1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * Derived from original vfio:
9  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
10  * Author: Tom Lyon, pugs@cisco.com
11  *
12  * We arbitrarily define a Type1 IOMMU as one matching the below code.
13  * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14  * VT-d, but that makes it harder to re-use as theoretically anyone
15  * implementing a similar IOMMU could make use of this.  We expect the
16  * IOMMU to support the IOMMU API and have few to no restrictions around
17  * the IOVA range that can be mapped.  The Type1 IOMMU is currently
18  * optimized for relatively static mappings of a userspace process with
19  * userspace pages pinned into memory.  We also assume devices and IOMMU
20  * domains are PCI based as the IOMMU API is still centered around a
21  * device/bus interface rather than a group interface.
22  */
23 
24 #include <linux/compat.h>
25 #include <linux/device.h>
26 #include <linux/fs.h>
27 #include <linux/highmem.h>
28 #include <linux/iommu.h>
29 #include <linux/module.h>
30 #include <linux/mm.h>
31 #include <linux/kthread.h>
32 #include <linux/rbtree.h>
33 #include <linux/sched/signal.h>
34 #include <linux/sched/mm.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39 #include <linux/mdev.h>
40 #include <linux/notifier.h>
41 #include <linux/dma-iommu.h>
42 #include <linux/irqdomain.h>
43 
44 #define DRIVER_VERSION  "0.2"
45 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
46 #define DRIVER_DESC     "Type1 IOMMU driver for VFIO"
47 
48 static bool allow_unsafe_interrupts;
49 module_param_named(allow_unsafe_interrupts,
50 		   allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
51 MODULE_PARM_DESC(allow_unsafe_interrupts,
52 		 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
53 
54 static bool disable_hugepages;
55 module_param_named(disable_hugepages,
56 		   disable_hugepages, bool, S_IRUGO | S_IWUSR);
57 MODULE_PARM_DESC(disable_hugepages,
58 		 "Disable VFIO IOMMU support for IOMMU hugepages.");
59 
60 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
61 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
62 MODULE_PARM_DESC(dma_entry_limit,
63 		 "Maximum number of user DMA mappings per container (65535).");
64 
65 struct vfio_iommu {
66 	struct list_head	domain_list;
67 	struct list_head	iova_list;
68 	struct vfio_domain	*external_domain; /* domain for external user */
69 	struct mutex		lock;
70 	struct rb_root		dma_list;
71 	struct blocking_notifier_head notifier;
72 	unsigned int		dma_avail;
73 	unsigned int		vaddr_invalid_count;
74 	uint64_t		pgsize_bitmap;
75 	uint64_t		num_non_pinned_groups;
76 	wait_queue_head_t	vaddr_wait;
77 	bool			v2;
78 	bool			nesting;
79 	bool			dirty_page_tracking;
80 	bool			container_open;
81 };
82 
83 struct vfio_domain {
84 	struct iommu_domain	*domain;
85 	struct list_head	next;
86 	struct list_head	group_list;
87 	int			prot;		/* IOMMU_CACHE */
88 	bool			fgsp;		/* Fine-grained super pages */
89 };
90 
91 struct vfio_dma {
92 	struct rb_node		node;
93 	dma_addr_t		iova;		/* Device address */
94 	unsigned long		vaddr;		/* Process virtual addr */
95 	size_t			size;		/* Map size (bytes) */
96 	int			prot;		/* IOMMU_READ/WRITE */
97 	bool			iommu_mapped;
98 	bool			lock_cap;	/* capable(CAP_IPC_LOCK) */
99 	bool			vaddr_invalid;
100 	struct task_struct	*task;
101 	struct rb_root		pfn_list;	/* Ex-user pinned pfn list */
102 	unsigned long		*bitmap;
103 };
104 
105 struct vfio_batch {
106 	struct page		**pages;	/* for pin_user_pages_remote */
107 	struct page		*fallback_page; /* if pages alloc fails */
108 	int			capacity;	/* length of pages array */
109 	int			size;		/* of batch currently */
110 	int			offset;		/* of next entry in pages */
111 };
112 
113 struct vfio_iommu_group {
114 	struct iommu_group	*iommu_group;
115 	struct list_head	next;
116 	bool			mdev_group;	/* An mdev group */
117 	bool			pinned_page_dirty_scope;
118 };
119 
120 struct vfio_iova {
121 	struct list_head	list;
122 	dma_addr_t		start;
123 	dma_addr_t		end;
124 };
125 
126 /*
127  * Guest RAM pinning working set or DMA target
128  */
129 struct vfio_pfn {
130 	struct rb_node		node;
131 	dma_addr_t		iova;		/* Device address */
132 	unsigned long		pfn;		/* Host pfn */
133 	unsigned int		ref_count;
134 };
135 
136 struct vfio_regions {
137 	struct list_head list;
138 	dma_addr_t iova;
139 	phys_addr_t phys;
140 	size_t len;
141 };
142 
143 #define IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu)	\
144 					(!list_empty(&iommu->domain_list))
145 
146 #define DIRTY_BITMAP_BYTES(n)	(ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
147 
148 /*
149  * Input argument of number of bits to bitmap_set() is unsigned integer, which
150  * further casts to signed integer for unaligned multi-bit operation,
151  * __bitmap_set().
152  * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
153  * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
154  * system.
155  */
156 #define DIRTY_BITMAP_PAGES_MAX	 ((u64)INT_MAX)
157 #define DIRTY_BITMAP_SIZE_MAX	 DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
158 
159 #define WAITED 1
160 
161 static int put_pfn(unsigned long pfn, int prot);
162 
163 static struct vfio_iommu_group*
164 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
165 			    struct iommu_group *iommu_group);
166 
167 /*
168  * This code handles mapping and unmapping of user data buffers
169  * into DMA'ble space using the IOMMU
170  */
171 
172 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
173 				      dma_addr_t start, size_t size)
174 {
175 	struct rb_node *node = iommu->dma_list.rb_node;
176 
177 	while (node) {
178 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
179 
180 		if (start + size <= dma->iova)
181 			node = node->rb_left;
182 		else if (start >= dma->iova + dma->size)
183 			node = node->rb_right;
184 		else
185 			return dma;
186 	}
187 
188 	return NULL;
189 }
190 
191 static struct rb_node *vfio_find_dma_first_node(struct vfio_iommu *iommu,
192 						dma_addr_t start, u64 size)
193 {
194 	struct rb_node *res = NULL;
195 	struct rb_node *node = iommu->dma_list.rb_node;
196 	struct vfio_dma *dma_res = NULL;
197 
198 	while (node) {
199 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
200 
201 		if (start < dma->iova + dma->size) {
202 			res = node;
203 			dma_res = dma;
204 			if (start >= dma->iova)
205 				break;
206 			node = node->rb_left;
207 		} else {
208 			node = node->rb_right;
209 		}
210 	}
211 	if (res && size && dma_res->iova >= start + size)
212 		res = NULL;
213 	return res;
214 }
215 
216 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
217 {
218 	struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
219 	struct vfio_dma *dma;
220 
221 	while (*link) {
222 		parent = *link;
223 		dma = rb_entry(parent, struct vfio_dma, node);
224 
225 		if (new->iova + new->size <= dma->iova)
226 			link = &(*link)->rb_left;
227 		else
228 			link = &(*link)->rb_right;
229 	}
230 
231 	rb_link_node(&new->node, parent, link);
232 	rb_insert_color(&new->node, &iommu->dma_list);
233 }
234 
235 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
236 {
237 	rb_erase(&old->node, &iommu->dma_list);
238 }
239 
240 
241 static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
242 {
243 	uint64_t npages = dma->size / pgsize;
244 
245 	if (npages > DIRTY_BITMAP_PAGES_MAX)
246 		return -EINVAL;
247 
248 	/*
249 	 * Allocate extra 64 bits that are used to calculate shift required for
250 	 * bitmap_shift_left() to manipulate and club unaligned number of pages
251 	 * in adjacent vfio_dma ranges.
252 	 */
253 	dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
254 			       GFP_KERNEL);
255 	if (!dma->bitmap)
256 		return -ENOMEM;
257 
258 	return 0;
259 }
260 
261 static void vfio_dma_bitmap_free(struct vfio_dma *dma)
262 {
263 	kfree(dma->bitmap);
264 	dma->bitmap = NULL;
265 }
266 
267 static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
268 {
269 	struct rb_node *p;
270 	unsigned long pgshift = __ffs(pgsize);
271 
272 	for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
273 		struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
274 
275 		bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
276 	}
277 }
278 
279 static void vfio_iommu_populate_bitmap_full(struct vfio_iommu *iommu)
280 {
281 	struct rb_node *n;
282 	unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
283 
284 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
285 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
286 
287 		bitmap_set(dma->bitmap, 0, dma->size >> pgshift);
288 	}
289 }
290 
291 static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
292 {
293 	struct rb_node *n;
294 
295 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
296 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
297 		int ret;
298 
299 		ret = vfio_dma_bitmap_alloc(dma, pgsize);
300 		if (ret) {
301 			struct rb_node *p;
302 
303 			for (p = rb_prev(n); p; p = rb_prev(p)) {
304 				struct vfio_dma *dma = rb_entry(n,
305 							struct vfio_dma, node);
306 
307 				vfio_dma_bitmap_free(dma);
308 			}
309 			return ret;
310 		}
311 		vfio_dma_populate_bitmap(dma, pgsize);
312 	}
313 	return 0;
314 }
315 
316 static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
317 {
318 	struct rb_node *n;
319 
320 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
321 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
322 
323 		vfio_dma_bitmap_free(dma);
324 	}
325 }
326 
327 /*
328  * Helper Functions for host iova-pfn list
329  */
330 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
331 {
332 	struct vfio_pfn *vpfn;
333 	struct rb_node *node = dma->pfn_list.rb_node;
334 
335 	while (node) {
336 		vpfn = rb_entry(node, struct vfio_pfn, node);
337 
338 		if (iova < vpfn->iova)
339 			node = node->rb_left;
340 		else if (iova > vpfn->iova)
341 			node = node->rb_right;
342 		else
343 			return vpfn;
344 	}
345 	return NULL;
346 }
347 
348 static void vfio_link_pfn(struct vfio_dma *dma,
349 			  struct vfio_pfn *new)
350 {
351 	struct rb_node **link, *parent = NULL;
352 	struct vfio_pfn *vpfn;
353 
354 	link = &dma->pfn_list.rb_node;
355 	while (*link) {
356 		parent = *link;
357 		vpfn = rb_entry(parent, struct vfio_pfn, node);
358 
359 		if (new->iova < vpfn->iova)
360 			link = &(*link)->rb_left;
361 		else
362 			link = &(*link)->rb_right;
363 	}
364 
365 	rb_link_node(&new->node, parent, link);
366 	rb_insert_color(&new->node, &dma->pfn_list);
367 }
368 
369 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
370 {
371 	rb_erase(&old->node, &dma->pfn_list);
372 }
373 
374 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
375 				unsigned long pfn)
376 {
377 	struct vfio_pfn *vpfn;
378 
379 	vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
380 	if (!vpfn)
381 		return -ENOMEM;
382 
383 	vpfn->iova = iova;
384 	vpfn->pfn = pfn;
385 	vpfn->ref_count = 1;
386 	vfio_link_pfn(dma, vpfn);
387 	return 0;
388 }
389 
390 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
391 				      struct vfio_pfn *vpfn)
392 {
393 	vfio_unlink_pfn(dma, vpfn);
394 	kfree(vpfn);
395 }
396 
397 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
398 					       unsigned long iova)
399 {
400 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
401 
402 	if (vpfn)
403 		vpfn->ref_count++;
404 	return vpfn;
405 }
406 
407 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
408 {
409 	int ret = 0;
410 
411 	vpfn->ref_count--;
412 	if (!vpfn->ref_count) {
413 		ret = put_pfn(vpfn->pfn, dma->prot);
414 		vfio_remove_from_pfn_list(dma, vpfn);
415 	}
416 	return ret;
417 }
418 
419 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
420 {
421 	struct mm_struct *mm;
422 	int ret;
423 
424 	if (!npage)
425 		return 0;
426 
427 	mm = async ? get_task_mm(dma->task) : dma->task->mm;
428 	if (!mm)
429 		return -ESRCH; /* process exited */
430 
431 	ret = mmap_write_lock_killable(mm);
432 	if (!ret) {
433 		ret = __account_locked_vm(mm, abs(npage), npage > 0, dma->task,
434 					  dma->lock_cap);
435 		mmap_write_unlock(mm);
436 	}
437 
438 	if (async)
439 		mmput(mm);
440 
441 	return ret;
442 }
443 
444 /*
445  * Some mappings aren't backed by a struct page, for example an mmap'd
446  * MMIO range for our own or another device.  These use a different
447  * pfn conversion and shouldn't be tracked as locked pages.
