1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * Derived from original vfio:
9  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
10  * Author: Tom Lyon, pugs@cisco.com
11  *
12  * We arbitrarily define a Type1 IOMMU as one matching the below code.
13  * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14  * VT-d, but that makes it harder to re-use as theoretically anyone
15  * implementing a similar IOMMU could make use of this.  We expect the
16  * IOMMU to support the IOMMU API and have few to no restrictions around
17  * the IOVA range that can be mapped.  The Type1 IOMMU is currently
18  * optimized for relatively static mappings of a userspace process with
19  * userspace pages pinned into memory.  We also assume devices and IOMMU
20  * domains are PCI based as the IOMMU API is still centered around a
21  * device/bus interface rather than a group interface.
22  */
23 
24 #include <linux/compat.h>
25 #include <linux/device.h>
26 #include <linux/fs.h>
27 #include <linux/highmem.h>
28 #include <linux/iommu.h>
29 #include <linux/module.h>
30 #include <linux/mm.h>
31 #include <linux/kthread.h>
32 #include <linux/rbtree.h>
33 #include <linux/sched/signal.h>
34 #include <linux/sched/mm.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39 #include <linux/notifier.h>
40 #include "vfio.h"
41 
42 #define DRIVER_VERSION  "0.2"
43 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
44 #define DRIVER_DESC     "Type1 IOMMU driver for VFIO"
45 
46 static bool allow_unsafe_interrupts;
47 module_param_named(allow_unsafe_interrupts,
48 		   allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(allow_unsafe_interrupts,
50 		 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
51 
52 static bool disable_hugepages;
53 module_param_named(disable_hugepages,
54 		   disable_hugepages, bool, S_IRUGO | S_IWUSR);
55 MODULE_PARM_DESC(disable_hugepages,
56 		 "Disable VFIO IOMMU support for IOMMU hugepages.");
57 
58 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
59 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
60 MODULE_PARM_DESC(dma_entry_limit,
61 		 "Maximum number of user DMA mappings per container (65535).");
62 
63 struct vfio_iommu {
64 	struct list_head	domain_list;
65 	struct list_head	iova_list;
66 	struct mutex		lock;
67 	struct rb_root		dma_list;
68 	struct list_head	device_list;
69 	struct mutex		device_list_lock;
70 	unsigned int		dma_avail;
71 	unsigned int		vaddr_invalid_count;
72 	uint64_t		pgsize_bitmap;
73 	uint64_t		num_non_pinned_groups;
74 	bool			v2;
75 	bool			nesting;
76 	bool			dirty_page_tracking;
77 	struct list_head	emulated_iommu_groups;
78 };
79 
80 struct vfio_domain {
81 	struct iommu_domain	*domain;
82 	struct list_head	next;
83 	struct list_head	group_list;
84 	bool			fgsp : 1;	/* Fine-grained super pages */
85 	bool			enforce_cache_coherency : 1;
86 };
87 
88 struct vfio_dma {
89 	struct rb_node		node;
90 	dma_addr_t		iova;		/* Device address */
91 	unsigned long		vaddr;		/* Process virtual addr */
92 	size_t			size;		/* Map size (bytes) */
93 	int			prot;		/* IOMMU_READ/WRITE */
94 	bool			iommu_mapped;
95 	bool			lock_cap;	/* capable(CAP_IPC_LOCK) */
96 	bool			vaddr_invalid;
97 	struct task_struct	*task;
98 	struct rb_root		pfn_list;	/* Ex-user pinned pfn list */
99 	unsigned long		*bitmap;
100 	struct mm_struct	*mm;
101 	size_t			locked_vm;
102 };
103 
104 struct vfio_batch {
105 	struct page		**pages;	/* for pin_user_pages_remote */
106 	struct page		*fallback_page; /* if pages alloc fails */
107 	int			capacity;	/* length of pages array */
108 	int			size;		/* of batch currently */
109 	int			offset;		/* of next entry in pages */
110 };
111 
112 struct vfio_iommu_group {
113 	struct iommu_group	*iommu_group;
114 	struct list_head	next;
115 	bool			pinned_page_dirty_scope;
116 };
117 
118 struct vfio_iova {
119 	struct list_head	list;
120 	dma_addr_t		start;
121 	dma_addr_t		end;
122 };
123 
124 /*
125  * Guest RAM pinning working set or DMA target
126  */
127 struct vfio_pfn {
128 	struct rb_node		node;
129 	dma_addr_t		iova;		/* Device address */
130 	unsigned long		pfn;		/* Host pfn */
131 	unsigned int		ref_count;
132 };
133 
134 struct vfio_regions {
135 	struct list_head list;
136 	dma_addr_t iova;
137 	phys_addr_t phys;
138 	size_t len;
139 };
140 
141 #define DIRTY_BITMAP_BYTES(n)	(ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
142 
143 /*
144  * Input argument of number of bits to bitmap_set() is unsigned integer, which
145  * further casts to signed integer for unaligned multi-bit operation,
146  * __bitmap_set().
147  * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
148  * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
149  * system.
150  */
151 #define DIRTY_BITMAP_PAGES_MAX	 ((u64)INT_MAX)
152 #define DIRTY_BITMAP_SIZE_MAX	 DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
153 
154 static int put_pfn(unsigned long pfn, int prot);
155 
156 static struct vfio_iommu_group*
157 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
158 			    struct iommu_group *iommu_group);
159 
160 /*
161  * This code handles mapping and unmapping of user data buffers
162  * into DMA'ble space using the IOMMU
163  */
164 
165 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
166 				      dma_addr_t start, size_t size)
167 {
168 	struct rb_node *node = iommu->dma_list.rb_node;
169 
170 	while (node) {
171 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
172 
173 		if (start + size <= dma->iova)
174 			node = node->rb_left;
175 		else if (start >= dma->iova + dma->size)
176 			node = node->rb_right;
177 		else
178 			return dma;
179 	}
180 
181 	return NULL;
182 }
183 
184 static struct rb_node *vfio_find_dma_first_node(struct vfio_iommu *iommu,
185 						dma_addr_t start, u64 size)
186 {
187 	struct rb_node *res = NULL;
188 	struct rb_node *node = iommu->dma_list.rb_node;
189 	struct vfio_dma *dma_res = NULL;
190 
191 	while (node) {
192 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
193 
194 		if (start < dma->iova + dma->size) {
195 			res = node;
196 			dma_res = dma;
197 			if (start >= dma->iova)
198 				break;
199 			node = node->rb_left;
200 		} else {
201 			node = node->rb_right;
202 		}
203 	}
204 	if (res && size && dma_res->iova >= start + size)
205 		res = NULL;
206 	return res;
207 }
208 
209 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
210 {
211 	struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
212 	struct vfio_dma *dma;
213 
214 	while (*link) {
215 		parent = *link;
216 		dma = rb_entry(parent, struct vfio_dma, node);
217 
218 		if (new->iova + new->size <= dma->iova)
219 			link = &(*link)->rb_left;
220 		else
221 			link = &(*link)->rb_right;
222 	}
223 
224 	rb_link_node(&new->node, parent, link);
225 	rb_insert_color(&new->node, &iommu->dma_list);
226 }
227 
228 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
229 {
230 	rb_erase(&old->node, &iommu->dma_list);
231 }
232 
233 
234 static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
235 {
236 	uint64_t npages = dma->size / pgsize;
237 
238 	if (npages > DIRTY_BITMAP_PAGES_MAX)
239 		return -EINVAL;
240 
241 	/*
242 	 * Allocate extra 64 bits that are used to calculate shift required for
243 	 * bitmap_shift_left() to manipulate and club unaligned number of pages
244 	 * in adjacent vfio_dma ranges.
245 	 */
246 	dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
247 			       GFP_KERNEL);
248 	if (!dma->bitmap)
249 		return -ENOMEM;
250 
251 	return 0;
252 }
253 
254 static void vfio_dma_bitmap_free(struct vfio_dma *dma)
255 {
256 	kvfree(dma->bitmap);
257 	dma->bitmap = NULL;
258 }
259 
260 static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
261 {
262 	struct rb_node *p;
263 	unsigned long pgshift = __ffs(pgsize);
264 
265 	for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
266 		struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
267 
268 		bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
269 	}
270 }
271 
272 static void vfio_iommu_populate_bitmap_full(struct vfio_iommu *iommu)
273 {
274 	struct rb_node *n;
275 	unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
276 
277 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
278 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
279 
280 		bitmap_set(dma->bitmap, 0, dma->size >> pgshift);
281 	}
282 }
283 
284 static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
285 {
286 	struct rb_node *n;
287 
288 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
289 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
290 		int ret;
291 
292 		ret = vfio_dma_bitmap_alloc(dma, pgsize);
293 		if (ret) {
294 			struct rb_node *p;
295 
296 			for (p = rb_prev(n); p; p = rb_prev(p)) {
297 				struct vfio_dma *dma = rb_entry(n,
298 							struct vfio_dma, node);
299 
300 				vfio_dma_bitmap_free(dma);
301 			}
302 			return ret;
303 		}
304 		vfio_dma_populate_bitmap(dma, pgsize);
305 	}
306 	return 0;
307 }
308 
309 static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
310 {
311 	struct rb_node *n;
312 
313 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
314 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
315 
316 		vfio_dma_bitmap_free(dma);
317 	}
318 }
319 
320 /*
321  * Helper Functions for host iova-pfn list
322  */
323 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
324 {
325 	struct vfio_pfn *vpfn;
326 	struct rb_node *node = dma->pfn_list.rb_node;
327 
328 	while (node) {
329 		vpfn = rb_entry(node, struct vfio_pfn, node);
330 
331 		if (iova < vpfn->iova)
332 			node = node->rb_left;
333 		else if (iova > vpfn->iova)
334 			node = node->rb_right;
335 		else
336 			return vpfn;
337 	}
338 	return NULL;
339 }
340 
341 static void vfio_link_pfn(struct vfio_dma *dma,
342 			  struct vfio_pfn *new)
343 {
344 	struct rb_node **link, *parent = NULL;
345 	struct vfio_pfn *vpfn;
346 
347 	link = &dma->pfn_list.rb_node;
348 	while (*link) {
349 		parent = *link;
350 		vpfn = rb_entry(parent, struct vfio_pfn, node);
351 
352 		if (new->iova < vpfn->iova)
353 			link = &(*link)->rb_left;
354 		else
355 			link = &(*link)->rb_right;
356 	}
357 
358 	rb_link_node(&new->node, parent, link);
359 	rb_insert_color(&new->node, &dma->pfn_list);
360 }
361 
362 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
363 {
364 	rb_erase(&old->node, &dma->pfn_list);
365 }
366 
367 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
368 				unsigned long pfn)
369 {
370 	struct vfio_pfn *vpfn;
371 
372 	vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
373 	if (!vpfn)
374 		return -ENOMEM;
375 
376 	vpfn->iova = iova;
377 	vpfn->pfn = pfn;
378 	vpfn->ref_count = 1;
379 	vfio_link_pfn(dma, vpfn);
380 	return 0;
381 }
382 
383 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
384 				      struct vfio_pfn *vpfn)
385 {
386 	vfio_unlink_pfn(dma, vpfn);
387 	kfree(vpfn);
388 }
389 
390 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
391 					       unsigned long iova)
392 {
393 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
394 
395 	if (vpfn)
396 		vpfn->ref_count++;
397 	return vpfn;
398 }
399 
400 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
401 {
402 	int ret = 0;
403 
404 	vpfn->ref_count--;
405 	if (!vpfn->ref_count) {
406 		ret = put_pfn(vpfn->pfn, dma->prot);
407 		vfio_remove_from_pfn_list(dma, vpfn);
408 	}
409 	return ret;
410 }
411 
412 static int mm_lock_acct(struct task_struct *task, struct mm_struct *mm,
413 			bool lock_cap, long npage)
414 {
415 	int ret = mmap_write_lock_killable(mm);
416 
417 	if (ret)
418 		return ret;
419 
420 	ret = __account_locked_vm(mm, abs(npage), npage > 0, task, lock_cap);
421 	mmap_write_unlock(mm);
422 	return ret;
423 }
424 
425 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
426 {
427 	struct mm_struct *mm;
428 	int ret;
429 
430 	if (!npage)
431 		return 0;
432 
433 	mm = dma->mm;
434 	if (async && !mmget_not_zero(mm))
435 		return -ESRCH; /* process exited */
436 
437 	ret = mm_lock_acct(dma->task, mm, dma->lock_cap, npage);
438 	if (!ret)
439 		dma->locked_vm += npage;
440 
441 	if (async)
442 		mmput(mm);
443 
444 	return ret;
445 }
446 
447 /*
448  * Some mappings aren't backed by a struct page, for example an mmap'd
449  * MMIO range for our own or another device.  These use a different
450  * pfn conversion and shouldn't be tracked as locked pages.
451  * For compound pages, any driver that sets the reserved bit in head
452  * page needs to set the reserved bit in all subpages to be safe.
