r = PTR_ERR(ctx);
1568 			break;
1569 		}
1570 		swap(ctx, vq->error_ctx);
1571 		break;
1572 	case VHOST_SET_VRING_ENDIAN:
1573 		r = vhost_set_vring_endian(vq, argp);
1574 		break;
1575 	case VHOST_GET_VRING_ENDIAN:
1576 		r = vhost_get_vring_endian(vq, idx, argp);
1577 		break;
1578 	case VHOST_SET_VRING_BUSYLOOP_TIMEOUT:
1579 		if (copy_from_user(&s, argp, sizeof(s))) {
1580 			r = -EFAULT;
1581 			break;
1582 		}
1583 		vq->busyloop_timeout = s.num;
1584 		break;
1585 	case VHOST_GET_VRING_BUSYLOOP_TIMEOUT:
1586 		s.index = idx;
1587 		s.num = vq->busyloop_timeout;
1588 		if (copy_to_user(argp, &s, sizeof(s)))
1589 			r = -EFAULT;
1590 		break;
1591 	default:
1592 		r = -ENOIOCTLCMD;
1593 	}
1594 
1595 	if (pollstop && vq->handle_kick)
1596 		vhost_poll_stop(&vq->poll);
1597 
1598 	if (!IS_ERR_OR_NULL(ctx))
1599 		eventfd_ctx_put(ctx);
1600 	if (filep)
1601 		fput(filep);
1602 
1603 	if (pollstart && vq->handle_kick)
1604 		r = vhost_poll_start(&vq->poll, vq->kick);
1605 
1606 	mutex_unlock(&vq->mutex);
1607 
1608 	if (pollstop && vq->handle_kick)
1609 		vhost_poll_flush(&vq->poll);
1610 	return r;
1611 }
1612 EXPORT_SYMBOL_GPL(vhost_vring_ioctl);
1613 
1614 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled)
1615 {
1616 	struct vhost_umem *niotlb, *oiotlb;
1617 	int i;
1618 
1619 	niotlb = vhost_umem_alloc();
1620 	if (!niotlb)
1621 		return -ENOMEM;
1622 
1623 	oiotlb = d->iotlb;
1624 	d->iotlb = niotlb;
1625 
1626 	for (i = 0; i < d->nvqs; ++i) {
1627 		struct vhost_virtqueue *vq = d->vqs[i];
1628 
1629 		mutex_lock(&vq->mutex);
1630 		vq->iotlb = niotlb;
1631 		__vhost_vq_meta_reset(vq);
1632 		mutex_unlock(&vq->mutex);
1633 	}
1634 
1635 	vhost_umem_clean(oiotlb);
1636 
1637 	return 0;
1638 }
1639 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb);
1640 
1641 /* Caller must have device mutex */
1642 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1643 {
1644 	struct eventfd_ctx *ctx;
1645 	u64 p;
1646 	long r;
1647 	int i, fd;
1648 
1649 	/* If you are not the owner, you can become one */
1650 	if (ioctl == VHOST_SET_OWNER) {
1651 		r = vhost_dev_set_owner(d);
1652 		goto done;
1653 	}
1654 
1655 	/* You must be the owner to do anything else */
1656 	r = vhost_dev_check_owner(d);
1657 	if (r)
1658 		goto done;
1659 
1660 	switch (ioctl) {
1661 	case VHOST_SET_MEM_TABLE:
1662 		r = vhost_set_memory(d, argp);
1663 		break;
1664 	case VHOST_SET_LOG_BASE:
1665 		if (copy_from_user(&p, argp, sizeof p)) {
1666 			r = -EFAULT;
1667 			break;
1668 		}
1669 		if ((u64)(unsigned long)p != p) {
1670 			r = -EFAULT;
1671 			break;
1672 		}
1673 		for (i = 0; i < d->nvqs; ++i) {
1674 			struct vhost_virtqueue *vq;
1675 			void __user *base = (void __user *)(unsigned long)p;
1676 			vq = d->vqs[i];
1677 			mutex_lock(&vq->mutex);
1678 			/* If ring is inactive, will check when it's enabled. */
1679 			if (vq->private_data && !vq_log_access_ok(vq, base))
1680 				r = -EFAULT;
1681 			else
1682 				vq->log_base = base;
1683 			mutex_unlock(&vq->mutex);
1684 		}
1685 		break;
1686 	case VHOST_SET_LOG_FD:
1687 		r = get_user(fd, (int __user *)argp);
1688 		if (r < 0)
1689 			break;
1690 		ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd);
1691 		if (IS_ERR(ctx)) {
1692 			r = PTR_ERR(ctx);
1693 			break;
1694 		}
1695 		swap(ctx, d->log_ctx);
1696 		for (i = 0; i < d->nvqs; ++i) {
1697 			mutex_lock(&d->vqs[i]->mutex);
1698 			d->vqs[i]->log_ctx = d->log_ctx;
1699 			mutex_unlock(&d->vqs[i]->mutex);
1700 		}
1701 		if (ctx)
1702 			eventfd_ctx_put(ctx);
1703 		break;
1704 	default:
1705 		r = -ENOIOCTLCMD;
1706 		break;
1707 	}
1708 done:
1709 	return r;
1710 }
1711 EXPORT_SYMBOL_GPL(vhost_dev_ioctl);
1712 
1713 /* TODO: This is really inefficient.  We need something like get_user()
1714  * (instruction directly accesses the data, with an exception table entry
1715  * returning -EFAULT). See Documentation/x86/exception-tables.txt.