448  * For compound pages, any driver that sets the reserved bit in head
449  * page needs to set the reserved bit in all subpages to be safe.
450  */
451 static bool is_invalid_reserved_pfn(unsigned long pfn)
452 {
453 	if (pfn_valid(pfn))
454 		return PageReserved(pfn_to_page(pfn));
455 
456 	return true;
457 }
458 
459 static int put_pfn(unsigned long pfn, int prot)
460 {
461 	if (!is_invalid_reserved_pfn(pfn)) {
462 		struct page *page = pfn_to_page(pfn);
463 
464 		unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
465 		return 1;
466 	}
467 	return 0;
468 }
469 
470 #define VFIO_BATCH_MAX_CAPACITY (PAGE_SIZE / sizeof(struct page *))
471 
472 static void vfio_batch_init(struct vfio_batch *batch)
473 {
474 	batch->size = 0;
475 	batch->offset = 0;
476 
477 	if (unlikely(disable_hugepages))
478 		goto fallback;
479 
480 	batch->pages = (struct page **) __get_free_page(GFP_KERNEL);
481 	if (!batch->pages)
482 		goto fallback;
483 
484 	batch->capacity = VFIO_BATCH_MAX_CAPACITY;
485 	return;
486 
487 fallback:
488 	batch->pages = &batch->fallback_page;
489 	batch->capacity = 1;
490 }
491 
492 static void vfio_batch_unpin(struct vfio_batch *batch, struct vfio_dma *dma)
493 {
494 	while (batch->size) {
495 		unsigned long pfn = page_to_pfn(batch->pages[batch->offset]);
496 
497 		put_pfn(pfn, dma->prot);
498 		batch->offset++;
499 		batch->size--;
500 	}
501 }
502 
503 static void vfio_batch_fini(struct vfio_batch *batch)
504 {
505 	if (batch->capacity == VFIO_BATCH_MAX_CAPACITY)
506 		free_page((unsigned long)batch->pages);
507 }
508 
509 static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
510 			    unsigned long vaddr, unsigned long *pfn,
511 			    bool write_fault)
512 {
513 	pte_t *ptep;
514 	spinlock_t *ptl;
515 	int ret;
516 
517 	ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
518 	if (ret) {
519 		bool unlocked = false;
520 
521 		ret = fixup_user_fault(mm, vaddr,
522 				       FAULT_FLAG_REMOTE |
523 				       (write_fault ?  FAULT_FLAG_WRITE : 0),
524 				       &unlocked);
525 		if (unlocked)
526 			return -EAGAIN;
527 
528 		if (ret)
529 			return ret;
530 
531 		ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
532 		if (ret)
533 			return ret;
534 	}
535 
536 	if (write_fault && !pte_write(*ptep))
537 		ret = -EFAULT;
538 	else
539 		*pfn = pte_pfn(*ptep);
540 
541 	pte_unmap_unlock(ptep, ptl);
542 	return ret;
543 }
544 
545 /*
546  * Returns the positive number of pfns successfully obtained or a negative
547  * error code.
548  */
549 static int vaddr_get_pfns(struct mm_struct *mm, unsigned long vaddr,
550 			  long npages, int prot, unsigned long *pfn,
551 			  struct page **pages)
552 {
553 	struct vm_area_struct *vma;
554 	unsigned int flags = 0;
555 	int ret;
556 
557 	if (prot & IOMMU_WRITE)
558 		flags |= FOLL_WRITE;
559 
560 	mmap_read_lock(mm);
561 	ret = pin_user_pages_remote(mm, vaddr, npages, flags | FOLL_LONGTERM,
562 				    pages, NULL, NULL);
563 	if (ret > 0) {
564 		*pfn = page_to_pfn(pages[0]);
565 		goto done;
566 	}
567 
568 	vaddr = untagged_addr(vaddr);
569 
570 retry:
571 	vma = vma_lookup(mm, vaddr);
572 
573 	if (vma && vma->vm_flags & VM_PFNMAP) {
574 		ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE);
575 		if (ret == -EAGAIN)
576 			goto retry;
577 
578 		if (!ret) {
579 			if (is_invalid_reserved_pfn(*pfn))
580 				ret = 1;
581 			else
582 				ret = -EFAULT;
583 		}
584 	}
585 done:
586 	mmap_read_unlock(mm);
587 	return ret;
588 }
589 
590 static int vfio_wait(struct vfio_iommu *iommu)
591 {
592 	DEFINE_WAIT(wait);
593 
594 	prepare_to_wait(&iommu->vaddr_wait, &wait, TASK_KILLABLE);
595 	mutex_unlock(&iommu->lock);
596 	schedule();
597 	mutex_lock(&iommu->lock);
598 	finish_wait(&iommu->vaddr_wait, &wait);
599 	if (kthread_should_stop() || !iommu->container_open ||
600 	    fatal_signal_pending(current)) {
601 		return -EFAULT;
602 	}
603 	return WAITED;
604 }
605 
606 /*
607  * Find dma struct and wait for its vaddr to be valid.  iommu lock is dropped
608  * if the task waits, but is re-locked on return.  Return result in *dma_p.
609  * Return 0 on success with no waiting, WAITED on success if waited, and -errno
610  * on error.
611  */
612 static int vfio_find_dma_valid(struct vfio_iommu *iommu, dma_addr_t start,
613 			       size_t size, struct vfio_dma **dma_p)
614 {
615 	int ret;
616 
617 	do {
618 		*dma_p = vfio_find_dma(iommu, start, size);
619 		if (!*dma_p)
620 			ret = -EINVAL;
621 		else if (!(*dma_p)->vaddr_invalid)
622 			ret = 0;
623 		else
624 			ret = vfio_wait(iommu);
625 	} while (ret > 0);
626 
627 	return ret;
628 }
629 
630 /*
631  * Wait for all vaddr in the dma_list to become valid.  iommu lock is dropped
632  * if the task waits, but is re-locked on return.  Return 0 on success with no
633  * waiting, WAITED on success if waited, and -errno on error.
634  */
635 static int vfio_wait_all_valid(struct vfio_iommu *iommu)
636 {
637 	int ret = 0;
638 
639 	while (iommu->vaddr_invalid_count && ret >= 0)
640 		ret = vfio_wait(iommu);
641 
642 	return ret;
643 }
644 
645 /*
646  * Attempt to pin pages.  We really don't want to track all the pfns and
647  * the iommu can only map chunks of consecutive pfns anyway, so get the
648  * first page and all consecutive pages with the same locking.
649  */
650 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
651 				  long npage, unsigned long *pfn_base,
652 				  unsigned long limit, struct vfio_batch *batch)
653 {
654 	unsigned long pfn;
655 	struct mm_struct *mm = current->mm;
656 	long ret, pinned = 0, lock_acct = 0;
657 	bool rsvd;
658 	dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
659 
660 	/* This code path is only user initiated */
661 	if (!mm)
662 		return -ENODEV;
663 
664 	if (batch->size) {
665 		/* Leftover pages in batch from an earlier call. */
666 		*pfn_base = page_to_pfn(batch->pages[batch->offset]);
667 		pfn = *pfn_base;
668 		rsvd = is_invalid_reserved_pfn(*pfn_base);
669 	} else {
670 		*pfn_base = 0;
671 	}
672 
673 	while (npage) {
674 		if (!batch->size) {
675 			/* Empty batch, so refill it. */
676 			long req_pages = min_t(long, npage, batch->capacity);
677 
678 			ret = vaddr_get_pfns(mm, vaddr, req_pages, dma->prot,
679 					     &pfn, batch->pages);
680 			if (ret < 0)
681 				goto unpin_out;
682 
683 			batch->size = ret;
684 			batch->offset = 0;
685 
686 			if (!*pfn_base) {
687 				*pfn_base = pfn;
688 				rsvd = is_invalid_reserved_pfn(*pfn_base);
689 			}
690 		}
691 
692 		/*
693 		 * pfn is preset for the first iteration of this inner loop and
694 		 * updated at the end to handle a VM_PFNMAP pfn.  In that case,
695 		 * batch->pages isn't valid (there's no struct page), so allow
696 		 * batch->pages to be touched only when there's more than one
697 		 * pfn to check, which guarantees the pfns are from a
698 		 * !VM_PFNMAP vma.
699 		 */
700 		while (true) {
701 			if (pfn != *pfn_base + pinned ||
702 			    rsvd != is_invalid_reserved_pfn(pfn))
703 				goto out;
704 
705 			/*
706 			 * Reserved pages aren't counted against the user,
707 			 * externally pinned pages are already counted against
708 			 * the user.
