1 /*
2  * VFIO: IOMMU DMA mapping support for Type1 IOMMU
3  *
4  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
5  *     Author: Alex Williamson <alex.williamson@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Derived from original vfio:
12  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
13  * Author: Tom Lyon, pugs@cisco.com
14  *
15  * We arbitrarily define a Type1 IOMMU as one matching the below code.
16  * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
17  * VT-d, but that makes it harder to re-use as theoretically anyone
18  * implementing a similar IOMMU could make use of this.  We expect the
19  * IOMMU to support the IOMMU API and have few to no restrictions around
20  * the IOVA range that can be mapped.  The Type1 IOMMU is currently
21  * optimized for relatively static mappings of a userspace process with
22  * userpsace pages pinned into memory.  We also assume devices and IOMMU
23  * domains are PCI based as the IOMMU API is still centered around a
24  * device/bus interface rather than a group interface.
25  */
26 
27 #include <linux/compat.h>
28 #include <linux/device.h>
29 #include <linux/fs.h>
30 #include <linux/iommu.h>
31 #include <linux/module.h>
32 #include <linux/mm.h>
33 #include <linux/rbtree.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39 
40 #define DRIVER_VERSION  "0.2"
41 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
42 #define DRIVER_DESC     "Type1 IOMMU driver for VFIO"
43 
44 static bool allow_unsafe_interrupts;
45 module_param_named(allow_unsafe_interrupts,
46 		   allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
47 MODULE_PARM_DESC(allow_unsafe_interrupts,
48 		 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
49 
50 static bool disable_hugepages;
51 module_param_named(disable_hugepages,
52 		   disable_hugepages, bool, S_IRUGO | S_IWUSR);
53 MODULE_PARM_DESC(disable_hugepages,
54 		 "Disable VFIO IOMMU support for IOMMU hugepages.");
55 
56 struct vfio_iommu {
57 	struct list_head	domain_list;
58 	struct mutex		lock;
59 	struct rb_root		dma_list;
60 	bool			v2;
61 	bool			nesting;
62 };
63 
64 struct vfio_domain {
65 	struct iommu_domain	*domain;
66 	struct list_head	next;
67 	struct list_head	group_list;
68 	int			prot;		/* IOMMU_CACHE */
69 };
70 
71 struct vfio_dma {
72 	struct rb_node		node;
73 	dma_addr_t		iova;		/* Device address */
74 	unsigned long		vaddr;		/* Process virtual addr */
75 	size_t			size;		/* Map size (bytes) */
76 	int			prot;		/* IOMMU_READ/WRITE */
77 };
78 
79 struct vfio_group {
80 	struct iommu_group	*iommu_group;
81 	struct list_head	next;
82 };
83 
84 /*
85  * This code handles mapping and unmapping of user data buffers
86  * into DMA'ble space using the IOMMU
87  */
88 
89 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
90 				      dma_addr_t start, size_t size)
91 {
92 	struct rb_node *node = iommu->dma_list.rb_node;
93 
94 	while (node) {
95 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
96 
97 		if (start + size <= dma->iova)
98 			node = node->rb_left;
99 		else if (start >= dma->iova + dma->size)
100 			node = node->rb_right;
101 		else
102 			return dma;
103 	}
104 
105 	return NULL;
106 }
107 
108 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
109 {
110 	struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
111 	struct vfio_dma *dma;
112 
113 	while (*link) {
114 		parent = *link;
115 		dma = rb_entry(parent, struct vfio_dma, node);
116 
117 		if (new->iova + new->size <= dma->iova)
118 			link = &(*link)->rb_left;
119 		else
120 			link = &(*link)->rb_right;
121 	}
122 
123 	rb_link_node(&new->node, parent, link);
124 	rb_insert_color(&new->node, &iommu->dma_list);