1716  */
1717 static int set_bit_to_user(int nr, void __user *addr)
1718 {
1719 	unsigned long log = (unsigned long)addr;
1720 	struct page *page;
1721 	void *base;
1722 	int bit = nr + (log % PAGE_SIZE) * 8;
1723 	int r;
1724 
1725 	r = get_user_pages_fast(log, 1, FOLL_WRITE, &page);
1726 	if (r < 0)
1727 		return r;
1728 	BUG_ON(r != 1);
1729 	base = kmap_atomic(page);
1730 	set_bit(bit, base);
1731 	kunmap_atomic(base);
1732 	set_page_dirty_lock(page);
1733 	put_page(page);
1734 	return 0;
1735 }
1736 
1737 static int log_write(void __user *log_base,
1738 		     u64 write_address, u64 write_length)
1739 {
1740 	u64 write_page = write_address / VHOST_PAGE_SIZE;
1741 	int r;
1742 
1743 	if (!write_length)
1744 		return 0;
1745 	write_length += write_address % VHOST_PAGE_SIZE;
1746 	for (;;) {
1747 		u64 base = (u64)(unsigned long)log_base;
1748 		u64 log = base + write_page / 8;
1749 		int bit = write_page % 8;
1750 		if ((u64)(unsigned long)log != log)
1751 			return -EFAULT;
1752 		r = set_bit_to_user(bit, (void __user *)(unsigned long)log);
1753 		if (r < 0)
1754 			return r;
1755 		if (write_length <= VHOST_PAGE_SIZE)
1756 			break;
1757 		write_length -= VHOST_PAGE_SIZE;
1758 		write_page += 1;
1759 	}
1760 	return r;
1761 }
1762 
1763 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len)
1764 {
1765 	struct vhost_umem *umem = vq->umem;
1766 	struct vhost_umem_node *u;
1767 	u64 start, end, l, min;
1768 	int r;
1769 	bool hit = false;
1770 
1771 	while (len) {
1772 		min = len;
1773 		/* More than one GPAs can be mapped into a single HVA. So
1774 		 * iterate all possible umems here to be safe.
