xref: /openbmc/linux/drivers/vfio/vfio_main.c (revision e2ad626f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VFIO core
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * Derived from original vfio:
9  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
10  * Author: Tom Lyon, pugs@cisco.com
11  */
12 
13 #include <linux/cdev.h>
14 #include <linux/compat.h>
15 #include <linux/device.h>
16 #include <linux/fs.h>
17 #include <linux/idr.h>
18 #include <linux/iommu.h>
19 #ifdef CONFIG_HAVE_KVM
20 #include <linux/kvm_host.h>
21 #endif
22 #include <linux/list.h>
23 #include <linux/miscdevice.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pci.h>
27 #include <linux/rwsem.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/stat.h>
31 #include <linux/string.h>
32 #include <linux/uaccess.h>
33 #include <linux/vfio.h>
34 #include <linux/wait.h>
35 #include <linux/sched/signal.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/interval_tree.h>
38 #include <linux/iova_bitmap.h>
39 #include <linux/iommufd.h>
40 #include "vfio.h"
41 
42 #define DRIVER_VERSION	"0.3"
43 #define DRIVER_AUTHOR	"Alex Williamson <alex.williamson@redhat.com>"
44 #define DRIVER_DESC	"VFIO - User Level meta-driver"
45 
46 static struct vfio {
47 	struct class			*device_class;
48 	struct ida			device_ida;
49 } vfio;
50 
51 #ifdef CONFIG_VFIO_NOIOMMU
52 bool vfio_noiommu __read_mostly;
53 module_param_named(enable_unsafe_noiommu_mode,
54 		   vfio_noiommu, bool, S_IRUGO | S_IWUSR);
55 MODULE_PARM_DESC(enable_unsafe_noiommu_mode, "Enable UNSAFE, no-IOMMU mode.  This mode provides no device isolation, no DMA translation, no host kernel protection, cannot be used for device assignment to virtual machines, requires RAWIO permissions, and will taint the kernel.  If you do not know what this is for, step away. (default: false)");
56 #endif
57 
58 static DEFINE_XARRAY(vfio_device_set_xa);
59 
60 int vfio_assign_device_set(struct vfio_device *device, void *set_id)
61 {
62 	unsigned long idx = (unsigned long)set_id;
63 	struct vfio_device_set *new_dev_set;
64 	struct vfio_device_set *dev_set;
65 
66 	if (WARN_ON(!set_id))
67 		return -EINVAL;
68 
69 	/*
70 	 * Atomically acquire a singleton object in the xarray for this set_id
71 	 */
72 	xa_lock(&vfio_device_set_xa);
73 	dev_set = xa_load(&vfio_device_set_xa, idx);
74 	if (dev_set)
75 		goto found_get_ref;
76 	xa_unlock(&vfio_device_set_xa);
77 
78 	new_dev_set = kzalloc(sizeof(*new_dev_set), GFP_KERNEL);
79 	if (!new_dev_set)
80 		return -ENOMEM;
81 	mutex_init(&new_dev_set->lock);
82 	INIT_LIST_HEAD(&new_dev_set->device_list);
83 	new_dev_set->set_id = set_id;
84 
85 	xa_lock(&vfio_device_set_xa);
86 	dev_set = __xa_cmpxchg(&vfio_device_set_xa, idx, NULL, new_dev_set,
87 			       GFP_KERNEL);
88 	if (!dev_set) {
89 		dev_set = new_dev_set;
90 		goto found_get_ref;
91 	}
92 
93 	kfree(new_dev_set);
94 	if (xa_is_err(dev_set)) {
95 		xa_unlock(&vfio_device_set_xa);
96 		return xa_err(dev_set);
97 	}
98 
99 found_get_ref:
100 	dev_set->device_count++;
101 	xa_unlock(&vfio_device_set_xa);
102 	mutex_lock(&dev_set->lock);
103 	device->dev_set = dev_set;
104 	list_add_tail(&device->dev_set_list, &dev_set->device_list);
105 	mutex_unlock(&dev_set->lock);
106 	return 0;
107 }
108 EXPORT_SYMBOL_GPL(vfio_assign_device_set);
109 
110 static void vfio_release_device_set(struct vfio_device *device)
111 {
112 	struct vfio_device_set *dev_set = device->dev_set;
113 
114 	if (!dev_set)
115 		return;
116 
117 	mutex_lock(&dev_set->lock);
118 	list_del(&device->dev_set_list);
119 	mutex_unlock(&dev_set->lock);
120 
121 	xa_lock(&vfio_device_set_xa);
122 	if (!--dev_set->device_count) {
123 		__xa_erase(&vfio_device_set_xa,
124 			   (unsigned long)dev_set->set_id);
125 		mutex_destroy(&dev_set->lock);
126 		kfree(dev_set);
127 	}
128 	xa_unlock(&vfio_device_set_xa);
129 }
130 
131 unsigned int vfio_device_set_open_count(struct vfio_device_set *dev_set)
132 {
133 	struct vfio_device *cur;
134 	unsigned int open_count = 0;
135 
136 	lockdep_assert_held(&dev_set->lock);
137 
138 	list_for_each_entry(cur, &dev_set->device_list, dev_set_list)
139 		open_count += cur->open_count;
140 	return open_count;
141 }
142 EXPORT_SYMBOL_GPL(vfio_device_set_open_count);
143 
144 struct vfio_device *
145 vfio_find_device_in_devset(struct vfio_device_set *dev_set,
146 			   struct device *dev)
147 {
148 	struct vfio_device *cur;
149 
150 	lockdep_assert_held(&dev_set->lock);
151 
152 	list_for_each_entry(cur, &dev_set->device_list, dev_set_list)
153 		if (cur->dev == dev)
154 			return cur;
155 	return NULL;
156 }
157 EXPORT_SYMBOL_GPL(vfio_find_device_in_devset);
158 
159 /*
160  * Device objects - create, release, get, put, search
161  */
162 /* Device reference always implies a group reference */
163 void vfio_device_put_registration(struct vfio_device *device)
164 {
165 	if (refcount_dec_and_test(&device->refcount))
166 		complete(&device->comp);
167 }
168 
169 bool vfio_device_try_get_registration(struct vfio_device *device)
170 {
171 	return refcount_inc_not_zero(&device->refcount);
172 }
173 
174 /*
175  * VFIO driver API
176  */
177 /* Release helper called by vfio_put_device() */
178 static void vfio_device_release(struct device *dev)
179 {
180 	struct vfio_device *device =
181 			container_of(dev, struct vfio_device, device);
182 
183 	vfio_release_device_set(device);
184 	ida_free(&vfio.device_ida, device->index);
185 
186 	if (device->ops->release)
187 		device->ops->release(device);
188 
189 	kvfree(device);
190 }
191 
192 static int vfio_init_device(struct vfio_device *device, struct device *dev,
193 			    const struct vfio_device_ops *ops);
194 
195 /*
196  * Allocate and initialize vfio_device so it can be registered to vfio
197  * core.
198  *
199  * Drivers should use the wrapper vfio_alloc_device() for allocation.
200  * @size is the size of the structure to be allocated, including any
201  * private data used by the driver.
202  *
203  * Driver may provide an @init callback to cover device private data.
204  *
205  * Use vfio_put_device() to release the structure after success return.
206  */
207 struct vfio_device *_vfio_alloc_device(size_t size, struct device *dev,
208 				       const struct vfio_device_ops *ops)
209 {
210 	struct vfio_device *device;
211 	int ret;
212 
213 	if (WARN_ON(size < sizeof(struct vfio_device)))
214 		return ERR_PTR(-EINVAL);
215 
216 	device = kvzalloc(size, GFP_KERNEL);
217 	if (!device)
218 		return ERR_PTR(-ENOMEM);
219 
220 	ret = vfio_init_device(device, dev, ops);
221 	if (ret)
222 		goto out_free;
223 	return device;
224 
225 out_free:
226 	kvfree(device);
227 	return ERR_PTR(ret);
228 }
229 EXPORT_SYMBOL_GPL(_vfio_alloc_device);
230 
231 /*
232  * Initialize a vfio_device so it can be registered to vfio core.