125 }
126 
127 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
128 {
129 	rb_erase(&old->node, &iommu->dma_list);
130 }
131 
132 struct vwork {
133 	struct mm_struct	*mm;
134 	long			npage;
135 	struct work_struct	work;
136 };
137 
138 /* delayed decrement/increment for locked_vm */
139 static void vfio_lock_acct_bg(struct work_struct *work)
140 {
141 	struct vwork *vwork = container_of(work, struct vwork, work);
142 	struct mm_struct *mm;
143 
144 	mm = vwork->mm;
145 	down_write(&mm->mmap_sem);
146 	mm->locked_vm += vwork->npage;
147 	up_write(&mm->mmap_sem);
148 	mmput(mm);
149 	kfree(vwork);
150 }
151 
152 static void vfio_lock_acct(long npage)
153 {
154 	struct vwork *vwork;
155 	struct mm_struct *mm;
156 
157 	if (!current->mm || !npage)
158 		return; /* process exited or nothing to do */
159 
160 	if (down_write_trylock(&current->mm->mmap_sem)) {
161 		current->mm->locked_vm += npage;
162 		up_write(&current->mm->mmap_sem);
163 		return;
164 	}
165 
166 	/*
167 	 * Couldn't get mmap_sem lock, so must setup to update
168 	 * mm->locked_vm later. If locked_vm were atomic, we
169 	 * wouldn't need this silliness
170 	 */
171 	vwork = kmalloc(sizeof(struct vwork), GFP_KERNEL);
172 	if (!vwork)
173 		return;
174 	mm = get_task_mm(current);
175 	if (!mm) {
176 		kfree(vwork);
177 		return;
178 	}
179 	INIT_WORK(&vwork->work, vfio_lock_acct_bg);
180 	vwork->mm = mm;
181 	vwork->npage = npage;
182 	schedule_work(&vwork->work);
183 }
184 
185 /*
186  * Some mappings aren't backed by a struct page, for example an mmap'd
187  * MMIO range for our own or another device.  These use a different
188  * pfn conversion and shouldn't be tracked as locked pages.
189  */
190 static bool is_invalid_reserved_pfn(unsigned long pfn)
191 {
192 	if (pfn_valid(pfn)) {
193 		bool reserved;
194 		struct page *tail = pfn_to_page(pfn);
195 		struct page *head = compound_head(tail);
196 		reserved = !!(PageReserved(head));
197 		if (head != tail) {
198 			/*
199 			 * "head" is not a dangling pointer
200 			 * (compound_head takes care of that)
201 			 * but the hugepage may have been split
202 			 * from under us (and we may not hold a
203 			 * reference count on the head page so it can
204 			 * be reused before we run PageReferenced), so
205 			 * we've to check PageTail before returning
206 			 * what we just read.
207 			 */
208 			smp_rmb();
209 			if (PageTail(tail))
210 				return reserved;
211 		}
212 		return PageReserved(tail);
213 	}
214 
215 	return true;
216 }
217 
218 static int put_pfn(unsigned long pfn, int prot)
219 {
220 	if (!is_invalid_reserved_pfn(pfn)) {
221 		struct page *page = pfn_to_page(pfn);
222 		if (prot & IOMMU_WRITE)
223 			SetPageDirty(page);
224 		put_page(page);
225 		return 1;
226 	}
227 	return 0;
228 }
229 
230 static int vaddr_get_pfn(unsigned long vaddr, int prot, unsigned long *pfn)
231 {
232 	struct page *page[1];
233 	struct vm_area_struct *vma;
234 	int ret = -EFAULT;
235 
236 	if (get_user_pages_fast(vaddr, 1, !!(prot & IOMMU_WRITE), page) == 1) {
237 		*pfn = page_to_pfn(page[0]);
238 		return 0;
239 	}
240 
241 	down_read(&current->mm->mmap_sem);
242 
243 	vma = find_vma_intersection(current->mm, vaddr, vaddr + 1);
244 
245 	if (vma && vma->vm_flags & VM_PFNMAP) {
246 		*pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
247 		if (is_invalid_reserved_pfn(*pfn))
248 			ret = 0;
249 	}
250 
251 	up_read(&current->mm->mmap_sem);
252 
253 	return ret;
254 }
255 
256 /*
257  * Attempt to pin pages.  We really don't want to track all the pfns and
258  * the iommu can only map chunks of consecutive pfns anyway, so get the
259  * first page and all consecutive pages with the same locking.
