1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * Derived from original vfio:
9  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
10  * Author: Tom Lyon, pugs@cisco.com
11  *
12  * We arbitrarily define a Type1 IOMMU as one matching the below code.
13  * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14  * VT-d, but that makes it harder to re-use as theoretically anyone
15  * implementing a similar IOMMU could make use of this.  We expect the
16  * IOMMU to support the IOMMU API and have few to no restrictions around
17  * the IOVA range that can be mapped.  The Type1 IOMMU is currently
18  * optimized for relatively static mappings of a userspace process with
19  * userpsace pages pinned into memory.  We also assume devices and IOMMU
20  * domains are PCI based as the IOMMU API is still centered around a
21  * device/bus interface rather than a group interface.
22  */
23 
24 #include <linux/compat.h>
25 #include <linux/device.h>
26 #include <linux/fs.h>
27 #include <linux/iommu.h>
28 #include <linux/module.h>
29 #include <linux/mm.h>
30 #include <linux/kthread.h>
31 #include <linux/rbtree.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/slab.h>
35 #include <linux/uaccess.h>
36 #include <linux/vfio.h>
37 #include <linux/workqueue.h>
38 #include <linux/mdev.h>
39 #include <linux/notifier.h>
40 #include <linux/dma-iommu.h>
41 #include <linux/irqdomain.h>
42 
43 #define DRIVER_VERSION  "0.2"
44 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
45 #define DRIVER_DESC     "Type1 IOMMU driver for VFIO"
46 
47 static bool allow_unsafe_interrupts;
48 module_param_named(allow_unsafe_interrupts,
49 		   allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
50 MODULE_PARM_DESC(allow_unsafe_interrupts,
51 		 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
52 
53 static bool disable_hugepages;
54 module_param_named(disable_hugepages,
55 		   disable_hugepages, bool, S_IRUGO | S_IWUSR);
56 MODULE_PARM_DESC(disable_hugepages,
57 		 "Disable VFIO IOMMU support for IOMMU hugepages.");
58 
59 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
60 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
61 MODULE_PARM_DESC(dma_entry_limit,
62 		 "Maximum number of user DMA mappings per container (65535).");
63 
64 struct vfio_iommu {
65 	struct list_head	domain_list;
66 	struct list_head	iova_list;
67 	struct vfio_domain	*external_domain; /* domain for external user */
68 	struct mutex		lock;
69 	struct rb_root		dma_list;
70 	struct blocking_notifier_head notifier;
71 	unsigned int		dma_avail;
72 	uint64_t		pgsize_bitmap;
73 	bool			v2;
74 	bool			nesting;
75 	bool			dirty_page_tracking;
76 	bool			pinned_page_dirty_scope;
77 };
78 
79 struct vfio_domain {
80 	struct iommu_domain	*domain;
81 	struct list_head	next;
82 	struct list_head	group_list;
83 	int			prot;		/* IOMMU_CACHE */
84 	bool			fgsp;		/* Fine-grained super pages */
85 };
86 
87 struct vfio_dma {
88 	struct rb_node		node;
89 	dma_addr_t		iova;		/* Device address */
90 	unsigned long		vaddr;		/* Process virtual addr */
91 	size_t			size;		/* Map size (bytes) */
92 	int			prot;		/* IOMMU_READ/WRITE */
93 	bool			iommu_mapped;
94 	bool			lock_cap;	/* capable(CAP_IPC_LOCK) */
95 	struct task_struct	*task;
96 	struct rb_root		pfn_list;	/* Ex-user pinned pfn list */
97 	unsigned long		*bitmap;
98 };
99 
100 struct vfio_group {
101 	struct iommu_group	*iommu_group;
102 	struct list_head	next;
103 	bool			mdev_group;	/* An mdev group */
104 	bool			pinned_page_dirty_scope;
105 };
106 
107 struct vfio_iova {
108 	struct list_head	list;
109 	dma_addr_t		start;
110 	dma_addr_t		end;
111 };
112 
113 /*
114  * Guest RAM pinning working set or DMA target
115  */
116 struct vfio_pfn {
117 	struct rb_node		node;
118 	dma_addr_t		iova;		/* Device address */
119 	unsigned long		pfn;		/* Host pfn */
120 	unsigned int		ref_count;
121 };
122 
123 struct vfio_regions {
124 	struct list_head list;
125 	dma_addr_t iova;
126 	phys_addr_t phys;
127 	size_t len;
128 };
129 
130 #define IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu)	\
131 					(!list_empty(&iommu->domain_list))
132 
133 #define DIRTY_BITMAP_BYTES(n)	(ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
134 
135 /*
136  * Input argument of number of bits to bitmap_set() is unsigned integer, which
137  * further casts to signed integer for unaligned multi-bit operation,
138  * __bitmap_set().
139  * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
140  * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
141  * system.
142  */
143 #define DIRTY_BITMAP_PAGES_MAX	 ((u64)INT_MAX)
144 #define DIRTY_BITMAP_SIZE_MAX	 DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
145 
146 static int put_pfn(unsigned long pfn, int prot);
147 
148 static struct vfio_group *vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
149 					       struct iommu_group *iommu_group);
150 
151 static void update_pinned_page_dirty_scope(struct vfio_iommu *iommu);
152 /*
153  * This code handles mapping and unmapping of user data buffers
154  * into DMA'ble space using the IOMMU
155  */
156 
157 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
158 				      dma_addr_t start, size_t size)
159 {
160 	struct rb_node *node = iommu->dma_list.rb_node;
161 
162 	while (node) {
163 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
164 
165 		if (start + size <= dma->iova)
166 			node = node->rb_left;
167 		else if (start >= dma->iova + dma->size)
168 			node = node->rb_right;
169 		else
170 			return dma;
171 	}
172 
173 	return NULL;
174 }
175 
176 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
177 {
178 	struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
179 	struct vfio_dma *dma;
180 
181 	while (*link) {
182 		parent = *link;
183 		dma = rb_entry(parent, struct vfio_dma, node);
184 
185 		if (new->iova + new->size <= dma->iova)
186 			link = &(*link)->rb_left;
187 		else
188 			link = &(*link)->rb_right;
189 	}
190 
191 	rb_link_node(&new->node, parent, link);
192 	rb_insert_color(&new->node, &iommu->dma_list);
193 }
194 
195 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
196 {
197 	rb_erase(&old->node, &iommu->dma_list);
198 }
199 
200 
201 static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
202 {
203 	uint64_t npages = dma->size / pgsize;
204 
205 	if (npages > DIRTY_BITMAP_PAGES_MAX)
206 		return -EINVAL;
207 
208 	/*
209 	 * Allocate extra 64 bits that are used to calculate shift required for
210 	 * bitmap_shift_left() to manipulate and club unaligned number of pages
211 	 * in adjacent vfio_dma ranges.
212 	 */
213 	dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
214 			       GFP_KERNEL);
215 	if (!dma->bitmap)
216 		return -ENOMEM;
217 
218 	return 0;
219 }
220 
221 static void vfio_dma_bitmap_free(struct vfio_dma *dma)
222 {
223 	kfree(dma->bitmap);
224 	dma->bitmap = NULL;
225 }
226 
227 static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
228 {
229 	struct rb_node *p;
230 	unsigned long pgshift = __ffs(pgsize);
231 
232 	for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
233 		struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
234 
235 		bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
236 	}
237 }
238 
239 static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
240 {
241 	struct rb_node *n;
242 
243 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
244 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
245 		int ret;
246 
247 		ret = vfio_dma_bitmap_alloc(dma, pgsize);
248 		if (ret) {
249 			struct rb_node *p;
250 
251 			for (p = rb_prev(n); p; p = rb_prev(p)) {
252 				struct vfio_dma *dma = rb_entry(n,
253 							struct vfio_dma, node);
254 
255 				vfio_dma_bitmap_free(dma);
256 			}
257 			return ret;
258 		}
259 		vfio_dma_populate_bitmap(dma, pgsize);
260 	}
261 	return 0;
262 }
263 
264 static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
265 {
266 	struct rb_node *n;
267 
268 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
269 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
270 
271 		vfio_dma_bitmap_free(dma);
272 	}
273 }
274 
275 /*
276  * Helper Functions for host iova-pfn list
277  */
278 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
279 {
280 	struct vfio_pfn *vpfn;
281 	struct rb_node *node = dma->pfn_list.rb_node;
282 
283 	while (node) {
284 		vpfn = rb_entry(node, struct vfio_pfn, node);
285 
286 		if (iova < vpfn->iova)
287 			node = node->rb_left;
288 		else if (iova > vpfn->iova)
289 			node = node->rb_right;
290 		else
291 			return vpfn;
292 	}
293 	return NULL;
294 }
295 
296 static void vfio_link_pfn(struct vfio_dma *dma,
297 			  struct vfio_pfn *new)
298 {
299 	struct rb_node **link, *parent = NULL;
300 	struct vfio_pfn *vpfn;
301 
302 	link = &dma->pfn_list.rb_node;
303 	while (*link) {
304 		parent = *link;
305 		vpfn = rb_entry(parent, struct vfio_pfn, node);
306 
307 		if (new->iova < vpfn->iova)
308 			link = &(*link)->rb_left;
309 		else
310 			link = &(*link)->rb_right;
311 	}
312 
313 	rb_link_node(&new->node, parent, link);
314 	rb_insert_color(&new->node, &dma->pfn_list);
315 }
316 
317 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
318 {
319 	rb_erase(&old->node, &dma->pfn_list);
320 }
321 
322 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
323 				unsigned long pfn)
324 {
325 	struct vfio_pfn *vpfn;
326 
327 	vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
328 	if (!vpfn)
329 		return -ENOMEM;
330 
331 	vpfn->iova = iova;
332 	vpfn->pfn = pfn;
333 	vpfn->ref_count = 1;
334 	vfio_link_pfn(dma, vpfn);
335 	return 0;
336 }
337 
338 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
339 				      struct vfio_pfn *vpfn)
340 {
341 	vfio_unlink_pfn(dma, vpfn);
342 	kfree(vpfn);
343 }
344 
345 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
346 					       unsigned long iova)
347 {
348 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
349 
350 	if (vpfn)
351 		vpfn->ref_count++;
352 	return vpfn;
353 }
354 
355 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
356 {
357 	int ret = 0;
358 
359 	vpfn->ref_count--;
360 	if (!vpfn->ref_count) {
361 		ret = put_pfn(vpfn->pfn, dma->prot);
362 		vfio_remove_from_pfn_list(dma, vpfn);
363 	}
364 	return ret;
365 }
366 
367 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
368 {
369 	struct mm_struct *mm;
370 	int ret;
371 
372 	if (!npage)
373 		return 0;
374 
375 	mm = async ? get_task_mm(dma->task) : dma->task->mm;
376 	if (!mm)
377 		return -ESRCH; /* process exited */
378 
379 	ret = mmap_write_lock_killable(mm);
380 	if (!ret) {
381 		ret = __account_locked_vm(mm, abs(npage), npage > 0, dma->task,
382 					  dma->lock_cap);
383 		mmap_write_unlock(mm);
384 	}
385 
386 	if (async)
387 		mmput(mm);
388 
389 	return ret;
390 }
391 
392 /*
393  * Some mappings aren't backed by a struct page, for example an mmap'd
394  * MMIO range for our own or another device.  These use a different
395  * pfn conversion and shouldn't be tracked as locked pages.
396  * For compound pages, any driver that sets the reserved bit in head
397  * page needs to set the reserved bit in all subpages to be safe.