233  */
234 static int vfio_init_device(struct vfio_device *device, struct device *dev,
235 			    const struct vfio_device_ops *ops)
236 {
237 	int ret;
238 
239 	ret = ida_alloc_max(&vfio.device_ida, MINORMASK, GFP_KERNEL);
240 	if (ret < 0) {
241 		dev_dbg(dev, "Error to alloc index\n");
242 		return ret;
243 	}
244 
245 	device->index = ret;
246 	init_completion(&device->comp);
247 	device->dev = dev;
248 	device->ops = ops;
249 
250 	if (ops->init) {
251 		ret = ops->init(device);
252 		if (ret)
253 			goto out_uninit;
254 	}
255 
256 	device_initialize(&device->device);
257 	device->device.release = vfio_device_release;
258 	device->device.class = vfio.device_class;
259 	device->device.parent = device->dev;
260 	return 0;
261 
262 out_uninit:
263 	vfio_release_device_set(device);
264 	ida_free(&vfio.device_ida, device->index);
265 	return ret;
266 }
267 
268 static int __vfio_register_dev(struct vfio_device *device,
269 			       enum vfio_group_type type)
270 {
271 	int ret;
272 
273 	if (WARN_ON(IS_ENABLED(CONFIG_IOMMUFD) &&
274 		    (!device->ops->bind_iommufd ||
275 		     !device->ops->unbind_iommufd ||
276 		     !device->ops->attach_ioas ||
277 		     !device->ops->detach_ioas)))
278 		return -EINVAL;
279 
280 	/*
281 	 * If the driver doesn't specify a set then the device is added to a
282 	 * singleton set just for itself.
283 	 */
284 	if (!device->dev_set)
285 		vfio_assign_device_set(device, device);
286 
287 	ret = dev_set_name(&device->device, "vfio%d", device->index);
288 	if (ret)
289 		return ret;
290 
291 	ret = vfio_device_set_group(device, type);
292 	if (ret)
293 		return ret;
294 
295 	/*
296 	 * VFIO always sets IOMMU_CACHE because we offer no way for userspace to
297 	 * restore cache coherency. It has to be checked here because it is only
298 	 * valid for cases where we are using iommu groups.
299 	 */
300 	if (type == VFIO_IOMMU && !vfio_device_is_noiommu(device) &&
301 	    !device_iommu_capable(device->dev, IOMMU_CAP_CACHE_COHERENCY)) {
302 		ret = -EINVAL;
303 		goto err_out;
304 	}
305 
306 	ret = vfio_device_add(device);
307 	if (ret)
308 		goto err_out;
309 
310 	/* Refcounting can't start until the driver calls register */
311 	refcount_set(&device->refcount, 1);
312 
313 	vfio_device_group_register(device);
314 
315 	return 0;
316 err_out:
317 	vfio_device_remove_group(device);
318 	return ret;
319 }
320 
321 int vfio_register_group_dev(struct vfio_device *device)
322 {
323 	return __vfio_register_dev(device, VFIO_IOMMU);
324 }
325 EXPORT_SYMBOL_GPL(vfio_register_group_dev);
326 
327 /*
328  * Register a virtual device without IOMMU backing.  The user of this
329  * device must not be able to directly trigger unmediated DMA.
330  */
331 int vfio_register_emulated_iommu_dev(struct vfio_device *device)
332 {
333 	return __vfio_register_dev(device, VFIO_EMULATED_IOMMU);
334 }
335 EXPORT_SYMBOL_GPL(vfio_register_emulated_iommu_dev);
336 
337 /*
338  * Decrement the device reference count and wait for the device to be
339  * removed.  Open file descriptors for the device... */
340 void vfio_unregister_group_dev(struct vfio_device *device)
341 {
342 	unsigned int i = 0;
343 	bool interrupted = false;
344 	long rc;
345 
346 	/*
347 	 * Prevent new device opened by userspace via the
348 	 * VFIO_GROUP_GET_DEVICE_FD in the group path.
349 	 */
350 	vfio_device_group_unregister(device);
351 
352 	/*
353 	 * Balances vfio_device_add() in register path, also prevents
354 	 * new device opened by userspace in the cdev path.
355 	 */
356 	vfio_device_del(device);
357 
358 	vfio_device_put_registration(device);
359 	rc = try_wait_for_completion(&device->comp);
360 	while (rc <= 0) {
361 		if (device->ops->request)
362 			device->ops->request(device, i++);
363 
364 		if (interrupted) {
365 			rc = wait_for_completion_timeout(&device->comp,
366 							 HZ * 10);
367 		} else {
368 			rc = wait_for_completion_interruptible_timeout(
369 				&device->comp, HZ * 10);
370 			if (rc < 0) {
371 				interrupted = true;
372 				dev_warn(device->dev,
373 					 "Device is currently in use, task"
374 					 " \"%s\" (%d) "
375 					 "blocked until device is released",
376 					 current->comm, task_pid_nr(current));
377 			}
378 		}
379 	}
380 
381 	/* Balances vfio_device_set_group in register path */
382 	vfio_device_remove_group(device);
383 }
384 EXPORT_SYMBOL_GPL(vfio_unregister_group_dev);
385 
386 #ifdef CONFIG_HAVE_KVM
387 void vfio_device_get_kvm_safe(struct vfio_device *device, struct kvm *kvm)
388 {
389 	void (*pfn)(struct kvm *kvm);
390 	bool (*fn)(struct kvm *kvm);
391 	bool ret;
392 
393 	lockdep_assert_held(&device->dev_set->lock);
394 
395 	if (!kvm)
396 		return;
397 
398 	pfn = symbol_get(kvm_put_kvm);
399 	if (WARN_ON(!pfn))
400 		return;
401 
402 	fn = symbol_get(kvm_get_kvm_safe);
403 	if (WARN_ON(!fn)) {
404 		symbol_put(kvm_put_kvm);
405 		return;
406 	}
407 
408 	ret = fn(kvm);
409 	symbol_put(kvm_get_kvm_safe);
410 	if (!ret) {
411 		symbol_put(kvm_put_kvm);
412 		return;
413 	}
414 
415 	device->put_kvm = pfn;
416 	device->kvm = kvm;
417 }
418 
419 void vfio_device_put_kvm(struct vfio_device *device)
420 {
421 	lockdep_assert_held(&device->dev_set->lock);
422 
423 	if (!device->kvm)
424 		return;
425 
426 	if (WARN_ON(!device->put_kvm))
427 		goto clear;
428 
429 	device->put_kvm(device->kvm);
430 	device->put_kvm = NULL;
431 	symbol_put(kvm_put_kvm);
432 
433 clear:
434 	device->kvm = NULL;
435 }
436 #endif
437 
438 /* true if the vfio_device has open_device() called but not close_device() */
439 static bool vfio_assert_device_open(struct vfio_device *device)
440 {
441 	return !WARN_ON_ONCE(!READ_ONCE(device->open_count));
442 }
443 
444 struct vfio_device_file *
445 vfio_allocate_device_file(struct vfio_device *device)
446 {
447 	struct vfio_device_file *df;
448 
449 	df = kzalloc(sizeof(*df), GFP_KERNEL_ACCOUNT);
450 	if (!df)
451 		return ERR_PTR(-ENOMEM);
452 
453 	df->device = device;
454 	spin_lock_init(&df->kvm_ref_lock);
455 
456 	return df;
457 }
458 
459 static int vfio_df_device_first_open(struct vfio_device_file *df)
460 {
461 	struct vfio_device *device = df->device;
462 	struct iommufd_ctx *iommufd = df->iommufd;
463 	int ret;
464 
465 	lockdep_assert_held(&device->dev_set->lock);
466 
467 	if (!try_module_get(device->dev->driver->owner))
468 		return -ENODEV;
469 
470 	if (iommufd)
471 		ret = vfio_df_iommufd_bind(df);
472 	else
473 		ret = vfio_device_group_use_iommu(device);
474 	if (ret)
475 		goto err_module_put;
476 
477 	if (device->ops->open_device) {
478 		ret = device->ops->open_device(device);
479 		if (ret)
480 			goto err_unuse_iommu;
481 	}
482 	return 0;
483 
484 err_unuse_iommu:
485 	if (iommufd)
486 		vfio_df_iommufd_unbind(df);
487 	else
488 		vfio_device_group_unuse_iommu(device);
489 err_module_put:
490 	module_put(device->dev->driver->owner);
491 	return ret;
492 }
493 
494 static void vfio_df_device_last_close(struct vfio_device_file *df)
495 {
496 	struct vfio_device *device = df->device;
497 	struct iommufd_ctx *iommufd = df->iommufd;
498 
499 	lockdep_assert_held(&device->dev_set->lock);
500 
501 	if (device->ops->close_device)
502 		device->ops->close_device(device);
503 	if (iommufd)
504 		vfio_df_iommufd_unbind(df);
505 	else
506 		vfio_device_group_unuse_iommu(device);
507 	module_put(device->dev->driver->owner);
508 }
509 
510 int vfio_df_open(struct vfio_device_file *df)
511 {
512 	struct vfio_device *device = df->device;
513 	int ret = 0;
514 
515 	lockdep_assert_held(&device->dev_set->lock);
516 
517 	/*
518 	 * Only the group path allows the device to be opened multiple
519 	 * times.  The device cdev path doesn't have a secure way for it.