453  */
454 static bool is_invalid_reserved_pfn(unsigned long pfn)
455 {
456 	if (pfn_valid(pfn))
457 		return PageReserved(pfn_to_page(pfn));
458 
459 	return true;
460 }
461 
462 static int put_pfn(unsigned long pfn, int prot)
463 {
464 	if (!is_invalid_reserved_pfn(pfn)) {
465 		struct page *page = pfn_to_page(pfn);
466 
467 		unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
468 		return 1;
469 	}
470 	return 0;
471 }
472 
473 #define VFIO_BATCH_MAX_CAPACITY (PAGE_SIZE / sizeof(struct page *))
474 
475 static void vfio_batch_init(struct vfio_batch *batch)
476 {
477 	batch->size = 0;
478 	batch->offset = 0;
479 
480 	if (unlikely(disable_hugepages))
481 		goto fallback;
482 
483 	batch->pages = (struct page **) __get_free_page(GFP_KERNEL);
484 	if (!batch->pages)
485 		goto fallback;
486 
487 	batch->capacity = VFIO_BATCH_MAX_CAPACITY;
488 	return;
489 
490 fallback:
491 	batch->pages = &batch->fallback_page;
492 	batch->capacity = 1;
493 }
494 
495 static void vfio_batch_unpin(struct vfio_batch *batch, struct vfio_dma *dma)
496 {
497 	while (batch->size) {
498 		unsigned long pfn = page_to_pfn(batch->pages[batch->offset]);
499 
500 		put_pfn(pfn, dma->prot);
501 		batch->offset++;
502 		batch->size--;
503 	}
504 }
505 
506 static void vfio_batch_fini(struct vfio_batch *batch)
507 {
508 	if (batch->capacity == VFIO_BATCH_MAX_CAPACITY)
509 		free_page((unsigned long)batch->pages);
510 }
511 
512 static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
513 			    unsigned long vaddr, unsigned long *pfn,
514 			    bool write_fault)
515 {
516 	pte_t *ptep;
517 	spinlock_t *ptl;
518 	int ret;
519 
520 	ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
521 	if (ret) {
522 		bool unlocked = false;
523 
524 		ret = fixup_user_fault(mm, vaddr,
525 				       FAULT_FLAG_REMOTE |
526 				       (write_fault ?  FAULT_FLAG_WRITE : 0),
527 				       &unlocked);
528 		if (unlocked)
529 			return -EAGAIN;
530 
531 		if (ret)
532 			return ret;
533 
534 		ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
535 		if (ret)
536 			return ret;
537 	}
538 
539 	if (write_fault && !pte_write(*ptep))
540 		ret = -EFAULT;
541 	else
542 		*pfn = pte_pfn(*ptep);
543 
544 	pte_unmap_unlock(ptep, ptl);
545 	return ret;
546 }
547 
548 /*
549  * Returns the positive number of pfns successfully obtained or a negative
550  * error code.
551  */
552 static int vaddr_get_pfns(struct mm_struct *mm, unsigned long vaddr,
553 			  long npages, int prot, unsigned long *pfn,
554 			  struct page **pages)
555 {
556 	struct vm_area_struct *vma;
557 	unsigned int flags = 0;
558 	int ret;
559 
560 	if (prot & IOMMU_WRITE)
561 		flags |= FOLL_WRITE;
562 
563 	mmap_read_lock(mm);
564 	ret = pin_user_pages_remote(mm, vaddr, npages, flags | FOLL_LONGTERM,
565 				    pages, NULL, NULL);
566 	if (ret > 0) {
567 		int i;
568 
569 		/*
570 		 * The zero page is always resident, we don't need to pin it
571 		 * and it falls into our invalid/reserved test so we don't
572 		 * unpin in put_pfn().  Unpin all zero pages in the batch here.
573 		 */
574 		for (i = 0 ; i < ret; i++) {
575 			if (unlikely(is_zero_pfn(page_to_pfn(pages[i]))))
576 				unpin_user_page(pages[i]);
577 		}
578 
579 		*pfn = page_to_pfn(pages[0]);
580 		goto done;
581 	}
582 
583 	vaddr = untagged_addr(vaddr);
584 
585 retry:
586 	vma = vma_lookup(mm, vaddr);
587 
588 	if (vma && vma->vm_flags & VM_PFNMAP) {
589 		ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE);
590 		if (ret == -EAGAIN)
591 			goto retry;
592 
593 		if (!ret) {
594 			if (is_invalid_reserved_pfn(*pfn))
595 				ret = 1;
596 			else
597 				ret = -EFAULT;
598 		}
599 	}
600 done:
601 	mmap_read_unlock(mm);
602 	return ret;
603 }
604 
605 /*
606  * Attempt to pin pages.  We really don't want to track all the pfns and
607  * the iommu can only map chunks of consecutive pfns anyway, so get the
608  * first page and all consecutive pages with the same locking.
609  */
610 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
611 				  long npage, unsigned long *pfn_base,
612 				  unsigned long limit, struct vfio_batch *batch)
613 {
614 	unsigned long pfn;
615 	struct mm_struct *mm = current->mm;
616 	long ret, pinned = 0, lock_acct = 0;
617 	bool rsvd;
618 	dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
619 
620 	/* This code path is only user initiated */
621 	if (!mm)
622 		return -ENODEV;
623 
624 	if (batch->size) {
625 		/* Leftover pages in batch from an earlier call. */
626 		*pfn_base = page_to_pfn(batch->pages[batch->offset]);
627 		pfn = *pfn_base;
628 		rsvd = is_invalid_reserved_pfn(*pfn_base);
629 	} else {
630 		*pfn_base = 0;
631 	}
632 
633 	while (npage) {
634 		if (!batch->size) {
635 			/* Empty batch, so refill it. */
636 			long req_pages = min_t(long, npage, batch->capacity);
637 
638 			ret = vaddr_get_pfns(mm, vaddr, req_pages, dma->prot,
639 					     &pfn, batch->pages);
640 			if (ret < 0)
641 				goto unpin_out;
642 
643 			batch->size = ret;
644 			batch->offset = 0;
645 
646 			if (!*pfn_base) {
647 				*pfn_base = pfn;
648 				rsvd = is_invalid_reserved_pfn(*pfn_base);
649 			}
650 		}
651 
652 		/*
653 		 * pfn is preset for the first iteration of this inner loop and
654 		 * updated at the end to handle a VM_PFNMAP pfn.  In that case,
655 		 * batch->pages isn't valid (there's no struct page), so allow
656 		 * batch->pages to be touched only when there's more than one
657 		 * pfn to check, which guarantees the pfns are from a
658 		 * !VM_PFNMAP vma.
659 		 */
660 		while (true) {
661 			if (pfn != *pfn_base + pinned ||
662 			    rsvd != is_invalid_reserved_pfn(pfn))
663 				goto out;
664 
665 			/*
666 			 * Reserved pages aren't counted against the user,
667 			 * externally pinned pages are already counted against
668 			 * the user.
669 			 */
670 			if (!rsvd && !vfio_find_vpfn(dma, iova)) {
671 				if (!dma->lock_cap &&
672 				    mm->locked_vm + lock_acct + 1 > limit) {
673 					pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
674 						__func__, limit << PAGE_SHIFT);
675 					ret = -ENOMEM;
676 					goto unpin_out;
677 				}
678 				lock_acct++;
679 			}
680 
681 			pinned++;
682 			npage--;
683 			vaddr += PAGE_SIZE;
684 			iova += PAGE_SIZE;
685 			batch->offset++;
686 			batch->size--;
687 
688 			if (!batch->size)
689 				break;
690 
691 			pfn = page_to_pfn(batch->pages[batch->offset]);
692 		}
693 
694 		if (unlikely(disable_hugepages))
695 			break;
696 	}
697 
698 out:
699 	ret = vfio_lock_acct(dma, lock_acct, false);
700 
701 unpin_out:
702 	if (batch->size == 1 && !batch->offset) {
703 		/* May be a VM_PFNMAP pfn, which the batch can't remember. */
704 		put_pfn(pfn, dma->prot);
705 		batch->size = 0;
706 	}
707 
708 	if (ret < 0) {
709 		if (pinned && !rsvd) {
710 			for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
711 				put_pfn(pfn, dma->prot);
712 		}
713 		vfio_batch_unpin(batch, dma);
714 
715 		return ret;
716 	}
717 
718 	return pinned;
719 }
720 
721 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
722 				    unsigned long pfn, long npage,
723 				    bool do_accounting)
724 {
725 	long unlocked = 0, locked = 0;
726 	long i;
727 
728 	for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
729 		if (put_pfn(pfn++, dma->prot)) {
730 			unlocked++;
731 			if (vfio_find_vpfn(dma, iova))
732 				locked++;
733 		}
734 	}
735 
736 	if (do_accounting)
737 		vfio_lock_acct(dma, locked - unlocked, true);
738 
739 	return unlocked;
740 }
741 
742 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
743 				  unsigned long *pfn_base, bool do_accounting)
744 {
745 	struct page *pages[1];
746 	struct mm_struct *mm;
747 	int ret;
748 
749 	mm = dma->mm;
750 	if (!mmget_not_zero(mm))
751 		return -ENODEV;
752 
753 	ret = vaddr_get_pfns(mm, vaddr, 1, dma->prot, pfn_base, pages);
754 	if (ret != 1)
755 		goto out;
756 
757 	ret = 0;
758 
759 	if (do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
760 		ret = vfio_lock_acct(dma, 1, false);
761 		if (ret) {
762 			put_pfn(*pfn_base, dma->prot);
763 			if (ret == -ENOMEM)
764 				pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
765 					"(%ld) exceeded\n", __func__,
766 					dma->task->comm, task_pid_nr(dma->task),
767 					task_rlimit(dma->task, RLIMIT_MEMLOCK));
768 		}
769 	}
770 
771 out:
772 	mmput(mm);
773 	return ret;
774 }
775 
776 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
777 				    bool do_accounting)
778 {
779 	int unlocked;
780 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
781 
782 	if (!vpfn)
783 		return 0;
784 
785 	unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
786 
787 	if (do_accounting)
788 		vfio_lock_acct(dma, -unlocked, true);
789 
790 	return unlocked;
791 }
792 
793 static int vfio_iommu_type1_pin_pages(void *iommu_data,
794 				      struct iommu_group *iommu_group,
795 				      dma_addr_t user_iova,
796 				      int npage, int prot,
797 				      struct page **pages)
798 {
799 	struct vfio_iommu *iommu = iommu_data;
800 	struct vfio_iommu_group *group;
801 	int i, j, ret;
802 	unsigned long remote_vaddr;
803 	struct vfio_dma *dma;
804 	bool do_accounting;
805 
806 	if (!iommu || !pages)
807 		return -EINVAL;
808 
809 	/* Supported for v2 version only */
810 	if (!iommu->v2)
811 		return -EACCES;
812 
813 	mutex_lock(&iommu->lock);
814 
815 	if (WARN_ONCE(iommu->vaddr_invalid_count,
816 		      "vfio_pin_pages not allowed with VFIO_UPDATE_VADDR\n")) {
817 		ret = -EBUSY;
818 		goto pin_done;
819 	}
820 
821 	/* Fail if no dma_umap notifier is registered */
822 	if (list_empty(&iommu->device_list)) {
823 		ret = -EINVAL;
824 		goto pin_done;
825 	}
826 
827 	/*
828 	 * If iommu capable domain exist in the container then all pages are
829 	 * already pinned and accounted. Accounting should be done if there is no
830 	 * iommu capable domain in the container.