398  */
399 static bool is_invalid_reserved_pfn(unsigned long pfn)
400 {
401 	if (pfn_valid(pfn))
402 		return PageReserved(pfn_to_page(pfn));
403 
404 	return true;
405 }
406 
407 static int put_pfn(unsigned long pfn, int prot)
408 {
409 	if (!is_invalid_reserved_pfn(pfn)) {
410 		struct page *page = pfn_to_page(pfn);
411 
412 		unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
413 		return 1;
414 	}
415 	return 0;
416 }
417 
418 static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
419 			    unsigned long vaddr, unsigned long *pfn,
420 			    bool write_fault)
421 {
422 	int ret;
423 
424 	ret = follow_pfn(vma, vaddr, pfn);
425 	if (ret) {
426 		bool unlocked = false;
427 
428 		ret = fixup_user_fault(NULL, mm, vaddr,
429 				       FAULT_FLAG_REMOTE |
430 				       (write_fault ?  FAULT_FLAG_WRITE : 0),
431 				       &unlocked);
432 		if (unlocked)
433 			return -EAGAIN;
434 
435 		if (ret)
436 			return ret;
437 
438 		ret = follow_pfn(vma, vaddr, pfn);
439 	}
440 
441 	return ret;
442 }
443 
444 static int vaddr_get_pfn(struct mm_struct *mm, unsigned long vaddr,
445 			 int prot, unsigned long *pfn)
446 {
447 	struct page *page[1];
448 	struct vm_area_struct *vma;
449 	unsigned int flags = 0;
450 	int ret;
451 
452 	if (prot & IOMMU_WRITE)
453 		flags |= FOLL_WRITE;
454 
455 	mmap_read_lock(mm);
456 	ret = pin_user_pages_remote(NULL, mm, vaddr, 1, flags | FOLL_LONGTERM,
457 				    page, NULL, NULL);
458 	if (ret == 1) {
459 		*pfn = page_to_pfn(page[0]);
460 		ret = 0;
461 		goto done;
462 	}
463 
464 	vaddr = untagged_addr(vaddr);
465 
466 retry:
467 	vma = find_vma_intersection(mm, vaddr, vaddr + 1);
468 
469 	if (vma && vma->vm_flags & VM_PFNMAP) {
470 		ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE);
471 		if (ret == -EAGAIN)
472 			goto retry;
473 
474 		if (!ret && !is_invalid_reserved_pfn(*pfn))
475 			ret = -EFAULT;
476 	}
477 done:
478 	mmap_read_unlock(mm);
479 	return ret;
480 }
481 
482 /*
483  * Attempt to pin pages.  We really don't want to track all the pfns and
484  * the iommu can only map chunks of consecutive pfns anyway, so get the
485  * first page and all consecutive pages with the same locking.
486  */
487 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
488 				  long npage, unsigned long *pfn_base,
489 				  unsigned long limit)
490 {
491 	unsigned long pfn = 0;
492 	long ret, pinned = 0, lock_acct = 0;
493 	bool rsvd;
494 	dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
495 
496 	/* This code path is only user initiated */
497 	if (!current->mm)
498 		return -ENODEV;
499 
500 	ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, pfn_base);
501 	if (ret)
502 		return ret;
503 
504 	pinned++;
505 	rsvd = is_invalid_reserved_pfn(*pfn_base);
506 
507 	/*
508 	 * Reserved pages aren't counted against the user, externally pinned
509 	 * pages are already counted against the user.
510 	 */
511 	if (!rsvd && !vfio_find_vpfn(dma, iova)) {
512 		if (!dma->lock_cap && current->mm->locked_vm + 1 > limit) {
513 			put_pfn(*pfn_base, dma->prot);
514 			pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
515 					limit << PAGE_SHIFT);
516 			return -ENOMEM;
517 		}
518 		lock_acct++;
519 	}
520 
521 	if (unlikely(disable_hugepages))
522 		goto out;
523 
524 	/* Lock all the consecutive pages from pfn_base */
525 	for (vaddr += PAGE_SIZE, iova += PAGE_SIZE; pinned < npage;
526 	     pinned++, vaddr += PAGE_SIZE, iova += PAGE_SIZE) {
527 		ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, &pfn);
528 		if (ret)
529 			break;
530 
531 		if (pfn != *pfn_base + pinned ||
532 		    rsvd != is_invalid_reserved_pfn(pfn)) {
533 			put_pfn(pfn, dma->prot);
534 			break;
535 		}
536 
537 		if (!rsvd && !vfio_find_vpfn(dma, iova)) {
538 			if (!dma->lock_cap &&
539 			    current->mm->locked_vm + lock_acct + 1 > limit) {
540 				put_pfn(pfn, dma->prot);
541 				pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
542 					__func__, limit << PAGE_SHIFT);
543 				ret = -ENOMEM;
544 				goto unpin_out;
545 			}
546 			lock_acct++;
547 		}
548 	}
549 
550 out:
551 	ret = vfio_lock_acct(dma, lock_acct, false);
552 
553 unpin_out:
554 	if (ret) {
555 		if (!rsvd) {
556 			for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
557 				put_pfn(pfn, dma->prot);
558 		}
559 
560 		return ret;
561 	}
562 
563 	return pinned;
564 }
565 
566 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
567 				    unsigned long pfn, long npage,
568 				    bool do_accounting)
569 {
570 	long unlocked = 0, locked = 0;
571 	long i;
572 
573 	for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
574 		if (put_pfn(pfn++, dma->prot)) {
575 			unlocked++;
576 			if (vfio_find_vpfn(dma, iova))
577 				locked++;
578 		}
579 	}
580 
581 	if (do_accounting)
582 		vfio_lock_acct(dma, locked - unlocked, true);
583 
584 	return unlocked;
585 }
586 
587 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
588 				  unsigned long *pfn_base, bool do_accounting)
589 {
590 	struct mm_struct *mm;
591 	int ret;
592 
593 	mm = get_task_mm(dma->task);
594 	if (!mm)
595 		return -ENODEV;
596 
597 	ret = vaddr_get_pfn(mm, vaddr, dma->prot, pfn_base);
598 	if (!ret && do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
599 		ret = vfio_lock_acct(dma, 1, true);
600 		if (ret) {
601 			put_pfn(*pfn_base, dma->prot);
602 			if (ret == -ENOMEM)
603 				pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
604 					"(%ld) exceeded\n", __func__,
605 					dma->task->comm, task_pid_nr(dma->task),
606 					task_rlimit(dma->task, RLIMIT_MEMLOCK));
607 		}
608 	}
609 
610 	mmput(mm);
611 	return ret;
612 }
613 
614 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
615 				    bool do_accounting)
616 {
617 	int unlocked;
618 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
619 
620 	if (!vpfn)
621 		return 0;
622 
623 	unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
624 
625 	if (do_accounting)
626 		vfio_lock_acct(dma, -unlocked, true);
627 
628 	return unlocked;
629 }
630 
631 static int vfio_iommu_type1_pin_pages(void *iommu_data,
632 				      struct iommu_group *iommu_group,
633 				      unsigned long *user_pfn,
634 				      int npage, int prot,
635 				      unsigned long *phys_pfn)
636 {
637 	struct vfio_iommu *iommu = iommu_data;
638 	struct vfio_group *group;
639 	int i, j, ret;
640 	unsigned long remote_vaddr;
641 	struct vfio_dma *dma;
642 	bool do_accounting;
643 
644 	if (!iommu || !user_pfn || !phys_pfn)
645 		return -EINVAL;
646 
647 	/* Supported for v2 version only */
648 	if (!iommu->v2)
649 		return -EACCES;
650 
651 	mutex_lock(&iommu->lock);
652 
653 	/* Fail if notifier list is empty */
654 	if (!iommu->notifier.head) {
655 		ret = -EINVAL;
656 		goto pin_done;
657 	}
658 
659 	/*
660 	 * If iommu capable domain exist in the container then all pages are
661 	 * already pinned and accounted. Accouting should be done if there is no
662 	 * iommu capable domain in the container.
663 	 */
664 	do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
665 
666 	for (i = 0; i < npage; i++) {
667 		dma_addr_t iova;
668 		struct vfio_pfn *vpfn;
669 
670 		iova = user_pfn[i] << PAGE_SHIFT;
671 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
672 		if (!dma) {
673 			ret = -EINVAL;
674 			goto pin_unwind;
675 		}
676 
677 		if ((dma->prot & prot) != prot) {
678 			ret = -EPERM;
679 			goto pin_unwind;
680 		}
681 
682 		vpfn = vfio_iova_get_vfio_pfn(dma, iova);
683 		if (vpfn) {
684 			phys_pfn[i] = vpfn->pfn;
685 			continue;
686 		}
687 
688 		remote_vaddr = dma->vaddr + (iova - dma->iova);
689 		ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn[i],
690 					     do_accounting);
691 		if (ret)
692 			goto pin_unwind;
693 
694 		ret = vfio_add_to_pfn_list(dma, iova, phys_pfn[i]);
695 		if (ret) {
696 			vfio_unpin_page_external(dma, iova, do_accounting);
697 			goto pin_unwind;
698 		}
699 
700 		if (iommu->dirty_page_tracking) {
701 			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
702 
703 			/*
704 			 * Bitmap populated with the smallest supported page
705 			 * size
706 			 */
707 			bitmap_set(dma->bitmap,
708 				   (iova - dma->iova) >> pgshift, 1);
709 		}
710 	}
711 	ret = i;
712 
713 	group = vfio_iommu_find_iommu_group(iommu, iommu_group);
714 	if (!group->pinned_page_dirty_scope) {
715 		group->pinned_page_dirty_scope = true;
716 		update_pinned_page_dirty_scope(iommu);
717 	}
718 
719 	goto pin_done;
720 
721 pin_unwind:
722 	phys_pfn[i] = 0;
723 	for (j = 0; j < i; j++) {
724 		dma_addr_t iova;
725 
726 		iova = user_pfn[j] << PAGE_SHIFT;
727 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
728 		vfio_unpin_page_external(dma, iova, do_accounting);
729 		phys_pfn[j] = 0;
730 	}
731 pin_done:
732 	mutex_unlock(&iommu->lock);
733 	return ret;
734 }
735 
736 static int vfio_iommu_type1_unpin_pages(void *iommu_data,
737 					unsigned long *user_pfn,
738 					int npage)
739 {
740 	struct vfio_iommu *iommu = iommu_data;
741 	bool do_accounting;
742 	int i;
743 
744 	if (!iommu || !user_pfn)
745 		return -EINVAL;
746 
747 	/* Supported for v2 version only */
748 	if (!iommu->v2)
749 		return -EACCES;
750 
751 	mutex_lock(&iommu->lock);
752 
753 	do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
754 	for (i = 0; i < npage; i++) {
755 		struct vfio_dma *dma;
756 		dma_addr_t iova;
757 
758 		iova = user_pfn[i] << PAGE_SHIFT;
759 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
760 		if (!dma)
761 			goto unpin_exit;
762 		vfio_unpin_page_external(dma, iova, do_accounting);
763 	}
764 
765 unpin_exit:
766 	mutex_unlock(&iommu->lock);
767 	return i > npage ? npage : (i > 0 ? i : -EINVAL);
768 }
769 
770 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
771 			    struct list_head *regions,
772 			    struct iommu_iotlb_gather *iotlb_gather)
773 {
774 	long unlocked = 0;
775 	struct vfio_regions *entry, *next;
776 
777 	iommu_tlb_sync(domain->domain, iotlb_gather);
778 
779 	list_for_each_entry_safe(entry, next, regions, list) {
780 		unlocked += vfio_unpin_pages_remote(dma,
781 						    entry->iova,
782 						    entry->phys >> PAGE_SHIFT,
783 						    entry->len >> PAGE_SHIFT,
784 						    false);
785 		list_del(&entry->list);
786 		kfree(entry);
787 	}
788 
789 	cond_resched();
790 
791 	return unlocked;
792 }
793 
794 /*
795  * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
796  * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
797  * of these regions (currently using a list).
798  *
799  * This value specifies maximum number of regions for each IOTLB flush sync.