520 	 */
521 	if (device->open_count != 0 && !df->group)
522 		return -EINVAL;
523 
524 	device->open_count++;
525 	if (device->open_count == 1) {
526 		ret = vfio_df_device_first_open(df);
527 		if (ret)
528 			device->open_count--;
529 	}
530 
531 	return ret;
532 }
533 
534 void vfio_df_close(struct vfio_device_file *df)
535 {
536 	struct vfio_device *device = df->device;
537 
538 	lockdep_assert_held(&device->dev_set->lock);
539 
540 	vfio_assert_device_open(device);
541 	if (device->open_count == 1)
542 		vfio_df_device_last_close(df);
543 	device->open_count--;
544 }
545 
546 /*
547  * Wrapper around pm_runtime_resume_and_get().
548  * Return error code on failure or 0 on success.
549  */
550 static inline int vfio_device_pm_runtime_get(struct vfio_device *device)
551 {
552 	struct device *dev = device->dev;
553 
554 	if (dev->driver && dev->driver->pm) {
555 		int ret;
556 
557 		ret = pm_runtime_resume_and_get(dev);
558 		if (ret) {
559 			dev_info_ratelimited(dev,
560 				"vfio: runtime resume failed %d\n", ret);
561 			return -EIO;
562 		}
563 	}
564 
565 	return 0;
566 }
567 
568 /*
569  * Wrapper around pm_runtime_put().
570  */
571 static inline void vfio_device_pm_runtime_put(struct vfio_device *device)
572 {
573 	struct device *dev = device->dev;
574 
575 	if (dev->driver && dev->driver->pm)
576 		pm_runtime_put(dev);
577 }
578 
579 /*
580  * VFIO Device fd
581  */
582 static int vfio_device_fops_release(struct inode *inode, struct file *filep)
583 {
584 	struct vfio_device_file *df = filep->private_data;
585 	struct vfio_device *device = df->device;
586 
587 	if (df->group)
588 		vfio_df_group_close(df);
589 	else
590 		vfio_df_unbind_iommufd(df);
591 
592 	vfio_device_put_registration(device);
593 
594 	kfree(df);
595 
596 	return 0;
597 }
598 
599 /*
600  * vfio_mig_get_next_state - Compute the next step in the FSM
601  * @cur_fsm - The current state the device is in
602  * @new_fsm - The target state to reach
603  * @next_fsm - Pointer to the next step to get to new_fsm
604  *
605  * Return 0 upon success, otherwise -errno
606  * Upon success the next step in the state progression between cur_fsm and
607  * new_fsm will be set in next_fsm.
608  *
609  * This breaks down requests for combination transitions into smaller steps and
610  * returns the next step to get to new_fsm. The function may need to be called
611  * multiple times before reaching new_fsm.
612  *
613  */
614 int vfio_mig_get_next_state(struct vfio_device *device,
615 			    enum vfio_device_mig_state cur_fsm,
616 			    enum vfio_device_mig_state new_fsm,
617 			    enum vfio_device_mig_state *next_fsm)
618 {
619 	enum { VFIO_DEVICE_NUM_STATES = VFIO_DEVICE_STATE_PRE_COPY_P2P + 1 };
620 	/*
621 	 * The coding in this table requires the driver to implement the
622 	 * following FSM arcs:
623 	 *         RESUMING -> STOP
624 	 *         STOP -> RESUMING
625 	 *         STOP -> STOP_COPY
626 	 *         STOP_COPY -> STOP
627 	 *
628 	 * If P2P is supported then the driver must also implement these FSM
629 	 * arcs:
630 	 *         RUNNING -> RUNNING_P2P
631 	 *         RUNNING_P2P -> RUNNING
632 	 *         RUNNING_P2P -> STOP
633 	 *         STOP -> RUNNING_P2P
634 	 *
635 	 * If precopy is supported then the driver must support these additional
636 	 * FSM arcs:
637 	 *         RUNNING -> PRE_COPY
638 	 *         PRE_COPY -> RUNNING
639 	 *         PRE_COPY -> STOP_COPY
640 	 * However, if precopy and P2P are supported together then the driver
641 	 * must support these additional arcs beyond the P2P arcs above:
642 	 *         PRE_COPY -> RUNNING
643 	 *         PRE_COPY -> PRE_COPY_P2P
644 	 *         PRE_COPY_P2P -> PRE_COPY
645 	 *         PRE_COPY_P2P -> RUNNING_P2P
646 	 *         PRE_COPY_P2P -> STOP_COPY
647 	 *         RUNNING -> PRE_COPY
648 	 *         RUNNING_P2P -> PRE_COPY_P2P
649 	 *
650 	 * Without P2P and precopy the driver must implement:
651 	 *         RUNNING -> STOP
652 	 *         STOP -> RUNNING
653 	 *
654 	 * The coding will step through multiple states for some combination
655 	 * transitions; if all optional features are supported, this means the
656 	 * following ones:
657 	 *         PRE_COPY -> PRE_COPY_P2P -> STOP_COPY
658 	 *         PRE_COPY -> RUNNING -> RUNNING_P2P
659 	 *         PRE_COPY -> RUNNING -> RUNNING_P2P -> STOP
660 	 *         PRE_COPY -> RUNNING -> RUNNING_P2P -> STOP -> RESUMING
661 	 *         PRE_COPY_P2P -> RUNNING_P2P -> RUNNING
662 	 *         PRE_COPY_P2P -> RUNNING_P2P -> STOP
663 	 *         PRE_COPY_P2P -> RUNNING_P2P -> STOP -> RESUMING
664 	 *         RESUMING -> STOP -> RUNNING_P2P
665 	 *         RESUMING -> STOP -> RUNNING_P2P -> PRE_COPY_P2P
666 	 *         RESUMING -> STOP -> RUNNING_P2P -> RUNNING
667 	 *         RESUMING -> STOP -> RUNNING_P2P -> RUNNING -> PRE_COPY
668 	 *         RESUMING -> STOP -> STOP_COPY
669 	 *         RUNNING -> RUNNING_P2P -> PRE_COPY_P2P
670 	 *         RUNNING -> RUNNING_P2P -> STOP
671 	 *         RUNNING -> RUNNING_P2P -> STOP -> RESUMING
672 	 *         RUNNING -> RUNNING_P2P -> STOP -> STOP_COPY
673 	 *         RUNNING_P2P -> RUNNING -> PRE_COPY
674 	 *         RUNNING_P2P -> STOP -> RESUMING
675 	 *         RUNNING_P2P -> STOP -> STOP_COPY
676 	 *         STOP -> RUNNING_P2P -> PRE_COPY_P2P
677 	 *         STOP -> RUNNING_P2P -> RUNNING
678 	 *         STOP -> RUNNING_P2P -> RUNNING -> PRE_COPY
679 	 *         STOP_COPY -> STOP -> RESUMING
680 	 *         STOP_COPY -> STOP -> RUNNING_P2P
681 	 *         STOP_COPY -> STOP -> RUNNING_P2P -> RUNNING
682 	 *
683 	 *  The following transitions are blocked:
684 	 *         STOP_COPY -> PRE_COPY
685 	 *         STOP_COPY -> PRE_COPY_P2P
686 	 */
687 	static const u8 vfio_from_fsm_table[VFIO_DEVICE_NUM_STATES][VFIO_DEVICE_NUM_STATES] = {
688 		[VFIO_DEVICE_STATE_STOP] = {
689 			[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
690 			[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING_P2P,
691 			[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_RUNNING_P2P,
692 			[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
693 			[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP_COPY,
694 			[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RESUMING,
695 			[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
696 			[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
697 		},
698 		[VFIO_DEVICE_STATE_RUNNING] = {
699 			[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_RUNNING_P2P,
700 			[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING,
701 			[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_PRE_COPY,
702 			[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
703 			[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_RUNNING_P2P,
704 			[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RUNNING_P2P,
705 			[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
706 			[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
707 		},
708 		[VFIO_DEVICE_STATE_PRE_COPY] = {