1775 		 */
1776 		list_for_each_entry(u, &umem->umem_list, link) {
1777 			if (u->userspace_addr > hva - 1 + len ||
1778 			    u->userspace_addr - 1 + u->size < hva)
1779 				continue;
1780 			start = max(u->userspace_addr, hva);
1781 			end = min(u->userspace_addr - 1 + u->size,
1782 				  hva - 1 + len);
1783 			l = end - start + 1;
1784 			r = log_write(vq->log_base,
1785 				      u->start + start - u->userspace_addr,
1786 				      l);
1787 			if (r < 0)
1788 				return r;
1789 			hit = true;
1790 			min = min(l, min);
1791 		}
1792 
1793 		if (!hit)
1794 			return -EFAULT;
1795 
1796 		len -= min;
1797 		hva += min;
1798 	}
1799 
1800 	return 0;
1801 }
1802 
1803 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len)
1804 {
1805 	struct iovec iov[64];
1806 	int i, ret;
1807 
1808 	if (!vq->iotlb)
1809 		return log_write(vq->log_base, vq->log_addr + used_offset, len);
1810 
1811 	ret = translate_desc(vq, (uintptr_t)vq->used + used_offset,
1812 			     len, iov, 64, VHOST_ACCESS_WO);
1813 	if (ret < 0)
1814 		return ret;
1815 
1816 	for (i = 0; i < ret; i++) {
1817 		ret = log_write_hva(vq,	(uintptr_t)iov[i].iov_base,
1818 				    iov[i].iov_len);
1819 		if (ret)
1820 			return ret;
1821 	}
1822 
1823 	return 0;
1824 }
1825 
1826 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log,
1827 		    unsigned int log_num, u64 len, struct iovec *iov, int count)
1828 {
1829 	int i, r;
1830 
1831 	/* Make sure data written is seen before log. */
1832 	smp_wmb();
1833 
1834 	if (vq->iotlb) {
1835 		for (i = 0; i < count; i++) {
1836 			r = log_write_hva(vq, (uintptr_t)iov[i].iov_base,
1837 					  iov[i].iov_len);
1838 			if (r < 0)
1839 				return r;
1840 		}
1841 		return 0;
1842 	}
1843 
1844 	for (i = 0; i < log_num; ++i) {
1845 		u64 l = min(log[i].len, len);
1846 		r = log_write(vq->log_base, log[i].addr, l);
1847 		if (r < 0)
1848 			return r;
1849 		len -= l;
1850 		if (!len) {
1851 			if (vq->log_ctx)
1852 				eventfd_signal(vq->log_ctx, 1);
1853 			return 0;
1854 		}
1855 	}
1856 	/* Length written exceeds what we have stored. This is a bug. */
1857 	BUG();
1858 	return 0;
1859 }
1860 EXPORT_SYMBOL_GPL(vhost_log_write);
1861 
1862 static int vhost_update_used_flags(struct vhost_virtqueue *vq)
1863 {
1864 	void __user *used;
1865 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags),
1866 			   &vq->used->flags) < 0)
1867 		return -EFAULT;
1868 	if (unlikely(vq->log_used)) {
1869 		/* Make sure the flag is seen before log. */
1870 		smp_wmb();
1871 		/* Log used flag write. */
1872 		used = &vq->used->flags;
1873 		log_used(vq, (used - (void __user *)vq->used),
1874 			 sizeof vq->used->flags);
1875 		if (vq->log_ctx)
1876 			eventfd_signal(vq->log_ctx, 1);
1877 	}
1878 	return 0;
1879 }
1880 
1881 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event)
1882 {
1883 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx),
1884 			   vhost_avail_event(vq)))
1885 		return -EFAULT;
1886 	if (unlikely(vq->log_used)) {
1887 		void __user *used;
1888 		/* Make sure the event is seen before log. */
1889 		smp_wmb();
1890 		/* Log avail event write */
1891 		used = vhost_avail_event(vq);
1892 		log_used(vq, (used - (void __user *)vq->used),
1893 			 sizeof *vhost_avail_event(vq));
1894 		if (vq->log_ctx)
1895 			eventfd_signal(vq->log_ctx, 1);
1896 	}
1897 	return 0;
1898 }
1899 
1900 int vhost_vq_init_access(struct vhost_virtqueue *vq)
1901 {
1902 	__virtio16 last_used_idx;
1903 	int r;
1904 	bool is_le = vq->is_le;
1905 
1906 	if (!vq->private_data)
1907 		return 0;
1908 
1909 	vhost_init_is_le(vq);
1910 
1911 	r = vhost_update_used_flags(vq);
1912 	if (r)
1913 		goto err;
1914 	vq->signalled_used_valid = false;
1915 	if (!vq->iotlb &&
1916 	    !access_ok(&vq->used->idx, sizeof vq->used->idx)) {