800  */
801 #define VFIO_IOMMU_TLB_SYNC_MAX		512
802 
803 static size_t unmap_unpin_fast(struct vfio_domain *domain,
804 			       struct vfio_dma *dma, dma_addr_t *iova,
805 			       size_t len, phys_addr_t phys, long *unlocked,
806 			       struct list_head *unmapped_list,
807 			       int *unmapped_cnt,
808 			       struct iommu_iotlb_gather *iotlb_gather)
809 {
810 	size_t unmapped = 0;
811 	struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
812 
813 	if (entry) {
814 		unmapped = iommu_unmap_fast(domain->domain, *iova, len,
815 					    iotlb_gather);
816 
817 		if (!unmapped) {
818 			kfree(entry);
819 		} else {
820 			entry->iova = *iova;
821 			entry->phys = phys;
822 			entry->len  = unmapped;
823 			list_add_tail(&entry->list, unmapped_list);
824 
825 			*iova += unmapped;
826 			(*unmapped_cnt)++;
827 		}
828 	}
829 
830 	/*
831 	 * Sync if the number of fast-unmap regions hits the limit
832 	 * or in case of errors.
833 	 */
834 	if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
835 		*unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
836 					     iotlb_gather);
837 		*unmapped_cnt = 0;
838 	}
839 
840 	return unmapped;
841 }
842 
843 static size_t unmap_unpin_slow(struct vfio_domain *domain,
844 			       struct vfio_dma *dma, dma_addr_t *iova,
845 			       size_t len, phys_addr_t phys,
846 			       long *unlocked)
847 {
848 	size_t unmapped = iommu_unmap(domain->domain, *iova, len);
849 
850 	if (unmapped) {
851 		*unlocked += vfio_unpin_pages_remote(dma, *iova,
852 						     phys >> PAGE_SHIFT,
853 						     unmapped >> PAGE_SHIFT,
854 						     false);
855 		*iova += unmapped;
856 		cond_resched();
857 	}
858 	return unmapped;
859 }
860 
861 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
862 			     bool do_accounting)
863 {
864 	dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
865 	struct vfio_domain *domain, *d;
866 	LIST_HEAD(unmapped_region_list);
867 	struct iommu_iotlb_gather iotlb_gather;
868 	int unmapped_region_cnt = 0;
869 	long unlocked = 0;
870 
871 	if (!dma->size)
872 		return 0;
873 
874 	if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
875 		return 0;
876 
877 	/*
878 	 * We use the IOMMU to track the physical addresses, otherwise we'd
879 	 * need a much more complicated tracking system.  Unfortunately that
880 	 * means we need to use one of the iommu domains to figure out the
881 	 * pfns to unpin.  The rest need to be unmapped in advance so we have
882 	 * no iommu translations remaining when the pages are unpinned.
883 	 */
884 	domain = d = list_first_entry(&iommu->domain_list,
885 				      struct vfio_domain, next);
886 
887 	list_for_each_entry_continue(d, &iommu->domain_list, next) {
888 		iommu_unmap(d->domain, dma->iova, dma->size);
889 		cond_resched();
890 	}
891 
892 	iommu_iotlb_gather_init(&iotlb_gather);
893 	while (iova < end) {
894 		size_t unmapped, len;
895 		phys_addr_t phys, next;
896 
897 		phys = iommu_iova_to_phys(domain->domain, iova);
898 		if (WARN_ON(!phys)) {
899 			iova += PAGE_SIZE;
900 			continue;
901 		}
902 
903 		/*
904 		 * To optimize for fewer iommu_unmap() calls, each of which
905 		 * may require hardware cache flushing, try to find the
906 		 * largest contiguous physical memory chunk to unmap.
907 		 */
908 		for (len = PAGE_SIZE;
909 		     !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
910 			next = iommu_iova_to_phys(domain->domain, iova + len);
911 			if (next != phys + len)
912 				break;
913 		}
914 
915 		/*
916 		 * First, try to use fast unmap/unpin. In case of failure,
917 		 * switch to slow unmap/unpin path.
918 		 */
919 		unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
920 					    &unlocked, &unmapped_region_list,
921 					    &unmapped_region_cnt,
922 					    &iotlb_gather);
923 		if (!unmapped) {
924 			unmapped = unmap_unpin_slow(domain, dma, &iova, len,
925 						    phys, &unlocked);
926 			if (WARN_ON(!unmapped))
927 				break;
928 		}
929 	}
930 
931 	dma->iommu_mapped = false;
932 
933 	if (unmapped_region_cnt) {
934 		unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
935 					    &iotlb_gather);
936 	}
937 
938 	if (do_accounting) {
939 		vfio_lock_acct(dma, -unlocked, true);
940 		return 0;
941 	}
942 	return unlocked;
943 }
944 
945 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
946 {
947 	vfio_unmap_unpin(iommu, dma, true);
948 	vfio_unlink_dma(iommu, dma);
949 	put_task_struct(dma->task);
950 	vfio_dma_bitmap_free(dma);
951 	kfree(dma);
952 	iommu->dma_avail++;
953 }
954 
955 static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
956 {
957 	struct vfio_domain *domain;
958 
959 	iommu->pgsize_bitmap = ULONG_MAX;
960 
961 	list_for_each_entry(domain, &iommu->domain_list, next)
962 		iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
963 
964 	/*
965 	 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
966 	 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
967 	 * That way the user will be able to map/unmap buffers whose size/
968 	 * start address is aligned with PAGE_SIZE. Pinning code uses that
969 	 * granularity while iommu driver can use the sub-PAGE_SIZE size
970 	 * to map the buffer.
971 	 */
972 	if (iommu->pgsize_bitmap & ~PAGE_MASK) {
973 		iommu->pgsize_bitmap &= PAGE_MASK;
974 		iommu->pgsize_bitmap |= PAGE_SIZE;
975 	}
976 }
977 
978 static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
979 			      struct vfio_dma *dma, dma_addr_t base_iova,
980 			      size_t pgsize)
981 {
982 	unsigned long pgshift = __ffs(pgsize);
983 	unsigned long nbits = dma->size >> pgshift;
984 	unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
985 	unsigned long copy_offset = bit_offset / BITS_PER_LONG;
986 	unsigned long shift = bit_offset % BITS_PER_LONG;
987 	unsigned long leftover;
988 
989 	/*
990 	 * mark all pages dirty if any IOMMU capable device is not able
991 	 * to report dirty pages and all pages are pinned and mapped.
992 	 */
993 	if (!iommu->pinned_page_dirty_scope && dma->iommu_mapped)
994 		bitmap_set(dma->bitmap, 0, nbits);
995 
996 	if (shift) {
997 		bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
998 				  nbits + shift);
999 
1000 		if (copy_from_user(&leftover,
1001 				   (void __user *)(bitmap + copy_offset),
1002 				   sizeof(leftover)))
1003 			return -EFAULT;
1004 
1005 		bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1006 	}
1007 
1008 	if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1009 			 DIRTY_BITMAP_BYTES(nbits + shift)))
1010 		return -EFAULT;
1011 
1012 	return 0;
1013 }
1014 
1015 static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1016 				  dma_addr_t iova, size_t size, size_t pgsize)
1017 {
1018 	struct vfio_dma *dma;
1019 	struct rb_node *n;
1020 	unsigned long pgshift = __ffs(pgsize);
1021 	int ret;
1022 
1023 	/*
1024 	 * GET_BITMAP request must fully cover vfio_dma mappings.  Multiple
1025 	 * vfio_dma mappings may be clubbed by specifying large ranges, but
1026 	 * there must not be any previous mappings bisected by the range.
1027 	 * An error will be returned if these conditions are not met.
1028 	 */
1029 	dma = vfio_find_dma(iommu, iova, 1);
1030 	if (dma && dma->iova != iova)
1031 		return -EINVAL;
1032 
1033 	dma = vfio_find_dma(iommu, iova + size - 1, 0);
1034 	if (dma && dma->iova + dma->size != iova + size)
1035 		return -EINVAL;
1036 
1037 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1038 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1039 
1040 		if (dma->iova < iova)
1041 			continue;
1042 
1043 		if (dma->iova > iova + size - 1)
1044 			break;
1045 
1046 		ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1047 		if (ret)
1048 			return ret;
1049 
1050 		/*
1051 		 * Re-populate bitmap to include all pinned pages which are
1052 		 * considered as dirty but exclude pages which are unpinned and
1053 		 * pages which are marked dirty by vfio_dma_rw()
1054 		 */
1055 		bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1056 		vfio_dma_populate_bitmap(dma, pgsize);
1057 	}
1058 	return 0;
1059 }
1060 
1061 static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1062 {
1063 	if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1064 	    (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1065 		return -EINVAL;
1066 
1067 	return 0;
1068 }
1069 
1070 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1071 			     struct vfio_iommu_type1_dma_unmap *unmap,
1072 			     struct vfio_bitmap *bitmap)
1073 {
1074 	struct vfio_dma *dma, *dma_last = NULL;
1075 	size_t unmapped = 0, pgsize;
1076 	int ret = 0, retries = 0;
1077 	unsigned long pgshift;
1078 
1079 	mutex_lock(&iommu->lock);
1080 
1081 	pgshift = __ffs(iommu->pgsize_bitmap);
1082 	pgsize = (size_t)1 << pgshift;
1083 
1084 	if (unmap->iova & (pgsize - 1)) {
1085 		ret = -EINVAL;
1086 		goto unlock;
1087 	}
1088 
1089 	if (!unmap->size || unmap->size & (pgsize - 1)) {
1090 		ret = -EINVAL;
1091 		goto unlock;
1092 	}
1093 
1094 	if (unmap->iova + unmap->size - 1 < unmap->iova ||
1095 	    unmap->size > SIZE_MAX) {
1096 		ret = -EINVAL;
1097 		goto unlock;
1098 	}
1099 
1100 	/* When dirty tracking is enabled, allow only min supported pgsize */
1101 	if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1102 	    (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1103 		ret = -EINVAL;
1104 		goto unlock;
1105 	}
1106 
1107 	WARN_ON((pgsize - 1) & PAGE_MASK);
1108 again:
1109 	/*
1110 	 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1111 	 * avoid tracking individual mappings.  This means that the granularity
1112 	 * of the original mapping was lost and the user was allowed to attempt
1113 	 * to unmap any range.  Depending on the contiguousness of physical
1114 	 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1115 	 * or may not have worked.  We only guaranteed unmap granularity
1116 	 * matching the original mapping; even though it was untracked here,
1117 	 * the original mappings are reflected in IOMMU mappings.  This
1118 	 * resulted in a couple unusual behaviors.  First, if a range is not
1119 	 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1120 	 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1121 	 * a zero sized unmap.  Also, if an unmap request overlaps the first
1122 	 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1123 	 * This also returns success and the returned unmap size reflects the
1124 	 * actual size unmapped.
1125 	 *
1126 	 * We attempt to maintain compatibility with this "v1" interface, but
1127 	 * we take control out of the hands of the IOMMU.  Therefore, an unmap
1128 	 * request offset from the beginning of the original mapping will
1129 	 * return success with zero sized unmap.  And an unmap request covering
1130 	 * the first iova of mapping will unmap the entire range.
1131 	 *
1132 	 * The v2 version of this interface intends to be more deterministic.
1133 	 * Unmap requests must fully cover previous mappings.  Multiple
1134 	 * mappings may still be unmaped by specifying large ranges, but there
1135 	 * must not be any previous mappings bisected by the range.  An error
1136 	 * will be returned if these conditions are not met.  The v2 interface
1137 	 * will only return success and a size of zero if there were no
1138 	 * mappings within the range.