831 	 */
832 	do_accounting = list_empty(&iommu->domain_list);
833 
834 	for (i = 0; i < npage; i++) {
835 		unsigned long phys_pfn;
836 		dma_addr_t iova;
837 		struct vfio_pfn *vpfn;
838 
839 		iova = user_iova + PAGE_SIZE * i;
840 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
841 		if (!dma) {
842 			ret = -EINVAL;
843 			goto pin_unwind;
844 		}
845 
846 		if ((dma->prot & prot) != prot) {
847 			ret = -EPERM;
848 			goto pin_unwind;
849 		}
850 
851 		vpfn = vfio_iova_get_vfio_pfn(dma, iova);
852 		if (vpfn) {
853 			pages[i] = pfn_to_page(vpfn->pfn);
854 			continue;
855 		}
856 
857 		remote_vaddr = dma->vaddr + (iova - dma->iova);
858 		ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn,
859 					     do_accounting);
860 		if (ret)
861 			goto pin_unwind;
862 
863 		ret = vfio_add_to_pfn_list(dma, iova, phys_pfn);
864 		if (ret) {
865 			if (put_pfn(phys_pfn, dma->prot) && do_accounting)
866 				vfio_lock_acct(dma, -1, true);
867 			goto pin_unwind;
868 		}
869 
870 		pages[i] = pfn_to_page(phys_pfn);
871 
872 		if (iommu->dirty_page_tracking) {
873 			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
874 
875 			/*
876 			 * Bitmap populated with the smallest supported page
877 			 * size
878 			 */
879 			bitmap_set(dma->bitmap,
880 				   (iova - dma->iova) >> pgshift, 1);
881 		}
882 	}
883 	ret = i;
884 
885 	group = vfio_iommu_find_iommu_group(iommu, iommu_group);
886 	if (!group->pinned_page_dirty_scope) {
887 		group->pinned_page_dirty_scope = true;
888 		iommu->num_non_pinned_groups--;
889 	}
890 
891 	goto pin_done;
892 
893 pin_unwind:
894 	pages[i] = NULL;
895 	for (j = 0; j < i; j++) {
896 		dma_addr_t iova;
897 
898 		iova = user_iova + PAGE_SIZE * j;
899 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
900 		vfio_unpin_page_external(dma, iova, do_accounting);
901 		pages[j] = NULL;
902 	}
903 pin_done:
904 	mutex_unlock(&iommu->lock);
905 	return ret;
906 }
907 
908 static void vfio_iommu_type1_unpin_pages(void *iommu_data,
909 					 dma_addr_t user_iova, int npage)
910 {
911 	struct vfio_iommu *iommu = iommu_data;
912 	bool do_accounting;
913 	int i;
914 
915 	/* Supported for v2 version only */
916 	if (WARN_ON(!iommu->v2))
917 		return;
918 
919 	mutex_lock(&iommu->lock);
920 
921 	do_accounting = list_empty(&iommu->domain_list);
922 	for (i = 0; i < npage; i++) {
923 		dma_addr_t iova = user_iova + PAGE_SIZE * i;
924 		struct vfio_dma *dma;
925 
926 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
927 		if (!dma)
928 			break;
929 
930 		vfio_unpin_page_external(dma, iova, do_accounting);
931 	}
932 
933 	mutex_unlock(&iommu->lock);
934 
935 	WARN_ON(i != npage);
936 }
937 
938 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
939 			    struct list_head *regions,
940 			    struct iommu_iotlb_gather *iotlb_gather)
941 {
942 	long unlocked = 0;
943 	struct vfio_regions *entry, *next;
944 
945 	iommu_iotlb_sync(domain->domain, iotlb_gather);
946 
947 	list_for_each_entry_safe(entry, next, regions, list) {
948 		unlocked += vfio_unpin_pages_remote(dma,
949 						    entry->iova,
950 						    entry->phys >> PAGE_SHIFT,
951 						    entry->len >> PAGE_SHIFT,
952 						    false);
953 		list_del(&entry->list);
954 		kfree(entry);
955 	}
956 
957 	cond_resched();
958 
959 	return unlocked;
960 }
961 
962 /*
963  * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
964  * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
965  * of these regions (currently using a list).
966  *
967  * This value specifies maximum number of regions for each IOTLB flush sync.
968  */
969 #define VFIO_IOMMU_TLB_SYNC_MAX		512
970 
971 static size_t unmap_unpin_fast(struct vfio_domain *domain,
972 			       struct vfio_dma *dma, dma_addr_t *iova,
973 			       size_t len, phys_addr_t phys, long *unlocked,
974 			       struct list_head *unmapped_list,
975 			       int *unmapped_cnt,
976 			       struct iommu_iotlb_gather *iotlb_gather)
977 {
978 	size_t unmapped = 0;
979 	struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
980 
981 	if (entry) {
982 		unmapped = iommu_unmap_fast(domain->domain, *iova, len,
983 					    iotlb_gather);
984 
985 		if (!unmapped) {
986 			kfree(entry);
987 		} else {
988 			entry->iova = *iova;
989 			entry->phys = phys;
990 			entry->len  = unmapped;
991 			list_add_tail(&entry->list, unmapped_list);
992 
993 			*iova += unmapped;
994 			(*unmapped_cnt)++;
995 		}
996 	}
997 
998 	/*
999 	 * Sync if the number of fast-unmap regions hits the limit
1000 	 * or in case of errors.
1001 	 */
1002 	if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
1003 		*unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
1004 					     iotlb_gather);
1005 		*unmapped_cnt = 0;
1006 	}
1007 
1008 	return unmapped;
1009 }
1010 
1011 static size_t unmap_unpin_slow(struct vfio_domain *domain,
1012 			       struct vfio_dma *dma, dma_addr_t *iova,
1013 			       size_t len, phys_addr_t phys,
1014 			       long *unlocked)
1015 {
1016 	size_t unmapped = iommu_unmap(domain->domain, *iova, len);
1017 
1018 	if (unmapped) {
1019 		*unlocked += vfio_unpin_pages_remote(dma, *iova,
1020 						     phys >> PAGE_SHIFT,
1021 						     unmapped >> PAGE_SHIFT,
1022 						     false);
1023 		*iova += unmapped;
1024 		cond_resched();
1025 	}
1026 	return unmapped;
1027 }
1028 
1029 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
1030 			     bool do_accounting)
1031 {
1032 	dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
1033 	struct vfio_domain *domain, *d;
1034 	LIST_HEAD(unmapped_region_list);
1035 	struct iommu_iotlb_gather iotlb_gather;
1036 	int unmapped_region_cnt = 0;
1037 	long unlocked = 0;
1038 
1039 	if (!dma->size)
1040 		return 0;
1041 
1042 	if (list_empty(&iommu->domain_list))
1043 		return 0;
1044 
1045 	/*
1046 	 * We use the IOMMU to track the physical addresses, otherwise we'd
1047 	 * need a much more complicated tracking system.  Unfortunately that
1048 	 * means we need to use one of the iommu domains to figure out the
1049 	 * pfns to unpin.  The rest need to be unmapped in advance so we have
1050 	 * no iommu translations remaining when the pages are unpinned.
1051 	 */
1052 	domain = d = list_first_entry(&iommu->domain_list,
1053 				      struct vfio_domain, next);
1054 
1055 	list_for_each_entry_continue(d, &iommu->domain_list, next) {
1056 		iommu_unmap(d->domain, dma->iova, dma->size);
1057 		cond_resched();
1058 	}
1059 
1060 	iommu_iotlb_gather_init(&iotlb_gather);
1061 	while (iova < end) {
1062 		size_t unmapped, len;
1063 		phys_addr_t phys, next;
1064 
1065 		phys = iommu_iova_to_phys(domain->domain, iova);
1066 		if (WARN_ON(!phys)) {
1067 			iova += PAGE_SIZE;
1068 			continue;
1069 		}
1070 
1071 		/*
1072 		 * To optimize for fewer iommu_unmap() calls, each of which
1073 		 * may require hardware cache flushing, try to find the
1074 		 * largest contiguous physical memory chunk to unmap.
1075 		 */
1076 		for (len = PAGE_SIZE;
1077 		     !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
1078 			next = iommu_iova_to_phys(domain->domain, iova + len);
1079 			if (next != phys + len)
1080 				break;
1081 		}
1082 
1083 		/*
1084 		 * First, try to use fast unmap/unpin. In case of failure,
1085 		 * switch to slow unmap/unpin path.
1086 		 */
1087 		unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
1088 					    &unlocked, &unmapped_region_list,
1089 					    &unmapped_region_cnt,
1090 					    &iotlb_gather);
1091 		if (!unmapped) {
1092 			unmapped = unmap_unpin_slow(domain, dma, &iova, len,
1093 						    phys, &unlocked);
1094 			if (WARN_ON(!unmapped))
1095 				break;
1096 		}
1097 	}
1098 
1099 	dma->iommu_mapped = false;
1100 
1101 	if (unmapped_region_cnt) {
1102 		unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
1103 					    &iotlb_gather);
1104 	}
1105 
1106 	if (do_accounting) {
1107 		vfio_lock_acct(dma, -unlocked, true);
1108 		return 0;
1109 	}
1110 	return unlocked;
1111 }
1112 
1113 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
1114 {
1115 	WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list));
1116 	vfio_unmap_unpin(iommu, dma, true);
1117 	vfio_unlink_dma(iommu, dma);
1118 	put_task_struct(dma->task);
1119 	mmdrop(dma->mm);
1120 	vfio_dma_bitmap_free(dma);
1121 	if (dma->vaddr_invalid)
1122 		iommu->vaddr_invalid_count--;
1123 	kfree(dma);
1124 	iommu->dma_avail++;
1125 }
1126 
1127 static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
1128 {
1129 	struct vfio_domain *domain;
1130 
1131 	iommu->pgsize_bitmap = ULONG_MAX;
1132 
1133 	list_for_each_entry(domain, &iommu->domain_list, next)
1134 		iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
1135 
1136 	/*
1137 	 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
1138 	 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
1139 	 * That way the user will be able to map/unmap buffers whose size/
1140 	 * start address is aligned with PAGE_SIZE. Pinning code uses that
1141 	 * granularity while iommu driver can use the sub-PAGE_SIZE size
1142 	 * to map the buffer.
1143 	 */
1144 	if (iommu->pgsize_bitmap & ~PAGE_MASK) {
1145 		iommu->pgsize_bitmap &= PAGE_MASK;
1146 		iommu->pgsize_bitmap |= PAGE_SIZE;
1147 	}
1148 }
1149 
1150 static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1151 			      struct vfio_dma *dma, dma_addr_t base_iova,
1152 			      size_t pgsize)
1153 {
1154 	unsigned long pgshift = __ffs(pgsize);
1155 	unsigned long nbits = dma->size >> pgshift;
1156 	unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
1157 	unsigned long copy_offset = bit_offset / BITS_PER_LONG;
1158 	unsigned long shift = bit_offset % BITS_PER_LONG;
1159 	unsigned long leftover;
1160 
1161 	/*
1162 	 * mark all pages dirty if any IOMMU capable device is not able
1163 	 * to report dirty pages and all pages are pinned and mapped.
1164 	 */
1165 	if (iommu->num_non_pinned_groups && dma->iommu_mapped)
1166 		bitmap_set(dma->bitmap, 0, nbits);
1167 
1168 	if (shift) {
1169 		bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
1170 				  nbits + shift);
1171 
1172 		if (copy_from_user(&leftover,
1173 				   (void __user *)(bitmap + copy_offset),
1174 				   sizeof(leftover)))
1175 			return -EFAULT;
1176 
1177 		bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1178 	}
1179 
1180 	if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1181 			 DIRTY_BITMAP_BYTES(nbits + shift)))
1182 		return -EFAULT;
1183 
1184 	return 0;
1185 }
1186 
1187 static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1188 				  dma_addr_t iova, size_t size, size_t pgsize)
1189 {
1190 	struct vfio_dma *dma;
1191 	struct rb_node *n;
1192 	unsigned long pgshift = __ffs(pgsize);
1193 	int ret;
1194 
1195 	/*
1196 	 * GET_BITMAP request must fully cover vfio_dma mappings.  Multiple
1197 	 * vfio_dma mappings may be clubbed by specifying large ranges, but
1198 	 * there must not be any previous mappings bisected by the range.
1199 	 * An error will be returned if these conditions are not met.
1200 	 */
1201 	dma = vfio_find_dma(iommu, iova, 1);
1202 	if (dma && dma->iova != iova)
1203 		return -EINVAL;
1204 
1205 	dma = vfio_find_dma(iommu, iova + size - 1, 0);
1206 	if (dma && dma->iova + dma->size != iova + size)
1207 		return -EINVAL;
1208 
1209 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1210 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1211 
1212 		if (dma->iova < iova)
1213 			continue;
1214 
1215 		if (dma->iova > iova + size - 1)
1216 			break;
1217 
1218 		ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1219 		if (ret)
1220 			return ret;
1221 
1222 		/*
1223 		 * Re-populate bitmap to include all pinned pages which are
1224 		 * considered as dirty but exclude pages which are unpinned and
1225 		 * pages which are marked dirty by vfio_dma_rw()
1226 		 */
1227 		bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1228 		vfio_dma_populate_bitmap(dma, pgsize);
1229 	}
1230 	return 0;
1231 }
1232 
1233 static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1234 {
1235 	if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1236 	    (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1237 		return -EINVAL;
1238 
1239 	return 0;
1240 }
1241 
1242 /*
1243  * Notify VFIO drivers using vfio_register_emulated_iommu_dev() to invalidate
1244  * and unmap iovas within the range we're about to unmap. Drivers MUST unpin
1245  * pages in response to an invalidation.
1246  */
1247 static void vfio_notify_dma_unmap(struct vfio_iommu *iommu,
1248 				  struct vfio_dma *dma)
1249 {
1250 	struct vfio_device *device;
1251 
1252 	if (list_empty(&iommu->device_list))
1253 		return;
1254 
1255 	/*
1256 	 * The device is expected to call vfio_unpin_pages() for any IOVA it has
1257 	 * pinned within the range. Since vfio_unpin_pages() will eventually
1258 	 * call back down to this code and try to obtain the iommu->lock we must
1259 	 * drop it.