709 			 */
710 			if (!rsvd && !vfio_find_vpfn(dma, iova)) {
711 				if (!dma->lock_cap &&
712 				    mm->locked_vm + lock_acct + 1 > limit) {
713 					pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
714 						__func__, limit << PAGE_SHIFT);
715 					ret = -ENOMEM;
716 					goto unpin_out;
717 				}
718 				lock_acct++;
719 			}
720 
721 			pinned++;
722 			npage--;
723 			vaddr += PAGE_SIZE;
724 			iova += PAGE_SIZE;
725 			batch->offset++;
726 			batch->size--;
727 
728 			if (!batch->size)
729 				break;
730 
731 			pfn = page_to_pfn(batch->pages[batch->offset]);
732 		}
733 
734 		if (unlikely(disable_hugepages))
735 			break;
736 	}
737 
738 out:
739 	ret = vfio_lock_acct(dma, lock_acct, false);
740 
741 unpin_out:
742 	if (batch->size == 1 && !batch->offset) {
743 		/* May be a VM_PFNMAP pfn, which the batch can't remember. */
744 		put_pfn(pfn, dma->prot);
745 		batch->size = 0;
746 	}
747 
748 	if (ret < 0) {
749 		if (pinned && !rsvd) {
750 			for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
751 				put_pfn(pfn, dma->prot);
752 		}
753 		vfio_batch_unpin(batch, dma);
754 
755 		return ret;
756 	}
757 
758 	return pinned;
759 }
760 
761 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
762 				    unsigned long pfn, long npage,
763 				    bool do_accounting)
764 {
765 	long unlocked = 0, locked = 0;
766 	long i;
767 
768 	for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
769 		if (put_pfn(pfn++, dma->prot)) {
770 			unlocked++;
771 			if (vfio_find_vpfn(dma, iova))
772 				locked++;
773 		}
774 	}
775 
776 	if (do_accounting)
777 		vfio_lock_acct(dma, locked - unlocked, true);
778 
779 	return unlocked;
780 }
781 
782 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
783 				  unsigned long *pfn_base, bool do_accounting)
784 {
785 	struct page *pages[1];
786 	struct mm_struct *mm;
787 	int ret;
788 
789 	mm = get_task_mm(dma->task);
790 	if (!mm)
791 		return -ENODEV;
792 
793 	ret = vaddr_get_pfns(mm, vaddr, 1, dma->prot, pfn_base, pages);
794 	if (ret != 1)
795 		goto out;
796 
797 	ret = 0;
798 
799 	if (do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
800 		ret = vfio_lock_acct(dma, 1, true);
801 		if (ret) {
802 			put_pfn(*pfn_base, dma->prot);
803 			if (ret == -ENOMEM)
804 				pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
805 					"(%ld) exceeded\n", __func__,
806 					dma->task->comm, task_pid_nr(dma->task),
807 					task_rlimit(dma->task, RLIMIT_MEMLOCK));
808 		}
809 	}
810 
811 out:
812 	mmput(mm);
813 	return ret;
814 }
815 
816 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
817 				    bool do_accounting)
818 {
819 	int unlocked;
820 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
821 
822 	if (!vpfn)
823 		return 0;
824 
825 	unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
826 
827 	if (do_accounting)
828 		vfio_lock_acct(dma, -unlocked, true);
829 
830 	return unlocked;
831 }
832 
833 static int vfio_iommu_type1_pin_pages(void *iommu_data,
834 				      struct iommu_group *iommu_group,
835 				      unsigned long *user_pfn,
836 				      int npage, int prot,
837 				      unsigned long *phys_pfn)
838 {
839 	struct vfio_iommu *iommu = iommu_data;
840 	struct vfio_iommu_group *group;
841 	int i, j, ret;
842 	unsigned long remote_vaddr;
843 	struct vfio_dma *dma;
844 	bool do_accounting;
845 	dma_addr_t iova;
846 
847 	if (!iommu || !user_pfn || !phys_pfn)
848 		return -EINVAL;
849 
850 	/* Supported for v2 version only */
851 	if (!iommu->v2)
852 		return -EACCES;
853 
854 	mutex_lock(&iommu->lock);
855 
856 	/*
857 	 * Wait for all necessary vaddr's to be valid so they can be used in
858 	 * the main loop without dropping the lock, to avoid racing vs unmap.
859 	 */
860 again:
861 	if (iommu->vaddr_invalid_count) {
862 		for (i = 0; i < npage; i++) {
863 			iova = user_pfn[i] << PAGE_SHIFT;
864 			ret = vfio_find_dma_valid(iommu, iova, PAGE_SIZE, &dma);
865 			if (ret < 0)
866 				goto pin_done;
867 			if (ret == WAITED)
868 				goto again;
869 		}
870 	}
871 
872 	/* Fail if notifier list is empty */
873 	if (!iommu->notifier.head) {
874 		ret = -EINVAL;
875 		goto pin_done;
876 	}
877 
878 	/*
879 	 * If iommu capable domain exist in the container then all pages are
880 	 * already pinned and accounted. Accounting should be done if there is no
881 	 * iommu capable domain in the container.
882 	 */
883 	do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
884 
885 	for (i = 0; i < npage; i++) {
886 		struct vfio_pfn *vpfn;
887 
888 		iova = user_pfn[i] << PAGE_SHIFT;
889 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
890 		if (!dma) {
891 			ret = -EINVAL;
892 			goto pin_unwind;
893 		}
894 
895 		if ((dma->prot & prot) != prot) {
896 			ret = -EPERM;
897 			goto pin_unwind;
898 		}
899 
900 		vpfn = vfio_iova_get_vfio_pfn(dma, iova);
901 		if (vpfn) {
902 			phys_pfn[i] = vpfn->pfn;
903 			continue;
904 		}
905 
906 		remote_vaddr = dma->vaddr + (iova - dma->iova);
907 		ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn[i],
908 					     do_accounting);
909 		if (ret)
910 			goto pin_unwind;
911 
912 		ret = vfio_add_to_pfn_list(dma, iova, phys_pfn[i]);
913 		if (ret) {
914 			if (put_pfn(phys_pfn[i], dma->prot) && do_accounting)
915 				vfio_lock_acct(dma, -1, true);
916 			goto pin_unwind;
917 		}
918 
919 		if (iommu->dirty_page_tracking) {
920 			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
921 
922 			/*
923 			 * Bitmap populated with the smallest supported page
924 			 * size
925 			 */
926 			bitmap_set(dma->bitmap,
927 				   (iova - dma->iova) >> pgshift, 1);
928 		}
929 	}
930 	ret = i;
931 
932 	group = vfio_iommu_find_iommu_group(iommu, iommu_group);
933 	if (!group->pinned_page_dirty_scope) {
934 		group->pinned_page_dirty_scope = true;
935 		iommu->num_non_pinned_groups--;
936 	}
937 
938 	goto pin_done;
939 
940 pin_unwind:
941 	phys_pfn[i] = 0;
942 	for (j = 0; j < i; j++) {
943 		dma_addr_t iova;
944 
945 		iova = user_pfn[j] << PAGE_SHIFT;
946 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
947 		vfio_unpin_page_external(dma, iova, do_accounting);
948 		phys_pfn[j] = 0;
949 	}
950 pin_done:
951 	mutex_unlock(&iommu->lock);
952 	return ret;
953 }
954 
955 static int vfio_iommu_type1_unpin_pages(void *iommu_data,
956 					unsigned long *user_pfn,
957 					int npage)
958 {
959 	struct vfio_iommu *iommu = iommu_data;
960 	bool do_accounting;
961 	int i;
962 
963 	if (!iommu || !user_pfn || npage <= 0)
964 		return -EINVAL;
965 
966 	/* Supported for v2 version only */
967 	if (!iommu->v2)
968 		return -EACCES;
969 
970 	mutex_lock(&iommu->lock);
971 
972 	do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
973 	for (i = 0; i < npage; i++) {
974 		struct vfio_dma *dma;
975 		dma_addr_t iova;
976 
977 		iova = user_pfn[i] << PAGE_SHIFT;
978 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
979 		if (!dma)
980 			break;
981 
982 		vfio_unpin_page_external(dma, iova, do_accounting);
983 	}
984 
985 	mutex_unlock(&iommu->lock);
986 	return i > 0 ? i : -EINVAL;
987 }
988 
989 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
990 			    struct list_head *regions,
991 			    struct iommu_iotlb_gather *iotlb_gather)
992 {
993 	long unlocked = 0;
994 	struct vfio_regions *entry, *next;
995 
996 	iommu_iotlb_sync(domain->domain, iotlb_gather);
997 
998 	list_for_each_entry_safe(entry, next, regions, list) {
999 		unlocked += vfio_unpin_pages_remote(dma,
1000 						    entry->iova,
1001 						    entry->phys >> PAGE_SHIFT,
1002 						    entry->len >> PAGE_SHIFT,
1003 						    false);
1004 		list_del(&entry->list);
1005 		kfree(entry);
1006 	}
1007 
1008 	cond_resched();
1009 
1010 	return unlocked;
1011 }
1012 
1013 /*
1014  * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
1015  * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
1016  * of these regions (currently using a list).
1017  *
1018  * This value specifies maximum number of regions for each IOTLB flush sync.
1019  */
1020 #define VFIO_IOMMU_TLB_SYNC_MAX		512
1021 
1022 static size_t unmap_unpin_fast(struct vfio_domain *domain,
1023 			       struct vfio_dma *dma, dma_addr_t *iova,
1024 			       size_t len, phys_addr_t phys, long *unlocked,
1025 			       struct list_head *unmapped_list,
1026 			       int *unmapped_cnt,
1027 			       struct iommu_iotlb_gather *iotlb_gather)
1028 {
1029 	size_t unmapped = 0;
1030 	struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1031 
1032 	if (entry) {
1033 		unmapped = iommu_unmap_fast(domain->domain, *iova, len,
1034 					    iotlb_gather);
1035 
1036 		if (!unmapped) {
1037 			kfree(entry);
1038 		} else {
1039 			entry->iova = *iova;
1040 			entry->phys = phys;
1041 			entry->len  = unmapped;
1042 			list_add_tail(&entry->list, unmapped_list);
1043 
1044 			*iova += unmapped;
1045 			(*unmapped_cnt)++;
1046 		}
1047 	}
1048 
1049 	/*
1050 	 * Sync if the number of fast-unmap regions hits the limit
1051 	 * or in case of errors.
1052 	 */
1053 	if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
1054 		*unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
1055 					     iotlb_gather);
1056 		*unmapped_cnt = 0;
1057 	}
1058 
1059 	return unmapped;
1060 }
1061 
1062 static size_t unmap_unpin_slow(struct vfio_domain *domain,
1063 			       struct vfio_dma *dma, dma_addr_t *iova,
1064 			       size_t len, phys_addr_t phys,
1065 			       long *unlocked)
1066 {
1067 	size_t unmapped = iommu_unmap(domain->domain, *iova, len);
1068 
1069 	if (unmapped) {
1070 		*unlocked += vfio_unpin_pages_remote(dma, *iova,
1071 						     phys >> PAGE_SHIFT,
1072 						     unmapped >> PAGE_SHIFT,
1073 						     false);
1074 		*iova += unmapped;
1075 		cond_resched();
1076 	}
1077 	return unmapped;
1078 }
1079 
1080 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
1081 			     bool do_accounting)
1082 {
1083 	dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
1084 	struct vfio_domain *domain, *d;
1085 	LIST_HEAD(unmapped_region_list);
1086 	struct iommu_iotlb_gather iotlb_gather;
1087 	int unmapped_region_cnt = 0;
1088 	long unlocked = 0;
1089 
1090 	if (!dma->size)
1091 		return 0;
1092 
1093 	if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1094 		return 0;
1095 
1096 	/*
1097 	 * We use the IOMMU to track the physical addresses, otherwise we'd
1098 	 * need a much more complicated tracking system.  Unfortunately that
1099 	 * means we need to use one of the iommu domains to figure out the
1100 	 * pfns to unpin.  The rest need to be unmapped in advance so we have
1101 	 * no iommu translations remaining when the pages are unpinned.