260  */
261 static long vfio_pin_pages(unsigned long vaddr, long npage,
262 			   int prot, unsigned long *pfn_base)
263 {
264 	unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
265 	bool lock_cap = capable(CAP_IPC_LOCK);
266 	long ret, i;
267 
268 	if (!current->mm)
269 		return -ENODEV;
270 
271 	ret = vaddr_get_pfn(vaddr, prot, pfn_base);
272 	if (ret)
273 		return ret;
274 
275 	if (is_invalid_reserved_pfn(*pfn_base))
276 		return 1;
277 
278 	if (!lock_cap && current->mm->locked_vm + 1 > limit) {
279 		put_pfn(*pfn_base, prot);
280 		pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
281 			limit << PAGE_SHIFT);
282 		return -ENOMEM;
283 	}
284 
285 	if (unlikely(disable_hugepages)) {
286 		vfio_lock_acct(1);
287 		return 1;
288 	}
289 
290 	/* Lock all the consecutive pages from pfn_base */
291 	for (i = 1, vaddr += PAGE_SIZE; i < npage; i++, vaddr += PAGE_SIZE) {
292 		unsigned long pfn = 0;
293 
294 		ret = vaddr_get_pfn(vaddr, prot, &pfn);
295 		if (ret)
296 			break;
297 
298 		if (pfn != *pfn_base + i || is_invalid_reserved_pfn(pfn)) {
299 			put_pfn(pfn, prot);
300 			break;
301 		}
302 
303 		if (!lock_cap && current->mm->locked_vm + i + 1 > limit) {
304 			put_pfn(pfn, prot);
305 			pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
306 				__func__, limit << PAGE_SHIFT);
307 			break;
308 		}
309 	}
310 
311 	vfio_lock_acct(i);
312 
313 	return i;
314 }
315 
316 static long vfio_unpin_pages(unsigned long pfn, long npage,
317 			     int prot, bool do_accounting)
318 {
319 	unsigned long unlocked = 0;
320 	long i;
321 
322 	for (i = 0; i < npage; i++)
323 		unlocked += put_pfn(pfn++, prot);
324 
325 	if (do_accounting)
326 		vfio_lock_acct(-unlocked);
327 
328 	return unlocked;
329 }
330 
331 static void vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma)
332 {
333 	dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
334 	struct vfio_domain *domain, *d;
335 	long unlocked = 0;
336 
337 	if (!dma->size)
338 		return;
339 	/*
340 	 * We use the IOMMU to track the physical addresses, otherwise we'd
341 	 * need a much more complicated tracking system.  Unfortunately that
342 	 * means we need to use one of the iommu domains to figure out the
343 	 * pfns to unpin.  The rest need to be unmapped in advance so we have
344 	 * no iommu translations remaining when the pages are unpinned.
345 	 */
346 	domain = d = list_first_entry(&iommu->domain_list,
347 				      struct vfio_domain, next);
348 
349 	list_for_each_entry_continue(d, &iommu->domain_list, next)
350 		iommu_unmap(d->domain, dma->iova, dma->size);
351 
352 	while (iova < end) {
353 		size_t unmapped;
354 		phys_addr_t phys;
355 
356 		phys = iommu_iova_to_phys(domain->domain, iova);
357 		if (WARN_ON(!phys)) {
358 			iova += PAGE_SIZE;
359 			continue;
360 		}
361 
362 		unmapped = iommu_unmap(domain->domain, iova, PAGE_SIZE);
363 		if (WARN_ON(!unmapped))
364 			break;
365 
366 		unlocked += vfio_unpin_pages(phys >> PAGE_SHIFT,
367 					     unmapped >> PAGE_SHIFT,
368 					     dma->prot, false);
369 		iova += unmapped;
370 	}
371 
372 	vfio_lock_acct(-unlocked);
373 }
374 
375 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
376 {
377 	vfio_unmap_unpin(iommu, dma);
378 	vfio_unlink_dma(iommu, dma);
379 	kfree(dma);
380 }
381 
382 static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
383 {
384 	struct vfio_domain *domain;
385 	unsigned long bitmap = PAGE_MASK;
386 
387 	mutex_lock(&iommu->lock);
388 	list_for_each_entry(domain, &iommu->domain_list, next)