1917 		r = -EFAULT;
1918 		goto err;
1919 	}
1920 	r = vhost_get_used(vq, last_used_idx, &vq->used->idx);
1921 	if (r) {
1922 		vq_err(vq, "Can't access used idx at %p\n",
1923 		       &vq->used->idx);
1924 		goto err;
1925 	}
1926 	vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx);
1927 	return 0;
1928 
1929 err:
1930 	vq->is_le = is_le;
1931 	return r;
1932 }
1933 EXPORT_SYMBOL_GPL(vhost_vq_init_access);
1934 
1935 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
1936 			  struct iovec iov[], int iov_size, int access)
1937 {
1938 	const struct vhost_umem_node *node;
1939 	struct vhost_dev *dev = vq->dev;
1940 	struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem;
1941 	struct iovec *_iov;
1942 	u64 s = 0;
1943 	int ret = 0;
1944 
1945 	while ((u64)len > s) {
1946 		u64 size;
1947 		if (unlikely(ret >= iov_size)) {
1948 			ret = -ENOBUFS;
1949 			break;
1950 		}
1951 
1952 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1953 							addr, addr + len - 1);
1954 		if (node == NULL || node->start > addr) {
1955 			if (umem != dev->iotlb) {
1956 				ret = -EFAULT;
1957 				break;
1958 			}
1959 			ret = -EAGAIN;
1960 			break;
1961 		} else if (!(node->perm & access)) {
1962 			ret = -EPERM;
1963 			break;
1964 		}
1965 
1966 		_iov = iov + ret;
1967 		size = node->size - addr + node->start;
1968 		_iov->iov_len = min((u64)len - s, size);
1969 		_iov->iov_base = (void __user *)(unsigned long)
1970 			(node->userspace_addr + addr - node->start);
1971 		s += size;
1972 		addr += size;
1973 		++ret;
1974 	}
1975 
1976 	if (ret == -EAGAIN)
1977 		vhost_iotlb_miss(vq, addr, access);
1978 	return ret;
1979 }
1980 
1981 /* Each buffer in the virtqueues is actually a chain of descriptors.  This
1982  * function returns the next descriptor in the chain,
1983  * or -1U if we're at the end. */
1984 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc)
1985 {
1986 	unsigned int next;
1987 
1988 	/* If this descriptor says it doesn't chain, we're done. */
1989 	if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT)))
1990 		return -1U;
1991 
1992 	/* Check they're not leading us off end of descriptors. */
1993 	next = vhost16_to_cpu(vq, READ_ONCE(desc->next));
1994 	return next;
1995 }
1996 
1997 static int get_indirect(struct vhost_virtqueue *vq,
1998 			struct iovec iov[], unsigned int iov_size,
1999 			unsigned int *out_num, unsigned int *in_num,
2000 			struct vhost_log *log, unsigned int *log_num,
2001 			struct vring_desc *indirect)
2002 {
2003 	struct vring_desc desc;
2004 	unsigned int i = 0, count, found = 0;
2005 	u32 len = vhost32_to_cpu(vq, indirect->len);
2006 	struct iov_iter from;
2007 	int ret, access;
2008 
2009 	/* Sanity check */
2010 	if (unlikely(len % sizeof desc)) {
2011 		vq_err(vq, "Invalid length in indirect descriptor: "
2012 		       "len 0x%llx not multiple of 0x%zx\n",
2013 		       (unsigned long long)len,
2014 		       sizeof desc);
2015 		return -EINVAL;
2016 	}
2017 
2018 	ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect,
2019 			     UIO_MAXIOV, VHOST_ACCESS_RO);
2020 	if (unlikely(ret < 0)) {
2021 		if (ret != -EAGAIN)
2022 			vq_err(vq, "Translation failure %d in indirect.\n", ret);
2023 		return ret;
2024 	}
2025 	iov_iter_init(&from, READ, vq->indirect, ret, len);
2026 
2027 	/* We will use the result as an address to read from, so most
2028 	 * architectures only need a compiler barrier here. */
2029 	read_barrier_depends();
2030 
2031 	count = len / sizeof desc;
2032 	/* Buffers are chained via a 16 bit next field, so
2033 	 * we can have at most 2^16 of these. */
2034 	if (unlikely(count > USHRT_MAX + 1)) {
2035 		vq_err(vq, "Indirect buffer length too big: %d\n",
2036 		       indirect->len);