1139 	 */
1140 	if (iommu->v2) {
1141 		dma = vfio_find_dma(iommu, unmap->iova, 1);
1142 		if (dma && dma->iova != unmap->iova) {
1143 			ret = -EINVAL;
1144 			goto unlock;
1145 		}
1146 		dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
1147 		if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
1148 			ret = -EINVAL;
1149 			goto unlock;
1150 		}
1151 	}
1152 
1153 	while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
1154 		if (!iommu->v2 && unmap->iova > dma->iova)
1155 			break;
1156 		/*
1157 		 * Task with same address space who mapped this iova range is
1158 		 * allowed to unmap the iova range.
1159 		 */
1160 		if (dma->task->mm != current->mm)
1161 			break;
1162 
1163 		if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1164 			struct vfio_iommu_type1_dma_unmap nb_unmap;
1165 
1166 			if (dma_last == dma) {
1167 				BUG_ON(++retries > 10);
1168 			} else {
1169 				dma_last = dma;
1170 				retries = 0;
1171 			}
1172 
1173 			nb_unmap.iova = dma->iova;
1174 			nb_unmap.size = dma->size;
1175 
1176 			/*
1177 			 * Notify anyone (mdev vendor drivers) to invalidate and
1178 			 * unmap iovas within the range we're about to unmap.
1179 			 * Vendor drivers MUST unpin pages in response to an
1180 			 * invalidation.
1181 			 */
1182 			mutex_unlock(&iommu->lock);
1183 			blocking_notifier_call_chain(&iommu->notifier,
1184 						    VFIO_IOMMU_NOTIFY_DMA_UNMAP,
1185 						    &nb_unmap);
1186 			mutex_lock(&iommu->lock);
1187 			goto again;
1188 		}
1189 
1190 		if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1191 			ret = update_user_bitmap(bitmap->data, iommu, dma,
1192 						 unmap->iova, pgsize);
1193 			if (ret)
1194 				break;
1195 		}
1196 
1197 		unmapped += dma->size;
1198 		vfio_remove_dma(iommu, dma);
1199 	}
1200 
1201 unlock:
1202 	mutex_unlock(&iommu->lock);
1203 
1204 	/* Report how much was unmapped */
1205 	unmap->size = unmapped;
1206 
1207 	return ret;
1208 }
1209 
1210 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1211 			  unsigned long pfn, long npage, int prot)
1212 {
1213 	struct vfio_domain *d;
1214 	int ret;
1215 
1216 	list_for_each_entry(d, &iommu->domain_list, next) {
1217 		ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1218 				npage << PAGE_SHIFT, prot | d->prot);
1219 		if (ret)
1220 			goto unwind;
1221 
1222 		cond_resched();
1223 	}
1224 
1225 	return 0;
1226 
1227 unwind:
1228 	list_for_each_entry_continue_reverse(d, &iommu->domain_list, next)
1229 		iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1230 
1231 	return ret;
1232 }
1233 
1234 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1235 			    size_t map_size)
1236 {
1237 	dma_addr_t iova = dma->iova;
1238 	unsigned long vaddr = dma->vaddr;
1239 	size_t size = map_size;
1240 	long npage;
1241 	unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1242 	int ret = 0;
1243 
1244 	while (size) {
1245 		/* Pin a contiguous chunk of memory */
1246 		npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1247 					      size >> PAGE_SHIFT, &pfn, limit);
1248 		if (npage <= 0) {
1249 			WARN_ON(!npage);
1250 			ret = (int)npage;
1251 			break;
1252 		}
1253 
1254 		/* Map it! */
1255 		ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1256 				     dma->prot);
1257 		if (ret) {
1258 			vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1259 						npage, true);
1260 			break;
1261 		}
1262 
1263 		size -= npage << PAGE_SHIFT;
1264 		dma->size += npage << PAGE_SHIFT;
1265 	}
1266 
1267 	dma->iommu_mapped = true;
1268 
1269 	if (ret)
1270 		vfio_remove_dma(iommu, dma);
1271 
1272 	return ret;
1273 }
1274 
1275 /*
1276  * Check dma map request is within a valid iova range
1277  */
1278 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1279 				      dma_addr_t start, dma_addr_t end)
1280 {
1281 	struct list_head *iova = &iommu->iova_list;
1282 	struct vfio_iova *node;
1283 
1284 	list_for_each_entry(node, iova, list) {
1285 		if (start >= node->start && end <= node->end)
1286 			return true;
1287 	}
1288 
1289 	/*
1290 	 * Check for list_empty() as well since a container with
1291 	 * a single mdev device will have an empty list.
1292 	 */
1293 	return list_empty(iova);
1294 }
1295 
1296 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1297 			   struct vfio_iommu_type1_dma_map *map)
1298 {
1299 	dma_addr_t iova = map->iova;
1300 	unsigned long vaddr = map->vaddr;
1301 	size_t size = map->size;
1302 	int ret = 0, prot = 0;
1303 	size_t pgsize;
1304 	struct vfio_dma *dma;
1305 
1306 	/* Verify that none of our __u64 fields overflow */
1307 	if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1308 		return -EINVAL;
1309 
1310 	/* READ/WRITE from device perspective */
1311 	if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1312 		prot |= IOMMU_WRITE;
1313 	if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1314 		prot |= IOMMU_READ;
1315 
1316 	mutex_lock(&iommu->lock);
1317 
1318 	pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1319 
1320 	WARN_ON((pgsize - 1) & PAGE_MASK);
1321 
1322 	if (!prot || !size || (size | iova | vaddr) & (pgsize - 1)) {
1323 		ret = -EINVAL;
1324 		goto out_unlock;
1325 	}
1326 
1327 	/* Don't allow IOVA or virtual address wrap */
1328 	if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1329 		ret = -EINVAL;
1330 		goto out_unlock;
1331 	}
1332 
1333 	if (vfio_find_dma(iommu, iova, size)) {
1334 		ret = -EEXIST;
1335 		goto out_unlock;
1336 	}
1337 
1338 	if (!iommu->dma_avail) {
1339 		ret = -ENOSPC;
1340 		goto out_unlock;
1341 	}
1342 
1343 	if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1344 		ret = -EINVAL;
1345 		goto out_unlock;
1346 	}
1347 
1348 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1349 	if (!dma) {
1350 		ret = -ENOMEM;
1351 		goto out_unlock;
1352 	}
1353 
1354 	iommu->dma_avail--;
1355 	dma->iova = iova;
1356 	dma->vaddr = vaddr;
1357 	dma->prot = prot;
1358 
1359 	/*
1360 	 * We need to be able to both add to a task's locked memory and test
1361 	 * against the locked memory limit and we need to be able to do both
1362 	 * outside of this call path as pinning can be asynchronous via the
1363 	 * external interfaces for mdev devices.  RLIMIT_MEMLOCK requires a
1364 	 * task_struct and VM locked pages requires an mm_struct, however
1365 	 * holding an indefinite mm reference is not recommended, therefore we
1366 	 * only hold a reference to a task.  We could hold a reference to
1367 	 * current, however QEMU uses this call path through vCPU threads,
1368 	 * which can be killed resulting in a NULL mm and failure in the unmap
1369 	 * path when called via a different thread.  Avoid this problem by
1370 	 * using the group_leader as threads within the same group require
1371 	 * both CLONE_THREAD and CLONE_VM and will therefore use the same
1372 	 * mm_struct.
1373 	 *
1374 	 * Previously we also used the task for testing CAP_IPC_LOCK at the
1375 	 * time of pinning and accounting, however has_capability() makes use
1376 	 * of real_cred, a copy-on-write field, so we can't guarantee that it
1377 	 * matches group_leader, or in fact that it might not change by the
1378 	 * time it's evaluated.  If a process were to call MAP_DMA with
1379 	 * CAP_IPC_LOCK but later drop it, it doesn't make sense that they
1380 	 * possibly see different results for an iommu_mapped vfio_dma vs
1381 	 * externally mapped.  Therefore track CAP_IPC_LOCK in vfio_dma at the
1382 	 * time of calling MAP_DMA.
1383 	 */
1384 	get_task_struct(current->group_leader);
1385 	dma->task = current->group_leader;
1386 	dma->lock_cap = capable(CAP_IPC_LOCK);
1387 
1388 	dma->pfn_list = RB_ROOT;
1389 
1390 	/* Insert zero-sized and grow as we map chunks of it */
1391 	vfio_link_dma(iommu, dma);
1392 
1393 	/* Don't pin and map if container doesn't contain IOMMU capable domain*/
1394 	if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1395 		dma->size = size;
1396 	else
1397 		ret = vfio_pin_map_dma(iommu, dma, size);
1398 
1399 	if (!ret && iommu->dirty_page_tracking) {
1400 		ret = vfio_dma_bitmap_alloc(dma, pgsize);
1401 		if (ret)
1402 			vfio_remove_dma(iommu, dma);
1403 	}
1404 
1405 out_unlock:
1406 	mutex_unlock(&iommu->lock);
1407 	return ret;
1408 }
1409 
1410 static int vfio_bus_type(struct device *dev, void *data)
1411 {
1412 	struct bus_type **bus = data;
1413 
1414 	if (*bus && *bus != dev->bus)
1415 		return -EINVAL;
1416 
1417 	*bus = dev->bus;
1418 
1419 	return 0;
1420 }
1421 
1422 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1423 			     struct vfio_domain *domain)
1424 {
1425 	struct vfio_domain *d;
1426 	struct rb_node *n;
1427 	unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1428 	int ret;
1429 
1430 	/* Arbitrarily pick the first domain in the list for lookups */
1431 	d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
1432 	n = rb_first(&iommu->dma_list);
1433 
1434 	for (; n; n = rb_next(n)) {
1435 		struct vfio_dma *dma;
1436 		dma_addr_t iova;
1437 
1438 		dma = rb_entry(n, struct vfio_dma, node);
1439 		iova = dma->iova;
1440 
1441 		while (iova < dma->iova + dma->size) {
1442 			phys_addr_t phys;
1443 			size_t size;
1444 
1445 			if (dma->iommu_mapped) {
1446 				phys_addr_t p;
1447 				dma_addr_t i;
1448 
1449 				phys = iommu_iova_to_phys(d->domain, iova);
1450 
1451 				if (WARN_ON(!phys)) {
1452 					iova += PAGE_SIZE;
1453 					continue;
1454 				}
1455 
1456 				size = PAGE_SIZE;
1457 				p = phys + size;
1458 				i = iova + size;
1459 				while (i < dma->iova + dma->size &&
1460 				       p == iommu_iova_to_phys(d->domain, i)) {
1461 					size += PAGE_SIZE;
1462 					p += PAGE_SIZE;
1463 					i += PAGE_SIZE;
1464 				}
1465 			} else {
1466 				unsigned long pfn;
1467 				unsigned long vaddr = dma->vaddr +
1468 						     (iova - dma->iova);
1469 				size_t n = dma->iova + dma->size - iova;
1470 				long npage;
1471 
1472 				npage = vfio_pin_pages_remote(dma, vaddr,
1473 							      n >> PAGE_SHIFT,
1474 							      &pfn, limit);
1475 				if (npage <= 0) {
1476 					WARN_ON(!npage);
1477 					ret = (int)npage;
1478 					return ret;
1479 				}
1480 
1481 				phys = pfn << PAGE_SHIFT;
1482 				size = npage << PAGE_SHIFT;
1483 			}
1484 
1485 			ret = iommu_map(domain->domain, iova, phys,
1486 					size, dma->prot | domain->prot);
1487 			if (ret)
1488 				return ret;
1489 
1490 			iova += size;
1491 		}
1492 		dma->iommu_mapped = true;
1493 	}
1494 	return 0;
1495 }
1496 
1497 /*
1498  * We change our unmap behavior slightly depending on whether the IOMMU
1499  * supports fine-grained superpages.  IOMMUs like AMD-Vi will use a superpage
1500  * for practically any contiguous power-of-two mapping we give it.  This means
1501  * we don't need to look for contiguous chunks ourselves to make unmapping
1502  * more efficient.  On IOMMUs with coarse-grained super pages, like Intel VT-d
1503  * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1504  * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1505  * hugetlbfs is in use.