389 		bitmap &= domain->domain->ops->pgsize_bitmap;
390 	mutex_unlock(&iommu->lock);
391 
392 	return bitmap;
393 }
394 
395 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
396 			     struct vfio_iommu_type1_dma_unmap *unmap)
397 {
398 	uint64_t mask;
399 	struct vfio_dma *dma;
400 	size_t unmapped = 0;
401 	int ret = 0;
402 
403 	mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
404 
405 	if (unmap->iova & mask)
406 		return -EINVAL;
407 	if (!unmap->size || unmap->size & mask)
408 		return -EINVAL;
409 
410 	WARN_ON(mask & PAGE_MASK);
411 
412 	mutex_lock(&iommu->lock);
413 
414 	/*
415 	 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
416 	 * avoid tracking individual mappings.  This means that the granularity
417 	 * of the original mapping was lost and the user was allowed to attempt
418 	 * to unmap any range.  Depending on the contiguousness of physical
419 	 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
420 	 * or may not have worked.  We only guaranteed unmap granularity
421 	 * matching the original mapping; even though it was untracked here,
422 	 * the original mappings are reflected in IOMMU mappings.  This
423 	 * resulted in a couple unusual behaviors.  First, if a range is not
424 	 * able to be unmapped, ex. a set of 4k pages that was mapped as a
425 	 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
426 	 * a zero sized unmap.  Also, if an unmap request overlaps the first
427 	 * address of a hugepage, the IOMMU will unmap the entire hugepage.
428 	 * This also returns success and the returned unmap size reflects the
429 	 * actual size unmapped.
430 	 *
431 	 * We attempt to maintain compatibility with this "v1" interface, but
432 	 * we take control out of the hands of the IOMMU.  Therefore, an unmap
433 	 * request offset from the beginning of the original mapping will
434 	 * return success with zero sized unmap.  And an unmap request covering
435 	 * the first iova of mapping will unmap the entire range.
436 	 *
437 	 * The v2 version of this interface intends to be more deterministic.
438 	 * Unmap requests must fully cover previous mappings.  Multiple
439 	 * mappings may still be unmaped by specifying large ranges, but there
440 	 * must not be any previous mappings bisected by the range.  An error
441 	 * will be returned if these conditions are not met.  The v2 interface
442 	 * will only return success and a size of zero if there were no
443 	 * mappings within the range.
444 	 */
445 	if (iommu->v2) {
446 		dma = vfio_find_dma(iommu, unmap->iova, 0);
447 		if (dma && dma->iova != unmap->iova) {
448 			ret = -EINVAL;
449 			goto unlock;
450 		}
451 		dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
452 		if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
453 			ret = -EINVAL;
454 			goto unlock;
455 		}
456 	}
457 
458 	while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
459 		if (!iommu->v2 && unmap->iova > dma->iova)
460 			break;
461 		unmapped += dma->size;
462 		vfio_remove_dma(iommu, dma);
463 	}
464 
465 unlock:
466 	mutex_unlock(&iommu->lock);
467 
468 	/* Report how much was unmapped */
469 	unmap->size = unmapped;
470 
471 	return ret;
472 }
473 
474 /*
475  * Turns out AMD IOMMU has a page table bug where it won't map large pages
476  * to a region that previously mapped smaller pages.  This should be fixed
477  * soon, so this is just a temporary workaround to break mappings down into
478  * PAGE_SIZE.  Better to map smaller pages than nothing.