1102 	 */
1103 	domain = d = list_first_entry(&iommu->domain_list,
1104 				      struct vfio_domain, next);
1105 
1106 	list_for_each_entry_continue(d, &iommu->domain_list, next) {
1107 		iommu_unmap(d->domain, dma->iova, dma->size);
1108 		cond_resched();
1109 	}
1110 
1111 	iommu_iotlb_gather_init(&iotlb_gather);
1112 	while (iova < end) {
1113 		size_t unmapped, len;
1114 		phys_addr_t phys, next;
1115 
1116 		phys = iommu_iova_to_phys(domain->domain, iova);
1117 		if (WARN_ON(!phys)) {
1118 			iova += PAGE_SIZE;
1119 			continue;
1120 		}
1121 
1122 		/*
1123 		 * To optimize for fewer iommu_unmap() calls, each of which
1124 		 * may require hardware cache flushing, try to find the
1125 		 * largest contiguous physical memory chunk to unmap.
1126 		 */
1127 		for (len = PAGE_SIZE;
1128 		     !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
1129 			next = iommu_iova_to_phys(domain->domain, iova + len);
1130 			if (next != phys + len)
1131 				break;
1132 		}
1133 
1134 		/*
1135 		 * First, try to use fast unmap/unpin. In case of failure,
1136 		 * switch to slow unmap/unpin path.
1137 		 */
1138 		unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
1139 					    &unlocked, &unmapped_region_list,
1140 					    &unmapped_region_cnt,
1141 					    &iotlb_gather);
1142 		if (!unmapped) {
1143 			unmapped = unmap_unpin_slow(domain, dma, &iova, len,
1144 						    phys, &unlocked);
1145 			if (WARN_ON(!unmapped))
1146 				break;
1147 		}
1148 	}
1149 
1150 	dma->iommu_mapped = false;
1151 
1152 	if (unmapped_region_cnt) {
1153 		unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
1154 					    &iotlb_gather);
1155 	}
1156 
1157 	if (do_accounting) {
1158 		vfio_lock_acct(dma, -unlocked, true);
1159 		return 0;
1160 	}
1161 	return unlocked;
1162 }
1163 
1164 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
1165 {
1166 	WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list));
1167 	vfio_unmap_unpin(iommu, dma, true);
1168 	vfio_unlink_dma(iommu, dma);
1169 	put_task_struct(dma->task);
1170 	vfio_dma_bitmap_free(dma);
1171 	if (dma->vaddr_invalid) {
1172 		iommu->vaddr_invalid_count--;
1173 		wake_up_all(&iommu->vaddr_wait);
1174 	}
1175 	kfree(dma);
1176 	iommu->dma_avail++;
1177 }
1178 
1179 static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
1180 {
1181 	struct vfio_domain *domain;
1182 
1183 	iommu->pgsize_bitmap = ULONG_MAX;
1184 
1185 	list_for_each_entry(domain, &iommu->domain_list, next)
1186 		iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
1187 
1188 	/*
1189 	 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
1190 	 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
1191 	 * That way the user will be able to map/unmap buffers whose size/
1192 	 * start address is aligned with PAGE_SIZE. Pinning code uses that
1193 	 * granularity while iommu driver can use the sub-PAGE_SIZE size
1194 	 * to map the buffer.
1195 	 */
1196 	if (iommu->pgsize_bitmap & ~PAGE_MASK) {
1197 		iommu->pgsize_bitmap &= PAGE_MASK;
1198 		iommu->pgsize_bitmap |= PAGE_SIZE;
1199 	}
1200 }
1201 
1202 static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1203 			      struct vfio_dma *dma, dma_addr_t base_iova,
1204 			      size_t pgsize)
1205 {
1206 	unsigned long pgshift = __ffs(pgsize);
1207 	unsigned long nbits = dma->size >> pgshift;
1208 	unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
1209 	unsigned long copy_offset = bit_offset / BITS_PER_LONG;
1210 	unsigned long shift = bit_offset % BITS_PER_LONG;
1211 	unsigned long leftover;
1212 
1213 	/*
1214 	 * mark all pages dirty if any IOMMU capable device is not able
1215 	 * to report dirty pages and all pages are pinned and mapped.
1216 	 */
1217 	if (iommu->num_non_pinned_groups && dma->iommu_mapped)
1218 		bitmap_set(dma->bitmap, 0, nbits);
1219 
1220 	if (shift) {
1221 		bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
1222 				  nbits + shift);
1223 
1224 		if (copy_from_user(&leftover,
1225 				   (void __user *)(bitmap + copy_offset),
1226 				   sizeof(leftover)))
1227 			return -EFAULT;
1228 
1229 		bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1230 	}
1231 
1232 	if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1233 			 DIRTY_BITMAP_BYTES(nbits + shift)))
1234 		return -EFAULT;
1235 
1236 	return 0;
1237 }
1238 
1239 static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1240 				  dma_addr_t iova, size_t size, size_t pgsize)
1241 {
1242 	struct vfio_dma *dma;
1243 	struct rb_node *n;
1244 	unsigned long pgshift = __ffs(pgsize);
1245 	int ret;
1246 
1247 	/*
1248 	 * GET_BITMAP request must fully cover vfio_dma mappings.  Multiple
1249 	 * vfio_dma mappings may be clubbed by specifying large ranges, but
1250 	 * there must not be any previous mappings bisected by the range.
1251 	 * An error will be returned if these conditions are not met.
1252 	 */
1253 	dma = vfio_find_dma(iommu, iova, 1);
1254 	if (dma && dma->iova != iova)
1255 		return -EINVAL;
1256 
1257 	dma = vfio_find_dma(iommu, iova + size - 1, 0);
1258 	if (dma && dma->iova + dma->size != iova + size)
1259 		return -EINVAL;
1260 
1261 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1262 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1263 
1264 		if (dma->iova < iova)
1265 			continue;
1266 
1267 		if (dma->iova > iova + size - 1)
1268 			break;
1269 
1270 		ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1271 		if (ret)
1272 			return ret;
1273 
1274 		/*
1275 		 * Re-populate bitmap to include all pinned pages which are
1276 		 * considered as dirty but exclude pages which are unpinned and
1277 		 * pages which are marked dirty by vfio_dma_rw()
1278 		 */
1279 		bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1280 		vfio_dma_populate_bitmap(dma, pgsize);
1281 	}
1282 	return 0;
1283 }
1284 
1285 static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1286 {
1287 	if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1288 	    (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1289 		return -EINVAL;
1290 
1291 	return 0;
1292 }
1293 
1294 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1295 			     struct vfio_iommu_type1_dma_unmap *unmap,
1296 			     struct vfio_bitmap *bitmap)
1297 {
1298 	struct vfio_dma *dma, *dma_last = NULL;
1299 	size_t unmapped = 0, pgsize;
1300 	int ret = -EINVAL, retries = 0;
1301 	unsigned long pgshift;
1302 	dma_addr_t iova = unmap->iova;
1303 	u64 size = unmap->size;
1304 	bool unmap_all = unmap->flags & VFIO_DMA_UNMAP_FLAG_ALL;
1305 	bool invalidate_vaddr = unmap->flags & VFIO_DMA_UNMAP_FLAG_VADDR;
1306 	struct rb_node *n, *first_n;
1307 
1308 	mutex_lock(&iommu->lock);
1309 
1310 	pgshift = __ffs(iommu->pgsize_bitmap);
1311 	pgsize = (size_t)1 << pgshift;
1312 
1313 	if (iova & (pgsize - 1))
1314 		goto unlock;
1315 
1316 	if (unmap_all) {
1317 		if (iova || size)
1318 			goto unlock;
1319 		size = U64_MAX;
1320 	} else if (!size || size & (pgsize - 1) ||
1321 		   iova + size - 1 < iova || size > SIZE_MAX) {
1322 		goto unlock;
1323 	}
1324 
1325 	/* When dirty tracking is enabled, allow only min supported pgsize */
1326 	if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1327 	    (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1328 		goto unlock;
1329 	}
1330 
1331 	WARN_ON((pgsize - 1) & PAGE_MASK);
1332 again:
1333 	/*
1334 	 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1335 	 * avoid tracking individual mappings.  This means that the granularity
1336 	 * of the original mapping was lost and the user was allowed to attempt
1337 	 * to unmap any range.  Depending on the contiguousness of physical
1338 	 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1339 	 * or may not have worked.  We only guaranteed unmap granularity
1340 	 * matching the original mapping; even though it was untracked here,
1341 	 * the original mappings are reflected in IOMMU mappings.  This
1342 	 * resulted in a couple unusual behaviors.  First, if a range is not
1343 	 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1344 	 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1345 	 * a zero sized unmap.  Also, if an unmap request overlaps the first
1346 	 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1347 	 * This also returns success and the returned unmap size reflects the
1348 	 * actual size unmapped.
1349 	 *
1350 	 * We attempt to maintain compatibility with this "v1" interface, but
1351 	 * we take control out of the hands of the IOMMU.  Therefore, an unmap
1352 	 * request offset from the beginning of the original mapping will
1353 	 * return success with zero sized unmap.  And an unmap request covering
1354 	 * the first iova of mapping will unmap the entire range.
1355 	 *
1356 	 * The v2 version of this interface intends to be more deterministic.
1357 	 * Unmap requests must fully cover previous mappings.  Multiple
1358 	 * mappings may still be unmaped by specifying large ranges, but there
1359 	 * must not be any previous mappings bisected by the range.  An error
1360 	 * will be returned if these conditions are not met.  The v2 interface
1361 	 * will only return success and a size of zero if there were no
1362 	 * mappings within the range.
1363 	 */
1364 	if (iommu->v2 && !unmap_all) {
1365 		dma = vfio_find_dma(iommu, iova, 1);
1366 		if (dma && dma->iova != iova)
1367 			goto unlock;
1368 
1369 		dma = vfio_find_dma(iommu, iova + size - 1, 0);
1370 		if (dma && dma->iova + dma->size != iova + size)
1371 			goto unlock;
1372 	}
1373 
1374 	ret = 0;
1375 	n = first_n = vfio_find_dma_first_node(iommu, iova, size);
1376 
1377 	while (n) {
1378 		dma = rb_entry(n, struct vfio_dma, node);
1379 		if (dma->iova >= iova + size)
1380 			break;
1381 
1382 		if (!iommu->v2 && iova > dma->iova)
1383 			break;
1384 		/*
1385 		 * Task with same address space who mapped this iova range is
1386 		 * allowed to unmap the iova range.