1260 	 */
1261 	mutex_lock(&iommu->device_list_lock);
1262 	mutex_unlock(&iommu->lock);
1263 
1264 	list_for_each_entry(device, &iommu->device_list, iommu_entry)
1265 		device->ops->dma_unmap(device, dma->iova, dma->size);
1266 
1267 	mutex_unlock(&iommu->device_list_lock);
1268 	mutex_lock(&iommu->lock);
1269 }
1270 
1271 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1272 			     struct vfio_iommu_type1_dma_unmap *unmap,
1273 			     struct vfio_bitmap *bitmap)
1274 {
1275 	struct vfio_dma *dma, *dma_last = NULL;
1276 	size_t unmapped = 0, pgsize;
1277 	int ret = -EINVAL, retries = 0;
1278 	unsigned long pgshift;
1279 	dma_addr_t iova = unmap->iova;
1280 	u64 size = unmap->size;
1281 	bool unmap_all = unmap->flags & VFIO_DMA_UNMAP_FLAG_ALL;
1282 	bool invalidate_vaddr = unmap->flags & VFIO_DMA_UNMAP_FLAG_VADDR;
1283 	struct rb_node *n, *first_n;
1284 
1285 	mutex_lock(&iommu->lock);
1286 
1287 	/* Cannot update vaddr if mdev is present. */
1288 	if (invalidate_vaddr && !list_empty(&iommu->emulated_iommu_groups)) {
1289 		ret = -EBUSY;
1290 		goto unlock;
1291 	}
1292 
1293 	pgshift = __ffs(iommu->pgsize_bitmap);
1294 	pgsize = (size_t)1 << pgshift;
1295 
1296 	if (iova & (pgsize - 1))
1297 		goto unlock;
1298 
1299 	if (unmap_all) {
1300 		if (iova || size)
1301 			goto unlock;
1302 		size = U64_MAX;
1303 	} else if (!size || size & (pgsize - 1) ||
1304 		   iova + size - 1 < iova || size > SIZE_MAX) {
1305 		goto unlock;
1306 	}
1307 
1308 	/* When dirty tracking is enabled, allow only min supported pgsize */
1309 	if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1310 	    (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1311 		goto unlock;
1312 	}
1313 
1314 	WARN_ON((pgsize - 1) & PAGE_MASK);
1315 again:
1316 	/*
1317 	 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1318 	 * avoid tracking individual mappings.  This means that the granularity
1319 	 * of the original mapping was lost and the user was allowed to attempt
1320 	 * to unmap any range.  Depending on the contiguousness of physical
1321 	 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1322 	 * or may not have worked.  We only guaranteed unmap granularity
1323 	 * matching the original mapping; even though it was untracked here,
1324 	 * the original mappings are reflected in IOMMU mappings.  This
1325 	 * resulted in a couple unusual behaviors.  First, if a range is not
1326 	 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1327 	 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1328 	 * a zero sized unmap.  Also, if an unmap request overlaps the first
1329 	 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1330 	 * This also returns success and the returned unmap size reflects the
1331 	 * actual size unmapped.
1332 	 *
1333 	 * We attempt to maintain compatibility with this "v1" interface, but
1334 	 * we take control out of the hands of the IOMMU.  Therefore, an unmap
1335 	 * request offset from the beginning of the original mapping will
1336 	 * return success with zero sized unmap.  And an unmap request covering
1337 	 * the first iova of mapping will unmap the entire range.
1338 	 *
1339 	 * The v2 version of this interface intends to be more deterministic.
1340 	 * Unmap requests must fully cover previous mappings.  Multiple
1341 	 * mappings may still be unmaped by specifying large ranges, but there
1342 	 * must not be any previous mappings bisected by the range.  An error
1343 	 * will be returned if these conditions are not met.  The v2 interface
1344 	 * will only return success and a size of zero if there were no
1345 	 * mappings within the range.
1346 	 */
1347 	if (iommu->v2 && !unmap_all) {
1348 		dma = vfio_find_dma(iommu, iova, 1);
1349 		if (dma && dma->iova != iova)
1350 			goto unlock;
1351 
1352 		dma = vfio_find_dma(iommu, iova + size - 1, 0);
1353 		if (dma && dma->iova + dma->size != iova + size)
1354 			goto unlock;
1355 	}
1356 
1357 	ret = 0;
1358 	n = first_n = vfio_find_dma_first_node(iommu, iova, size);
1359 
1360 	while (n) {
1361 		dma = rb_entry(n, struct vfio_dma, node);
1362 		if (dma->iova >= iova + size)
1363 			break;
1364 
1365 		if (!iommu->v2 && iova > dma->iova)
1366 			break;
1367 
1368 		if (invalidate_vaddr) {
1369 			if (dma->vaddr_invalid) {
1370 				struct rb_node *last_n = n;
1371 
1372 				for (n = first_n; n != last_n; n = rb_next(n)) {
1373 					dma = rb_entry(n,
1374 						       struct vfio_dma, node);
1375 					dma->vaddr_invalid = false;
1376 					iommu->vaddr_invalid_count--;
1377 				}
1378 				ret = -EINVAL;
1379 				unmapped = 0;
1380 				break;
1381 			}
1382 			dma->vaddr_invalid = true;
1383 			iommu->vaddr_invalid_count++;
1384 			unmapped += dma->size;
1385 			n = rb_next(n);
1386 			continue;
1387 		}
1388 
1389 		if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1390 			if (dma_last == dma) {
1391 				BUG_ON(++retries > 10);
1392 			} else {
1393 				dma_last = dma;
1394 				retries = 0;
1395 			}
1396 
1397 			vfio_notify_dma_unmap(iommu, dma);
1398 			goto again;
1399 		}
1400 
1401 		if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1402 			ret = update_user_bitmap(bitmap->data, iommu, dma,
1403 						 iova, pgsize);
1404 			if (ret)
1405 				break;
1406 		}
1407 
1408 		unmapped += dma->size;
1409 		n = rb_next(n);
1410 		vfio_remove_dma(iommu, dma);
1411 	}
1412 
1413 unlock:
1414 	mutex_unlock(&iommu->lock);
1415 
1416 	/* Report how much was unmapped */
1417 	unmap->size = unmapped;
1418 
1419 	return ret;
1420 }
1421 
1422 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1423 			  unsigned long pfn, long npage, int prot)
1424 {
1425 	struct vfio_domain *d;
1426 	int ret;
1427 
1428 	list_for_each_entry(d, &iommu->domain_list, next) {
1429 		ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1430 				npage << PAGE_SHIFT, prot | IOMMU_CACHE,
1431 				GFP_KERNEL);
1432 		if (ret)
1433 			goto unwind;
1434 
1435 		cond_resched();
1436 	}
1437 
1438 	return 0;
1439 
1440 unwind:
1441 	list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1442 		iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1443 		cond_resched();
1444 	}
1445 
1446 	return ret;
1447 }
1448 
1449 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1450 			    size_t map_size)
1451 {
1452 	dma_addr_t iova = dma->iova;
1453 	unsigned long vaddr = dma->vaddr;
1454 	struct vfio_batch batch;
1455 	size_t size = map_size;
1456 	long npage;
1457 	unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1458 	int ret = 0;
1459 
1460 	vfio_batch_init(&batch);
1461 
1462 	while (size) {
1463 		/* Pin a contiguous chunk of memory */
1464 		npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1465 					      size >> PAGE_SHIFT, &pfn, limit,
1466 					      &batch);
1467 		if (npage <= 0) {
1468 			WARN_ON(!npage);
1469 			ret = (int)npage;
1470 			break;
1471 		}
1472 
1473 		/* Map it! */
1474 		ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1475 				     dma->prot);
1476 		if (ret) {
1477 			vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1478 						npage, true);
1479 			vfio_batch_unpin(&batch, dma);
1480 			break;
1481 		}
1482 
1483 		size -= npage << PAGE_SHIFT;
1484 		dma->size += npage << PAGE_SHIFT;
1485 	}
1486 
1487 	vfio_batch_fini(&batch);
1488 	dma->iommu_mapped = true;
1489 
1490 	if (ret)
1491 		vfio_remove_dma(iommu, dma);
1492 
1493 	return ret;
1494 }
1495 
1496 /*
1497  * Check dma map request is within a valid iova range
1498  */
1499 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1500 				      dma_addr_t start, dma_addr_t end)
1501 {
1502 	struct list_head *iova = &iommu->iova_list;
1503 	struct vfio_iova *node;
1504 
1505 	list_for_each_entry(node, iova, list) {
1506 		if (start >= node->start && end <= node->end)
1507 			return true;
1508 	}
1509 
1510 	/*
1511 	 * Check for list_empty() as well since a container with
1512 	 * a single mdev device will have an empty list.
1513 	 */
1514 	return list_empty(iova);
1515 }
1516 
1517 static int vfio_change_dma_owner(struct vfio_dma *dma)
1518 {
1519 	struct task_struct *task = current->group_leader;
1520 	struct mm_struct *mm = current->mm;
1521 	long npage = dma->locked_vm;
1522 	bool lock_cap;
1523 	int ret;
1524 
1525 	if (mm == dma->mm)
1526 		return 0;
1527 
1528 	lock_cap = capable(CAP_IPC_LOCK);
1529 	ret = mm_lock_acct(task, mm, lock_cap, npage);
1530 	if (ret)
1531 		return ret;
1532 
1533 	if (mmget_not_zero(dma->mm)) {
1534 		mm_lock_acct(dma->task, dma->mm, dma->lock_cap, -npage);
1535 		mmput(dma->mm);
1536 	}
1537 
1538 	if (dma->task != task) {
1539 		put_task_struct(dma->task);
1540 		dma->task = get_task_struct(task);
1541 	}
1542 	mmdrop(dma->mm);
1543 	dma->mm = mm;
1544 	mmgrab(dma->mm);
1545 	dma->lock_cap = lock_cap;
1546 	return 0;
1547 }
1548 
1549 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1550 			   struct vfio_iommu_type1_dma_map *map)
1551 {
1552 	bool set_vaddr = map->flags & VFIO_DMA_MAP_FLAG_VADDR;
1553 	dma_addr_t iova = map->iova;
1554 	unsigned long vaddr = map->vaddr;
1555 	size_t size = map->size;
1556 	int ret = 0, prot = 0;
1557 	size_t pgsize;
1558 	struct vfio_dma *dma;
1559 
1560 	/* Verify that none of our __u64 fields overflow */
1561 	if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1562 		return -EINVAL;
1563 
1564 	/* READ/WRITE from device perspective */
1565 	if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1566 		prot |= IOMMU_WRITE;
1567 	if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1568 		prot |= IOMMU_READ;
1569 
1570 	if ((prot && set_vaddr) || (!prot && !set_vaddr))
1571 		return -EINVAL;
1572 
1573 	mutex_lock(&iommu->lock);
1574 
1575 	pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1576 
1577 	WARN_ON((pgsize - 1) & PAGE_MASK);
1578 
1579 	if (!size || (size | iova | vaddr) & (pgsize - 1)) {
1580 		ret = -EINVAL;
1581 		goto out_unlock;
1582 	}
1583 
1584 	/* Don't allow IOVA or virtual address wrap */
1585 	if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1586 		ret = -EINVAL;
1587 		goto out_unlock;
1588 	}
1589 
1590 	dma = vfio_find_dma(iommu, iova, size);
1591 	if (set_vaddr) {
1592 		if (!dma) {
1593 			ret = -ENOENT;
1594 		} else if (!dma->vaddr_invalid || dma->iova != iova ||
1595 			   dma->size != size) {
1596 			ret = -EINVAL;
1597 		} else {
1598 			ret = vfio_change_dma_owner(dma);
1599 			if (ret)
1600 				goto out_unlock;
1601 			dma->vaddr = vaddr;
1602 			dma->vaddr_invalid = false;
1603 			iommu->vaddr_invalid_count--;
1604 		}
1605 		goto out_unlock;
1606 	} else if (dma) {
1607 		ret = -EEXIST;
1608 		goto out_unlock;
1609 	}
1610 
1611 	if (!iommu->dma_avail) {
1612 		ret = -ENOSPC;
1613 		goto out_unlock;
1614 	}
1615 
1616 	if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1617 		ret = -EINVAL;
1618 		goto out_unlock;
1619 	}
1620 
1621 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1622 	if (!dma) {
1623 		ret = -ENOMEM;
1624 		goto out_unlock;
1625 	}
1626 
1627 	iommu->dma_avail--;
1628 	dma->iova = iova;
1629 	dma->vaddr = vaddr;
1630 	dma->prot = prot;
1631 
1632 	/*
1633 	 * We need to be able to both add to a task's locked memory and test
1634 	 * against the locked memory limit and we need to be able to do both
1635 	 * outside of this call path as pinning can be asynchronous via the
1636 	 * external interfaces for mdev devices.  RLIMIT_MEMLOCK requires a
1637 	 * task_struct. Save the group_leader so that all DMA tracking uses
1638 	 * the same task, to make debugging easier.  VM locked pages requires
1639 	 * an mm_struct, so grab the mm in case the task dies.