1506  */
1507 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
1508 {
1509 	struct page *pages;
1510 	int ret, order = get_order(PAGE_SIZE * 2);
1511 
1512 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1513 	if (!pages)
1514 		return;
1515 
1516 	ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
1517 			IOMMU_READ | IOMMU_WRITE | domain->prot);
1518 	if (!ret) {
1519 		size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
1520 
1521 		if (unmapped == PAGE_SIZE)
1522 			iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
1523 		else
1524 			domain->fgsp = true;
1525 	}
1526 
1527 	__free_pages(pages, order);
1528 }
1529 
1530 static struct vfio_group *find_iommu_group(struct vfio_domain *domain,
1531 					   struct iommu_group *iommu_group)
1532 {
1533 	struct vfio_group *g;
1534 
1535 	list_for_each_entry(g, &domain->group_list, next) {
1536 		if (g->iommu_group == iommu_group)
1537 			return g;
1538 	}
1539 
1540 	return NULL;
1541 }
1542 
1543 static struct vfio_group *vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1544 					       struct iommu_group *iommu_group)
1545 {
1546 	struct vfio_domain *domain;
1547 	struct vfio_group *group = NULL;
1548 
1549 	list_for_each_entry(domain, &iommu->domain_list, next) {
1550 		group = find_iommu_group(domain, iommu_group);
1551 		if (group)
1552 			return group;
1553 	}
1554 
1555 	if (iommu->external_domain)
1556 		group = find_iommu_group(iommu->external_domain, iommu_group);
1557 
1558 	return group;
1559 }
1560 
1561 static void update_pinned_page_dirty_scope(struct vfio_iommu *iommu)
1562 {
1563 	struct vfio_domain *domain;
1564 	struct vfio_group *group;
1565 
1566 	list_for_each_entry(domain, &iommu->domain_list, next) {
1567 		list_for_each_entry(group, &domain->group_list, next) {
1568 			if (!group->pinned_page_dirty_scope) {
1569 				iommu->pinned_page_dirty_scope = false;
1570 				return;
1571 			}
1572 		}
1573 	}
1574 
1575 	if (iommu->external_domain) {
1576 		domain = iommu->external_domain;
1577 		list_for_each_entry(group, &domain->group_list, next) {
1578 			if (!group->pinned_page_dirty_scope) {
1579 				iommu->pinned_page_dirty_scope = false;
1580 				return;
1581 			}
1582 		}
1583 	}
1584 
1585 	iommu->pinned_page_dirty_scope = true;
1586 }
1587 
1588 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1589 				  phys_addr_t *base)
1590 {
1591 	struct iommu_resv_region *region;
1592 	bool ret = false;
1593 
1594 	list_for_each_entry(region, group_resv_regions, list) {
1595 		/*
1596 		 * The presence of any 'real' MSI regions should take
1597 		 * precedence over the software-managed one if the
1598 		 * IOMMU driver happens to advertise both types.
1599 		 */
1600 		if (region->type == IOMMU_RESV_MSI) {
1601 			ret = false;
1602 			break;
1603 		}
1604 
1605 		if (region->type == IOMMU_RESV_SW_MSI) {
1606 			*base = region->start;
1607 			ret = true;
1608 		}
1609 	}
1610 
1611 	return ret;
1612 }
1613 
1614 static struct device *vfio_mdev_get_iommu_device(struct device *dev)
1615 {
1616 	struct device *(*fn)(struct device *dev);
1617 	struct device *iommu_device;
1618 
1619 	fn = symbol_get(mdev_get_iommu_device);
1620 	if (fn) {
1621 		iommu_device = fn(dev);
1622 		symbol_put(mdev_get_iommu_device);
1623 
1624 		return iommu_device;
1625 	}
1626 
1627 	return NULL;
1628 }
1629 
1630 static int vfio_mdev_attach_domain(struct device *dev, void *data)
1631 {
1632 	struct iommu_domain *domain = data;
1633 	struct device *iommu_device;
1634 
1635 	iommu_device = vfio_mdev_get_iommu_device(dev);
1636 	if (iommu_device) {
1637 		if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
1638 			return iommu_aux_attach_device(domain, iommu_device);
1639 		else
1640 			return iommu_attach_device(domain, iommu_device);
1641 	}
1642 
1643 	return -EINVAL;
1644 }
1645 
1646 static int vfio_mdev_detach_domain(struct device *dev, void *data)
1647 {
1648 	struct iommu_domain *domain = data;
1649 	struct device *iommu_device;
1650 
1651 	iommu_device = vfio_mdev_get_iommu_device(dev);
1652 	if (iommu_device) {
1653 		if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
1654 			iommu_aux_detach_device(domain, iommu_device);
1655 		else
1656 			iommu_detach_device(domain, iommu_device);
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 static int vfio_iommu_attach_group(struct vfio_domain *domain,
1663 				   struct vfio_group *group)
1664 {
1665 	if (group->mdev_group)
1666 		return iommu_group_for_each_dev(group->iommu_group,
1667 						domain->domain,
1668 						vfio_mdev_attach_domain);
1669 	else
1670 		return iommu_attach_group(domain->domain, group->iommu_group);
1671 }
1672 
1673 static void vfio_iommu_detach_group(struct vfio_domain *domain,
1674 				    struct vfio_group *group)
1675 {
1676 	if (group->mdev_group)
1677 		iommu_group_for_each_dev(group->iommu_group, domain->domain,
1678 					 vfio_mdev_detach_domain);
1679 	else
1680 		iommu_detach_group(domain->domain, group->iommu_group);
1681 }
1682 
1683 static bool vfio_bus_is_mdev(struct bus_type *bus)
1684 {
1685 	struct bus_type *mdev_bus;
1686 	bool ret = false;
1687 
1688 	mdev_bus = symbol_get(mdev_bus_type);
1689 	if (mdev_bus) {
1690 		ret = (bus == mdev_bus);
1691 		symbol_put(mdev_bus_type);
1692 	}
1693 
1694 	return ret;
1695 }
1696 
1697 static int vfio_mdev_iommu_device(struct device *dev, void *data)
1698 {
1699 	struct device **old = data, *new;
1700 
1701 	new = vfio_mdev_get_iommu_device(dev);
1702 	if (!new || (*old && *old != new))
1703 		return -EINVAL;
1704 
1705 	*old = new;
1706 
1707 	return 0;
1708 }
1709 
1710 /*
1711  * This is a helper function to insert an address range to iova list.
1712  * The list is initially created with a single entry corresponding to
1713  * the IOMMU domain geometry to which the device group is attached.
1714  * The list aperture gets modified when a new domain is added to the
1715  * container if the new aperture doesn't conflict with the current one
1716  * or with any existing dma mappings. The list is also modified to
1717  * exclude any reserved regions associated with the device group.
1718  */
1719 static int vfio_iommu_iova_insert(struct list_head *head,
1720 				  dma_addr_t start, dma_addr_t end)
1721 {
1722 	struct vfio_iova *region;
1723 
1724 	region = kmalloc(sizeof(*region), GFP_KERNEL);
1725 	if (!region)
1726 		return -ENOMEM;
1727 
1728 	INIT_LIST_HEAD(&region->list);
1729 	region->start = start;
1730 	region->end = end;
1731 
1732 	list_add_tail(&region->list, head);
1733 	return 0;
1734 }
1735 
1736 /*
1737  * Check the new iommu aperture conflicts with existing aper or with any
1738  * existing dma mappings.
1739  */
1740 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
1741 				     dma_addr_t start, dma_addr_t end)
1742 {
1743 	struct vfio_iova *first, *last;
1744 	struct list_head *iova = &iommu->iova_list;
1745 
1746 	if (list_empty(iova))
1747 		return false;
1748 
1749 	/* Disjoint sets, return conflict */
1750 	first = list_first_entry(iova, struct vfio_iova, list);
1751 	last = list_last_entry(iova, struct vfio_iova, list);
1752 	if (start > last->end || end < first->start)
1753 		return true;
1754 
1755 	/* Check for any existing dma mappings below the new start */
1756 	if (start > first->start) {
1757 		if (vfio_find_dma(iommu, first->start, start - first->start))
1758 			return true;
1759 	}
1760 
1761 	/* Check for any existing dma mappings beyond the new end */
1762 	if (end < last->end) {
1763 		if (vfio_find_dma(iommu, end + 1, last->end - end))
1764 			return true;
1765 	}
1766 
1767 	return false;
1768 }
1769 
1770 /*
1771  * Resize iommu iova aperture window. This is called only if the new
1772  * aperture has no conflict with existing aperture and dma mappings.
1773  */
1774 static int vfio_iommu_aper_resize(struct list_head *iova,
1775 				  dma_addr_t start, dma_addr_t end)
1776 {
1777 	struct vfio_iova *node, *next;
1778 
1779 	if (list_empty(iova))
1780 		return vfio_iommu_iova_insert(iova, start, end);
1781 
1782 	/* Adjust iova list start */
1783 	list_for_each_entry_safe(node, next, iova, list) {
1784 		if (start < node->start)
1785 			break;
1786 		if (start >= node->start && start < node->end) {
1787 			node->start = start;
1788 			break;
1789 		}
1790 		/* Delete nodes before new start */
1791 		list_del(&node->list);
1792 		kfree(node);
1793 	}
1794 
1795 	/* Adjust iova list end */
1796 	list_for_each_entry_safe(node, next, iova, list) {
1797 		if (end > node->end)
1798 			continue;
1799 		if (end > node->start && end <= node->end) {
1800 			node->end = end;
1801 			continue;
1802 		}
1803 		/* Delete nodes after new end */
1804 		list_del(&node->list);
1805 		kfree(node);
1806 	}
1807 
1808 	return 0;
1809 }
1810 
1811 /*
1812  * Check reserved region conflicts with existing dma mappings
1813  */
1814 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
1815 				     struct list_head *resv_regions)
1816 {
1817 	struct iommu_resv_region *region;
1818 
1819 	/* Check for conflict with existing dma mappings */
1820 	list_for_each_entry(region, resv_regions, list) {
1821 		if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
1822 			continue;
1823 
1824 		if (vfio_find_dma(iommu, region->start, region->length))
1825 			return true;
1826 	}
1827 
1828 	return false;
1829 }
1830 
1831 /*
1832  * Check iova region overlap with  reserved regions and
1833  * exclude them from the iommu iova range
1834  */
1835 static int vfio_iommu_resv_exclude(struct list_head *iova,
1836 				   struct list_head *resv_regions)
1837 {
1838 	struct iommu_resv_region *resv;
1839 	struct vfio_iova *n, *next;
1840 
1841 	list_for_each_entry(resv, resv_regions, list) {
1842 		phys_addr_t start, end;
1843 
1844 		if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
1845 			continue;
1846 
1847 		start = resv->start;
1848 		end = resv->start + resv->length - 1;
1849 
1850 		list_for_each_entry_safe(n, next, iova, list) {
1851 			int ret = 0;
1852 
1853 			/* No overlap */
1854 			if (start > n->end || end < n->start)
1855 				continue;
1856 			/*
1857 			 * Insert a new node if current node overlaps with the
1858 			 * reserve region to exlude that from valid iova range.
1859 			 * Note that, new node is inserted before the current
1860 			 * node and finally the current node is deleted keeping
1861 			 * the list updated and sorted.