1387 		 */
1388 		if (dma->task->mm != current->mm)
1389 			break;
1390 
1391 		if (invalidate_vaddr) {
1392 			if (dma->vaddr_invalid) {
1393 				struct rb_node *last_n = n;
1394 
1395 				for (n = first_n; n != last_n; n = rb_next(n)) {
1396 					dma = rb_entry(n,
1397 						       struct vfio_dma, node);
1398 					dma->vaddr_invalid = false;
1399 					iommu->vaddr_invalid_count--;
1400 				}
1401 				ret = -EINVAL;
1402 				unmapped = 0;
1403 				break;
1404 			}
1405 			dma->vaddr_invalid = true;
1406 			iommu->vaddr_invalid_count++;
1407 			unmapped += dma->size;
1408 			n = rb_next(n);
1409 			continue;
1410 		}
1411 
1412 		if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1413 			struct vfio_iommu_type1_dma_unmap nb_unmap;
1414 
1415 			if (dma_last == dma) {
1416 				BUG_ON(++retries > 10);
1417 			} else {
1418 				dma_last = dma;
1419 				retries = 0;
1420 			}
1421 
1422 			nb_unmap.iova = dma->iova;
1423 			nb_unmap.size = dma->size;
1424 
1425 			/*
1426 			 * Notify anyone (mdev vendor drivers) to invalidate and
1427 			 * unmap iovas within the range we're about to unmap.
1428 			 * Vendor drivers MUST unpin pages in response to an
1429 			 * invalidation.
1430 			 */
1431 			mutex_unlock(&iommu->lock);
1432 			blocking_notifier_call_chain(&iommu->notifier,
1433 						    VFIO_IOMMU_NOTIFY_DMA_UNMAP,
1434 						    &nb_unmap);
1435 			mutex_lock(&iommu->lock);
1436 			goto again;
1437 		}
1438 
1439 		if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1440 			ret = update_user_bitmap(bitmap->data, iommu, dma,
1441 						 iova, pgsize);
1442 			if (ret)
1443 				break;
1444 		}
1445 
1446 		unmapped += dma->size;
1447 		n = rb_next(n);
1448 		vfio_remove_dma(iommu, dma);
1449 	}
1450 
1451 unlock:
1452 	mutex_unlock(&iommu->lock);
1453 
1454 	/* Report how much was unmapped */
1455 	unmap->size = unmapped;
1456 
1457 	return ret;
1458 }
1459 
1460 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1461 			  unsigned long pfn, long npage, int prot)
1462 {
1463 	struct vfio_domain *d;
1464 	int ret;
1465 
1466 	list_for_each_entry(d, &iommu->domain_list, next) {
1467 		ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1468 				npage << PAGE_SHIFT, prot | d->prot);
1469 		if (ret)
1470 			goto unwind;
1471 
1472 		cond_resched();
1473 	}
1474 
1475 	return 0;
1476 
1477 unwind:
1478 	list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1479 		iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1480 		cond_resched();
1481 	}
1482 
1483 	return ret;
1484 }
1485 
1486 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1487 			    size_t map_size)
1488 {
1489 	dma_addr_t iova = dma->iova;
1490 	unsigned long vaddr = dma->vaddr;
1491 	struct vfio_batch batch;
1492 	size_t size = map_size;
1493 	long npage;
1494 	unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1495 	int ret = 0;
1496 
1497 	vfio_batch_init(&batch);
1498 
1499 	while (size) {
1500 		/* Pin a contiguous chunk of memory */
1501 		npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1502 					      size >> PAGE_SHIFT, &pfn, limit,
1503 					      &batch);
1504 		if (npage <= 0) {
1505 			WARN_ON(!npage);
1506 			ret = (int)npage;
1507 			break;
1508 		}
1509 
1510 		/* Map it! */
1511 		ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1512 				     dma->prot);
1513 		if (ret) {
1514 			vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1515 						npage, true);
1516 			vfio_batch_unpin(&batch, dma);
1517 			break;
1518 		}
1519 
1520 		size -= npage << PAGE_SHIFT;
1521 		dma->size += npage << PAGE_SHIFT;
1522 	}
1523 
1524 	vfio_batch_fini(&batch);
1525 	dma->iommu_mapped = true;
1526 
1527 	if (ret)
1528 		vfio_remove_dma(iommu, dma);
1529 
1530 	return ret;
1531 }
1532 
1533 /*
1534  * Check dma map request is within a valid iova range
1535  */
1536 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1537 				      dma_addr_t start, dma_addr_t end)
1538 {
1539 	struct list_head *iova = &iommu->iova_list;
1540 	struct vfio_iova *node;
1541 
1542 	list_for_each_entry(node, iova, list) {
1543 		if (start >= node->start && end <= node->end)
1544 			return true;
1545 	}
1546 
1547 	/*
1548 	 * Check for list_empty() as well since a container with
1549 	 * a single mdev device will have an empty list.
1550 	 */
1551 	return list_empty(iova);
1552 }
1553 
1554 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1555 			   struct vfio_iommu_type1_dma_map *map)
1556 {
1557 	bool set_vaddr = map->flags & VFIO_DMA_MAP_FLAG_VADDR;
1558 	dma_addr_t iova = map->iova;
1559 	unsigned long vaddr = map->vaddr;
1560 	size_t size = map->size;
1561 	int ret = 0, prot = 0;
1562 	size_t pgsize;
1563 	struct vfio_dma *dma;
1564 
1565 	/* Verify that none of our __u64 fields overflow */
1566 	if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1567 		return -EINVAL;
1568 
1569 	/* READ/WRITE from device perspective */
1570 	if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1571 		prot |= IOMMU_WRITE;
1572 	if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1573 		prot |= IOMMU_READ;
1574 
1575 	if ((prot && set_vaddr) || (!prot && !set_vaddr))
1576 		return -EINVAL;
1577 
1578 	mutex_lock(&iommu->lock);
1579 
1580 	pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1581 
1582 	WARN_ON((pgsize - 1) & PAGE_MASK);
1583 
1584 	if (!size || (size | iova | vaddr) & (pgsize - 1)) {
1585 		ret = -EINVAL;
1586 		goto out_unlock;
1587 	}
1588 
1589 	/* Don't allow IOVA or virtual address wrap */
1590 	if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1591 		ret = -EINVAL;
1592 		goto out_unlock;
1593 	}
1594 
1595 	dma = vfio_find_dma(iommu, iova, size);
1596 	if (set_vaddr) {
1597 		if (!dma) {
1598 			ret = -ENOENT;
1599 		} else if (!dma->vaddr_invalid || dma->iova != iova ||
1600 			   dma->size != size) {
1601 			ret = -EINVAL;
1602 		} else {
1603 			dma->vaddr = vaddr;
1604 			dma->vaddr_invalid = false;
1605 			iommu->vaddr_invalid_count--;
1606 			wake_up_all(&iommu->vaddr_wait);
1607 		}
1608 		goto out_unlock;
1609 	} else if (dma) {
1610 		ret = -EEXIST;
1611 		goto out_unlock;
1612 	}
1613 
1614 	if (!iommu->dma_avail) {
1615 		ret = -ENOSPC;
1616 		goto out_unlock;
1617 	}
1618 
1619 	if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1620 		ret = -EINVAL;
1621 		goto out_unlock;
1622 	}
1623 
1624 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1625 	if (!dma) {
1626 		ret = -ENOMEM;
1627 		goto out_unlock;
1628 	}
1629 
1630 	iommu->dma_avail--;
1631 	dma->iova = iova;
1632 	dma->vaddr = vaddr;
1633 	dma->prot = prot;
1634 
1635 	/*
1636 	 * We need to be able to both add to a task's locked memory and test
1637 	 * against the locked memory limit and we need to be able to do both
1638 	 * outside of this call path as pinning can be asynchronous via the
1639 	 * external interfaces for mdev devices.  RLIMIT_MEMLOCK requires a
1640 	 * task_struct and VM locked pages requires an mm_struct, however
1641 	 * holding an indefinite mm reference is not recommended, therefore we
1642 	 * only hold a reference to a task.  We could hold a reference to
1643 	 * current, however QEMU uses this call path through vCPU threads,
1644 	 * which can be killed resulting in a NULL mm and failure in the unmap
1645 	 * path when called via a different thread.  Avoid this problem by
1646 	 * using the group_leader as threads within the same group require
1647 	 * both CLONE_THREAD and CLONE_VM and will therefore use the same
1648 	 * mm_struct.
1649 	 *
1650 	 * Previously we also used the task for testing CAP_IPC_LOCK at the
1651 	 * time of pinning and accounting, however has_capability() makes use
1652 	 * of real_cred, a copy-on-write field, so we can't guarantee that it
1653 	 * matches group_leader, or in fact that it might not change by the
1654 	 * time it's evaluated.  If a process were to call MAP_DMA with
1655 	 * CAP_IPC_LOCK but later drop it, it doesn't make sense that they
1656 	 * possibly see different results for an iommu_mapped vfio_dma vs
1657 	 * externally mapped.  Therefore track CAP_IPC_LOCK in vfio_dma at the
1658 	 * time of calling MAP_DMA.