709 			[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_RUNNING,
710 			[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING,
711 			[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_PRE_COPY,
712 			[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_PRE_COPY_P2P,
713 			[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_PRE_COPY_P2P,
714 			[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RUNNING,
715 			[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING,
716 			[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
717 		},
718 		[VFIO_DEVICE_STATE_PRE_COPY_P2P] = {
719 			[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_RUNNING_P2P,
720 			[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING_P2P,
721 			[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_PRE_COPY,
722 			[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_PRE_COPY_P2P,
723 			[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP_COPY,
724 			[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RUNNING_P2P,
725 			[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
726 			[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
727 		},
728 		[VFIO_DEVICE_STATE_STOP_COPY] = {
729 			[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
730 			[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_STOP,
731 			[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_ERROR,
732 			[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_ERROR,
733 			[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP_COPY,
734 			[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_STOP,
735 			[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_STOP,
736 			[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
737 		},
738 		[VFIO_DEVICE_STATE_RESUMING] = {
739 			[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
740 			[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_STOP,
741 			[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_STOP,
742 			[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_STOP,
743 			[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP,
744 			[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RESUMING,
745 			[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_STOP,
746 			[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
747 		},
748 		[VFIO_DEVICE_STATE_RUNNING_P2P] = {
749 			[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
750 			[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING,
751 			[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_RUNNING,
752 			[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_PRE_COPY_P2P,
753 			[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP,
754 			[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_STOP,
755 			[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
756 			[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
757 		},
758 		[VFIO_DEVICE_STATE_ERROR] = {
759 			[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_ERROR,
760 			[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_ERROR,
761 			[VFIO_DEVICE_STATE_PRE_COPY] = VFIO_DEVICE_STATE_ERROR,
762 			[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_DEVICE_STATE_ERROR,
763 			[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_ERROR,
764 			[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_ERROR,
765 			[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_ERROR,
766 			[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
767 		},
768 	};
769 
770 	static const unsigned int state_flags_table[VFIO_DEVICE_NUM_STATES] = {
771 		[VFIO_DEVICE_STATE_STOP] = VFIO_MIGRATION_STOP_COPY,
772 		[VFIO_DEVICE_STATE_RUNNING] = VFIO_MIGRATION_STOP_COPY,
773 		[VFIO_DEVICE_STATE_PRE_COPY] =
774 			VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY,
775 		[VFIO_DEVICE_STATE_PRE_COPY_P2P] = VFIO_MIGRATION_STOP_COPY |
776 						   VFIO_MIGRATION_P2P |
777 						   VFIO_MIGRATION_PRE_COPY,
778 		[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_MIGRATION_STOP_COPY,
779 		[VFIO_DEVICE_STATE_RESUMING] = VFIO_MIGRATION_STOP_COPY,
780 		[VFIO_DEVICE_STATE_RUNNING_P2P] =
781 			VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P,
782 		[VFIO_DEVICE_STATE_ERROR] = ~0U,
783 	};
784 
785 	if (WARN_ON(cur_fsm >= ARRAY_SIZE(vfio_from_fsm_table) ||
786 		    (state_flags_table[cur_fsm] & device->migration_flags) !=
787 			state_flags_table[cur_fsm]))
788 		return -EINVAL;
789 
790 	if (new_fsm >= ARRAY_SIZE(vfio_from_fsm_table) ||
791 	   (state_flags_table[new_fsm] & device->migration_flags) !=
792 			state_flags_table[new_fsm])
793 		return -EINVAL;
794 
795 	/*
796 	 * Arcs touching optional and unsupported states are skipped over. The
797 	 * driver will instead see an arc from the original state to the next
798 	 * logical state, as per the above comment.
799 	 */
800 	*next_fsm = vfio_from_fsm_table[cur_fsm][new_fsm];
801 	while ((state_flags_table[*next_fsm] & device->migration_flags) !=
802 			state_flags_table[*next_fsm])
803 		*next_fsm = vfio_from_fsm_table[*next_fsm][new_fsm];
804 
805 	return (*next_fsm != VFIO_DEVICE_STATE_ERROR) ? 0 : -EINVAL;
806 }
807 EXPORT_SYMBOL_GPL(vfio_mig_get_next_state);
808 
809 /*
810  * Convert the drivers's struct file into a FD number and return it to userspace
811  */
812 static int vfio_ioct_mig_return_fd(struct file *filp, void __user *arg,
813 				   struct vfio_device_feature_mig_state *mig)
814 {
815 	int ret;
816 	int fd;
817 
818 	fd = get_unused_fd_flags(O_CLOEXEC);
819 	if (fd < 0) {
820 		ret = fd;
821 		goto out_fput;
822 	}
823 
824 	mig->data_fd = fd;
825 	if (copy_to_user(arg, mig, sizeof(*mig))) {
826 		ret = -EFAULT;
827 		goto out_put_unused;
828 	}
829 	fd_install(fd, filp);
830 	return 0;
831 
832 out_put_unused:
833 	put_unused_fd(fd);
834 out_fput:
835 	fput(filp);
836 	return ret;
837 }
838 
839 static int
840 vfio_ioctl_device_feature_mig_device_state(struct vfio_device *device,
841 					   u32 flags, void __user *arg,
842 					   size_t argsz)
843 {
844 	size_t minsz =
845 		offsetofend(struct vfio_device_feature_mig_state, data_fd);
846 	struct vfio_device_feature_mig_state mig;
847 	struct file *filp = NULL;
848 	int ret;
849 
850 	if (!device->mig_ops)
851 		return -ENOTTY;
852 
853 	ret = vfio_check_feature(flags, argsz,
854 				 VFIO_DEVICE_FEATURE_SET |
855 				 VFIO_DEVICE_FEATURE_GET,
856 				 sizeof(mig));
857 	if (ret != 1)
858 		return ret;
859 
860 	if (copy_from_user(&mig, arg, minsz))
861 		return -EFAULT;
862 
863 	if (flags & VFIO_DEVICE_FEATURE_GET) {
864 		enum vfio_device_mig_state curr_state;
865 
866 		ret = device->mig_ops->migration_get_state(device,
867 							   &curr_state);
868 		if (ret)
869 			return ret;
870 		mig.device_state = curr_state;
871 		goto out_copy;
872 	}
873 
874 	/* Handle the VFIO_DEVICE_FEATURE_SET */
875 	filp = device->mig_ops->migration_set_state(device, mig.device_state);
876 	if (IS_ERR(filp) || !filp)
877 		goto out_copy;
878 
879 	return vfio_ioct_mig_return_fd(filp, arg, &mig);