1640 	 */
1641 	get_task_struct(current->group_leader);
1642 	dma->task = current->group_leader;
1643 	dma->lock_cap = capable(CAP_IPC_LOCK);
1644 	dma->mm = current->mm;
1645 	mmgrab(dma->mm);
1646 
1647 	dma->pfn_list = RB_ROOT;
1648 
1649 	/* Insert zero-sized and grow as we map chunks of it */
1650 	vfio_link_dma(iommu, dma);
1651 
1652 	/* Don't pin and map if container doesn't contain IOMMU capable domain*/
1653 	if (list_empty(&iommu->domain_list))
1654 		dma->size = size;
1655 	else
1656 		ret = vfio_pin_map_dma(iommu, dma, size);
1657 
1658 	if (!ret && iommu->dirty_page_tracking) {
1659 		ret = vfio_dma_bitmap_alloc(dma, pgsize);
1660 		if (ret)
1661 			vfio_remove_dma(iommu, dma);
1662 	}
1663 
1664 out_unlock:
1665 	mutex_unlock(&iommu->lock);
1666 	return ret;
1667 }
1668 
1669 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1670 			     struct vfio_domain *domain)
1671 {
1672 	struct vfio_batch batch;
1673 	struct vfio_domain *d = NULL;
1674 	struct rb_node *n;
1675 	unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1676 	int ret;
1677 
1678 	/* Arbitrarily pick the first domain in the list for lookups */
1679 	if (!list_empty(&iommu->domain_list))
1680 		d = list_first_entry(&iommu->domain_list,
1681 				     struct vfio_domain, next);
1682 
1683 	vfio_batch_init(&batch);
1684 
1685 	n = rb_first(&iommu->dma_list);
1686 
1687 	for (; n; n = rb_next(n)) {
1688 		struct vfio_dma *dma;
1689 		dma_addr_t iova;
1690 
1691 		dma = rb_entry(n, struct vfio_dma, node);
1692 		iova = dma->iova;
1693 
1694 		while (iova < dma->iova + dma->size) {
1695 			phys_addr_t phys;
1696 			size_t size;
1697 
1698 			if (dma->iommu_mapped) {
1699 				phys_addr_t p;
1700 				dma_addr_t i;
1701 
1702 				if (WARN_ON(!d)) { /* mapped w/o a domain?! */
1703 					ret = -EINVAL;
1704 					goto unwind;
1705 				}
1706 
1707 				phys = iommu_iova_to_phys(d->domain, iova);
1708 
1709 				if (WARN_ON(!phys)) {
1710 					iova += PAGE_SIZE;
1711 					continue;
1712 				}
1713 
1714 				size = PAGE_SIZE;
1715 				p = phys + size;
1716 				i = iova + size;
1717 				while (i < dma->iova + dma->size &&
1718 				       p == iommu_iova_to_phys(d->domain, i)) {
1719 					size += PAGE_SIZE;
1720 					p += PAGE_SIZE;
1721 					i += PAGE_SIZE;
1722 				}
1723 			} else {
1724 				unsigned long pfn;
1725 				unsigned long vaddr = dma->vaddr +
1726 						     (iova - dma->iova);
1727 				size_t n = dma->iova + dma->size - iova;
1728 				long npage;
1729 
1730 				npage = vfio_pin_pages_remote(dma, vaddr,
1731 							      n >> PAGE_SHIFT,
1732 							      &pfn, limit,
1733 							      &batch);
1734 				if (npage <= 0) {
1735 					WARN_ON(!npage);
1736 					ret = (int)npage;
1737 					goto unwind;
1738 				}
1739 
1740 				phys = pfn << PAGE_SHIFT;
1741 				size = npage << PAGE_SHIFT;
1742 			}
1743 
1744 			ret = iommu_map(domain->domain, iova, phys, size,
1745 					dma->prot | IOMMU_CACHE, GFP_KERNEL);
1746 			if (ret) {
1747 				if (!dma->iommu_mapped) {
1748 					vfio_unpin_pages_remote(dma, iova,
1749 							phys >> PAGE_SHIFT,
1750 							size >> PAGE_SHIFT,
1751 							true);
1752 					vfio_batch_unpin(&batch, dma);
1753 				}
1754 				goto unwind;
1755 			}
1756 
1757 			iova += size;
1758 		}
1759 	}
1760 
1761 	/* All dmas are now mapped, defer to second tree walk for unwind */
1762 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1763 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1764 
1765 		dma->iommu_mapped = true;
1766 	}
1767 
1768 	vfio_batch_fini(&batch);
1769 	return 0;
1770 
1771 unwind:
1772 	for (; n; n = rb_prev(n)) {
1773 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1774 		dma_addr_t iova;
1775 
1776 		if (dma->iommu_mapped) {
1777 			iommu_unmap(domain->domain, dma->iova, dma->size);
1778 			continue;
1779 		}
1780 
1781 		iova = dma->iova;
1782 		while (iova < dma->iova + dma->size) {
1783 			phys_addr_t phys, p;
1784 			size_t size;
1785 			dma_addr_t i;
1786 
1787 			phys = iommu_iova_to_phys(domain->domain, iova);
1788 			if (!phys) {
1789 				iova += PAGE_SIZE;
1790 				continue;
1791 			}
1792 
1793 			size = PAGE_SIZE;
1794 			p = phys + size;
1795 			i = iova + size;
1796 			while (i < dma->iova + dma->size &&
1797 			       p == iommu_iova_to_phys(domain->domain, i)) {
1798 				size += PAGE_SIZE;
1799 				p += PAGE_SIZE;
1800 				i += PAGE_SIZE;
1801 			}
1802 
1803 			iommu_unmap(domain->domain, iova, size);
1804 			vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT,
1805 						size >> PAGE_SHIFT, true);
1806 		}
1807 	}
1808 
1809 	vfio_batch_fini(&batch);
1810 	return ret;
1811 }
1812 
1813 /*
1814  * We change our unmap behavior slightly depending on whether the IOMMU
1815  * supports fine-grained superpages.  IOMMUs like AMD-Vi will use a superpage
1816  * for practically any contiguous power-of-two mapping we give it.  This means
1817  * we don't need to look for contiguous chunks ourselves to make unmapping
1818  * more efficient.  On IOMMUs with coarse-grained super pages, like Intel VT-d
1819  * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1820  * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1821  * hugetlbfs is in use.
1822  */
1823 static void vfio_test_domain_fgsp(struct vfio_domain *domain, struct list_head *regions)
1824 {
1825 	int ret, order = get_order(PAGE_SIZE * 2);
1826 	struct vfio_iova *region;
1827 	struct page *pages;
1828 	dma_addr_t start;
1829 
1830 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1831 	if (!pages)
1832 		return;
1833 
1834 	list_for_each_entry(region, regions, list) {
1835 		start = ALIGN(region->start, PAGE_SIZE * 2);
1836 		if (start >= region->end || (region->end - start < PAGE_SIZE * 2))
1837 			continue;
1838 
1839 		ret = iommu_map(domain->domain, start, page_to_phys(pages), PAGE_SIZE * 2,
1840 				IOMMU_READ | IOMMU_WRITE | IOMMU_CACHE, GFP_KERNEL);
1841 		if (!ret) {
1842 			size_t unmapped = iommu_unmap(domain->domain, start, PAGE_SIZE);
1843 
1844 			if (unmapped == PAGE_SIZE)
1845 				iommu_unmap(domain->domain, start + PAGE_SIZE, PAGE_SIZE);
1846 			else
1847 				domain->fgsp = true;
1848 		}
1849 		break;
1850 	}
1851 
1852 	__free_pages(pages, order);
1853 }
1854 
1855 static struct vfio_iommu_group *find_iommu_group(struct vfio_domain *domain,
1856 						 struct iommu_group *iommu_group)
1857 {
1858 	struct vfio_iommu_group *g;
1859 
1860 	list_for_each_entry(g, &domain->group_list, next) {
1861 		if (g->iommu_group == iommu_group)
1862 			return g;
1863 	}
1864 
1865 	return NULL;
1866 }
1867 
1868 static struct vfio_iommu_group*
1869 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1870 			    struct iommu_group *iommu_group)
1871 {
1872 	struct vfio_iommu_group *group;
1873 	struct vfio_domain *domain;
1874 
1875 	list_for_each_entry(domain, &iommu->domain_list, next) {
1876 		group = find_iommu_group(domain, iommu_group);
1877 		if (group)
1878 			return group;
1879 	}
1880 
1881 	list_for_each_entry(group, &iommu->emulated_iommu_groups, next)
1882 		if (group->iommu_group == iommu_group)
1883 			return group;
1884 	return NULL;
1885 }
1886 
1887 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1888 				  phys_addr_t *base)
1889 {
1890 	struct iommu_resv_region *region;
1891 	bool ret = false;
1892 
1893 	list_for_each_entry(region, group_resv_regions, list) {
1894 		/*
1895 		 * The presence of any 'real' MSI regions should take
1896 		 * precedence over the software-managed one if the
1897 		 * IOMMU driver happens to advertise both types.
1898 		 */
1899 		if (region->type == IOMMU_RESV_MSI) {
1900 			ret = false;
1901 			break;
1902 		}
1903 
1904 		if (region->type == IOMMU_RESV_SW_MSI) {
1905 			*base = region->start;
1906 			ret = true;
1907 		}
1908 	}
1909 
1910 	return ret;
1911 }
1912 
1913 /*
1914  * This is a helper function to insert an address range to iova list.
1915  * The list is initially created with a single entry corresponding to
1916  * the IOMMU domain geometry to which the device group is attached.
1917  * The list aperture gets modified when a new domain is added to the
1918  * container if the new aperture doesn't conflict with the current one
1919  * or with any existing dma mappings. The list is also modified to
1920  * exclude any reserved regions associated with the device group.
1921  */
1922 static int vfio_iommu_iova_insert(struct list_head *head,
1923 				  dma_addr_t start, dma_addr_t end)
1924 {
1925 	struct vfio_iova *region;
1926 
1927 	region = kmalloc(sizeof(*region), GFP_KERNEL);
1928 	if (!region)
1929 		return -ENOMEM;
1930 
1931 	INIT_LIST_HEAD(&region->list);
1932 	region->start = start;
1933 	region->end = end;
1934 
1935 	list_add_tail(&region->list, head);
1936 	return 0;
1937 }
1938 
1939 /*
1940  * Check the new iommu aperture conflicts with existing aper or with any
1941  * existing dma mappings.
1942  */
1943 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
1944 				     dma_addr_t start, dma_addr_t end)
1945 {
1946 	struct vfio_iova *first, *last;
1947 	struct list_head *iova = &iommu->iova_list;
1948 
1949 	if (list_empty(iova))
1950 		return false;
1951 
1952 	/* Disjoint sets, return conflict */
1953 	first = list_first_entry(iova, struct vfio_iova, list);
1954 	last = list_last_entry(iova, struct vfio_iova, list);
1955 	if (start > last->end || end < first->start)
1956 		return true;
1957 
1958 	/* Check for any existing dma mappings below the new start */
1959 	if (start > first->start) {
1960 		if (vfio_find_dma(iommu, first->start, start - first->start))
1961 			return true;
1962 	}
1963 
1964 	/* Check for any existing dma mappings beyond the new end */
1965 	if (end < last->end) {
1966 		if (vfio_find_dma(iommu, end + 1, last->end - end))
1967 			return true;
1968 	}
1969 
1970 	return false;
1971 }
1972 
1973 /*
1974  * Resize iommu iova aperture window. This is called only if the new
1975  * aperture has no conflict with existing aperture and dma mappings.
1976  */
1977 static int vfio_iommu_aper_resize(struct list_head *iova,
1978 				  dma_addr_t start, dma_addr_t end)
1979 {
1980 	struct vfio_iova *node, *next;
1981 
1982 	if (list_empty(iova))
1983 		return vfio_iommu_iova_insert(iova, start, end);
1984 
1985 	/* Adjust iova list start */
1986 	list_for_each_entry_safe(node, next, iova, list) {
1987 		if (start < node->start)
1988 			break;
1989 		if (start >= node->start && start < node->end) {
1990 			node->start = start;
1991 			break;
1992 		}
1993 		/* Delete nodes before new start */
1994 		list_del(&node->list);
1995 		kfree(node);
1996 	}
1997 
1998 	/* Adjust iova list end */
1999 	list_for_each_entry_safe(node, next, iova, list) {
2000 		if (end > node->end)
2001 			continue;
2002 		if (end > node->start && end <= node->end) {
2003 			node->end = end;
2004 			continue;
2005 		}
2006 		/* Delete nodes after new end */
2007 		list_del(&node->list);
2008 		kfree(node);
2009 	}
2010 
2011 	return 0;
2012 }
2013 
2014 /*
2015  * Check reserved region conflicts with existing dma mappings
2016  */
2017 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
2018 				     struct list_head *resv_regions)
2019 {
2020 	struct iommu_resv_region *region;
2021 
2022 	/* Check for conflict with existing dma mappings */
2023 	list_for_each_entry(region, resv_regions, list) {
2024 		if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
2025 			continue;
2026 
2027 		if (vfio_find_dma(iommu, region->start, region->length))
2028 			return true;
2029 	}
2030 
2031 	return false;
2032 }
2033 
2034 /*
2035  * Check iova region overlap with  reserved regions and
2036  * exclude them from the iommu iova range
2037  */
2038 static int vfio_iommu_resv_exclude(struct list_head *iova,
2039 				   struct list_head *resv_regions)
2040 {
2041 	struct iommu_resv_region *resv;
2042 	struct vfio_iova *n, *next;
2043 
2044 	list_for_each_entry(resv, resv_regions, list) {
2045 		phys_addr_t start, end;
2046 
2047 		if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
2048 			continue;
2049 
2050 		start = resv->start;
2051 		end = resv->start + resv->length - 1;
2052 
2053 		list_for_each_entry_safe(n, next, iova, list) {
2054 			int ret = 0;
2055 
2056 			/* No overlap */
2057 			if (start > n->end || end < n->start)
2058 				continue;
2059 			/*
2060 			 * Insert a new node if current node overlaps with the
2061 			 * reserve region to exclude that from valid iova range.
2062 			 * Note that, new node is inserted before the current
2063 			 * node and finally the current node is deleted keeping
2064 			 * the list updated and sorted.