1659 	 */
1660 	get_task_struct(current->group_leader);
1661 	dma->task = current->group_leader;
1662 	dma->lock_cap = capable(CAP_IPC_LOCK);
1663 
1664 	dma->pfn_list = RB_ROOT;
1665 
1666 	/* Insert zero-sized and grow as we map chunks of it */
1667 	vfio_link_dma(iommu, dma);
1668 
1669 	/* Don't pin and map if container doesn't contain IOMMU capable domain*/
1670 	if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1671 		dma->size = size;
1672 	else
1673 		ret = vfio_pin_map_dma(iommu, dma, size);
1674 
1675 	if (!ret && iommu->dirty_page_tracking) {
1676 		ret = vfio_dma_bitmap_alloc(dma, pgsize);
1677 		if (ret)
1678 			vfio_remove_dma(iommu, dma);
1679 	}
1680 
1681 out_unlock:
1682 	mutex_unlock(&iommu->lock);
1683 	return ret;
1684 }
1685 
1686 static int vfio_bus_type(struct device *dev, void *data)
1687 {
1688 	struct bus_type **bus = data;
1689 
1690 	if (*bus && *bus != dev->bus)
1691 		return -EINVAL;
1692 
1693 	*bus = dev->bus;
1694 
1695 	return 0;
1696 }
1697 
1698 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1699 			     struct vfio_domain *domain)
1700 {
1701 	struct vfio_batch batch;
1702 	struct vfio_domain *d = NULL;
1703 	struct rb_node *n;
1704 	unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1705 	int ret;
1706 
1707 	ret = vfio_wait_all_valid(iommu);
1708 	if (ret < 0)
1709 		return ret;
1710 
1711 	/* Arbitrarily pick the first domain in the list for lookups */
1712 	if (!list_empty(&iommu->domain_list))
1713 		d = list_first_entry(&iommu->domain_list,
1714 				     struct vfio_domain, next);
1715 
1716 	vfio_batch_init(&batch);
1717 
1718 	n = rb_first(&iommu->dma_list);
1719 
1720 	for (; n; n = rb_next(n)) {
1721 		struct vfio_dma *dma;
1722 		dma_addr_t iova;
1723 
1724 		dma = rb_entry(n, struct vfio_dma, node);
1725 		iova = dma->iova;
1726 
1727 		while (iova < dma->iova + dma->size) {
1728 			phys_addr_t phys;
1729 			size_t size;
1730 
1731 			if (dma->iommu_mapped) {
1732 				phys_addr_t p;
1733 				dma_addr_t i;
1734 
1735 				if (WARN_ON(!d)) { /* mapped w/o a domain?! */
1736 					ret = -EINVAL;
1737 					goto unwind;
1738 				}
1739 
1740 				phys = iommu_iova_to_phys(d->domain, iova);
1741 
1742 				if (WARN_ON(!phys)) {
1743 					iova += PAGE_SIZE;
1744 					continue;
1745 				}
1746 
1747 				size = PAGE_SIZE;
1748 				p = phys + size;
1749 				i = iova + size;
1750 				while (i < dma->iova + dma->size &&
1751 				       p == iommu_iova_to_phys(d->domain, i)) {
1752 					size += PAGE_SIZE;
1753 					p += PAGE_SIZE;
1754 					i += PAGE_SIZE;
1755 				}
1756 			} else {
1757 				unsigned long pfn;
1758 				unsigned long vaddr = dma->vaddr +
1759 						     (iova - dma->iova);
1760 				size_t n = dma->iova + dma->size - iova;
1761 				long npage;
1762 
1763 				npage = vfio_pin_pages_remote(dma, vaddr,
1764 							      n >> PAGE_SHIFT,
1765 							      &pfn, limit,
1766 							      &batch);
1767 				if (npage <= 0) {
1768 					WARN_ON(!npage);
1769 					ret = (int)npage;
1770 					goto unwind;
1771 				}
1772 
1773 				phys = pfn << PAGE_SHIFT;
1774 				size = npage << PAGE_SHIFT;
1775 			}
1776 
1777 			ret = iommu_map(domain->domain, iova, phys,
1778 					size, dma->prot | domain->prot);
1779 			if (ret) {
1780 				if (!dma->iommu_mapped) {
1781 					vfio_unpin_pages_remote(dma, iova,
1782 							phys >> PAGE_SHIFT,
1783 							size >> PAGE_SHIFT,
1784 							true);
1785 					vfio_batch_unpin(&batch, dma);
1786 				}
1787 				goto unwind;
1788 			}
1789 
1790 			iova += size;
1791 		}
1792 	}
1793 
1794 	/* All dmas are now mapped, defer to second tree walk for unwind */
1795 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1796 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1797 
1798 		dma->iommu_mapped = true;
1799 	}
1800 
1801 	vfio_batch_fini(&batch);
1802 	return 0;
1803 
1804 unwind:
1805 	for (; n; n = rb_prev(n)) {
1806 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1807 		dma_addr_t iova;
1808 
1809 		if (dma->iommu_mapped) {
1810 			iommu_unmap(domain->domain, dma->iova, dma->size);
1811 			continue;
1812 		}
1813 
1814 		iova = dma->iova;
1815 		while (iova < dma->iova + dma->size) {
1816 			phys_addr_t phys, p;
1817 			size_t size;
1818 			dma_addr_t i;
1819 
1820 			phys = iommu_iova_to_phys(domain->domain, iova);
1821 			if (!phys) {
1822 				iova += PAGE_SIZE;
1823 				continue;
1824 			}
1825 
1826 			size = PAGE_SIZE;
1827 			p = phys + size;
1828 			i = iova + size;
1829 			while (i < dma->iova + dma->size &&
1830 			       p == iommu_iova_to_phys(domain->domain, i)) {
1831 				size += PAGE_SIZE;
1832 				p += PAGE_SIZE;
1833 				i += PAGE_SIZE;
1834 			}
1835 
1836 			iommu_unmap(domain->domain, iova, size);
1837 			vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT,
1838 						size >> PAGE_SHIFT, true);
1839 		}
1840 	}
1841 
1842 	vfio_batch_fini(&batch);
1843 	return ret;
1844 }
1845 
1846 /*
1847  * We change our unmap behavior slightly depending on whether the IOMMU
1848  * supports fine-grained superpages.  IOMMUs like AMD-Vi will use a superpage
1849  * for practically any contiguous power-of-two mapping we give it.  This means
1850  * we don't need to look for contiguous chunks ourselves to make unmapping
1851  * more efficient.  On IOMMUs with coarse-grained super pages, like Intel VT-d
1852  * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1853  * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1854  * hugetlbfs is in use.
1855  */
1856 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
1857 {
1858 	struct page *pages;
1859 	int ret, order = get_order(PAGE_SIZE * 2);
1860 
1861 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1862 	if (!pages)
1863 		return;
1864 
1865 	ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
1866 			IOMMU_READ | IOMMU_WRITE | domain->prot);
1867 	if (!ret) {
1868 		size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
1869 
1870 		if (unmapped == PAGE_SIZE)
1871 			iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
1872 		else
1873 			domain->fgsp = true;
1874 	}
1875 
1876 	__free_pages(pages, order);
1877 }
1878 
1879 static struct vfio_iommu_group *find_iommu_group(struct vfio_domain *domain,
1880 						 struct iommu_group *iommu_group)
1881 {
1882 	struct vfio_iommu_group *g;
1883 
1884 	list_for_each_entry(g, &domain->group_list, next) {
1885 		if (g->iommu_group == iommu_group)
1886 			return g;
1887 	}
1888 
1889 	return NULL;
1890 }
1891 
1892 static struct vfio_iommu_group*
1893 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1894 			    struct iommu_group *iommu_group)
1895 {
1896 	struct vfio_domain *domain;
1897 	struct vfio_iommu_group *group = NULL;
1898 
1899 	list_for_each_entry(domain, &iommu->domain_list, next) {
1900 		group = find_iommu_group(domain, iommu_group);
1901 		if (group)
1902 			return group;
1903 	}
1904 
1905 	if (iommu->external_domain)
1906 		group = find_iommu_group(iommu->external_domain, iommu_group);
1907 
1908 	return group;
1909 }
1910 
1911 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1912 				  phys_addr_t *base)
1913 {
1914 	struct iommu_resv_region *region;
1915 	bool ret = false;
1916 
1917 	list_for_each_entry(region, group_resv_regions, list) {
1918 		/*
1919 		 * The presence of any 'real' MSI regions should take
1920 		 * precedence over the software-managed one if the
1921 		 * IOMMU driver happens to advertise both types.
1922 		 */
1923 		if (region->type == IOMMU_RESV_MSI) {
1924 			ret = false;
1925 			break;
1926 		}
1927 
1928 		if (region->type == IOMMU_RESV_SW_MSI) {
1929 			*base = region->start;
1930 			ret = true;
1931 		}
1932 	}
1933 
1934 	return ret;
1935 }
1936 
1937 static int vfio_mdev_attach_domain(struct device *dev, void *data)
1938 {
1939 	struct mdev_device *mdev = to_mdev_device(dev);
1940 	struct iommu_domain *domain = data;
1941 	struct device *iommu_device;
1942 
1943 	iommu_device = mdev_get_iommu_device(mdev);
1944 	if (iommu_device) {
1945 		if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
1946 			return iommu_aux_attach_device(domain, iommu_device);
1947 		else
1948 			return iommu_attach_device(domain, iommu_device);
1949 	}
1950 
1951 	return -EINVAL;
1952 }
1953 
1954 static int vfio_mdev_detach_domain(struct device *dev, void *data)
1955 {
1956 	struct mdev_device *mdev = to_mdev_device(dev);
1957 	struct iommu_domain *domain = data;
1958 	struct device *iommu_device;
1959 
1960 	iommu_device = mdev_get_iommu_device(mdev);
1961 	if (iommu_device) {
1962 		if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
1963 			iommu_aux_detach_device(domain, iommu_device);
1964 		else
1965 			iommu_detach_device(domain, iommu_device);
1966 	}
1967 
1968 	return 0;
1969 }
1970 
1971 static int vfio_iommu_attach_group(struct vfio_domain *domain,
1972 				   struct vfio_iommu_group *group)
1973 {
1974 	if (group->mdev_group)
1975 		return iommu_group_for_each_dev(group->iommu_group,
1976 						domain->domain,
1977 						vfio_mdev_attach_domain);
1978 	else
1979 		return iommu_attach_group(domain->domain, group->iommu_group);
1980 }
1981 
1982 static void vfio_iommu_detach_group(struct vfio_domain *domain,
1983 				    struct vfio_iommu_group *group)
1984 {
1985 	if (group->mdev_group)
1986 		iommu_group_for_each_dev(group->iommu_group, domain->domain,
1987 					 vfio_mdev_detach_domain);
1988 	else
1989 		iommu_detach_group(domain->domain, group->iommu_group);
1990 }
1991 
1992 static bool vfio_bus_is_mdev(struct bus_type *bus)
1993 {
1994 	struct bus_type *mdev_bus;
1995 	bool ret = false;
1996 
1997 	mdev_bus = symbol_get(mdev_bus_type);
1998 	if (mdev_bus) {
1999 		ret = (bus == mdev_bus);
2000 		symbol_put(mdev_bus_type);
2001 	}
2002 
2003 	return ret;
2004 }
2005 
2006 static int vfio_mdev_iommu_device(struct device *dev, void *data)
2007 {
2008 	struct mdev_device *mdev = to_mdev_device(dev);
2009 	struct device **old = data, *new;
2010 
2011 	new = mdev_get_iommu_device(mdev);
2012 	if (!new || (*old && *old != new))
2013 		return -EINVAL;
2014 
2015 	*old = new;
2016 
2017 	return 0;
2018 }
2019 
2020 /*
2021  * This is a helper function to insert an address range to iova list.
2022  * The list is initially created with a single entry corresponding to
2023  * the IOMMU domain geometry to which the device group is attached.
2024  * The list aperture gets modified when a new domain is added to the
2025  * container if the new aperture doesn't conflict with the current one
2026  * or with any existing dma mappings. The list is also modified to
2027  * exclude any reserved regions associated with the device group.
2028  */
2029 static int vfio_iommu_iova_insert(struct list_head *head,
2030 				  dma_addr_t start, dma_addr_t end)
2031 {
2032 	struct vfio_iova *region;
2033 
2034 	region = kmalloc(sizeof(*region), GFP_KERNEL);
2035 	if (!region)
2036 		return -ENOMEM;
2037 
2038 	INIT_LIST_HEAD(&region->list);
2039 	region->start = start;
2040 	region->end = end;
2041 
2042 	list_add_tail(&region->list, head);
2043 	return 0;
2044 }
2045 
2046 /*
2047  * Check the new iommu aperture conflicts with existing aper or with any
2048  * existing dma mappings.
2049  */
2050 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
2051 				     dma_addr_t start, dma_addr_t end)
2052 {
2053 	struct vfio_iova *first, *last;
2054 	struct list_head *iova = &iommu->iova_list;
2055 
2056 	if (list_empty(iova))
2057 		return false;
2058 
2059 	/* Disjoint sets, return conflict */
2060 	first = list_first_entry(iova, struct vfio_iova, list);
2061 	last = list_last_entry(iova, struct vfio_iova, list);
2062 	if (start > last->end || end < first->start)
2063 		return true;
2064 
2065 	/* Check for any existing dma mappings below the new start */
2066 	if (start > first->start) {
2067 		if (vfio_find_dma(iommu, first->start, start - first->start))
2068 			return true;
2069 	}
2070 
2071 	/* Check for any existing dma mappings beyond the new end */
2072 	if (end < last->end) {
2073 		if (vfio_find_dma(iommu, end + 1, last->end - end))
2074 			return true;
2075 	}
2076 
2077 	return false;
2078 }
2079 
2080 /*
2081  * Resize iommu iova aperture window. This is called only if the new
2082  * aperture has no conflict with existing aperture and dma mappings.