2037 		return -E2BIG;
2038 	}
2039 
2040 	do {
2041 		unsigned iov_count = *in_num + *out_num;
2042 		if (unlikely(++found > count)) {
2043 			vq_err(vq, "Loop detected: last one at %u "
2044 			       "indirect size %u\n",
2045 			       i, count);
2046 			return -EINVAL;
2047 		}
2048 		if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) {
2049 			vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n",
2050 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2051 			return -EINVAL;
2052 		}
2053 		if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) {
2054 			vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n",
2055 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2056 			return -EINVAL;
2057 		}
2058 
2059 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2060 			access = VHOST_ACCESS_WO;
2061 		else
2062 			access = VHOST_ACCESS_RO;
2063 
2064 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2065 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
2066 				     iov_size - iov_count, access);
2067 		if (unlikely(ret < 0)) {
2068 			if (ret != -EAGAIN)
2069 				vq_err(vq, "Translation failure %d indirect idx %d\n",
2070 					ret, i);
2071 			return ret;
2072 		}
2073 		/* If this is an input descriptor, increment that count. */
2074 		if (access == VHOST_ACCESS_WO) {
2075 			*in_num += ret;
2076 			if (unlikely(log)) {
2077 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2078 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2079 				++*log_num;
2080 			}
2081 		} else {
2082 			/* If it's an output descriptor, they're all supposed
2083 			 * to come before any input descriptors. */
2084 			if (unlikely(*in_num)) {
2085 				vq_err(vq, "Indirect descriptor "
2086 				       "has out after in: idx %d\n", i);
2087 				return -EINVAL;
2088 			}
2089 			*out_num += ret;
2090 		}
2091 	} while ((i = next_desc(vq, &desc)) != -1);
2092 	return 0;
2093 }
2094 
2095 /* This looks in the virtqueue and for the first available buffer, and converts
2096  * it to an iovec for convenient access.  Since descriptors consist of some
2097  * number of output then some number of input descriptors, it's actually two
2098  * iovecs, but we pack them into one and note how many of each there were.
2099  *
2100  * This function returns the descriptor number found, or vq->num (which is
2101  * never a valid descriptor number) if none was found.  A negative code is
2102  * returned on error. */
2103 int vhost_get_vq_desc(struct vhost_virtqueue *vq,
2104 		      struct iovec iov[], unsigned int iov_size,
2105 		      unsigned int *out_num, unsigned int *in_num,
2106 		      struct vhost_log *log, unsigned int *log_num)
2107 {
2108 	struct vring_desc desc;
2109 	unsigned int i, head, found = 0;
2110 	u16 last_avail_idx;
2111 	__virtio16 avail_idx;
2112 	__virtio16 ring_head;
2113 	int ret, access;
2114 
2115 	/* Check it isn't doing very strange things with descriptor numbers. */
2116 	last_avail_idx = vq->last_avail_idx;
2117 
2118 	if (vq->avail_idx == vq->last_avail_idx) {
2119 		if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) {
2120 			vq_err(vq, "Failed to access avail idx at %p\n",
2121 				&vq->avail->idx);
2122 			return -EFAULT;
2123 		}
2124 		vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2125 
2126 		if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) {
2127 			vq_err(vq, "Guest moved used index from %u to %u",
2128 				last_avail_idx, vq->avail_idx);
2129 			return -EFAULT;
2130 		}
2131 
2132 		/* If there's nothing new since last we looked, return
2133 		 * invalid.
2134 		 */
2135 		if (vq->avail_idx == last_avail_idx)
2136 			return vq->num;
2137 
2138 		/* Only get avail ring entries after they have been
2139 		 * exposed by guest.