2065 			 */
2066 			if (start > n->start)
2067 				ret = vfio_iommu_iova_insert(&n->list, n->start,
2068 							     start - 1);
2069 			if (!ret && end < n->end)
2070 				ret = vfio_iommu_iova_insert(&n->list, end + 1,
2071 							     n->end);
2072 			if (ret)
2073 				return ret;
2074 
2075 			list_del(&n->list);
2076 			kfree(n);
2077 		}
2078 	}
2079 
2080 	if (list_empty(iova))
2081 		return -EINVAL;
2082 
2083 	return 0;
2084 }
2085 
2086 static void vfio_iommu_resv_free(struct list_head *resv_regions)
2087 {
2088 	struct iommu_resv_region *n, *next;
2089 
2090 	list_for_each_entry_safe(n, next, resv_regions, list) {
2091 		list_del(&n->list);
2092 		kfree(n);
2093 	}
2094 }
2095 
2096 static void vfio_iommu_iova_free(struct list_head *iova)
2097 {
2098 	struct vfio_iova *n, *next;
2099 
2100 	list_for_each_entry_safe(n, next, iova, list) {
2101 		list_del(&n->list);
2102 		kfree(n);
2103 	}
2104 }
2105 
2106 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
2107 				    struct list_head *iova_copy)
2108 {
2109 	struct list_head *iova = &iommu->iova_list;
2110 	struct vfio_iova *n;
2111 	int ret;
2112 
2113 	list_for_each_entry(n, iova, list) {
2114 		ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
2115 		if (ret)
2116 			goto out_free;
2117 	}
2118 
2119 	return 0;
2120 
2121 out_free:
2122 	vfio_iommu_iova_free(iova_copy);
2123 	return ret;
2124 }
2125 
2126 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
2127 					struct list_head *iova_copy)
2128 {
2129 	struct list_head *iova = &iommu->iova_list;
2130 
2131 	vfio_iommu_iova_free(iova);
2132 
2133 	list_splice_tail(iova_copy, iova);
2134 }
2135 
2136 static int vfio_iommu_domain_alloc(struct device *dev, void *data)
2137 {
2138 	struct iommu_domain **domain = data;
2139 
2140 	*domain = iommu_domain_alloc(dev->bus);
2141 	return 1; /* Don't iterate */
2142 }
2143 
2144 static int vfio_iommu_type1_attach_group(void *iommu_data,
2145 		struct iommu_group *iommu_group, enum vfio_group_type type)
2146 {
2147 	struct vfio_iommu *iommu = iommu_data;
2148 	struct vfio_iommu_group *group;
2149 	struct vfio_domain *domain, *d;
2150 	bool resv_msi;
2151 	phys_addr_t resv_msi_base = 0;
2152 	struct iommu_domain_geometry *geo;
2153 	LIST_HEAD(iova_copy);
2154 	LIST_HEAD(group_resv_regions);
2155 	int ret = -EBUSY;
2156 
2157 	mutex_lock(&iommu->lock);
2158 
2159 	/* Attach could require pinning, so disallow while vaddr is invalid. */
2160 	if (iommu->vaddr_invalid_count)
2161 		goto out_unlock;
2162 
2163 	/* Check for duplicates */
2164 	ret = -EINVAL;
2165 	if (vfio_iommu_find_iommu_group(iommu, iommu_group))
2166 		goto out_unlock;
2167 
2168 	ret = -ENOMEM;
2169 	group = kzalloc(sizeof(*group), GFP_KERNEL);
2170 	if (!group)
2171 		goto out_unlock;
2172 	group->iommu_group = iommu_group;
2173 
2174 	if (type == VFIO_EMULATED_IOMMU) {
2175 		list_add(&group->next, &iommu->emulated_iommu_groups);
2176 		/*
2177 		 * An emulated IOMMU group cannot dirty memory directly, it can
2178 		 * only use interfaces that provide dirty tracking.
2179 		 * The iommu scope can only be promoted with the addition of a
2180 		 * dirty tracking group.
2181 		 */
2182 		group->pinned_page_dirty_scope = true;
2183 		ret = 0;
2184 		goto out_unlock;
2185 	}
2186 
2187 	ret = -ENOMEM;
2188 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2189 	if (!domain)
2190 		goto out_free_group;
2191 
2192 	/*
2193 	 * Going via the iommu_group iterator avoids races, and trivially gives
2194 	 * us a representative device for the IOMMU API call. We don't actually
2195 	 * want to iterate beyond the first device (if any).
2196 	 */
2197 	ret = -EIO;
2198 	iommu_group_for_each_dev(iommu_group, &domain->domain,
2199 				 vfio_iommu_domain_alloc);
2200 	if (!domain->domain)
2201 		goto out_free_domain;
2202 
2203 	if (iommu->nesting) {
2204 		ret = iommu_enable_nesting(domain->domain);
2205 		if (ret)
2206 			goto out_domain;
2207 	}
2208 
2209 	ret = iommu_attach_group(domain->domain, group->iommu_group);
2210 	if (ret)
2211 		goto out_domain;
2212 
2213 	/* Get aperture info */
2214 	geo = &domain->domain->geometry;
2215 	if (vfio_iommu_aper_conflict(iommu, geo->aperture_start,
2216 				     geo->aperture_end)) {
2217 		ret = -EINVAL;
2218 		goto out_detach;
2219 	}
2220 
2221 	ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2222 	if (ret)
2223 		goto out_detach;
2224 
2225 	if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2226 		ret = -EINVAL;
2227 		goto out_detach;
2228 	}
2229 
2230 	/*
2231 	 * We don't want to work on the original iova list as the list
2232 	 * gets modified and in case of failure we have to retain the
2233 	 * original list. Get a copy here.
2234 	 */
2235 	ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2236 	if (ret)
2237 		goto out_detach;
2238 
2239 	ret = vfio_iommu_aper_resize(&iova_copy, geo->aperture_start,
2240 				     geo->aperture_end);
2241 	if (ret)
2242 		goto out_detach;
2243 
2244 	ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2245 	if (ret)
2246 		goto out_detach;
2247 
2248 	resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2249 
2250 	INIT_LIST_HEAD(&domain->group_list);
2251 	list_add(&group->next, &domain->group_list);
2252 
2253 	if (!allow_unsafe_interrupts &&
2254 	    !iommu_group_has_isolated_msi(iommu_group)) {
2255 		pr_warn("%s: No interrupt remapping support.  Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2256 		       __func__);
2257 		ret = -EPERM;
2258 		goto out_detach;
2259 	}
2260 
2261 	/*
2262 	 * If the IOMMU can block non-coherent operations (ie PCIe TLPs with
2263 	 * no-snoop set) then VFIO always turns this feature on because on Intel
2264 	 * platforms it optimizes KVM to disable wbinvd emulation.
2265 	 */
2266 	if (domain->domain->ops->enforce_cache_coherency)
2267 		domain->enforce_cache_coherency =
2268 			domain->domain->ops->enforce_cache_coherency(
2269 				domain->domain);
2270 
2271 	/*
2272 	 * Try to match an existing compatible domain.  We don't want to
2273 	 * preclude an IOMMU driver supporting multiple bus_types and being
2274 	 * able to include different bus_types in the same IOMMU domain, so
2275 	 * we test whether the domains use the same iommu_ops rather than
2276 	 * testing if they're on the same bus_type.
2277 	 */
2278 	list_for_each_entry(d, &iommu->domain_list, next) {
2279 		if (d->domain->ops == domain->domain->ops &&
2280 		    d->enforce_cache_coherency ==
2281 			    domain->enforce_cache_coherency) {
2282 			iommu_detach_group(domain->domain, group->iommu_group);
2283 			if (!iommu_attach_group(d->domain,
2284 						group->iommu_group)) {
2285 				list_add(&group->next, &d->group_list);
2286 				iommu_domain_free(domain->domain);
2287 				kfree(domain);
2288 				goto done;
2289 			}
2290 
2291 			ret = iommu_attach_group(domain->domain,
2292 						 group->iommu_group);
2293 			if (ret)
2294 				goto out_domain;
2295 		}
2296 	}
2297 
2298 	vfio_test_domain_fgsp(domain, &iova_copy);
2299 
2300 	/* replay mappings on new domains */
2301 	ret = vfio_iommu_replay(iommu, domain);
2302 	if (ret)
2303 		goto out_detach;
2304 
2305 	if (resv_msi) {
2306 		ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2307 		if (ret && ret != -ENODEV)
2308 			goto out_detach;
2309 	}
2310 
2311 	list_add(&domain->next, &iommu->domain_list);
2312 	vfio_update_pgsize_bitmap(iommu);
2313 done:
2314 	/* Delete the old one and insert new iova list */
2315 	vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2316 
2317 	/*
2318 	 * An iommu backed group can dirty memory directly and therefore
2319 	 * demotes the iommu scope until it declares itself dirty tracking
2320 	 * capable via the page pinning interface.
2321 	 */
2322 	iommu->num_non_pinned_groups++;
2323 	mutex_unlock(&iommu->lock);
2324 	vfio_iommu_resv_free(&group_resv_regions);
2325 
2326 	return 0;
2327 
2328 out_detach:
2329 	iommu_detach_group(domain->domain, group->iommu_group);
2330 out_domain:
2331 	iommu_domain_free(domain->domain);
2332 	vfio_iommu_iova_free(&iova_copy);
2333 	vfio_iommu_resv_free(&group_resv_regions);
2334 out_free_domain:
2335 	kfree(domain);
2336 out_free_group:
2337 	kfree(group);
2338 out_unlock:
2339 	mutex_unlock(&iommu->lock);
2340 	return ret;
2341 }
2342 
2343 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2344 {
2345 	struct rb_node *node;
2346 
2347 	while ((node = rb_first(&iommu->dma_list)))
2348 		vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2349 }
2350 
2351 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2352 {
2353 	struct rb_node *n, *p;
2354 
2355 	n = rb_first(&iommu->dma_list);
2356 	for (; n; n = rb_next(n)) {
2357 		struct vfio_dma *dma;
2358 		long locked = 0, unlocked = 0;
2359 
2360 		dma = rb_entry(n, struct vfio_dma, node);
2361 		unlocked += vfio_unmap_unpin(iommu, dma, false);
2362 		p = rb_first(&dma->pfn_list);
2363 		for (; p; p = rb_next(p)) {
2364 			struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2365 							 node);
2366 
2367 			if (!is_invalid_reserved_pfn(vpfn->pfn))
2368 				locked++;
2369 		}
2370 		vfio_lock_acct(dma, locked - unlocked, true);
2371 	}
2372 }
2373 
2374 /*
2375  * Called when a domain is removed in detach. It is possible that
2376  * the removed domain decided the iova aperture window. Modify the
2377  * iova aperture with the smallest window among existing domains.
2378  */
2379 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2380 				   struct list_head *iova_copy)
2381 {
2382 	struct vfio_domain *domain;
2383 	struct vfio_iova *node;
2384 	dma_addr_t start = 0;
2385 	dma_addr_t end = (dma_addr_t)~0;
2386 
2387 	if (list_empty(iova_copy))
2388 		return;
2389 
2390 	list_for_each_entry(domain, &iommu->domain_list, next) {
2391 		struct iommu_domain_geometry *geo = &domain->domain->geometry;
2392 
2393 		if (geo->aperture_start > start)
2394 			start = geo->aperture_start;
2395 		if (geo->aperture_end < end)
2396 			end = geo->aperture_end;
2397 	}
2398 
2399 	/* Modify aperture limits. The new aper is either same or bigger */
2400 	node = list_first_entry(iova_copy, struct vfio_iova, list);
2401 	node->start = start;
2402 	node = list_last_entry(iova_copy, struct vfio_iova, list);
2403 	node->end = end;
2404 }
2405 
2406 /*
2407  * Called when a group is detached. The reserved regions for that
2408  * group can be part of valid iova now. But since reserved regions
2409  * may be duplicated among groups, populate the iova valid regions
2410  * list again.
2411  */
2412 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2413 				   struct list_head *iova_copy)
2414 {
2415 	struct vfio_domain *d;
2416 	struct vfio_iommu_group *g;
2417 	struct vfio_iova *node;
2418 	dma_addr_t start, end;
2419 	LIST_HEAD(resv_regions);
2420 	int ret;
2421 
2422 	if (list_empty(iova_copy))
2423 		return -EINVAL;
2424 
2425 	list_for_each_entry(d, &iommu->domain_list, next) {
2426 		list_for_each_entry(g, &d->group_list, next) {
2427 			ret = iommu_get_group_resv_regions(g->iommu_group,
2428 							   &resv_regions);
2429 			if (ret)
2430 				goto done;
2431 		}
2432 	}
2433 
2434 	node = list_first_entry(iova_copy, struct vfio_iova, list);
2435 	start = node->start;
2436 	node = list_last_entry(iova_copy, struct vfio_iova, list);
2437 	end = node->end;
2438 
2439 	/* purge the iova list and create new one */
2440 	vfio_iommu_iova_free(iova_copy);
2441 
2442 	ret = vfio_iommu_aper_resize(iova_copy, start, end);
2443 	if (ret)
2444 		goto done;
2445 
2446 	/* Exclude current reserved regions from iova ranges */
2447 	ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2448 done:
2449 	vfio_iommu_resv_free(&resv_regions);
2450 	return ret;
2451 }
2452 
2453 static void vfio_iommu_type1_detach_group(void *iommu_data,
2454 					  struct iommu_group *iommu_group)
2455 {
2456 	struct vfio_iommu *iommu = iommu_data;
2457 	struct vfio_domain *domain;
2458 	struct vfio_iommu_group *group;
2459 	bool update_dirty_scope = false;
2460 	LIST_HEAD(iova_copy);
2461 
2462 	mutex_lock(&iommu->lock);
2463 	list_for_each_entry(group, &iommu->emulated_iommu_groups, next) {
2464 		if (group->iommu_group != iommu_group)
2465 			continue;
2466 		update_dirty_scope = !group->pinned_page_dirty_scope;
2467 		list_del(&group->next);
2468 		kfree(group);
2469 
2470 		if (list_empty(&iommu->emulated_iommu_groups) &&
2471 		    list_empty(&iommu->domain_list)) {
2472 			WARN_ON(!list_empty(&iommu->device_list));
2473 			vfio_iommu_unmap_unpin_all(iommu);
2474 		}
2475 		goto detach_group_done;
2476 	}
2477 
2478 	/*
2479 	 * Get a copy of iova list. This will be used to update
2480 	 * and to replace the current one later. Please note that
2481 	 * we will leave the original list as it is if update fails.