2083  */
2084 static int vfio_iommu_aper_resize(struct list_head *iova,
2085 				  dma_addr_t start, dma_addr_t end)
2086 {
2087 	struct vfio_iova *node, *next;
2088 
2089 	if (list_empty(iova))
2090 		return vfio_iommu_iova_insert(iova, start, end);
2091 
2092 	/* Adjust iova list start */
2093 	list_for_each_entry_safe(node, next, iova, list) {
2094 		if (start < node->start)
2095 			break;
2096 		if (start >= node->start && start < node->end) {
2097 			node->start = start;
2098 			break;
2099 		}
2100 		/* Delete nodes before new start */
2101 		list_del(&node->list);
2102 		kfree(node);
2103 	}
2104 
2105 	/* Adjust iova list end */
2106 	list_for_each_entry_safe(node, next, iova, list) {
2107 		if (end > node->end)
2108 			continue;
2109 		if (end > node->start && end <= node->end) {
2110 			node->end = end;
2111 			continue;
2112 		}
2113 		/* Delete nodes after new end */
2114 		list_del(&node->list);
2115 		kfree(node);
2116 	}
2117 
2118 	return 0;
2119 }
2120 
2121 /*
2122  * Check reserved region conflicts with existing dma mappings
2123  */
2124 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
2125 				     struct list_head *resv_regions)
2126 {
2127 	struct iommu_resv_region *region;
2128 
2129 	/* Check for conflict with existing dma mappings */
2130 	list_for_each_entry(region, resv_regions, list) {
2131 		if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
2132 			continue;
2133 
2134 		if (vfio_find_dma(iommu, region->start, region->length))
2135 			return true;
2136 	}
2137 
2138 	return false;
2139 }
2140 
2141 /*
2142  * Check iova region overlap with  reserved regions and
2143  * exclude them from the iommu iova range
2144  */
2145 static int vfio_iommu_resv_exclude(struct list_head *iova,
2146 				   struct list_head *resv_regions)
2147 {
2148 	struct iommu_resv_region *resv;
2149 	struct vfio_iova *n, *next;
2150 
2151 	list_for_each_entry(resv, resv_regions, list) {
2152 		phys_addr_t start, end;
2153 
2154 		if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
2155 			continue;
2156 
2157 		start = resv->start;
2158 		end = resv->start + resv->length - 1;
2159 
2160 		list_for_each_entry_safe(n, next, iova, list) {
2161 			int ret = 0;
2162 
2163 			/* No overlap */
2164 			if (start > n->end || end < n->start)
2165 				continue;
2166 			/*
2167 			 * Insert a new node if current node overlaps with the
2168 			 * reserve region to exclude that from valid iova range.
2169 			 * Note that, new node is inserted before the current
2170 			 * node and finally the current node is deleted keeping
2171 			 * the list updated and sorted.
2172 			 */
2173 			if (start > n->start)
2174 				ret = vfio_iommu_iova_insert(&n->list, n->start,
2175 							     start - 1);
2176 			if (!ret && end < n->end)
2177 				ret = vfio_iommu_iova_insert(&n->list, end + 1,
2178 							     n->end);
2179 			if (ret)
2180 				return ret;
2181 
2182 			list_del(&n->list);
2183 			kfree(n);
2184 		}
2185 	}
2186 
2187 	if (list_empty(iova))
2188 		return -EINVAL;
2189 
2190 	return 0;
2191 }
2192 
2193 static void vfio_iommu_resv_free(struct list_head *resv_regions)
2194 {
2195 	struct iommu_resv_region *n, *next;
2196 
2197 	list_for_each_entry_safe(n, next, resv_regions, list) {
2198 		list_del(&n->list);
2199 		kfree(n);
2200 	}
2201 }
2202 
2203 static void vfio_iommu_iova_free(struct list_head *iova)
2204 {
2205 	struct vfio_iova *n, *next;
2206 
2207 	list_for_each_entry_safe(n, next, iova, list) {
2208 		list_del(&n->list);
2209 		kfree(n);
2210 	}
2211 }
2212 
2213 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
2214 				    struct list_head *iova_copy)
2215 {
2216 	struct list_head *iova = &iommu->iova_list;
2217 	struct vfio_iova *n;
2218 	int ret;
2219 
2220 	list_for_each_entry(n, iova, list) {
2221 		ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
2222 		if (ret)
2223 			goto out_free;
2224 	}
2225 
2226 	return 0;
2227 
2228 out_free:
2229 	vfio_iommu_iova_free(iova_copy);
2230 	return ret;
2231 }
2232 
2233 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
2234 					struct list_head *iova_copy)
2235 {
2236 	struct list_head *iova = &iommu->iova_list;
2237 
2238 	vfio_iommu_iova_free(iova);
2239 
2240 	list_splice_tail(iova_copy, iova);
2241 }
2242 
2243 static int vfio_iommu_type1_attach_group(void *iommu_data,
2244 					 struct iommu_group *iommu_group)
2245 {
2246 	struct vfio_iommu *iommu = iommu_data;
2247 	struct vfio_iommu_group *group;
2248 	struct vfio_domain *domain, *d;
2249 	struct bus_type *bus = NULL;
2250 	int ret;
2251 	bool resv_msi, msi_remap;
2252 	phys_addr_t resv_msi_base = 0;
2253 	struct iommu_domain_geometry *geo;
2254 	LIST_HEAD(iova_copy);
2255 	LIST_HEAD(group_resv_regions);
2256 
2257 	mutex_lock(&iommu->lock);
2258 
2259 	/* Check for duplicates */
2260 	if (vfio_iommu_find_iommu_group(iommu, iommu_group)) {
2261 		mutex_unlock(&iommu->lock);
2262 		return -EINVAL;
2263 	}
2264 
2265 	group = kzalloc(sizeof(*group), GFP_KERNEL);
2266 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2267 	if (!group || !domain) {
2268 		ret = -ENOMEM;
2269 		goto out_free;
2270 	}
2271 
2272 	group->iommu_group = iommu_group;
2273 
2274 	/* Determine bus_type in order to allocate a domain */
2275 	ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
2276 	if (ret)
2277 		goto out_free;
2278 
2279 	if (vfio_bus_is_mdev(bus)) {
2280 		struct device *iommu_device = NULL;
2281 
2282 		group->mdev_group = true;
2283 
2284 		/* Determine the isolation type */
2285 		ret = iommu_group_for_each_dev(iommu_group, &iommu_device,
2286 					       vfio_mdev_iommu_device);
2287 		if (ret || !iommu_device) {
2288 			if (!iommu->external_domain) {
2289 				INIT_LIST_HEAD(&domain->group_list);
2290 				iommu->external_domain = domain;
2291 				vfio_update_pgsize_bitmap(iommu);
2292 			} else {
2293 				kfree(domain);
2294 			}
2295 
2296 			list_add(&group->next,
2297 				 &iommu->external_domain->group_list);
2298 			/*
2299 			 * Non-iommu backed group cannot dirty memory directly,
2300 			 * it can only use interfaces that provide dirty
2301 			 * tracking.
2302 			 * The iommu scope can only be promoted with the
2303 			 * addition of a dirty tracking group.
2304 			 */
2305 			group->pinned_page_dirty_scope = true;
2306 			mutex_unlock(&iommu->lock);
2307 
2308 			return 0;
2309 		}
2310 
2311 		bus = iommu_device->bus;
2312 	}
2313 
2314 	domain->domain = iommu_domain_alloc(bus);
2315 	if (!domain->domain) {
2316 		ret = -EIO;
2317 		goto out_free;
2318 	}
2319 
2320 	if (iommu->nesting) {
2321 		ret = iommu_enable_nesting(domain->domain);
2322 		if (ret)
2323 			goto out_domain;
2324 	}
2325 
2326 	ret = vfio_iommu_attach_group(domain, group);
2327 	if (ret)
2328 		goto out_domain;
2329 
2330 	/* Get aperture info */
2331 	geo = &domain->domain->geometry;
2332 	if (vfio_iommu_aper_conflict(iommu, geo->aperture_start,
2333 				     geo->aperture_end)) {
2334 		ret = -EINVAL;
2335 		goto out_detach;
2336 	}
2337 
2338 	ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2339 	if (ret)
2340 		goto out_detach;
2341 
2342 	if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2343 		ret = -EINVAL;
2344 		goto out_detach;
2345 	}
2346 
2347 	/*
2348 	 * We don't want to work on the original iova list as the list
2349 	 * gets modified and in case of failure we have to retain the
2350 	 * original list. Get a copy here.
2351 	 */
2352 	ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2353 	if (ret)
2354 		goto out_detach;
2355 
2356 	ret = vfio_iommu_aper_resize(&iova_copy, geo->aperture_start,
2357 				     geo->aperture_end);
2358 	if (ret)
2359 		goto out_detach;
2360 
2361 	ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2362 	if (ret)
2363 		goto out_detach;
2364 
2365 	resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2366 
2367 	INIT_LIST_HEAD(&domain->group_list);
2368 	list_add(&group->next, &domain->group_list);
2369 
2370 	msi_remap = irq_domain_check_msi_remap() ||
2371 		    iommu_capable(bus, IOMMU_CAP_INTR_REMAP);
2372 
2373 	if (!allow_unsafe_interrupts && !msi_remap) {
2374 		pr_warn("%s: No interrupt remapping support.  Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2375 		       __func__);
2376 		ret = -EPERM;
2377 		goto out_detach;
2378 	}
2379 
2380 	if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
2381 		domain->prot |= IOMMU_CACHE;
2382 
2383 	/*
2384 	 * Try to match an existing compatible domain.  We don't want to
2385 	 * preclude an IOMMU driver supporting multiple bus_types and being
2386 	 * able to include different bus_types in the same IOMMU domain, so
2387 	 * we test whether the domains use the same iommu_ops rather than
2388 	 * testing if they're on the same bus_type.
2389 	 */
2390 	list_for_each_entry(d, &iommu->domain_list, next) {
2391 		if (d->domain->ops == domain->domain->ops &&
2392 		    d->prot == domain->prot) {
2393 			vfio_iommu_detach_group(domain, group);
2394 			if (!vfio_iommu_attach_group(d, group)) {
2395 				list_add(&group->next, &d->group_list);
2396 				iommu_domain_free(domain->domain);
2397 				kfree(domain);
2398 				goto done;
2399 			}
2400 
2401 			ret = vfio_iommu_attach_group(domain, group);
2402 			if (ret)
2403 				goto out_domain;
2404 		}
2405 	}
2406 
2407 	vfio_test_domain_fgsp(domain);
2408 
2409 	/* replay mappings on new domains */
2410 	ret = vfio_iommu_replay(iommu, domain);
2411 	if (ret)
2412 		goto out_detach;
2413 
2414 	if (resv_msi) {
2415 		ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2416 		if (ret && ret != -ENODEV)
2417 			goto out_detach;
2418 	}
2419 
2420 	list_add(&domain->next, &iommu->domain_list);
2421 	vfio_update_pgsize_bitmap(iommu);
2422 done:
2423 	/* Delete the old one and insert new iova list */
2424 	vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2425 
2426 	/*
2427 	 * An iommu backed group can dirty memory directly and therefore
2428 	 * demotes the iommu scope until it declares itself dirty tracking
2429 	 * capable via the page pinning interface.