479  */
480 static int map_try_harder(struct vfio_domain *domain, dma_addr_t iova,
481 			  unsigned long pfn, long npage, int prot)
482 {
483 	long i;
484 	int ret;
485 
486 	for (i = 0; i < npage; i++, pfn++, iova += PAGE_SIZE) {
487 		ret = iommu_map(domain->domain, iova,
488 				(phys_addr_t)pfn << PAGE_SHIFT,
489 				PAGE_SIZE, prot | domain->prot);
490 		if (ret)
491 			break;
492 	}
493 
494 	for (; i < npage && i > 0; i--, iova -= PAGE_SIZE)
495 		iommu_unmap(domain->domain, iova, PAGE_SIZE);
496 
497 	return ret;
498 }
499 
500 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
501 			  unsigned long pfn, long npage, int prot)
502 {
503 	struct vfio_domain *d;
504 	int ret;
505 
506 	list_for_each_entry(d, &iommu->domain_list, next) {
507 		ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
508 				npage << PAGE_SHIFT, prot | d->prot);
509 		if (ret) {
510 			if (ret != -EBUSY ||
511 			    map_try_harder(d, iova, pfn, npage, prot))
512 				goto unwind;
513 		}
514 	}
515 
516 	return 0;
517 
518 unwind:
519 	list_for_each_entry_continue_reverse(d, &iommu->domain_list, next)
520 		iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
521 
522 	return ret;
523 }
524 
525 static int vfio_dma_do_map(struct vfio_iommu *iommu,
526 			   struct vfio_iommu_type1_dma_map *map)
527 {
528 	dma_addr_t iova = map->iova;
529 	unsigned long vaddr = map->vaddr;
530 	size_t size = map->size;
531 	long npage;
532 	int ret = 0, prot = 0;
533 	uint64_t mask;
534 	struct vfio_dma *dma;
535 	unsigned long pfn;
536 
537 	/* Verify that none of our __u64 fields overflow */
538 	if (map->size != size || map->vaddr != vaddr || map->iova != iova)
539 		return -EINVAL;
540 
541 	mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
542 
543 	WARN_ON(mask & PAGE_MASK);
544 
545 	/* READ/WRITE from device perspective */
546 	if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
547 		prot |= IOMMU_WRITE;
548 	if (map->flags & VFIO_DMA_MAP_FLAG_READ)
549 		prot |= IOMMU_READ;
550 
551 	if (!prot || !size || (size | iova | vaddr) & mask)
552 		return -EINVAL;
553 
554 	/* Don't allow IOVA or virtual address wrap */
555 	if (iova + size - 1 < iova || vaddr + size - 1 < vaddr)
556 		return -EINVAL;
557 
558 	mutex_lock(&iommu->lock);
559 
560 	if (vfio_find_dma(iommu, iova, size)) {
561 		mutex_unlock(&iommu->lock);
562 		return -EEXIST;
563 	}
564 
565 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
566 	if (!dma) {
567 		mutex_unlock(&iommu->lock);
568 		return -ENOMEM;
569 	}
570 
571 	dma->iova = iova;
572 	dma->vaddr = vaddr;
573 	dma->prot = prot;
574 
575 	/* Insert zero-sized and grow as we map chunks of it */
576 	vfio_link_dma(iommu, dma);
577 
578 	while (size) {
579 		/* Pin a contiguous chunk of memory */
580 		npage = vfio_pin_pages(vaddr + dma->size,
581 				       size >> PAGE_SHIFT, prot, &pfn);
582 		if (npage <= 0) {
583 			WARN_ON(!npage);
584 			ret = (int)npage;
585 			break;
586 		}
587 
588 		/* Map it! */
589 		ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage, prot);
590 		if (ret) {
591 			vfio_unpin_pages(pfn, npage, prot, true);
592 			break;
593 		}
594 
595 		size -= npage << PAGE_SHIFT;
596 		dma->size += npage << PAGE_SHIFT;
597 	}
598 
599 	if (ret)
600 		vfio_remove_dma(iommu, dma);
601 
602 	mutex_unlock(&iommu->lock);
603 	return ret;
604 }
605 
606 static int vfio_bus_type(struct device *dev, void *data)
607 {
608 	struct bus_type **bus = data;
609 
610 	if (*bus && *bus != dev->bus)
611 		return -EINVAL;
612 