2482 	 */
2483 	vfio_iommu_iova_get_copy(iommu, &iova_copy);
2484 
2485 	list_for_each_entry(domain, &iommu->domain_list, next) {
2486 		group = find_iommu_group(domain, iommu_group);
2487 		if (!group)
2488 			continue;
2489 
2490 		iommu_detach_group(domain->domain, group->iommu_group);
2491 		update_dirty_scope = !group->pinned_page_dirty_scope;
2492 		list_del(&group->next);
2493 		kfree(group);
2494 		/*
2495 		 * Group ownership provides privilege, if the group list is
2496 		 * empty, the domain goes away. If it's the last domain with
2497 		 * iommu and external domain doesn't exist, then all the
2498 		 * mappings go away too. If it's the last domain with iommu and
2499 		 * external domain exist, update accounting
2500 		 */
2501 		if (list_empty(&domain->group_list)) {
2502 			if (list_is_singular(&iommu->domain_list)) {
2503 				if (list_empty(&iommu->emulated_iommu_groups)) {
2504 					WARN_ON(!list_empty(
2505 						&iommu->device_list));
2506 					vfio_iommu_unmap_unpin_all(iommu);
2507 				} else {
2508 					vfio_iommu_unmap_unpin_reaccount(iommu);
2509 				}
2510 			}
2511 			iommu_domain_free(domain->domain);
2512 			list_del(&domain->next);
2513 			kfree(domain);
2514 			vfio_iommu_aper_expand(iommu, &iova_copy);
2515 			vfio_update_pgsize_bitmap(iommu);
2516 		}
2517 		break;
2518 	}
2519 
2520 	if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2521 		vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2522 	else
2523 		vfio_iommu_iova_free(&iova_copy);
2524 
2525 detach_group_done:
2526 	/*
2527 	 * Removal of a group without dirty tracking may allow the iommu scope
2528 	 * to be promoted.
2529 	 */
2530 	if (update_dirty_scope) {
2531 		iommu->num_non_pinned_groups--;
2532 		if (iommu->dirty_page_tracking)
2533 			vfio_iommu_populate_bitmap_full(iommu);
2534 	}
2535 	mutex_unlock(&iommu->lock);
2536 }
2537 
2538 static void *vfio_iommu_type1_open(unsigned long arg)
2539 {
2540 	struct vfio_iommu *iommu;
2541 
2542 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2543 	if (!iommu)
2544 		return ERR_PTR(-ENOMEM);
2545 
2546 	switch (arg) {
2547 	case VFIO_TYPE1_IOMMU:
2548 		break;
2549 	case VFIO_TYPE1_NESTING_IOMMU:
2550 		iommu->nesting = true;
2551 		fallthrough;
2552 	case VFIO_TYPE1v2_IOMMU:
2553 		iommu->v2 = true;
2554 		break;
2555 	default:
2556 		kfree(iommu);
2557 		return ERR_PTR(-EINVAL);
2558 	}
2559 
2560 	INIT_LIST_HEAD(&iommu->domain_list);
2561 	INIT_LIST_HEAD(&iommu->iova_list);
2562 	iommu->dma_list = RB_ROOT;
2563 	iommu->dma_avail = dma_entry_limit;
2564 	mutex_init(&iommu->lock);
2565 	mutex_init(&iommu->device_list_lock);
2566 	INIT_LIST_HEAD(&iommu->device_list);
2567 	iommu->pgsize_bitmap = PAGE_MASK;
2568 	INIT_LIST_HEAD(&iommu->emulated_iommu_groups);
2569 
2570 	return iommu;
2571 }
2572 
2573 static void vfio_release_domain(struct vfio_domain *domain)
2574 {
2575 	struct vfio_iommu_group *group, *group_tmp;
2576 
2577 	list_for_each_entry_safe(group, group_tmp,
2578 				 &domain->group_list, next) {
2579 		iommu_detach_group(domain->domain, group->iommu_group);
2580 		list_del(&group->next);
2581 		kfree(group);
2582 	}
2583 
2584 	iommu_domain_free(domain->domain);
2585 }
2586 
2587 static void vfio_iommu_type1_release(void *iommu_data)
2588 {
2589 	struct vfio_iommu *iommu = iommu_data;
2590 	struct vfio_domain *domain, *domain_tmp;
2591 	struct vfio_iommu_group *group, *next_group;
2592 
2593 	list_for_each_entry_safe(group, next_group,
2594 			&iommu->emulated_iommu_groups, next) {
2595 		list_del(&group->next);
2596 		kfree(group);
2597 	}
2598 
2599 	vfio_iommu_unmap_unpin_all(iommu);
2600 
2601 	list_for_each_entry_safe(domain, domain_tmp,
2602 				 &iommu->domain_list, next) {
2603 		vfio_release_domain(domain);
2604 		list_del(&domain->next);
2605 		kfree(domain);
2606 	}
2607 
2608 	vfio_iommu_iova_free(&iommu->iova_list);
2609 
2610 	kfree(iommu);
2611 }
2612 
2613 static int vfio_domains_have_enforce_cache_coherency(struct vfio_iommu *iommu)
2614 {
2615 	struct vfio_domain *domain;
2616 	int ret = 1;
2617 
2618 	mutex_lock(&iommu->lock);
2619 	list_for_each_entry(domain, &iommu->domain_list, next) {
2620 		if (!(domain->enforce_cache_coherency)) {
2621 			ret = 0;
2622 			break;
2623 		}
2624 	}
2625 	mutex_unlock(&iommu->lock);
2626 
2627 	return ret;
2628 }
2629 
2630 static bool vfio_iommu_has_emulated(struct vfio_iommu *iommu)
2631 {
2632 	bool ret;
2633 
2634 	mutex_lock(&iommu->lock);
2635 	ret = !list_empty(&iommu->emulated_iommu_groups);
2636 	mutex_unlock(&iommu->lock);
2637 	return ret;
2638 }
2639 
2640 static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2641 					    unsigned long arg)
2642 {
2643 	switch (arg) {
2644 	case VFIO_TYPE1_IOMMU:
2645 	case VFIO_TYPE1v2_IOMMU:
2646 	case VFIO_TYPE1_NESTING_IOMMU:
2647 	case VFIO_UNMAP_ALL:
2648 		return 1;
2649 	case VFIO_UPDATE_VADDR:
2650 		/*
2651 		 * Disable this feature if mdevs are present.  They cannot
2652 		 * safely pin/unpin/rw while vaddrs are being updated.
2653 		 */
2654 		return iommu && !vfio_iommu_has_emulated(iommu);
2655 	case VFIO_DMA_CC_IOMMU:
2656 		if (!iommu)
2657 			return 0;
2658 		return vfio_domains_have_enforce_cache_coherency(iommu);
2659 	default:
2660 		return 0;
2661 	}
2662 }
2663 
2664 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2665 		 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2666 		 size_t size)
2667 {
2668 	struct vfio_info_cap_header *header;
2669 	struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2670 
2671 	header = vfio_info_cap_add(caps, size,
2672 				   VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2673 	if (IS_ERR(header))
2674 		return PTR_ERR(header);
2675 
2676 	iova_cap = container_of(header,
2677 				struct vfio_iommu_type1_info_cap_iova_range,
2678 				header);
2679 	iova_cap->nr_iovas = cap_iovas->nr_iovas;
2680 	memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2681 	       cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2682 	return 0;
2683 }
2684 
2685 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2686 				      struct vfio_info_cap *caps)
2687 {
2688 	struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2689 	struct vfio_iova *iova;
2690 	size_t size;
2691 	int iovas = 0, i = 0, ret;
2692 
2693 	list_for_each_entry(iova, &iommu->iova_list, list)
2694 		iovas++;
2695 
2696 	if (!iovas) {
2697 		/*
2698 		 * Return 0 as a container with a single mdev device
2699 		 * will have an empty list
2700 		 */
2701 		return 0;
2702 	}
2703 
2704 	size = struct_size(cap_iovas, iova_ranges, iovas);
2705 
2706 	cap_iovas = kzalloc(size, GFP_KERNEL);
2707 	if (!cap_iovas)
2708 		return -ENOMEM;
2709 
2710 	cap_iovas->nr_iovas = iovas;
2711 
2712 	list_for_each_entry(iova, &iommu->iova_list, list) {
2713 		cap_iovas->iova_ranges[i].start = iova->start;
2714 		cap_iovas->iova_ranges[i].end = iova->end;
2715 		i++;
2716 	}
2717 
2718 	ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2719 
2720 	kfree(cap_iovas);
2721 	return ret;
2722 }
2723 
2724 static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2725 					   struct vfio_info_cap *caps)
2726 {
2727 	struct vfio_iommu_type1_info_cap_migration cap_mig;
2728 
2729 	cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2730 	cap_mig.header.version = 1;
2731 
2732 	cap_mig.flags = 0;
2733 	/* support minimum pgsize */
2734 	cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2735 	cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2736 
2737 	return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2738 }
2739 
2740 static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu,
2741 					   struct vfio_info_cap *caps)
2742 {
2743 	struct vfio_iommu_type1_info_dma_avail cap_dma_avail;
2744 
2745 	cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL;
2746 	cap_dma_avail.header.version = 1;
2747 
2748 	cap_dma_avail.avail = iommu->dma_avail;
2749 
2750 	return vfio_info_add_capability(caps, &cap_dma_avail.header,
2751 					sizeof(cap_dma_avail));
2752 }
2753 
2754 static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2755 				     unsigned long arg)
2756 {
2757 	struct vfio_iommu_type1_info info;
2758 	unsigned long minsz;
2759 	struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2760 	unsigned long capsz;
2761 	int ret;
2762 
2763 	minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2764 
2765 	/* For backward compatibility, cannot require this */
2766 	capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset);
2767 
2768 	if (copy_from_user(&info, (void __user *)arg, minsz))
2769 		return -EFAULT;
2770 
2771 	if (info.argsz < minsz)
2772 		return -EINVAL;
2773 
2774 	if (info.argsz >= capsz) {
2775 		minsz = capsz;
2776 		info.cap_offset = 0; /* output, no-recopy necessary */
2777 	}
2778 
2779 	mutex_lock(&iommu->lock);
2780 	info.flags = VFIO_IOMMU_INFO_PGSIZES;
2781 
2782 	info.iova_pgsizes = iommu->pgsize_bitmap;
2783 
2784 	ret = vfio_iommu_migration_build_caps(iommu, &caps);
2785 
2786 	if (!ret)
2787 		ret = vfio_iommu_dma_avail_build_caps(iommu, &caps);
2788 
2789 	if (!ret)
2790 		ret = vfio_iommu_iova_build_caps(iommu, &caps);
2791 
2792 	mutex_unlock(&iommu->lock);
2793 
2794 	if (ret)
2795 		return ret;
2796 
2797 	if (caps.size) {
2798 		info.flags |= VFIO_IOMMU_INFO_CAPS;
2799 
2800 		if (info.argsz < sizeof(info) + caps.size) {
2801 			info.argsz = sizeof(info) + caps.size;
2802 		} else {
2803 			vfio_info_cap_shift(&caps, sizeof(info));
2804 			if (copy_to_user((void __user *)arg +
2805 					sizeof(info), caps.buf,
2806 					caps.size)) {
2807 				kfree(caps.buf);
2808 				return -EFAULT;
2809 			}
2810 			info.cap_offset = sizeof(info);
2811 		}
2812 
2813 		kfree(caps.buf);
2814 	}
2815 
2816 	return copy_to_user((void __user *)arg, &info, minsz) ?