880 out_copy:
881 	mig.data_fd = -1;
882 	if (copy_to_user(arg, &mig, sizeof(mig)))
883 		return -EFAULT;
884 	if (IS_ERR(filp))
885 		return PTR_ERR(filp);
886 	return 0;
887 }
888 
889 static int
890 vfio_ioctl_device_feature_migration_data_size(struct vfio_device *device,
891 					      u32 flags, void __user *arg,
892 					      size_t argsz)
893 {
894 	struct vfio_device_feature_mig_data_size data_size = {};
895 	unsigned long stop_copy_length;
896 	int ret;
897 
898 	if (!device->mig_ops)
899 		return -ENOTTY;
900 
901 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_GET,
902 				 sizeof(data_size));
903 	if (ret != 1)
904 		return ret;
905 
906 	ret = device->mig_ops->migration_get_data_size(device, &stop_copy_length);
907 	if (ret)
908 		return ret;
909 
910 	data_size.stop_copy_length = stop_copy_length;
911 	if (copy_to_user(arg, &data_size, sizeof(data_size)))
912 		return -EFAULT;
913 
914 	return 0;
915 }
916 
917 static int vfio_ioctl_device_feature_migration(struct vfio_device *device,
918 					       u32 flags, void __user *arg,
919 					       size_t argsz)
920 {
921 	struct vfio_device_feature_migration mig = {
922 		.flags = device->migration_flags,
923 	};
924 	int ret;
925 
926 	if (!device->mig_ops)
927 		return -ENOTTY;
928 
929 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_GET,
930 				 sizeof(mig));
931 	if (ret != 1)
932 		return ret;
933 	if (copy_to_user(arg, &mig, sizeof(mig)))
934 		return -EFAULT;
935 	return 0;
936 }
937 
938 void vfio_combine_iova_ranges(struct rb_root_cached *root, u32 cur_nodes,
939 			      u32 req_nodes)
940 {
941 	struct interval_tree_node *prev, *curr, *comb_start, *comb_end;
942 	unsigned long min_gap, curr_gap;
943 
944 	/* Special shortcut when a single range is required */
945 	if (req_nodes == 1) {
946 		unsigned long last;
947 
948 		comb_start = interval_tree_iter_first(root, 0, ULONG_MAX);
949 		curr = comb_start;
950 		while (curr) {
951 			last = curr->last;
952 			prev = curr;
953 			curr = interval_tree_iter_next(curr, 0, ULONG_MAX);
954 			if (prev != comb_start)
955 				interval_tree_remove(prev, root);
956 		}
957 		comb_start->last = last;
958 		return;
959 	}
960 
961 	/* Combine ranges which have the smallest gap */
962 	while (cur_nodes > req_nodes) {
963 		prev = NULL;
964 		min_gap = ULONG_MAX;
965 		curr = interval_tree_iter_first(root, 0, ULONG_MAX);
966 		while (curr) {
967 			if (prev) {
968 				curr_gap = curr->start - prev->last;
969 				if (curr_gap < min_gap) {
970 					min_gap = curr_gap;
971 					comb_start = prev;
972 					comb_end = curr;
973 				}
974 			}
975 			prev = curr;
976 			curr = interval_tree_iter_next(curr, 0, ULONG_MAX);
977 		}
978 		comb_start->last = comb_end->last;
979 		interval_tree_remove(comb_end, root);
980 		cur_nodes--;
981 	}
982 }
983 EXPORT_SYMBOL_GPL(vfio_combine_iova_ranges);
984 
985 /* Ranges should fit into a single kernel page */
986 #define LOG_MAX_RANGES \
987 	(PAGE_SIZE / sizeof(struct vfio_device_feature_dma_logging_range))
988 
989 static int
990 vfio_ioctl_device_feature_logging_start(struct vfio_device *device,
991 					u32 flags, void __user *arg,
992 					size_t argsz)
993 {
994 	size_t minsz =
995 		offsetofend(struct vfio_device_feature_dma_logging_control,
996 			    ranges);
997 	struct vfio_device_feature_dma_logging_range __user *ranges;
998 	struct vfio_device_feature_dma_logging_control control;
999 	struct vfio_device_feature_dma_logging_range range;
1000 	struct rb_root_cached root = RB_ROOT_CACHED;
1001 	struct interval_tree_node *nodes;
1002 	u64 iova_end;
1003 	u32 nnodes;
1004 	int i, ret;
1005 
1006 	if (!device->log_ops)
1007 		return -ENOTTY;
1008 
1009 	ret = vfio_check_feature(flags, argsz,
1010 				 VFIO_DEVICE_FEATURE_SET,
1011 				 sizeof(control));
1012 	if (ret != 1)
1013 		return ret;
1014 
1015 	if (copy_from_user(&control, arg, minsz))
1016 		return -EFAULT;
1017 
1018 	nnodes = control.num_ranges;
1019 	if (!nnodes)
1020 		return -EINVAL;
1021 
1022 	if (nnodes > LOG_MAX_RANGES)
1023 		return -E2BIG;
1024 
1025 	ranges = u64_to_user_ptr(control.ranges);
1026 	nodes = kmalloc_array(nnodes, sizeof(struct interval_tree_node),
1027 			      GFP_KERNEL);
1028 	if (!nodes)
1029 		return -ENOMEM;
1030 
1031 	for (i = 0; i < nnodes; i++) {
1032 		if (copy_from_user(&range, &ranges[i], sizeof(range))) {
1033 			ret = -EFAULT;
1034 			goto end;
1035 		}
1036 		if (!IS_ALIGNED(range.iova, control.page_size) ||
1037 		    !IS_ALIGNED(range.length, control.page_size)) {
1038 			ret = -EINVAL;
1039 			goto end;
1040 		}
1041 
1042 		if (check_add_overflow(range.iova, range.length, &iova_end) ||
1043 		    iova_end > ULONG_MAX) {
1044 			ret = -EOVERFLOW;
1045 			goto end;
1046 		}
1047 
1048 		nodes[i].start = range.iova;
1049 		nodes[i].last = range.iova + range.length - 1;
1050 		if (interval_tree_iter_first(&root, nodes[i].start,
1051 					     nodes[i].last)) {
1052 			/* Range overlapping */
1053 			ret = -EINVAL;
1054 			goto end;
1055 		}
1056 		interval_tree_insert(nodes + i, &root);
1057 	}
1058 
1059 	ret = device->log_ops->log_start(device, &root, nnodes,
1060 					 &control.page_size);
1061 	if (ret)
1062 		goto end;
1063 
1064 	if (copy_to_user(arg, &control, sizeof(control))) {
1065 		ret = -EFAULT;
1066 		device->log_ops->log_stop(device);
1067 	}
1068 
1069 end:
1070 	kfree(nodes);
1071 	return ret;
1072 }
1073 
1074 static int
1075 vfio_ioctl_device_feature_logging_stop(struct vfio_device *device,
1076 				       u32 flags, void __user *arg,
1077 				       size_t argsz)
1078 {
1079 	int ret;
1080 
1081 	if (!device->log_ops)
1082 		return -ENOTTY;
1083 
1084 	ret = vfio_check_feature(flags, argsz,
1085 				 VFIO_DEVICE_FEATURE_SET, 0);
1086 	if (ret != 1)
1087 		return ret;
1088 
1089 	return device->log_ops->log_stop(device);
1090 }
1091 
1092 static int vfio_device_log_read_and_clear(struct iova_bitmap *iter,
1093 					  unsigned long iova, size_t length,
1094 					  void *opaque)
1095 {
1096 	struct vfio_device *device = opaque;
1097 
1098 	return device->log_ops->log_read_and_clear(device, iova, length, iter);
1099 }
1100 
1101 static int
1102 vfio_ioctl_device_feature_logging_report(struct vfio_device *device,
1103 					 u32 flags, void __user *arg,
1104 					 size_t argsz)
1105 {
1106 	size_t minsz =
1107 		offsetofend(struct vfio_device_feature_dma_logging_report,
1108 			    bitmap);
1109 	struct vfio_device_feature_dma_logging_report report;
1110 	struct iova_bitmap *iter;
1111 	u64 iova_end;
1112 	int ret;
1113 
1114 	if (!device->log_ops)
1115 		return -ENOTTY;
1116 
1117 	ret = vfio_check_feature(flags, argsz,
1118 				 VFIO_DEVICE_FEATURE_GET,
1119 				 sizeof(report));
1120 	if (ret != 1)
1121 		return ret;
1122 
1123 	if (copy_from_user(&report, arg, minsz))
1124 		return -EFAULT;
1125 
1126 	if (report.page_size < SZ_4K || !is_power_of_2(report.page_size))
1127 		return -EINVAL;
1128 
1129 	if (check_add_overflow(report.iova, report.length, &iova_end) ||