2140 		 */
2141 		smp_rmb();
2142 	}
2143 
2144 	/* Grab the next descriptor number they're advertising, and increment
2145 	 * the index we've seen. */
2146 	if (unlikely(vhost_get_avail(vq, ring_head,
2147 		     &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) {
2148 		vq_err(vq, "Failed to read head: idx %d address %p\n",
2149 		       last_avail_idx,
2150 		       &vq->avail->ring[last_avail_idx % vq->num]);
2151 		return -EFAULT;
2152 	}
2153 
2154 	head = vhost16_to_cpu(vq, ring_head);
2155 
2156 	/* If their number is silly, that's an error. */
2157 	if (unlikely(head >= vq->num)) {
2158 		vq_err(vq, "Guest says index %u > %u is available",
2159 		       head, vq->num);
2160 		return -EINVAL;
2161 	}
2162 
2163 	/* When we start there are none of either input nor output. */
2164 	*out_num = *in_num = 0;
2165 	if (unlikely(log))
2166 		*log_num = 0;
2167 
2168 	i = head;
2169 	do {
2170 		unsigned iov_count = *in_num + *out_num;
2171 		if (unlikely(i >= vq->num)) {
2172 			vq_err(vq, "Desc index is %u > %u, head = %u",
2173 			       i, vq->num, head);
2174 			return -EINVAL;
2175 		}
2176 		if (unlikely(++found > vq->num)) {
2177 			vq_err(vq, "Loop detected: last one at %u "
2178 			       "vq size %u head %u\n",
2179 			       i, vq->num, head);
2180 			return -EINVAL;
2181 		}
2182 		ret = vhost_copy_from_user(vq, &desc, vq->desc + i,
2183 					   sizeof desc);
2184 		if (unlikely(ret)) {
2185 			vq_err(vq, "Failed to get descriptor: idx %d addr %p\n",
2186 			       i, vq->desc + i);
2187 			return -EFAULT;
2188 		}
2189 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) {
2190 			ret = get_indirect(vq, iov, iov_size,
2191 					   out_num, in_num,
2192 					   log, log_num, &desc);
2193 			if (unlikely(ret < 0)) {
2194 				if (ret != -EAGAIN)
2195 					vq_err(vq, "Failure detected "
2196 						"in indirect descriptor at idx %d\n", i);
2197 				return ret;
2198 			}
2199 			continue;
2200 		}
2201 
2202 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2203 			access = VHOST_ACCESS_WO;
2204 		else
2205 			access = VHOST_ACCESS_RO;
2206 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2207 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
2208 				     iov_size - iov_count, access);
2209 		if (unlikely(ret < 0)) {
2210 			if (ret != -EAGAIN)
2211 				vq_err(vq, "Translation failure %d descriptor idx %d\n",
2212 					ret, i);
2213 			return ret;
2214 		}
2215 		if (access == VHOST_ACCESS_WO) {
2216 			/* If this is an input descriptor,
2217 			 * increment that count. */
2218 			*in_num += ret;
2219 			if (unlikely(log)) {
2220 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2221 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2222 				++*log_num;
2223 			}
2224 		} else {
2225 			/* If it's an output descriptor, they're all supposed
2226 			 * to come before any input descriptors. */
2227 			if (unlikely(*in_num)) {
2228 				vq_err(vq, "Descriptor has out after in: "
2229 				       "idx %d\n", i);
2230 				return -EINVAL;
2231 			}
2232 			*out_num += ret;
2233 		}
2234 	} while ((i = next_desc(vq, &desc)) != -1);
2235 
2236 	/* On success, increment avail index. */
2237 	vq->last_avail_idx++;
2238 
2239 	/* Assume notifications from guest are disabled at this point,
2240 	 * if they aren't we would need to update avail_event index. */
2241 	BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY));
2242 	return head;
2243 }
2244 EXPORT_SYMBOL_GPL(vhost_get_vq_desc);
2245 
2246 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */
2247 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n)
2248 {
2249 	vq->last_avail_idx -= n;
2250 }
2251 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc);
2252 
2253 /* After we've used one of their buffers, we tell them about it.  We'll then
2254  * want to notify the guest, using eventfd. */
2255 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len)
2256 {
2257 	struct vring_used_elem heads = {
2258 		cpu_to_vhost32(vq, head),
2259 		cpu_to_vhost32(vq, len)
2260 	};
2261 
2262 	return vhost_add_used_n(vq, &heads, 1);
2263 }
2264 EXPORT_SYMBOL_GPL(vhost_add_used);
2265 
2266 static int __vhost_add_used_n(struct vhost_virtqueue *vq,
2267 			    struct vring_used_elem *heads,
2268 			    unsigned count)
2269 {
2270 	struct vring_used_elem __user *used;