1862 			 */
1863 			if (start > n->start)
1864 				ret = vfio_iommu_iova_insert(&n->list, n->start,
1865 							     start - 1);
1866 			if (!ret && end < n->end)
1867 				ret = vfio_iommu_iova_insert(&n->list, end + 1,
1868 							     n->end);
1869 			if (ret)
1870 				return ret;
1871 
1872 			list_del(&n->list);
1873 			kfree(n);
1874 		}
1875 	}
1876 
1877 	if (list_empty(iova))
1878 		return -EINVAL;
1879 
1880 	return 0;
1881 }
1882 
1883 static void vfio_iommu_resv_free(struct list_head *resv_regions)
1884 {
1885 	struct iommu_resv_region *n, *next;
1886 
1887 	list_for_each_entry_safe(n, next, resv_regions, list) {
1888 		list_del(&n->list);
1889 		kfree(n);
1890 	}
1891 }
1892 
1893 static void vfio_iommu_iova_free(struct list_head *iova)
1894 {
1895 	struct vfio_iova *n, *next;
1896 
1897 	list_for_each_entry_safe(n, next, iova, list) {
1898 		list_del(&n->list);
1899 		kfree(n);
1900 	}
1901 }
1902 
1903 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
1904 				    struct list_head *iova_copy)
1905 {
1906 	struct list_head *iova = &iommu->iova_list;
1907 	struct vfio_iova *n;
1908 	int ret;
1909 
1910 	list_for_each_entry(n, iova, list) {
1911 		ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
1912 		if (ret)
1913 			goto out_free;
1914 	}
1915 
1916 	return 0;
1917 
1918 out_free:
1919 	vfio_iommu_iova_free(iova_copy);
1920 	return ret;
1921 }
1922 
1923 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
1924 					struct list_head *iova_copy)
1925 {
1926 	struct list_head *iova = &iommu->iova_list;
1927 
1928 	vfio_iommu_iova_free(iova);
1929 
1930 	list_splice_tail(iova_copy, iova);
1931 }
1932 static int vfio_iommu_type1_attach_group(void *iommu_data,
1933 					 struct iommu_group *iommu_group)
1934 {
1935 	struct vfio_iommu *iommu = iommu_data;
1936 	struct vfio_group *group;
1937 	struct vfio_domain *domain, *d;
1938 	struct bus_type *bus = NULL;
1939 	int ret;
1940 	bool resv_msi, msi_remap;
1941 	phys_addr_t resv_msi_base = 0;
1942 	struct iommu_domain_geometry geo;
1943 	LIST_HEAD(iova_copy);
1944 	LIST_HEAD(group_resv_regions);
1945 
1946 	mutex_lock(&iommu->lock);
1947 
1948 	list_for_each_entry(d, &iommu->domain_list, next) {
1949 		if (find_iommu_group(d, iommu_group)) {
1950 			mutex_unlock(&iommu->lock);
1951 			return -EINVAL;
1952 		}
1953 	}
1954 
1955 	if (iommu->external_domain) {
1956 		if (find_iommu_group(iommu->external_domain, iommu_group)) {
1957 			mutex_unlock(&iommu->lock);
1958 			return -EINVAL;
1959 		}
1960 	}
1961 
1962 	group = kzalloc(sizeof(*group), GFP_KERNEL);
1963 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1964 	if (!group || !domain) {
1965 		ret = -ENOMEM;
1966 		goto out_free;
1967 	}
1968 
1969 	group->iommu_group = iommu_group;
1970 
1971 	/* Determine bus_type in order to allocate a domain */
1972 	ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
1973 	if (ret)
1974 		goto out_free;
1975 
1976 	if (vfio_bus_is_mdev(bus)) {
1977 		struct device *iommu_device = NULL;
1978 
1979 		group->mdev_group = true;
1980 
1981 		/* Determine the isolation type */
1982 		ret = iommu_group_for_each_dev(iommu_group, &iommu_device,
1983 					       vfio_mdev_iommu_device);
1984 		if (ret || !iommu_device) {
1985 			if (!iommu->external_domain) {
1986 				INIT_LIST_HEAD(&domain->group_list);
1987 				iommu->external_domain = domain;
1988 				vfio_update_pgsize_bitmap(iommu);
1989 			} else {
1990 				kfree(domain);
1991 			}
1992 
1993 			list_add(&group->next,
1994 				 &iommu->external_domain->group_list);
1995 			/*
1996 			 * Non-iommu backed group cannot dirty memory directly,
1997 			 * it can only use interfaces that provide dirty
1998 			 * tracking.
1999 			 * The iommu scope can only be promoted with the
2000 			 * addition of a dirty tracking group.
2001 			 */
2002 			group->pinned_page_dirty_scope = true;
2003 			if (!iommu->pinned_page_dirty_scope)
2004 				update_pinned_page_dirty_scope(iommu);
2005 			mutex_unlock(&iommu->lock);
2006 
2007 			return 0;
2008 		}
2009 
2010 		bus = iommu_device->bus;
2011 	}
2012 
2013 	domain->domain = iommu_domain_alloc(bus);
2014 	if (!domain->domain) {
2015 		ret = -EIO;
2016 		goto out_free;
2017 	}
2018 
2019 	if (iommu->nesting) {
2020 		int attr = 1;
2021 
2022 		ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
2023 					    &attr);
2024 		if (ret)
2025 			goto out_domain;
2026 	}
2027 
2028 	ret = vfio_iommu_attach_group(domain, group);
2029 	if (ret)
2030 		goto out_domain;
2031 
2032 	/* Get aperture info */
2033 	iommu_domain_get_attr(domain->domain, DOMAIN_ATTR_GEOMETRY, &geo);
2034 
2035 	if (vfio_iommu_aper_conflict(iommu, geo.aperture_start,
2036 				     geo.aperture_end)) {
2037 		ret = -EINVAL;
2038 		goto out_detach;
2039 	}
2040 
2041 	ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2042 	if (ret)
2043 		goto out_detach;
2044 
2045 	if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2046 		ret = -EINVAL;
2047 		goto out_detach;
2048 	}
2049 
2050 	/*
2051 	 * We don't want to work on the original iova list as the list
2052 	 * gets modified and in case of failure we have to retain the
2053 	 * original list. Get a copy here.
2054 	 */
2055 	ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2056 	if (ret)
2057 		goto out_detach;
2058 
2059 	ret = vfio_iommu_aper_resize(&iova_copy, geo.aperture_start,
2060 				     geo.aperture_end);
2061 	if (ret)
2062 		goto out_detach;
2063 
2064 	ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2065 	if (ret)
2066 		goto out_detach;
2067 
2068 	resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2069 
2070 	INIT_LIST_HEAD(&domain->group_list);
2071 	list_add(&group->next, &domain->group_list);
2072 
2073 	msi_remap = irq_domain_check_msi_remap() ||
2074 		    iommu_capable(bus, IOMMU_CAP_INTR_REMAP);
2075 
2076 	if (!allow_unsafe_interrupts && !msi_remap) {
2077 		pr_warn("%s: No interrupt remapping support.  Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2078 		       __func__);
2079 		ret = -EPERM;
2080 		goto out_detach;
2081 	}
2082 
2083 	if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
2084 		domain->prot |= IOMMU_CACHE;
2085 
2086 	/*
2087 	 * Try to match an existing compatible domain.  We don't want to
2088 	 * preclude an IOMMU driver supporting multiple bus_types and being
2089 	 * able to include different bus_types in the same IOMMU domain, so
2090 	 * we test whether the domains use the same iommu_ops rather than
2091 	 * testing if they're on the same bus_type.
2092 	 */
2093 	list_for_each_entry(d, &iommu->domain_list, next) {
2094 		if (d->domain->ops == domain->domain->ops &&
2095 		    d->prot == domain->prot) {
2096 			vfio_iommu_detach_group(domain, group);
2097 			if (!vfio_iommu_attach_group(d, group)) {
2098 				list_add(&group->next, &d->group_list);
2099 				iommu_domain_free(domain->domain);
2100 				kfree(domain);
2101 				goto done;
2102 			}
2103 
2104 			ret = vfio_iommu_attach_group(domain, group);
2105 			if (ret)
2106 				goto out_domain;
2107 		}
2108 	}
2109 
2110 	vfio_test_domain_fgsp(domain);
2111 
2112 	/* replay mappings on new domains */
2113 	ret = vfio_iommu_replay(iommu, domain);
2114 	if (ret)
2115 		goto out_detach;
2116 
2117 	if (resv_msi) {
2118 		ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2119 		if (ret && ret != -ENODEV)
2120 			goto out_detach;
2121 	}
2122 
2123 	list_add(&domain->next, &iommu->domain_list);
2124 	vfio_update_pgsize_bitmap(iommu);
2125 done:
2126 	/* Delete the old one and insert new iova list */
2127 	vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2128 
2129 	/*
2130 	 * An iommu backed group can dirty memory directly and therefore
2131 	 * demotes the iommu scope until it declares itself dirty tracking
2132 	 * capable via the page pinning interface.
2133 	 */
2134 	iommu->pinned_page_dirty_scope = false;
2135 	mutex_unlock(&iommu->lock);
2136 	vfio_iommu_resv_free(&group_resv_regions);
2137 
2138 	return 0;
2139 
2140 out_detach:
2141 	vfio_iommu_detach_group(domain, group);
2142 out_domain:
2143 	iommu_domain_free(domain->domain);
2144 	vfio_iommu_iova_free(&iova_copy);
2145 	vfio_iommu_resv_free(&group_resv_regions);
2146 out_free:
2147 	kfree(domain);
2148 	kfree(group);
2149 	mutex_unlock(&iommu->lock);
2150 	return ret;
2151 }
2152 
2153 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2154 {
2155 	struct rb_node *node;
2156 
2157 	while ((node = rb_first(&iommu->dma_list)))
2158 		vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2159 }
2160 
2161 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2162 {
2163 	struct rb_node *n, *p;
2164 
2165 	n = rb_first(&iommu->dma_list);
2166 	for (; n; n = rb_next(n)) {
2167 		struct vfio_dma *dma;
2168 		long locked = 0, unlocked = 0;
2169 
2170 		dma = rb_entry(n, struct vfio_dma, node);
2171 		unlocked += vfio_unmap_unpin(iommu, dma, false);
2172 		p = rb_first(&dma->pfn_list);
2173 		for (; p; p = rb_next(p)) {
2174 			struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2175 							 node);
2176 
2177 			if (!is_invalid_reserved_pfn(vpfn->pfn))
2178 				locked++;
2179 		}
2180 		vfio_lock_acct(dma, locked - unlocked, true);
2181 	}
2182 }
2183 
2184 static void vfio_sanity_check_pfn_list(struct vfio_iommu *iommu)
2185 {
2186 	struct rb_node *n;
2187 
2188 	n = rb_first(&iommu->dma_list);
2189 	for (; n; n = rb_next(n)) {
2190 		struct vfio_dma *dma;
2191 
2192 		dma = rb_entry(n, struct vfio_dma, node);
2193 
2194 		if (WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list)))
2195 			break;
2196 	}
2197 	/* mdev vendor driver must unregister notifier */
2198 	WARN_ON(iommu->notifier.head);
2199 }
2200 
2201 /*
2202  * Called when a domain is removed in detach. It is possible that
2203  * the removed domain decided the iova aperture window. Modify the
2204  * iova aperture with the smallest window among existing domains.
2205  */
2206 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2207 				   struct list_head *iova_copy)
2208 {
2209 	struct vfio_domain *domain;
2210 	struct iommu_domain_geometry geo;
2211 	struct vfio_iova *node;
2212 	dma_addr_t start = 0;
2213 	dma_addr_t end = (dma_addr_t)~0;
2214 
2215 	if (list_empty(iova_copy))
2216 		return;
2217 
2218 	list_for_each_entry(domain, &iommu->domain_list, next) {
2219 		iommu_domain_get_attr(domain->domain, DOMAIN_ATTR_GEOMETRY,
2220 				      &geo);
2221 		if (geo.aperture_start > start)
2222 			start = geo.aperture_start;
2223 		if (geo.aperture_end < end)
2224 			end = geo.aperture_end;
2225 	}
2226 
2227 	/* Modify aperture limits. The new aper is either same or bigger */
2228 	node = list_first_entry(iova_copy, struct vfio_iova, list);
2229 	node->start = start;
2230 	node = list_last_entry(iova_copy, struct vfio_iova, list);
2231 	node->end = end;
2232 }
2233 
2234 /*
2235  * Called when a group is detached. The reserved regions for that
2236  * group can be part of valid iova now. But since reserved regions
2237  * may be duplicated among groups, populate the iova valid regions
2238  * list again.