613 	*bus = dev->bus;
614 
615 	return 0;
616 }
617 
618 static int vfio_iommu_replay(struct vfio_iommu *iommu,
619 			     struct vfio_domain *domain)
620 {
621 	struct vfio_domain *d;
622 	struct rb_node *n;
623 	int ret;
624 
625 	/* Arbitrarily pick the first domain in the list for lookups */
626 	d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
627 	n = rb_first(&iommu->dma_list);
628 
629 	/* If there's not a domain, there better not be any mappings */
630 	if (WARN_ON(n && !d))
631 		return -EINVAL;
632 
633 	for (; n; n = rb_next(n)) {
634 		struct vfio_dma *dma;
635 		dma_addr_t iova;
636 
637 		dma = rb_entry(n, struct vfio_dma, node);
638 		iova = dma->iova;
639 
640 		while (iova < dma->iova + dma->size) {
641 			phys_addr_t phys = iommu_iova_to_phys(d->domain, iova);
642 			size_t size;
643 
644 			if (WARN_ON(!phys)) {
645 				iova += PAGE_SIZE;
646 				continue;
647 			}
648 
649 			size = PAGE_SIZE;
650 
651 			while (iova + size < dma->iova + dma->size &&
652 			       phys + size == iommu_iova_to_phys(d->domain,
653 								 iova + size))
654 				size += PAGE_SIZE;
655 
656 			ret = iommu_map(domain->domain, iova, phys,
657 					size, dma->prot | domain->prot);
658 			if (ret)
659 				return ret;
660 
661 			iova += size;
662 		}
663 	}
664 
665 	return 0;
666 }
667 
668 static int vfio_iommu_type1_attach_group(void *iommu_data,
669 					 struct iommu_group *iommu_group)
670 {
671 	struct vfio_iommu *iommu = iommu_data;
672 	struct vfio_group *group, *g;
673 	struct vfio_domain *domain, *d;
674 	struct bus_type *bus = NULL;
675 	int ret;
676 
677 	mutex_lock(&iommu->lock);
678 
679 	list_for_each_entry(d, &iommu->domain_list, next) {
680 		list_for_each_entry(g, &d->group_list, next) {
681 			if (g->iommu_group != iommu_group)
682 				continue;
683 
684 			mutex_unlock(&iommu->lock);
685 			return -EINVAL;
686 		}
687 	}
688 
689 	group = kzalloc(sizeof(*group), GFP_KERNEL);
690 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
691 	if (!group || !domain) {
692 		ret = -ENOMEM;
693 		goto out_free;
694 	}
695 
696 	group->iommu_group = iommu_group;
697 
698 	/* Determine bus_type in order to allocate a domain */
699 	ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
700 	if (ret)
701 		goto out_free;
702 
703 	domain->domain = iommu_domain_alloc(bus);
704 	if (!domain->domain) {
705 		ret = -EIO;
706 		goto out_free;
707 	}
708 
709 	if (iommu->nesting) {
710 		int attr = 1;
711 
712 		ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
713 					    &attr);
714 		if (ret)
715 			goto out_domain;
716 	}
717 
718 	ret = iommu_attach_group(domain->domain, iommu_group);
719 	if (ret)
720 		goto out_domain;
721 
722 	INIT_LIST_HEAD(&domain->group_list);
723 	list_add(&group->next, &domain->group_list);
724 
725 	if (!allow_unsafe_interrupts &&
726 	    !iommu_capable(bus, IOMMU_CAP_INTR_REMAP)) {
727 		pr_warn("%s: No interrupt remapping support.  Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
728 		       __func__);
729 		ret = -EPERM;
730 		goto out_detach;
731 	}
732 
733 	if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
734 		domain->prot |= IOMMU_CACHE;
735 
736 	/*
737 	 * Try to match an existing compatible domain.  We don't want to
738 	 * preclude an IOMMU driver supporting multiple bus_types and being
739 	 * able to include different bus_types in the same IOMMU domain, so
740 	 * we test whether the domains use the same iommu_ops rather than
741 	 * testing if they're on the same bus_type.