2271 	u16 old, new;
2272 	int start;
2273 
2274 	start = vq->last_used_idx & (vq->num - 1);
2275 	used = vq->used->ring + start;
2276 	if (count == 1) {
2277 		if (vhost_put_user(vq, heads[0].id, &used->id)) {
2278 			vq_err(vq, "Failed to write used id");
2279 			return -EFAULT;
2280 		}
2281 		if (vhost_put_user(vq, heads[0].len, &used->len)) {
2282 			vq_err(vq, "Failed to write used len");
2283 			return -EFAULT;
2284 		}
2285 	} else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) {
2286 		vq_err(vq, "Failed to write used");
2287 		return -EFAULT;
2288 	}
2289 	if (unlikely(vq->log_used)) {
2290 		/* Make sure data is seen before log. */
2291 		smp_wmb();
2292 		/* Log used ring entry write. */
2293 		log_used(vq, ((void __user *)used - (void __user *)vq->used),
2294 			 count * sizeof *used);
2295 	}
2296 	old = vq->last_used_idx;
2297 	new = (vq->last_used_idx += count);
2298 	/* If the driver never bothers to signal in a very long while,
2299 	 * used index might wrap around. If that happens, invalidate
2300 	 * signalled_used index we stored. TODO: make sure driver
2301 	 * signals at least once in 2^16 and remove this. */
2302 	if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
2303 		vq->signalled_used_valid = false;
2304 	return 0;
2305 }
2306 
2307 /* After we've used one of their buffers, we tell them about it.  We'll then
2308  * want to notify the guest, using eventfd. */
2309 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads,
2310 		     unsigned count)
2311 {
2312 	int start, n, r;
2313 
2314 	start = vq->last_used_idx & (vq->num - 1);
2315 	n = vq->num - start;
2316 	if (n < count) {
2317 		r = __vhost_add_used_n(vq, heads, n);
2318 		if (r < 0)
2319 			return r;
2320 		heads += n;
2321 		count -= n;
2322 	}
2323 	r = __vhost_add_used_n(vq, heads, count);
2324 
2325 	/* Make sure buffer is written before we update index. */
2326 	smp_wmb();
2327 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx),
2328 			   &vq->used->idx)) {
2329 		vq_err(vq, "Failed to increment used idx");
2330 		return -EFAULT;
2331 	}
2332 	if (unlikely(vq->log_used)) {
2333 		/* Make sure used idx is seen before log. */
2334 		smp_wmb();
2335 		/* Log used index update. */
2336 		log_used(vq, offsetof(struct vring_used, idx),
2337 			 sizeof vq->used->idx);
2338 		if (vq->log_ctx)
2339 			eventfd_signal(vq->log_ctx, 1);
2340 	}
2341 	return r;
2342 }
2343 EXPORT_SYMBOL_GPL(vhost_add_used_n);
2344 
2345 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2346 {
2347 	__u16 old, new;
2348 	__virtio16 event;
2349 	bool v;
2350 	/* Flush out used index updates. This is paired
2351 	 * with the barrier that the Guest executes when enabling
2352 	 * interrupts. */
2353 	smp_mb();
2354 
2355 	if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) &&
2356 	    unlikely(vq->avail_idx == vq->last_avail_idx))
2357 		return true;
2358 
2359 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2360 		__virtio16 flags;
2361 		if (vhost_get_avail(vq, flags, &vq->avail->flags)) {
2362 			vq_err(vq, "Failed to get flags");
2363 			return true;
2364 		}
2365 		return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT));
2366 	}
2367 	old = vq->signalled_used;
2368 	v = vq->signalled_used_valid;
2369 	new = vq->signalled_used = vq->last_used_idx;
2370 	vq->signalled_used_valid = true;
2371 
2372 	if (unlikely(!v))
2373 		return true;
2374 
2375 	if (vhost_get_avail(vq, event, vhost_used_event(vq))) {
2376 		vq_err(vq, "Failed to get used event idx");
2377 		return true;
2378 	}
2379 	return vring_need_event(vhost16_to_cpu(vq, event), new, old);
2380 }
2381 
2382 /* This actually signals the guest, using eventfd. */
2383 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2384 {
2385 	/* Signal the Guest tell them we used something up. */
2386 	if (vq->call_ctx && vhost_notify(dev, vq))
2387 		eventfd_signal(vq->call_ctx, 1);
2388 }
2389 EXPORT_SYMBOL_GPL(vhost_signal);
2390 
2391 /* And here's the combo meal deal.  Supersize me! */
2392 void vhost_add_used_and_signal(struct vhost_dev *dev,
2393 			       struct vhost_virtqueue *vq,
2394 			       unsigned int head, int len)
2395 {
2396 	vhost_add_used(vq, head, len);
2397 	vhost_signal(dev, vq);
2398 }
2399 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal);
2400 