2817 			-EFAULT : 0;
2818 }
2819 
2820 static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2821 				    unsigned long arg)
2822 {
2823 	struct vfio_iommu_type1_dma_map map;
2824 	unsigned long minsz;
2825 	uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE |
2826 			VFIO_DMA_MAP_FLAG_VADDR;
2827 
2828 	minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2829 
2830 	if (copy_from_user(&map, (void __user *)arg, minsz))
2831 		return -EFAULT;
2832 
2833 	if (map.argsz < minsz || map.flags & ~mask)
2834 		return -EINVAL;
2835 
2836 	return vfio_dma_do_map(iommu, &map);
2837 }
2838 
2839 static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2840 				      unsigned long arg)
2841 {
2842 	struct vfio_iommu_type1_dma_unmap unmap;
2843 	struct vfio_bitmap bitmap = { 0 };
2844 	uint32_t mask = VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP |
2845 			VFIO_DMA_UNMAP_FLAG_VADDR |
2846 			VFIO_DMA_UNMAP_FLAG_ALL;
2847 	unsigned long minsz;
2848 	int ret;
2849 
2850 	minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2851 
2852 	if (copy_from_user(&unmap, (void __user *)arg, minsz))
2853 		return -EFAULT;
2854 
2855 	if (unmap.argsz < minsz || unmap.flags & ~mask)
2856 		return -EINVAL;
2857 
2858 	if ((unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
2859 	    (unmap.flags & (VFIO_DMA_UNMAP_FLAG_ALL |
2860 			    VFIO_DMA_UNMAP_FLAG_VADDR)))
2861 		return -EINVAL;
2862 
2863 	if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2864 		unsigned long pgshift;
2865 
2866 		if (unmap.argsz < (minsz + sizeof(bitmap)))
2867 			return -EINVAL;
2868 
2869 		if (copy_from_user(&bitmap,
2870 				   (void __user *)(arg + minsz),
2871 				   sizeof(bitmap)))
2872 			return -EFAULT;
2873 
2874 		if (!access_ok((void __user *)bitmap.data, bitmap.size))
2875 			return -EINVAL;
2876 
2877 		pgshift = __ffs(bitmap.pgsize);
2878 		ret = verify_bitmap_size(unmap.size >> pgshift,
2879 					 bitmap.size);
2880 		if (ret)
2881 			return ret;
2882 	}
2883 
2884 	ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2885 	if (ret)
2886 		return ret;
2887 
2888 	return copy_to_user((void __user *)arg, &unmap, minsz) ?
2889 			-EFAULT : 0;
2890 }
2891 
2892 static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2893 					unsigned long arg)
2894 {
2895 	struct vfio_iommu_type1_dirty_bitmap dirty;
2896 	uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2897 			VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2898 			VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2899 	unsigned long minsz;
2900 	int ret = 0;
2901 
2902 	if (!iommu->v2)
2903 		return -EACCES;
2904 
2905 	minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
2906 
2907 	if (copy_from_user(&dirty, (void __user *)arg, minsz))
2908 		return -EFAULT;
2909 
2910 	if (dirty.argsz < minsz || dirty.flags & ~mask)
2911 		return -EINVAL;
2912 
2913 	/* only one flag should be set at a time */
2914 	if (__ffs(dirty.flags) != __fls(dirty.flags))
2915 		return -EINVAL;
2916 
2917 	if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
2918 		size_t pgsize;
2919 
2920 		mutex_lock(&iommu->lock);
2921 		pgsize = 1 << __ffs(iommu->pgsize_bitmap);
2922 		if (!iommu->dirty_page_tracking) {
2923 			ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
2924 			if (!ret)
2925 				iommu->dirty_page_tracking = true;
2926 		}
2927 		mutex_unlock(&iommu->lock);
2928 		return ret;
2929 	} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
2930 		mutex_lock(&iommu->lock);
2931 		if (iommu->dirty_page_tracking) {
2932 			iommu->dirty_page_tracking = false;
2933 			vfio_dma_bitmap_free_all(iommu);
2934 		}
2935 		mutex_unlock(&iommu->lock);
2936 		return 0;
2937 	} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
2938 		struct vfio_iommu_type1_dirty_bitmap_get range;
2939 		unsigned long pgshift;
2940 		size_t data_size = dirty.argsz - minsz;
2941 		size_t iommu_pgsize;
2942 
2943 		if (!data_size || data_size < sizeof(range))
2944 			return -EINVAL;
2945 
2946 		if (copy_from_user(&range, (void __user *)(arg + minsz),
2947 				   sizeof(range)))
2948 			return -EFAULT;
2949 
2950 		if (range.iova + range.size < range.iova)
2951 			return -EINVAL;
2952 		if (!access_ok((void __user *)range.bitmap.data,
2953 			       range.bitmap.size))
2954 			return -EINVAL;
2955 
2956 		pgshift = __ffs(range.bitmap.pgsize);
2957 		ret = verify_bitmap_size(range.size >> pgshift,
2958 					 range.bitmap.size);
2959 		if (ret)
2960 			return ret;
2961 
2962 		mutex_lock(&iommu->lock);
2963 
2964 		iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2965 
2966 		/* allow only smallest supported pgsize */
2967 		if (range.bitmap.pgsize != iommu_pgsize) {
2968 			ret = -EINVAL;
2969 			goto out_unlock;
2970 		}
2971 		if (range.iova & (iommu_pgsize - 1)) {
2972 			ret = -EINVAL;
2973 			goto out_unlock;
2974 		}
2975 		if (!range.size || range.size & (iommu_pgsize - 1)) {
2976 			ret = -EINVAL;
2977 			goto out_unlock;
2978 		}
2979 
2980 		if (iommu->dirty_page_tracking)
2981 			ret = vfio_iova_dirty_bitmap(range.bitmap.data,
2982 						     iommu, range.iova,
2983 						     range.size,
2984 						     range.bitmap.pgsize);
2985 		else
2986 			ret = -EINVAL;
2987 out_unlock:
2988 		mutex_unlock(&iommu->lock);
2989 
2990 		return ret;
2991 	}
2992 
2993 	return -EINVAL;
2994 }
2995 
2996 static long vfio_iommu_type1_ioctl(void *iommu_data,
2997 				   unsigned int cmd, unsigned long arg)
2998 {
2999 	struct vfio_iommu *iommu = iommu_data;
3000 
3001 	switch (cmd) {
3002 	case VFIO_CHECK_EXTENSION:
3003 		return vfio_iommu_type1_check_extension(iommu, arg);
3004 	case VFIO_IOMMU_GET_INFO:
3005 		return vfio_iommu_type1_get_info(iommu, arg);
3006 	case VFIO_IOMMU_MAP_DMA:
3007 		return vfio_iommu_type1_map_dma(iommu, arg);
3008 	case VFIO_IOMMU_UNMAP_DMA:
3009 		return vfio_iommu_type1_unmap_dma(iommu, arg);
3010 	case VFIO_IOMMU_DIRTY_PAGES:
3011 		return vfio_iommu_type1_dirty_pages(iommu, arg);
3012 	default:
3013 		return -ENOTTY;
3014 	}
3015 }
3016 
3017 static void vfio_iommu_type1_register_device(void *iommu_data,
3018 					     struct vfio_device *vdev)
3019 {
3020 	struct vfio_iommu *iommu = iommu_data;
3021 
3022 	if (!vdev->ops->dma_unmap)
3023 		return;
3024 
3025 	/*
3026 	 * list_empty(&iommu->device_list) is tested under the iommu->lock while
3027 	 * iteration for dma_unmap must be done under the device_list_lock.
3028 	 * Holding both locks here allows avoiding the device_list_lock in
3029 	 * several fast paths. See vfio_notify_dma_unmap()
3030 	 */
3031 	mutex_lock(&iommu->lock);
3032 	mutex_lock(&iommu->device_list_lock);
3033 	list_add(&vdev->iommu_entry, &iommu->device_list);
3034 	mutex_unlock(&iommu->device_list_lock);
3035 	mutex_unlock(&iommu->lock);
3036 }
3037 
3038 static void vfio_iommu_type1_unregister_device(void *iommu_data,
3039 					       struct vfio_device *vdev)
3040 {
3041 	struct vfio_iommu *iommu = iommu_data;
3042 
3043 	if (!vdev->ops->dma_unmap)
3044 		return;
3045 
3046 	mutex_lock(&iommu->lock);
3047 	mutex_lock(&iommu->device_list_lock);
3048 	list_del(&vdev->iommu_entry);
3049 	mutex_unlock(&iommu->device_list_lock);
3050 	mutex_unlock(&iommu->lock);
3051 }
3052 
3053 static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
3054 					 dma_addr_t user_iova, void *data,
3055 					 size_t count, bool write,
3056 					 size_t *copied)
3057 {
3058 	struct mm_struct *mm;
3059 	unsigned long vaddr;
3060 	struct vfio_dma *dma;
3061 	bool kthread = current->mm == NULL;
3062 	size_t offset;
3063 
3064 	*copied = 0;
3065 
3066 	dma = vfio_find_dma(iommu, user_iova, 1);
3067 	if (!dma)
3068 		return -EINVAL;
3069 
3070 	if ((write && !(dma->prot & IOMMU_WRITE)) ||
3071 			!(dma->prot & IOMMU_READ))
3072 		return -EPERM;
3073 
3074 	mm = dma->mm;
3075 	if (!mmget_not_zero(mm))
3076 		return -EPERM;
3077 
3078 	if (kthread)
3079 		kthread_use_mm(mm);
3080 	else if (current->mm != mm)
3081 		goto out;
3082 
3083 	offset = user_iova - dma->iova;
3084 
3085 	if (count > dma->size - offset)
3086 		count = dma->size - offset;
3087 
3088 	vaddr = dma->vaddr + offset;
3089 
3090 	if (write) {
3091 		*copied = copy_to_user((void __user *)vaddr, data,
3092 					 count) ? 0 : count;
3093 		if (*copied && iommu->dirty_page_tracking) {
3094 			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
3095 			/*
3096 			 * Bitmap populated with the smallest supported page
3097 			 * size
3098 			 */
3099 			bitmap_set(dma->bitmap, offset >> pgshift,
3100 				   ((offset + *copied - 1) >> pgshift) -
3101 				   (offset >> pgshift) + 1);
3102 		}
3103 	} else
3104 		*copied = copy_from_user(data, (void __user *)vaddr,
3105 					   count) ? 0 : count;
3106 	if (kthread)
3107 		kthread_unuse_mm(mm);
3108 out:
3109 	mmput(mm);
3110 	return *copied ? 0 : -EFAULT;
3111 }
3112 
3113 static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
3114 				   void *data, size_t count, bool write)
3115 {
3116 	struct vfio_iommu *iommu = iommu_data;
3117 	int ret = 0;
3118 	size_t done;
3119 
3120 	mutex_lock(&iommu->lock);
3121 
3122 	if (WARN_ONCE(iommu->vaddr_invalid_count,
3123 		      "vfio_dma_rw not allowed with VFIO_UPDATE_VADDR\n")) {
3124 		ret = -EBUSY;
3125 		goto out;
3126 	}
3127 
3128 	while (count > 0) {
3129 		ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
3130 						    count, write, &done);
3131 		if (ret)
3132 			break;
3133 
3134 		count -= done;
3135 		data += done;
3136 		user_iova += done;
3137 	}
3138 
3139 out:
3140 	mutex_unlock(&iommu->lock);
3141 	return ret;
3142 }
3143 
3144 static struct iommu_domain *
3145 vfio_iommu_type1_group_iommu_domain(void *iommu_data,
3146 				    struct iommu_group *iommu_group)
3147 {
3148 	struct iommu_domain *domain = ERR_PTR(-ENODEV);
3149 	struct vfio_iommu *iommu = iommu_data;
3150 	struct vfio_domain *d;
3151 
3152 	if (!iommu || !iommu_group)
3153 		return ERR_PTR(-EINVAL);
3154 
3155 	mutex_lock(&iommu->lock);
3156 	list_for_each_entry(d, &iommu->domain_list, next) {
3157 		if (find_iommu_group(d, iommu_group)) {
3158 			domain = d->domain;
3159 			break;
3160 		}
3161 	}
3162 	mutex_unlock(&iommu->lock);
3163 
3164 	return domain;
3165 }
3166 
3167 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
3168 	.name			= "vfio-iommu-type1",
3169 	.owner			= THIS_MODULE,
3170 	.open			= vfio_iommu_type1_open,
3171 	.release		= vfio_iommu_type1_release,
3172 	.ioctl			= vfio_iommu_type1_ioctl,
3173 	.attach_group		= vfio_iommu_type1_attach_group,
3174 	.detach_group		= vfio_iommu_type1_detach_group,
3175 	.pin_pages		= vfio_iommu_type1_pin_pages,
3176 	.unpin_pages		= vfio_iommu_type1_unpin_pages,
3177 	.register_device	= vfio_iommu_type1_register_device,
3178 	.unregister_device	= vfio_iommu_type1_unregister_device,
3179 	.dma_rw			= vfio_iommu_type1_dma_rw,
3180 	.group_iommu_domain	= vfio_iommu_type1_group_iommu_domain,
3181 };
3182 
3183 static int __init vfio_iommu_type1_init(void)
3184 {
3185 	return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
3186 }
3187 
3188 static void __exit vfio_iommu_type1_cleanup(void)
3189 {
3190 	vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
3191 }
3192 
3193 module_init(vfio_iommu_type1_init);
3194 module_exit(vfio_iommu_type1_cleanup);
3195 
3196 MODULE_VERSION(DRIVER_VERSION);
3197 MODULE_LICENSE("GPL v2");
3198 MODULE_AUTHOR(DRIVER_AUTHOR);
3199 MODULE_DESCRIPTION(DRIVER_DESC);
3200