742 	 */
743 	list_for_each_entry(d, &iommu->domain_list, next) {
744 		if (d->domain->ops == domain->domain->ops &&
745 		    d->prot == domain->prot) {
746 			iommu_detach_group(domain->domain, iommu_group);
747 			if (!iommu_attach_group(d->domain, iommu_group)) {
748 				list_add(&group->next, &d->group_list);
749 				iommu_domain_free(domain->domain);
750 				kfree(domain);
751 				mutex_unlock(&iommu->lock);
752 				return 0;
753 			}
754 
755 			ret = iommu_attach_group(domain->domain, iommu_group);
756 			if (ret)
757 				goto out_domain;
758 		}
759 	}
760 
761 	/* replay mappings on new domains */
762 	ret = vfio_iommu_replay(iommu, domain);
763 	if (ret)
764 		goto out_detach;
765 
766 	list_add(&domain->next, &iommu->domain_list);
767 
768 	mutex_unlock(&iommu->lock);
769 
770 	return 0;
771 
772 out_detach:
773 	iommu_detach_group(domain->domain, iommu_group);
774 out_domain:
775 	iommu_domain_free(domain->domain);
776 out_free:
777 	kfree(domain);
778 	kfree(group);
779 	mutex_unlock(&iommu->lock);
780 	return ret;
781 }
782 
783 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
784 {
785 	struct rb_node *node;
786 
787 	while ((node = rb_first(&iommu->dma_list)))
788 		vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
789 }
790 
791 static void vfio_iommu_type1_detach_group(void *iommu_data,
792 					  struct iommu_group *iommu_group)
793 {
794 	struct vfio_iommu *iommu = iommu_data;
795 	struct vfio_domain *domain;
796 	struct vfio_group *group;
797 
798 	mutex_lock(&iommu->lock);
799 
800 	list_for_each_entry(domain, &iommu->domain_list, next) {
801 		list_for_each_entry(group, &domain->group_list, next) {
802 			if (group->iommu_group != iommu_group)
803 				continue;
804 
805 			iommu_detach_group(domain->domain, iommu_group);
806 			list_del(&group->next);
807 			kfree(group);
808 			/*
809 			 * Group ownership provides privilege, if the group
810 			 * list is empty, the domain goes away.  If it's the
811 			 * last domain, then all the mappings go away too.
812 			 */
813 			if (list_empty(&domain->group_list)) {
814 				if (list_is_singular(&iommu->domain_list))
815 					vfio_iommu_unmap_unpin_all(iommu);
816 				iommu_domain_free(domain->domain);
817 				list_del(&domain->next);
818 				kfree(domain);
819 			}
820 			goto done;
821 		}
822 	}
823 
824 done:
825 	mutex_unlock(&iommu->lock);
826 }
827 
828 static void *vfio_iommu_type1_open(unsigned long arg)
829 {
830 	struct vfio_iommu *iommu;
831 
832 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
833 	if (!iommu)
834 		return ERR_PTR(-ENOMEM);
835 
836 	switch (arg) {
837 	case VFIO_TYPE1_IOMMU:
838 		break;
839 	case VFIO_TYPE1_NESTING_IOMMU:
840 		iommu->nesting = true;
841 	case VFIO_TYPE1v2_IOMMU:
842 		iommu->v2 = true;
843 		break;
844 	default:
845 		kfree(iommu);
846 		return ERR_PTR(-EINVAL);
847 	}
848 
849 	INIT_LIST_HEAD(&iommu->domain_list);
850 	iommu->dma_list = RB_ROOT;
851 	mutex_init(&iommu->lock);
852 
853 	return iommu;
854 }
855 
856 static void vfio_iommu_type1_release(void *iommu_data)
857 {
858 	struct vfio_iommu *iommu = iommu_data;
859 	struct vfio_domain *domain, *domain_tmp;
860 	struct vfio_group *group, *group_tmp;
861 
862 	vfio_iommu_unmap_unpin_all(iommu);
863 
864 	list_for_each_entry_safe(domain, domain_tmp,
865 				 &iommu->domain_list, next) {
866 		list_for_each_entry_safe(group, group_tmp,
867 					 &domain->group_list, next) {