2401 /* multi-buffer version of vhost_add_used_and_signal */
2402 void vhost_add_used_and_signal_n(struct vhost_dev *dev,
2403 				 struct vhost_virtqueue *vq,
2404 				 struct vring_used_elem *heads, unsigned count)
2405 {
2406 	vhost_add_used_n(vq, heads, count);
2407 	vhost_signal(dev, vq);
2408 }
2409 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n);
2410 
2411 /* return true if we're sure that avaiable ring is empty */
2412 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2413 {
2414 	__virtio16 avail_idx;
2415 	int r;
2416 
2417 	if (vq->avail_idx != vq->last_avail_idx)
2418 		return false;
2419 
2420 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2421 	if (unlikely(r))
2422 		return false;
2423 	vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2424 
2425 	return vq->avail_idx == vq->last_avail_idx;
2426 }
2427 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty);
2428 
2429 /* OK, now we need to know about added descriptors. */
2430 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2431 {
2432 	__virtio16 avail_idx;
2433 	int r;
2434 
2435 	if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY))
2436 		return false;
2437 	vq->used_flags &= ~VRING_USED_F_NO_NOTIFY;
2438 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2439 		r = vhost_update_used_flags(vq);
2440 		if (r) {
2441 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2442 			       &vq->used->flags, r);
2443 			return false;
2444 		}
2445 	} else {
2446 		r = vhost_update_avail_event(vq, vq->avail_idx);
2447 		if (r) {
2448 			vq_err(vq, "Failed to update avail event index at %p: %d\n",
2449 			       vhost_avail_event(vq), r);
2450 			return false;
2451 		}
2452 	}
2453 	/* They could have slipped one in as we were doing that: make
2454 	 * sure it's written, then check again. */
2455 	smp_mb();
2456 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2457 	if (r) {
2458 		vq_err(vq, "Failed to check avail idx at %p: %d\n",
2459 		       &vq->avail->idx, r);
2460 		return false;
2461 	}
2462 
2463 	return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx;
2464 }
2465 EXPORT_SYMBOL_GPL(vhost_enable_notify);
2466 
2467 /* We don't need to be notified again. */
2468 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2469 {
2470 	int r;
2471 
2472 	if (vq->used_flags & VRING_USED_F_NO_NOTIFY)
2473 		return;
2474 	vq->used_flags |= VRING_USED_F_NO_NOTIFY;
2475 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2476 		r = vhost_update_used_flags(vq);
2477 		if (r)
2478 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2479 			       &vq->used->flags, r);
2480 	}
2481 }
2482 EXPORT_SYMBOL_GPL(vhost_disable_notify);
2483 
2484 /* Create a new message. */
2485 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type)
2486 {
2487 	struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL);
2488 	if (!node)
2489 		return NULL;
2490 
2491 	/* Make sure all padding within the structure is initialized. */
2492 	memset(&node->msg, 0, sizeof node->msg);
2493 	node->vq = vq;
2494 	node->msg.type = type;
2495 	return node;
2496 }
2497 EXPORT_SYMBOL_GPL(vhost_new_msg);
2498 
2499 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head,
2500 		       struct vhost_msg_node *node)
2501 {
2502 	spin_lock(&dev->iotlb_lock);
2503 	list_add_tail(&node->node, head);
2504 	spin_unlock(&dev->iotlb_lock);
2505 
2506 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
2507 }
2508 EXPORT_SYMBOL_GPL(vhost_enqueue_msg);
2509 
2510 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev,
2511 					 struct list_head *head)
2512 {
2513 	struct vhost_msg_node *node = NULL;
2514 
2515 	spin_lock(&dev->iotlb_lock);
2516 	if (!list_empty(head)) {
2517 		node = list_first_entry(head, struct vhost_msg_node,
2518 					node);
2519 		list_del(&node->node);
2520 	}
2521 	spin_unlock(&dev->iotlb_lock);
2522 
2523 	return node;
2524 }
2525 EXPORT_SYMBOL_GPL(vhost_dequeue_msg);
2526 
2527 
2528 static int __init vhost_init(void)
2529 {
2530 	return 0;
2531 }
2532 
2533 static void __exit vhost_exit(void)
2534 {
2535 }
2536 
2537 module_init(vhost_init);
2538 module_exit(vhost_exit);
2539 
2540 MODULE_VERSION("0.0.1");
2541 MODULE_LICENSE("GPL v2");
2542 MODULE_AUTHOR("Michael S. Tsirkin");
2543 MODULE_DESCRIPTION("Host kernel accelerator for virtio");
2544