2239  */
2240 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2241 				   struct list_head *iova_copy)
2242 {
2243 	struct vfio_domain *d;
2244 	struct vfio_group *g;
2245 	struct vfio_iova *node;
2246 	dma_addr_t start, end;
2247 	LIST_HEAD(resv_regions);
2248 	int ret;
2249 
2250 	if (list_empty(iova_copy))
2251 		return -EINVAL;
2252 
2253 	list_for_each_entry(d, &iommu->domain_list, next) {
2254 		list_for_each_entry(g, &d->group_list, next) {
2255 			ret = iommu_get_group_resv_regions(g->iommu_group,
2256 							   &resv_regions);
2257 			if (ret)
2258 				goto done;
2259 		}
2260 	}
2261 
2262 	node = list_first_entry(iova_copy, struct vfio_iova, list);
2263 	start = node->start;
2264 	node = list_last_entry(iova_copy, struct vfio_iova, list);
2265 	end = node->end;
2266 
2267 	/* purge the iova list and create new one */
2268 	vfio_iommu_iova_free(iova_copy);
2269 
2270 	ret = vfio_iommu_aper_resize(iova_copy, start, end);
2271 	if (ret)
2272 		goto done;
2273 
2274 	/* Exclude current reserved regions from iova ranges */
2275 	ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2276 done:
2277 	vfio_iommu_resv_free(&resv_regions);
2278 	return ret;
2279 }
2280 
2281 static void vfio_iommu_type1_detach_group(void *iommu_data,
2282 					  struct iommu_group *iommu_group)
2283 {
2284 	struct vfio_iommu *iommu = iommu_data;
2285 	struct vfio_domain *domain;
2286 	struct vfio_group *group;
2287 	bool update_dirty_scope = false;
2288 	LIST_HEAD(iova_copy);
2289 
2290 	mutex_lock(&iommu->lock);
2291 
2292 	if (iommu->external_domain) {
2293 		group = find_iommu_group(iommu->external_domain, iommu_group);
2294 		if (group) {
2295 			update_dirty_scope = !group->pinned_page_dirty_scope;
2296 			list_del(&group->next);
2297 			kfree(group);
2298 
2299 			if (list_empty(&iommu->external_domain->group_list)) {
2300 				vfio_sanity_check_pfn_list(iommu);
2301 
2302 				if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
2303 					vfio_iommu_unmap_unpin_all(iommu);
2304 
2305 				kfree(iommu->external_domain);
2306 				iommu->external_domain = NULL;
2307 			}
2308 			goto detach_group_done;
2309 		}
2310 	}
2311 
2312 	/*
2313 	 * Get a copy of iova list. This will be used to update
2314 	 * and to replace the current one later. Please note that
2315 	 * we will leave the original list as it is if update fails.
2316 	 */
2317 	vfio_iommu_iova_get_copy(iommu, &iova_copy);
2318 
2319 	list_for_each_entry(domain, &iommu->domain_list, next) {
2320 		group = find_iommu_group(domain, iommu_group);
2321 		if (!group)
2322 			continue;
2323 
2324 		vfio_iommu_detach_group(domain, group);
2325 		update_dirty_scope = !group->pinned_page_dirty_scope;
2326 		list_del(&group->next);
2327 		kfree(group);
2328 		/*
2329 		 * Group ownership provides privilege, if the group list is
2330 		 * empty, the domain goes away. If it's the last domain with
2331 		 * iommu and external domain doesn't exist, then all the
2332 		 * mappings go away too. If it's the last domain with iommu and
2333 		 * external domain exist, update accounting
2334 		 */
2335 		if (list_empty(&domain->group_list)) {
2336 			if (list_is_singular(&iommu->domain_list)) {
2337 				if (!iommu->external_domain)
2338 					vfio_iommu_unmap_unpin_all(iommu);
2339 				else
2340 					vfio_iommu_unmap_unpin_reaccount(iommu);
2341 			}
2342 			iommu_domain_free(domain->domain);
2343 			list_del(&domain->next);
2344 			kfree(domain);
2345 			vfio_iommu_aper_expand(iommu, &iova_copy);
2346 			vfio_update_pgsize_bitmap(iommu);
2347 		}
2348 		break;
2349 	}
2350 
2351 	if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2352 		vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2353 	else
2354 		vfio_iommu_iova_free(&iova_copy);
2355 
2356 detach_group_done:
2357 	/*
2358 	 * Removal of a group without dirty tracking may allow the iommu scope
2359 	 * to be promoted.
2360 	 */
2361 	if (update_dirty_scope)
2362 		update_pinned_page_dirty_scope(iommu);
2363 	mutex_unlock(&iommu->lock);
2364 }
2365 
2366 static void *vfio_iommu_type1_open(unsigned long arg)
2367 {
2368 	struct vfio_iommu *iommu;
2369 
2370 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2371 	if (!iommu)
2372 		return ERR_PTR(-ENOMEM);
2373 
2374 	switch (arg) {
2375 	case VFIO_TYPE1_IOMMU:
2376 		break;
2377 	case VFIO_TYPE1_NESTING_IOMMU:
2378 		iommu->nesting = true;
2379 		/* fall through */
2380 	case VFIO_TYPE1v2_IOMMU:
2381 		iommu->v2 = true;
2382 		break;
2383 	default:
2384 		kfree(iommu);
2385 		return ERR_PTR(-EINVAL);
2386 	}
2387 
2388 	INIT_LIST_HEAD(&iommu->domain_list);
2389 	INIT_LIST_HEAD(&iommu->iova_list);
2390 	iommu->dma_list = RB_ROOT;
2391 	iommu->dma_avail = dma_entry_limit;
2392 	mutex_init(&iommu->lock);
2393 	BLOCKING_INIT_NOTIFIER_HEAD(&iommu->notifier);
2394 
2395 	return iommu;
2396 }
2397 
2398 static void vfio_release_domain(struct vfio_domain *domain, bool external)
2399 {
2400 	struct vfio_group *group, *group_tmp;
2401 
2402 	list_for_each_entry_safe(group, group_tmp,
2403 				 &domain->group_list, next) {
2404 		if (!external)
2405 			vfio_iommu_detach_group(domain, group);
2406 		list_del(&group->next);
2407 		kfree(group);
2408 	}
2409 
2410 	if (!external)
2411 		iommu_domain_free(domain->domain);
2412 }
2413 
2414 static void vfio_iommu_type1_release(void *iommu_data)
2415 {
2416 	struct vfio_iommu *iommu = iommu_data;
2417 	struct vfio_domain *domain, *domain_tmp;
2418 
2419 	if (iommu->external_domain) {
2420 		vfio_release_domain(iommu->external_domain, true);
2421 		vfio_sanity_check_pfn_list(iommu);
2422 		kfree(iommu->external_domain);
2423 	}
2424 
2425 	vfio_iommu_unmap_unpin_all(iommu);
2426 
2427 	list_for_each_entry_safe(domain, domain_tmp,
2428 				 &iommu->domain_list, next) {
2429 		vfio_release_domain(domain, false);
2430 		list_del(&domain->next);
2431 		kfree(domain);
2432 	}
2433 
2434 	vfio_iommu_iova_free(&iommu->iova_list);
2435 
2436 	kfree(iommu);
2437 }
2438 
2439 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
2440 {
2441 	struct vfio_domain *domain;
2442 	int ret = 1;
2443 
2444 	mutex_lock(&iommu->lock);
2445 	list_for_each_entry(domain, &iommu->domain_list, next) {
2446 		if (!(domain->prot & IOMMU_CACHE)) {
2447 			ret = 0;
2448 			break;
2449 		}
2450 	}
2451 	mutex_unlock(&iommu->lock);
2452 
2453 	return ret;
2454 }
2455 
2456 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2457 		 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2458 		 size_t size)
2459 {
2460 	struct vfio_info_cap_header *header;
2461 	struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2462 
2463 	header = vfio_info_cap_add(caps, size,
2464 				   VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2465 	if (IS_ERR(header))
2466 		return PTR_ERR(header);
2467 
2468 	iova_cap = container_of(header,
2469 				struct vfio_iommu_type1_info_cap_iova_range,
2470 				header);
2471 	iova_cap->nr_iovas = cap_iovas->nr_iovas;
2472 	memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2473 	       cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2474 	return 0;
2475 }
2476 
2477 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2478 				      struct vfio_info_cap *caps)
2479 {
2480 	struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2481 	struct vfio_iova *iova;
2482 	size_t size;
2483 	int iovas = 0, i = 0, ret;
2484 
2485 	list_for_each_entry(iova, &iommu->iova_list, list)
2486 		iovas++;
2487 
2488 	if (!iovas) {
2489 		/*
2490 		 * Return 0 as a container with a single mdev device
2491 		 * will have an empty list
2492 		 */
2493 		return 0;
2494 	}
2495 
2496 	size = sizeof(*cap_iovas) + (iovas * sizeof(*cap_iovas->iova_ranges));
2497 
2498 	cap_iovas = kzalloc(size, GFP_KERNEL);
2499 	if (!cap_iovas)
2500 		return -ENOMEM;
2501 
2502 	cap_iovas->nr_iovas = iovas;
2503 
2504 	list_for_each_entry(iova, &iommu->iova_list, list) {
2505 		cap_iovas->iova_ranges[i].start = iova->start;
2506 		cap_iovas->iova_ranges[i].end = iova->end;
2507 		i++;
2508 	}
2509 
2510 	ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2511 
2512 	kfree(cap_iovas);
2513 	return ret;
2514 }
2515 
2516 static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2517 					   struct vfio_info_cap *caps)
2518 {
2519 	struct vfio_iommu_type1_info_cap_migration cap_mig;
2520 
2521 	cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2522 	cap_mig.header.version = 1;
2523 
2524 	cap_mig.flags = 0;
2525 	/* support minimum pgsize */
2526 	cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2527 	cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2528 
2529 	return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2530 }
2531 
2532 static long vfio_iommu_type1_ioctl(void *iommu_data,
2533 				   unsigned int cmd, unsigned long arg)
2534 {
2535 	struct vfio_iommu *iommu = iommu_data;
2536 	unsigned long minsz;
2537 
2538 	if (cmd == VFIO_CHECK_EXTENSION) {
2539 		switch (arg) {
2540 		case VFIO_TYPE1_IOMMU:
2541 		case VFIO_TYPE1v2_IOMMU:
2542 		case VFIO_TYPE1_NESTING_IOMMU:
2543 			return 1;
2544 		case VFIO_DMA_CC_IOMMU:
2545 			if (!iommu)
2546 				return 0;
2547 			return vfio_domains_have_iommu_cache(iommu);
2548 		default:
2549 			return 0;
2550 		}
2551 	} else if (cmd == VFIO_IOMMU_GET_INFO) {
2552 		struct vfio_iommu_type1_info info;
2553 		struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2554 		unsigned long capsz;
2555 		int ret;
2556 
2557 		minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2558 
2559 		/* For backward compatibility, cannot require this */
2560 		capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset);
2561 
2562 		if (copy_from_user(&info, (void __user *)arg, minsz))
2563 			return -EFAULT;
2564 
2565 		if (info.argsz < minsz)
2566 			return -EINVAL;
2567 
2568 		if (info.argsz >= capsz) {
2569 			minsz = capsz;
2570 			info.cap_offset = 0; /* output, no-recopy necessary */
2571 		}
2572 
2573 		mutex_lock(&iommu->lock);
2574 		info.flags = VFIO_IOMMU_INFO_PGSIZES;
2575 
2576 		info.iova_pgsizes = iommu->pgsize_bitmap;
2577 
2578 		ret = vfio_iommu_migration_build_caps(iommu, &caps);
2579 
2580 		if (!ret)
2581 			ret = vfio_iommu_iova_build_caps(iommu, &caps);
2582 
2583 		mutex_unlock(&iommu->lock);
2584 
2585 		if (ret)
2586 			return ret;
2587 
2588 		if (caps.size) {
2589 			info.flags |= VFIO_IOMMU_INFO_CAPS;
2590 
2591 			if (info.argsz < sizeof(info) + caps.size) {
2592 				info.argsz = sizeof(info) + caps.size;
2593 			} else {
2594 				vfio_info_cap_shift(&caps, sizeof(info));
2595 				if (copy_to_user((void __user *)arg +
2596 						sizeof(info), caps.buf,
2597 						caps.size)) {
2598 					kfree(caps.buf);
2599 					return -EFAULT;
2600 				}
2601 				info.cap_offset = sizeof(info);
2602 			}
2603 
2604 			kfree(caps.buf);
2605 		}
2606 
2607 		return copy_to_user((void __user *)arg, &info, minsz) ?