868 			iommu_detach_group(domain->domain, group->iommu_group);
869 			list_del(&group->next);
870 			kfree(group);
871 		}
872 		iommu_domain_free(domain->domain);
873 		list_del(&domain->next);
874 		kfree(domain);
875 	}
876 
877 	kfree(iommu);
878 }
879 
880 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
881 {
882 	struct vfio_domain *domain;
883 	int ret = 1;
884 
885 	mutex_lock(&iommu->lock);
886 	list_for_each_entry(domain, &iommu->domain_list, next) {
887 		if (!(domain->prot & IOMMU_CACHE)) {
888 			ret = 0;
889 			break;
890 		}
891 	}
892 	mutex_unlock(&iommu->lock);
893 
894 	return ret;
895 }
896 
897 static long vfio_iommu_type1_ioctl(void *iommu_data,
898 				   unsigned int cmd, unsigned long arg)
899 {
900 	struct vfio_iommu *iommu = iommu_data;
901 	unsigned long minsz;
902 
903 	if (cmd == VFIO_CHECK_EXTENSION) {
904 		switch (arg) {
905 		case VFIO_TYPE1_IOMMU:
906 		case VFIO_TYPE1v2_IOMMU:
907 		case VFIO_TYPE1_NESTING_IOMMU:
908 			return 1;
909 		case VFIO_DMA_CC_IOMMU:
910 			if (!iommu)
911 				return 0;
912 			return vfio_domains_have_iommu_cache(iommu);
913 		default:
914 			return 0;
915 		}
916 	} else if (cmd == VFIO_IOMMU_GET_INFO) {
917 		struct vfio_iommu_type1_info info;
918 
919 		minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
920 
921 		if (copy_from_user(&info, (void __user *)arg, minsz))
922 			return -EFAULT;
923 
924 		if (info.argsz < minsz)
925 			return -EINVAL;
926 
927 		info.flags = 0;
928 
929 		info.iova_pgsizes = vfio_pgsize_bitmap(iommu);
930 
931 		return copy_to_user((void __user *)arg, &info, minsz);
932 
933 	} else if (cmd == VFIO_IOMMU_MAP_DMA) {
934 		struct vfio_iommu_type1_dma_map map;
935 		uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
936 				VFIO_DMA_MAP_FLAG_WRITE;
937 
938 		minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
939 
940 		if (copy_from_user(&map, (void __user *)arg, minsz))
941 			return -EFAULT;
942 
943 		if (map.argsz < minsz || map.flags & ~mask)
944 			return -EINVAL;
945 
946 		return vfio_dma_do_map(iommu, &map);
947 
948 	} else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
949 		struct vfio_iommu_type1_dma_unmap unmap;
950 		long ret;
951 
952 		minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
953 
954 		if (copy_from_user(&unmap, (void __user *)arg, minsz))
955 			return -EFAULT;
956 
957 		if (unmap.argsz < minsz || unmap.flags)
958 			return -EINVAL;
959 
960 		ret = vfio_dma_do_unmap(iommu, &unmap);
961 		if (ret)
962 			return ret;
963 
964 		return copy_to_user((void __user *)arg, &unmap, minsz);
965 	}
966 
967 	return -ENOTTY;
968 }
969 
970 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
971 	.name		= "vfio-iommu-type1",
972 	.owner		= THIS_MODULE,
973 	.open		= vfio_iommu_type1_open,
974 	.release	= vfio_iommu_type1_release,
975 	.ioctl		= vfio_iommu_type1_ioctl,
976 	.attach_group	= vfio_iommu_type1_attach_group,
977 	.detach_group	= vfio_iommu_type1_detach_group,
978 };
979 
980 static int __init vfio_iommu_type1_init(void)
981 {
982 	return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
983 }
984 
985 static void __exit vfio_iommu_type1_cleanup(void)
986 {
987 	vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
988 }
989 
990 module_init(vfio_iommu_type1_init);
991 module_exit(vfio_iommu_type1_cleanup);
992 
993 MODULE_VERSION(DRIVER_VERSION);
994 MODULE_LICENSE("GPL v2");
995 MODULE_AUTHOR(DRIVER_AUTHOR);
996 MODULE_DESCRIPTION(DRIVER_DESC);
997