1130 	    iova_end > ULONG_MAX)
1131 		return -EOVERFLOW;
1132 
1133 	iter = iova_bitmap_alloc(report.iova, report.length,
1134 				 report.page_size,
1135 				 u64_to_user_ptr(report.bitmap));
1136 	if (IS_ERR(iter))
1137 		return PTR_ERR(iter);
1138 
1139 	ret = iova_bitmap_for_each(iter, device,
1140 				   vfio_device_log_read_and_clear);
1141 
1142 	iova_bitmap_free(iter);
1143 	return ret;
1144 }
1145 
1146 static int vfio_ioctl_device_feature(struct vfio_device *device,
1147 				     struct vfio_device_feature __user *arg)
1148 {
1149 	size_t minsz = offsetofend(struct vfio_device_feature, flags);
1150 	struct vfio_device_feature feature;
1151 
1152 	if (copy_from_user(&feature, arg, minsz))
1153 		return -EFAULT;
1154 
1155 	if (feature.argsz < minsz)
1156 		return -EINVAL;
1157 
1158 	/* Check unknown flags */
1159 	if (feature.flags &
1160 	    ~(VFIO_DEVICE_FEATURE_MASK | VFIO_DEVICE_FEATURE_SET |
1161 	      VFIO_DEVICE_FEATURE_GET | VFIO_DEVICE_FEATURE_PROBE))
1162 		return -EINVAL;
1163 
1164 	/* GET & SET are mutually exclusive except with PROBE */
1165 	if (!(feature.flags & VFIO_DEVICE_FEATURE_PROBE) &&
1166 	    (feature.flags & VFIO_DEVICE_FEATURE_SET) &&
1167 	    (feature.flags & VFIO_DEVICE_FEATURE_GET))
1168 		return -EINVAL;
1169 
1170 	switch (feature.flags & VFIO_DEVICE_FEATURE_MASK) {
1171 	case VFIO_DEVICE_FEATURE_MIGRATION:
1172 		return vfio_ioctl_device_feature_migration(
1173 			device, feature.flags, arg->data,
1174 			feature.argsz - minsz);
1175 	case VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE:
1176 		return vfio_ioctl_device_feature_mig_device_state(
1177 			device, feature.flags, arg->data,
1178 			feature.argsz - minsz);
1179 	case VFIO_DEVICE_FEATURE_DMA_LOGGING_START:
1180 		return vfio_ioctl_device_feature_logging_start(
1181 			device, feature.flags, arg->data,
1182 			feature.argsz - minsz);
1183 	case VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP:
1184 		return vfio_ioctl_device_feature_logging_stop(
1185 			device, feature.flags, arg->data,
1186 			feature.argsz - minsz);
1187 	case VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT:
1188 		return vfio_ioctl_device_feature_logging_report(
1189 			device, feature.flags, arg->data,
1190 			feature.argsz - minsz);
1191 	case VFIO_DEVICE_FEATURE_MIG_DATA_SIZE:
1192 		return vfio_ioctl_device_feature_migration_data_size(
1193 			device, feature.flags, arg->data,
1194 			feature.argsz - minsz);
1195 	default:
1196 		if (unlikely(!device->ops->device_feature))
1197 			return -EINVAL;
1198 		return device->ops->device_feature(device, feature.flags,
1199 						   arg->data,
1200 						   feature.argsz - minsz);
1201 	}
1202 }
1203 
1204 static long vfio_device_fops_unl_ioctl(struct file *filep,
1205 				       unsigned int cmd, unsigned long arg)
1206 {
1207 	struct vfio_device_file *df = filep->private_data;
1208 	struct vfio_device *device = df->device;
1209 	void __user *uptr = (void __user *)arg;
1210 	int ret;
1211 
1212 	if (cmd == VFIO_DEVICE_BIND_IOMMUFD)
1213 		return vfio_df_ioctl_bind_iommufd(df, uptr);
1214 
1215 	/* Paired with smp_store_release() following vfio_df_open() */
1216 	if (!smp_load_acquire(&df->access_granted))
1217 		return -EINVAL;
1218 
1219 	ret = vfio_device_pm_runtime_get(device);
1220 	if (ret)
1221 		return ret;
1222 
1223 	/* cdev only ioctls */
1224 	if (IS_ENABLED(CONFIG_VFIO_DEVICE_CDEV) && !df->group) {
1225 		switch (cmd) {
1226 		case VFIO_DEVICE_ATTACH_IOMMUFD_PT:
1227 			ret = vfio_df_ioctl_attach_pt(df, uptr);
1228 			goto out;
1229 
1230 		case VFIO_DEVICE_DETACH_IOMMUFD_PT:
1231 			ret = vfio_df_ioctl_detach_pt(df, uptr);
1232 			goto out;
1233 		}
1234 	}
1235 
1236 	switch (cmd) {
1237 	case VFIO_DEVICE_FEATURE:
1238 		ret = vfio_ioctl_device_feature(device, uptr);
1239 		break;
1240 
1241 	default:
1242 		if (unlikely(!device->ops->ioctl))
1243 			ret = -EINVAL;
1244 		else
1245 			ret = device->ops->ioctl(device, cmd, arg);
1246 		break;
1247 	}
1248 out:
1249 	vfio_device_pm_runtime_put(device);
1250 	return ret;
1251 }
1252 
1253 static ssize_t vfio_device_fops_read(struct file *filep, char __user *buf,
1254 				     size_t count, loff_t *ppos)
1255 {
1256 	struct vfio_device_file *df = filep->private_data;
1257 	struct vfio_device *device = df->device;
1258 
1259 	/* Paired with smp_store_release() following vfio_df_open() */
1260 	if (!smp_load_acquire(&df->access_granted))
1261 		return -EINVAL;
1262 
1263 	if (unlikely(!device->ops->read))
1264 		return -EINVAL;
1265 
1266 	return device->ops->read(device, buf, count, ppos);
1267 }
1268 
1269 static ssize_t vfio_device_fops_write(struct file *filep,
1270 				      const char __user *buf,
1271 				      size_t count, loff_t *ppos)
1272 {
1273 	struct vfio_device_file *df = filep->private_data;
1274 	struct vfio_device *device = df->device;
1275 
1276 	/* Paired with smp_store_release() following vfio_df_open() */
1277 	if (!smp_load_acquire(&df->access_granted))
1278 		return -EINVAL;
1279 
1280 	if (unlikely(!device->ops->write))
1281 		return -EINVAL;
1282 
1283 	return device->ops->write(device, buf, count, ppos);
1284 }
1285 
1286 static int vfio_device_fops_mmap(struct file *filep, struct vm_area_struct *vma)
1287 {
1288 	struct vfio_device_file *df = filep->private_data;
1289 	struct vfio_device *device = df->device;
1290 
1291 	/* Paired with smp_store_release() following vfio_df_open() */
1292 	if (!smp_load_acquire(&df->access_granted))
1293 		return -EINVAL;
1294 
1295 	if (unlikely(!device->ops->mmap))
1296 		return -EINVAL;
1297 
1298 	return device->ops->mmap(device, vma);
1299 }
1300 
1301 const struct file_operations vfio_device_fops = {
1302 	.owner		= THIS_MODULE,
1303 	.open		= vfio_device_fops_cdev_open,
1304 	.release	= vfio_device_fops_release,
1305 	.read		= vfio_device_fops_read,
1306 	.write		= vfio_device_fops_write,
1307 	.unlocked_ioctl	= vfio_device_fops_unl_ioctl,
1308 	.compat_ioctl	= compat_ptr_ioctl,
1309 	.mmap		= vfio_device_fops_mmap,
1310 };
1311 
1312 static struct vfio_device *vfio_device_from_file(struct file *file)
1313 {
1314 	struct vfio_device_file *df = file->private_data;
1315 
1316 	if (file->f_op != &vfio_device_fops)
1317 		return NULL;
1318 	return df->device;
1319 }
1320 
1321 /**
1322  * vfio_file_is_valid - True if the file is valid vfio file
1323  * @file: VFIO group file or VFIO device file
1324  */
1325 bool vfio_file_is_valid(struct file *file)
1326 {
1327 	return vfio_group_from_file(file) ||
1328 	       vfio_device_from_file(file);
1329 }
1330 EXPORT_SYMBOL_GPL(vfio_file_is_valid);
1331 
1332 /**
1333  * vfio_file_enforced_coherent - True if the DMA associated with the VFIO file
1334  *        is always CPU cache coherent
1335  * @file: VFIO group file or VFIO device file
1336  *
1337  * Enforced coherency means that the IOMMU ignores things like the PCIe no-snoop
1338  * bit in DMA transactions. A return of false indicates that the user has
1339  * rights to access additional instructions such as wbinvd on x86.