2608 			-EFAULT : 0;
2609 
2610 	} else if (cmd == VFIO_IOMMU_MAP_DMA) {
2611 		struct vfio_iommu_type1_dma_map map;
2612 		uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
2613 				VFIO_DMA_MAP_FLAG_WRITE;
2614 
2615 		minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2616 
2617 		if (copy_from_user(&map, (void __user *)arg, minsz))
2618 			return -EFAULT;
2619 
2620 		if (map.argsz < minsz || map.flags & ~mask)
2621 			return -EINVAL;
2622 
2623 		return vfio_dma_do_map(iommu, &map);
2624 
2625 	} else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
2626 		struct vfio_iommu_type1_dma_unmap unmap;
2627 		struct vfio_bitmap bitmap = { 0 };
2628 		int ret;
2629 
2630 		minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2631 
2632 		if (copy_from_user(&unmap, (void __user *)arg, minsz))
2633 			return -EFAULT;
2634 
2635 		if (unmap.argsz < minsz ||
2636 		    unmap.flags & ~VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP)
2637 			return -EINVAL;
2638 
2639 		if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2640 			unsigned long pgshift;
2641 
2642 			if (unmap.argsz < (minsz + sizeof(bitmap)))
2643 				return -EINVAL;
2644 
2645 			if (copy_from_user(&bitmap,
2646 					   (void __user *)(arg + minsz),
2647 					   sizeof(bitmap)))
2648 				return -EFAULT;
2649 
2650 			if (!access_ok((void __user *)bitmap.data, bitmap.size))
2651 				return -EINVAL;
2652 
2653 			pgshift = __ffs(bitmap.pgsize);
2654 			ret = verify_bitmap_size(unmap.size >> pgshift,
2655 						 bitmap.size);
2656 			if (ret)
2657 				return ret;
2658 		}
2659 
2660 		ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2661 		if (ret)
2662 			return ret;
2663 
2664 		return copy_to_user((void __user *)arg, &unmap, minsz) ?
2665 			-EFAULT : 0;
2666 	} else if (cmd == VFIO_IOMMU_DIRTY_PAGES) {
2667 		struct vfio_iommu_type1_dirty_bitmap dirty;
2668 		uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2669 				VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2670 				VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2671 		int ret = 0;
2672 
2673 		if (!iommu->v2)
2674 			return -EACCES;
2675 
2676 		minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap,
2677 				    flags);
2678 
2679 		if (copy_from_user(&dirty, (void __user *)arg, minsz))
2680 			return -EFAULT;
2681 
2682 		if (dirty.argsz < minsz || dirty.flags & ~mask)
2683 			return -EINVAL;
2684 
2685 		/* only one flag should be set at a time */
2686 		if (__ffs(dirty.flags) != __fls(dirty.flags))
2687 			return -EINVAL;
2688 
2689 		if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
2690 			size_t pgsize;
2691 
2692 			mutex_lock(&iommu->lock);
2693 			pgsize = 1 << __ffs(iommu->pgsize_bitmap);
2694 			if (!iommu->dirty_page_tracking) {
2695 				ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
2696 				if (!ret)
2697 					iommu->dirty_page_tracking = true;
2698 			}
2699 			mutex_unlock(&iommu->lock);
2700 			return ret;
2701 		} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
2702 			mutex_lock(&iommu->lock);
2703 			if (iommu->dirty_page_tracking) {
2704 				iommu->dirty_page_tracking = false;
2705 				vfio_dma_bitmap_free_all(iommu);
2706 			}
2707 			mutex_unlock(&iommu->lock);
2708 			return 0;
2709 		} else if (dirty.flags &
2710 				 VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
2711 			struct vfio_iommu_type1_dirty_bitmap_get range;
2712 			unsigned long pgshift;
2713 			size_t data_size = dirty.argsz - minsz;
2714 			size_t iommu_pgsize;
2715 
2716 			if (!data_size || data_size < sizeof(range))
2717 				return -EINVAL;
2718 
2719 			if (copy_from_user(&range, (void __user *)(arg + minsz),
2720 					   sizeof(range)))
2721 				return -EFAULT;
2722 
2723 			if (range.iova + range.size < range.iova)
2724 				return -EINVAL;
2725 			if (!access_ok((void __user *)range.bitmap.data,
2726 				       range.bitmap.size))
2727 				return -EINVAL;
2728 
2729 			pgshift = __ffs(range.bitmap.pgsize);
2730 			ret = verify_bitmap_size(range.size >> pgshift,
2731 						 range.bitmap.size);
2732 			if (ret)
2733 				return ret;
2734 
2735 			mutex_lock(&iommu->lock);
2736 
2737 			iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2738 
2739 			/* allow only smallest supported pgsize */
2740 			if (range.bitmap.pgsize != iommu_pgsize) {
2741 				ret = -EINVAL;
2742 				goto out_unlock;
2743 			}
2744 			if (range.iova & (iommu_pgsize - 1)) {
2745 				ret = -EINVAL;
2746 				goto out_unlock;
2747 			}
2748 			if (!range.size || range.size & (iommu_pgsize - 1)) {
2749 				ret = -EINVAL;
2750 				goto out_unlock;
2751 			}
2752 
2753 			if (iommu->dirty_page_tracking)
2754 				ret = vfio_iova_dirty_bitmap(range.bitmap.data,
2755 						iommu, range.iova, range.size,
2756 						range.bitmap.pgsize);
2757 			else
2758 				ret = -EINVAL;
2759 out_unlock:
2760 			mutex_unlock(&iommu->lock);
2761 
2762 			return ret;
2763 		}
2764 	}
2765 
2766 	return -ENOTTY;
2767 }
2768 
2769 static int vfio_iommu_type1_register_notifier(void *iommu_data,
2770 					      unsigned long *events,
2771 					      struct notifier_block *nb)
2772 {
2773 	struct vfio_iommu *iommu = iommu_data;
2774 
2775 	/* clear known events */
2776 	*events &= ~VFIO_IOMMU_NOTIFY_DMA_UNMAP;
2777 
2778 	/* refuse to register if still events remaining */
2779 	if (*events)
2780 		return -EINVAL;
2781 
2782 	return blocking_notifier_chain_register(&iommu->notifier, nb);
2783 }
2784 
2785 static int vfio_iommu_type1_unregister_notifier(void *iommu_data,
2786 						struct notifier_block *nb)
2787 {
2788 	struct vfio_iommu *iommu = iommu_data;
2789 
2790 	return blocking_notifier_chain_unregister(&iommu->notifier, nb);
2791 }
2792 
2793 static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
2794 					 dma_addr_t user_iova, void *data,
2795 					 size_t count, bool write,
2796 					 size_t *copied)
2797 {
2798 	struct mm_struct *mm;
2799 	unsigned long vaddr;
2800 	struct vfio_dma *dma;
2801 	bool kthread = current->mm == NULL;
2802 	size_t offset;
2803 
2804 	*copied = 0;
2805 
2806 	dma = vfio_find_dma(iommu, user_iova, 1);
2807 	if (!dma)
2808 		return -EINVAL;
2809 
2810 	if ((write && !(dma->prot & IOMMU_WRITE)) ||
2811 			!(dma->prot & IOMMU_READ))
2812 		return -EPERM;
2813 
2814 	mm = get_task_mm(dma->task);
2815 
2816 	if (!mm)
2817 		return -EPERM;
2818 
2819 	if (kthread)
2820 		kthread_use_mm(mm);
2821 	else if (current->mm != mm)
2822 		goto out;
2823 
2824 	offset = user_iova - dma->iova;
2825 
2826 	if (count > dma->size - offset)
2827 		count = dma->size - offset;
2828 
2829 	vaddr = dma->vaddr + offset;
2830 
2831 	if (write) {
2832 		*copied = copy_to_user((void __user *)vaddr, data,
2833 					 count) ? 0 : count;
2834 		if (*copied && iommu->dirty_page_tracking) {
2835 			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
2836 			/*
2837 			 * Bitmap populated with the smallest supported page
2838 			 * size
2839 			 */
2840 			bitmap_set(dma->bitmap, offset >> pgshift,
2841 				   *copied >> pgshift);
2842 		}
2843 	} else
2844 		*copied = copy_from_user(data, (void __user *)vaddr,
2845 					   count) ? 0 : count;
2846 	if (kthread)
2847 		kthread_unuse_mm(mm);
2848 out:
2849 	mmput(mm);
2850 	return *copied ? 0 : -EFAULT;
2851 }
2852 
2853 static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
2854 				   void *data, size_t count, bool write)
2855 {
2856 	struct vfio_iommu *iommu = iommu_data;
2857 	int ret = 0;
2858 	size_t done;
2859 
2860 	mutex_lock(&iommu->lock);
2861 	while (count > 0) {
2862 		ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
2863 						    count, write, &done);
2864 		if (ret)
2865 			break;
2866 
2867 		count -= done;
2868 		data += done;
2869 		user_iova += done;
2870 	}
2871 
2872 	mutex_unlock(&iommu->lock);
2873 	return ret;
2874 }
2875 
2876 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
2877 	.name			= "vfio-iommu-type1",
2878 	.owner			= THIS_MODULE,
2879 	.open			= vfio_iommu_type1_open,
2880 	.release		= vfio_iommu_type1_release,
2881 	.ioctl			= vfio_iommu_type1_ioctl,
2882 	.attach_group		= vfio_iommu_type1_attach_group,
2883 	.detach_group		= vfio_iommu_type1_detach_group,
2884 	.pin_pages		= vfio_iommu_type1_pin_pages,
2885 	.unpin_pages		= vfio_iommu_type1_unpin_pages,
2886 	.register_notifier	= vfio_iommu_type1_register_notifier,
2887 	.unregister_notifier	= vfio_iommu_type1_unregister_notifier,
2888 	.dma_rw			= vfio_iommu_type1_dma_rw,
2889 };
2890 
2891 static int __init vfio_iommu_type1_init(void)
2892 {
2893 	return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
2894 }
2895 
2896 static void __exit vfio_iommu_type1_cleanup(void)
2897 {
2898 	vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
2899 }
2900 
2901 module_init(vfio_iommu_type1_init);
2902 module_exit(vfio_iommu_type1_cleanup);
2903 
2904 MODULE_VERSION(DRIVER_VERSION);
2905 MODULE_LICENSE("GPL v2");
2906 MODULE_AUTHOR(DRIVER_AUTHOR);
2907 MODULE_DESCRIPTION(DRIVER_DESC);
2908