1340  */
1341 bool vfio_file_enforced_coherent(struct file *file)
1342 {
1343 	struct vfio_device *device;
1344 	struct vfio_group *group;
1345 
1346 	group = vfio_group_from_file(file);
1347 	if (group)
1348 		return vfio_group_enforced_coherent(group);
1349 
1350 	device = vfio_device_from_file(file);
1351 	if (device)
1352 		return device_iommu_capable(device->dev,
1353 					    IOMMU_CAP_ENFORCE_CACHE_COHERENCY);
1354 
1355 	return true;
1356 }
1357 EXPORT_SYMBOL_GPL(vfio_file_enforced_coherent);
1358 
1359 static void vfio_device_file_set_kvm(struct file *file, struct kvm *kvm)
1360 {
1361 	struct vfio_device_file *df = file->private_data;
1362 
1363 	/*
1364 	 * The kvm is first recorded in the vfio_device_file, and will
1365 	 * be propagated to vfio_device::kvm when the file is bound to
1366 	 * iommufd successfully in the vfio device cdev path.
1367 	 */
1368 	spin_lock(&df->kvm_ref_lock);
1369 	df->kvm = kvm;
1370 	spin_unlock(&df->kvm_ref_lock);
1371 }
1372 
1373 /**
1374  * vfio_file_set_kvm - Link a kvm with VFIO drivers
1375  * @file: VFIO group file or VFIO device file
1376  * @kvm: KVM to link
1377  *
1378  * When a VFIO device is first opened the KVM will be available in
1379  * device->kvm if one was associated with the file.
1380  */
1381 void vfio_file_set_kvm(struct file *file, struct kvm *kvm)
1382 {
1383 	struct vfio_group *group;
1384 
1385 	group = vfio_group_from_file(file);
1386 	if (group)
1387 		vfio_group_set_kvm(group, kvm);
1388 
1389 	if (vfio_device_from_file(file))
1390 		vfio_device_file_set_kvm(file, kvm);
1391 }
1392 EXPORT_SYMBOL_GPL(vfio_file_set_kvm);
1393 
1394 /*
1395  * Sub-module support
1396  */
1397 /*
1398  * Helper for managing a buffer of info chain capabilities, allocate or
1399  * reallocate a buffer with additional @size, filling in @id and @version
1400  * of the capability.  A pointer to the new capability is returned.
1401  *
1402  * NB. The chain is based at the head of the buffer, so new entries are
1403  * added to the tail, vfio_info_cap_shift() should be called to fixup the
1404  * next offsets prior to copying to the user buffer.
1405  */
1406 struct vfio_info_cap_header *vfio_info_cap_add(struct vfio_info_cap *caps,
1407 					       size_t size, u16 id, u16 version)
1408 {
1409 	void *buf;
1410 	struct vfio_info_cap_header *header, *tmp;
1411 
1412 	/* Ensure that the next capability struct will be aligned */
1413 	size = ALIGN(size, sizeof(u64));
1414 
1415 	buf = krealloc(caps->buf, caps->size + size, GFP_KERNEL);
1416 	if (!buf) {
1417 		kfree(caps->buf);
1418 		caps->buf = NULL;
1419 		caps->size = 0;
1420 		return ERR_PTR(-ENOMEM);
1421 	}
1422 
1423 	caps->buf = buf;
1424 	header = buf + caps->size;
1425 
1426 	/* Eventually copied to user buffer, zero */
1427 	memset(header, 0, size);
1428 
1429 	header->id = id;
1430 	header->version = version;
1431 
1432 	/* Add to the end of the capability chain */
1433 	for (tmp = buf; tmp->next; tmp = buf + tmp->next)
1434 		; /* nothing */
1435 
1436 	tmp->next = caps->size;
1437 	caps->size += size;
1438 
1439 	return header;
1440 }
1441 EXPORT_SYMBOL_GPL(vfio_info_cap_add);
1442 
1443 void vfio_info_cap_shift(struct vfio_info_cap *caps, size_t offset)
1444 {
1445 	struct vfio_info_cap_header *tmp;
1446 	void *buf = (void *)caps->buf;
1447 
1448 	/* Capability structs should start with proper alignment */
1449 	WARN_ON(!IS_ALIGNED(offset, sizeof(u64)));
1450 
1451 	for (tmp = buf; tmp->next; tmp = buf + tmp->next - offset)
1452 		tmp->next += offset;
1453 }
1454 EXPORT_SYMBOL(vfio_info_cap_shift);
1455 
1456 int vfio_info_add_capability(struct vfio_info_cap *caps,
1457 			     struct vfio_info_cap_header *cap, size_t size)
1458 {
1459 	struct vfio_info_cap_header *header;
1460 
1461 	header = vfio_info_cap_add(caps, size, cap->id, cap->version);
1462 	if (IS_ERR(header))
1463 		return PTR_ERR(header);
1464 
1465 	memcpy(header + 1, cap + 1, size - sizeof(*header));
1466 
1467 	return 0;
1468 }
1469 EXPORT_SYMBOL(vfio_info_add_capability);
1470 
1471 int vfio_set_irqs_validate_and_prepare(struct vfio_irq_set *hdr, int num_irqs,
1472 				       int max_irq_type, size_t *data_size)
1473 {
1474 	unsigned long minsz;
1475 	size_t size;
1476 
1477 	minsz = offsetofend(struct vfio_irq_set, count);
1478 
1479 	if ((hdr->argsz < minsz) || (hdr->index >= max_irq_type) ||
1480 	    (hdr->count >= (U32_MAX - hdr->start)) ||
1481 	    (hdr->flags & ~(VFIO_IRQ_SET_DATA_TYPE_MASK |
1482 				VFIO_IRQ_SET_ACTION_TYPE_MASK)))
1483 		return -EINVAL;
1484 
1485 	if (data_size)
1486 		*data_size = 0;
1487 
1488 	if (hdr->start >= num_irqs || hdr->start + hdr->count > num_irqs)
1489 		return -EINVAL;
1490 
1491 	switch (hdr->flags & VFIO_IRQ_SET_DATA_TYPE_MASK) {
1492 	case VFIO_IRQ_SET_DATA_NONE:
1493 		size = 0;
1494 		break;
1495 	case VFIO_IRQ_SET_DATA_BOOL:
1496 		size = sizeof(uint8_t);
1497 		break;
1498 	case VFIO_IRQ_SET_DATA_EVENTFD:
1499 		size = sizeof(int32_t);
1500 		break;
1501 	default:
1502 		return -EINVAL;
1503 	}
1504 
1505 	if (size) {
1506 		if (hdr->argsz - minsz < hdr->count * size)
1507 			return -EINVAL;
1508 
1509 		if (!data_size)
1510 			return -EINVAL;
1511 
1512 		*data_size = hdr->count * size;
1513 	}
1514 
1515 	return 0;
1516 }
1517 EXPORT_SYMBOL(vfio_set_irqs_validate_and_prepare);
1518 
1519 /*
1520  * Pin contiguous user pages and return their associated host pages for local
1521  * domain only.
1522  * @device [in]  : device
1523  * @iova [in]    : starting IOVA of user pages to be pinned.
1524  * @npage [in]   : count of pages to be pinned.  This count should not
1525  *		   be greater than VFIO_PIN_PAGES_MAX_ENTRIES.
1526  * @prot [in]    : protection flags
1527  * @pages[out]   : array of host pages
1528  * Return error or number of pages pinned.
1529  *
1530  * A driver may only call this function if the vfio_device was created
1531  * by vfio_register_emulated_iommu_dev() due to vfio_device_container_pin_pages().
1532  */
1533 int vfio_pin_pages(struct vfio_device *device, dma_addr_t iova,
1534 		   int npage, int prot, struct page **pages)
1535 {
1536 	/* group->container cannot change while a vfio device is open */
1537 	if (!pages || !npage || WARN_ON(!vfio_assert_device_open(device)))
1538 		return -EINVAL;
1539 	if (!device->ops->dma_unmap)
1540 		return -EINVAL;
1541 	if (vfio_device_has_container(device))
1542 		return vfio_device_container_pin_pages(device, iova,
1543 						       npage, prot, pages);
1544 	if (device->iommufd_access) {
1545 		int ret;
1546 
1547 		if (iova > ULONG_MAX)
1548 			return -EINVAL;
1549 		/*
1550 		 * VFIO ignores the sub page offset, npages is from the start of
1551 		 * a PAGE_SIZE chunk of IOVA. The caller is expected to recover
1552 		 * the sub page offset by doing:
1553 		 *     pages[0] + (iova % PAGE_SIZE)
1554 		 */
1555 		ret = iommufd_access_pin_pages(
1556 			device->iommufd_access, ALIGN_DOWN(iova, PAGE_SIZE),
1557 			npage * PAGE_SIZE, pages,
1558 			(prot & IOMMU_WRITE) ? IOMMUFD_ACCESS_RW_WRITE : 0);
1559 		if (ret)
1560 			return ret;
1561 		return npage;
1562 	}
1563 	return -EINVAL;
1564 }
1565 EXPORT_SYMBOL(vfio_pin_pages);
1566 
1567 /*
1568  * Unpin contiguous host pages for local domain only.
1569  * @device [in]  : device
1570  * @iova [in]    : starting address of user pages to be unpinned.
1571  * @npage [in]   : count of pages to be unpinned.  This count should not
1572  *                 be greater than VFIO_PIN_PAGES_MAX_ENTRIES.
1573  */
1574 void vfio_unpin_pages(struct vfio_device *device, dma_addr_t iova, int npage)
1575 {
1576 	if (WARN_ON(!vfio_assert_device_open(device)))
1577 		return;
1578 	if (WARN_ON(!device->ops->dma_unmap))
1579 		return;
1580 
1581 	if (vfio_device_has_container(device)) {
1582 		vfio_device_container_unpin_pages(device, iova, npage);
1583 		return;
1584 	}
1585 	if (device->iommufd_access) {
1586 		if (WARN_ON(iova > ULONG_MAX))
1587 			return;
1588 		iommufd_access_unpin_pages(device->iommufd_access,
1589 					   ALIGN_DOWN(iova, PAGE_SIZE),
1590 					   npage * PAGE_SIZE);
1591 		return;
1592 	}
1593 }
1594 EXPORT_SYMBOL(vfio_unpin_pages);
1595 
1596 /*
1597  * This interface allows the CPUs to perform some sort of virtual DMA on
1598  * behalf of the device.
1599  *
1600  * CPUs read/write from/into a range of IOVAs pointing to user space memory
1601  * into/from a kernel buffer.
1602  *
1603  * As the read/write of user space memory is conducted via the CPUs and is
1604  * not a real device DMA, it is not necessary to pin the user space memory.
1605  *
1606  * @device [in]		: VFIO device
1607  * @iova [in]		: base IOVA of a user space buffer
1608  * @data [in]		: pointer to kernel buffer
1609  * @len [in]		: kernel buffer length
1610  * @write		: indicate read or write
1611  * Return error code on failure or 0 on success.
1612  */
1613 int vfio_dma_rw(struct vfio_device *device, dma_addr_t iova, void *data,
1614 		size_t len, bool write)
1615 {
1616 	if (!data || len <= 0 || !vfio_assert_device_open(device))
1617 		return -EINVAL;
1618 
1619 	if (vfio_device_has_container(device))
1620 		return vfio_device_container_dma_rw(device, iova,
1621 						    data, len, write);
1622 
1623 	if (device->iommufd_access) {
1624 		unsigned int flags = 0;
1625 
1626 		if (iova > ULONG_MAX)
1627 			return -EINVAL;
1628 
1629 		/* VFIO historically tries to auto-detect a kthread */
1630 		if (!current->mm)
1631 			flags |= IOMMUFD_ACCESS_RW_KTHREAD;
1632 		if (write)
1633 			flags |= IOMMUFD_ACCESS_RW_WRITE;
1634 		return iommufd_access_rw(device->iommufd_access, iova, data,
1635 					 len, flags);
1636 	}
1637 	return -EINVAL;
1638 }
1639 EXPORT_SYMBOL(vfio_dma_rw);
1640 
1641 /*
1642  * Module/class support
1643  */
1644 static int __init vfio_init(void)
1645 {
1646 	int ret;
1647 
1648 	ida_init(&vfio.device_ida);
1649 
1650 	ret = vfio_group_init();
1651 	if (ret)
1652 		return ret;
1653 
1654 	ret = vfio_virqfd_init();
1655 	if (ret)
1656 		goto err_virqfd;
1657 
1658 	/* /sys/class/vfio-dev/vfioX */
1659 	vfio.device_class = class_create("vfio-dev");
1660 	if (IS_ERR(vfio.device_class)) {
1661 		ret = PTR_ERR(vfio.device_class);
1662 		goto err_dev_class;
1663 	}
1664 
1665 	ret = vfio_cdev_init(vfio.device_class);
1666 	if (ret)
1667 		goto err_alloc_dev_chrdev;
1668 
1669 	pr_info(DRIVER_DESC " version: " DRIVER_VERSION "\n");
1670 	return 0;
1671 
1672 err_alloc_dev_chrdev:
1673 	class_destroy(vfio.device_class);
1674 	vfio.device_class = NULL;
1675 err_dev_class:
1676 	vfio_virqfd_exit();
1677 err_virqfd:
1678 	vfio_group_cleanup();
1679 	return ret;
1680 }
1681 
1682 static void __exit vfio_cleanup(void)
1683 {
1684 	ida_destroy(&vfio.device_ida);
1685 	vfio_cdev_cleanup();
1686 	class_destroy(vfio.device_class);
1687 	vfio.device_class = NULL;
1688 	vfio_virqfd_exit();
1689 	vfio_group_cleanup();
1690 	xa_destroy(&vfio_device_set_xa);
1691 }
1692 
1693 module_init(vfio_init);
1694 module_exit(vfio_cleanup);
1695 
1696 MODULE_VERSION(DRIVER_VERSION);
1697 MODULE_LICENSE("GPL v2");
1698 MODULE_AUTHOR(DRIVER_AUTHOR);
1699 MODULE_DESCRIPTION(DRIVER_DESC);
1700 MODULE_SOFTDEP("post: vfio_iommu_type1 vfio_iommu_spapr_tce");
1701