2430 	 */
2431 	iommu->num_non_pinned_groups++;
2432 	mutex_unlock(&iommu->lock);
2433 	vfio_iommu_resv_free(&group_resv_regions);
2434 
2435 	return 0;
2436 
2437 out_detach:
2438 	vfio_iommu_detach_group(domain, group);
2439 out_domain:
2440 	iommu_domain_free(domain->domain);
2441 	vfio_iommu_iova_free(&iova_copy);
2442 	vfio_iommu_resv_free(&group_resv_regions);
2443 out_free:
2444 	kfree(domain);
2445 	kfree(group);
2446 	mutex_unlock(&iommu->lock);
2447 	return ret;
2448 }
2449 
2450 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2451 {
2452 	struct rb_node *node;
2453 
2454 	while ((node = rb_first(&iommu->dma_list)))
2455 		vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2456 }
2457 
2458 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2459 {
2460 	struct rb_node *n, *p;
2461 
2462 	n = rb_first(&iommu->dma_list);
2463 	for (; n; n = rb_next(n)) {
2464 		struct vfio_dma *dma;
2465 		long locked = 0, unlocked = 0;
2466 
2467 		dma = rb_entry(n, struct vfio_dma, node);
2468 		unlocked += vfio_unmap_unpin(iommu, dma, false);
2469 		p = rb_first(&dma->pfn_list);
2470 		for (; p; p = rb_next(p)) {
2471 			struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2472 							 node);
2473 
2474 			if (!is_invalid_reserved_pfn(vpfn->pfn))
2475 				locked++;
2476 		}
2477 		vfio_lock_acct(dma, locked - unlocked, true);
2478 	}
2479 }
2480 
2481 /*
2482  * Called when a domain is removed in detach. It is possible that
2483  * the removed domain decided the iova aperture window. Modify the
2484  * iova aperture with the smallest window among existing domains.
2485  */
2486 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2487 				   struct list_head *iova_copy)
2488 {
2489 	struct vfio_domain *domain;
2490 	struct vfio_iova *node;
2491 	dma_addr_t start = 0;
2492 	dma_addr_t end = (dma_addr_t)~0;
2493 
2494 	if (list_empty(iova_copy))
2495 		return;
2496 
2497 	list_for_each_entry(domain, &iommu->domain_list, next) {
2498 		struct iommu_domain_geometry *geo = &domain->domain->geometry;
2499 
2500 		if (geo->aperture_start > start)
2501 			start = geo->aperture_start;
2502 		if (geo->aperture_end < end)
2503 			end = geo->aperture_end;
2504 	}
2505 
2506 	/* Modify aperture limits. The new aper is either same or bigger */
2507 	node = list_first_entry(iova_copy, struct vfio_iova, list);
2508 	node->start = start;
2509 	node = list_last_entry(iova_copy, struct vfio_iova, list);
2510 	node->end = end;
2511 }
2512 
2513 /*
2514  * Called when a group is detached. The reserved regions for that
2515  * group can be part of valid iova now. But since reserved regions
2516  * may be duplicated among groups, populate the iova valid regions
2517  * list again.
2518  */
2519 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2520 				   struct list_head *iova_copy)
2521 {
2522 	struct vfio_domain *d;
2523 	struct vfio_iommu_group *g;
2524 	struct vfio_iova *node;
2525 	dma_addr_t start, end;
2526 	LIST_HEAD(resv_regions);
2527 	int ret;
2528 
2529 	if (list_empty(iova_copy))
2530 		return -EINVAL;
2531 
2532 	list_for_each_entry(d, &iommu->domain_list, next) {
2533 		list_for_each_entry(g, &d->group_list, next) {
2534 			ret = iommu_get_group_resv_regions(g->iommu_group,
2535 							   &resv_regions);
2536 			if (ret)
2537 				goto done;
2538 		}
2539 	}
2540 
2541 	node = list_first_entry(iova_copy, struct vfio_iova, list);
2542 	start = node->start;
2543 	node = list_last_entry(iova_copy, struct vfio_iova, list);
2544 	end = node->end;
2545 
2546 	/* purge the iova list and create new one */
2547 	vfio_iommu_iova_free(iova_copy);
2548 
2549 	ret = vfio_iommu_aper_resize(iova_copy, start, end);
2550 	if (ret)
2551 		goto done;
2552 
2553 	/* Exclude current reserved regions from iova ranges */
2554 	ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2555 done:
2556 	vfio_iommu_resv_free(&resv_regions);
2557 	return ret;
2558 }
2559 
2560 static void vfio_iommu_type1_detach_group(void *iommu_data,
2561 					  struct iommu_group *iommu_group)
2562 {
2563 	struct vfio_iommu *iommu = iommu_data;
2564 	struct vfio_domain *domain;
2565 	struct vfio_iommu_group *group;
2566 	bool update_dirty_scope = false;
2567 	LIST_HEAD(iova_copy);
2568 
2569 	mutex_lock(&iommu->lock);
2570 
2571 	if (iommu->external_domain) {
2572 		group = find_iommu_group(iommu->external_domain, iommu_group);
2573 		if (group) {
2574 			update_dirty_scope = !group->pinned_page_dirty_scope;
2575 			list_del(&group->next);
2576 			kfree(group);
2577 
2578 			if (list_empty(&iommu->external_domain->group_list)) {
2579 				if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu)) {
2580 					WARN_ON(iommu->notifier.head);
2581 					vfio_iommu_unmap_unpin_all(iommu);
2582 				}
2583 
2584 				kfree(iommu->external_domain);
2585 				iommu->external_domain = NULL;
2586 			}
2587 			goto detach_group_done;
2588 		}
2589 	}
2590 
2591 	/*
2592 	 * Get a copy of iova list. This will be used to update
2593 	 * and to replace the current one later. Please note that
2594 	 * we will leave the original list as it is if update fails.
2595 	 */
2596 	vfio_iommu_iova_get_copy(iommu, &iova_copy);
2597 
2598 	list_for_each_entry(domain, &iommu->domain_list, next) {
2599 		group = find_iommu_group(domain, iommu_group);
2600 		if (!group)
2601 			continue;
2602 
2603 		vfio_iommu_detach_group(domain, group);
2604 		update_dirty_scope = !group->pinned_page_dirty_scope;
2605 		list_del(&group->next);
2606 		kfree(group);
2607 		/*
2608 		 * Group ownership provides privilege, if the group list is
2609 		 * empty, the domain goes away. If it's the last domain with
2610 		 * iommu and external domain doesn't exist, then all the
2611 		 * mappings go away too. If it's the last domain with iommu and
2612 		 * external domain exist, update accounting
2613 		 */
2614 		if (list_empty(&domain->group_list)) {
2615 			if (list_is_singular(&iommu->domain_list)) {
2616 				if (!iommu->external_domain) {
2617 					WARN_ON(iommu->notifier.head);
2618 					vfio_iommu_unmap_unpin_all(iommu);
2619 				} else {
2620 					vfio_iommu_unmap_unpin_reaccount(iommu);
2621 				}
2622 			}
2623 			iommu_domain_free(domain->domain);
2624 			list_del(&domain->next);
2625 			kfree(domain);
2626 			vfio_iommu_aper_expand(iommu, &iova_copy);
2627 			vfio_update_pgsize_bitmap(iommu);
2628 		}
2629 		break;
2630 	}
2631 
2632 	if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2633 		vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2634 	else
2635 		vfio_iommu_iova_free(&iova_copy);
2636 
2637 detach_group_done:
2638 	/*
2639 	 * Removal of a group without dirty tracking may allow the iommu scope
2640 	 * to be promoted.
2641 	 */
2642 	if (update_dirty_scope) {
2643 		iommu->num_non_pinned_groups--;
2644 		if (iommu->dirty_page_tracking)
2645 			vfio_iommu_populate_bitmap_full(iommu);
2646 	}
2647 	mutex_unlock(&iommu->lock);
2648 }
2649 
2650 static void *vfio_iommu_type1_open(unsigned long arg)
2651 {
2652 	struct vfio_iommu *iommu;
2653 
2654 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2655 	if (!iommu)
2656 		return ERR_PTR(-ENOMEM);
2657 
2658 	switch (arg) {
2659 	case VFIO_TYPE1_IOMMU:
2660 		break;
2661 	case VFIO_TYPE1_NESTING_IOMMU:
2662 		iommu->nesting = true;
2663 		fallthrough;
2664 	case VFIO_TYPE1v2_IOMMU:
2665 		iommu->v2 = true;
2666 		break;
2667 	default:
2668 		kfree(iommu);
2669 		return ERR_PTR(-EINVAL);
2670 	}
2671 
2672 	INIT_LIST_HEAD(&iommu->domain_list);
2673 	INIT_LIST_HEAD(&iommu->iova_list);
2674 	iommu->dma_list = RB_ROOT;
2675 	iommu->dma_avail = dma_entry_limit;
2676 	iommu->container_open = true;
2677 	mutex_init(&iommu->lock);
2678 	BLOCKING_INIT_NOTIFIER_HEAD(&iommu->notifier);
2679 	init_waitqueue_head(&iommu->vaddr_wait);
2680 
2681 	return iommu;
2682 }
2683 
2684 static void vfio_release_domain(struct vfio_domain *domain, bool external)
2685 {
2686 	struct vfio_iommu_group *group, *group_tmp;
2687 
2688 	list_for_each_entry_safe(group, group_tmp,
2689 				 &domain->group_list, next) {
2690 		if (!external)
2691 			vfio_iommu_detach_group(domain, group);
2692 		list_del(&group->next);
2693 		kfree(group);
2694 	}
2695 
2696 	if (!external)
2697 		iommu_domain_free(domain->domain);
2698 }
2699 
2700 static void vfio_iommu_type1_release(void *iommu_data)
2701 {
2702 	struct vfio_iommu *iommu = iommu_data;
2703 	struct vfio_domain *domain, *domain_tmp;
2704 
2705 	if (iommu->external_domain) {
2706 		vfio_release_domain(iommu->external_domain, true);
2707 		kfree(iommu->external_domain);
2708 	}
2709 
2710 	vfio_iommu_unmap_unpin_all(iommu);
2711 
2712 	list_for_each_entry_safe(domain, domain_tmp,
2713 				 &iommu->domain_list, next) {
2714 		vfio_release_domain(domain, false);
2715 		list_del(&domain->next);
2716 		kfree(domain);
2717 	}
2718 
2719 	vfio_iommu_iova_free(&iommu->iova_list);
2720 
2721 	kfree(iommu);
2722 }
2723 
2724 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
2725 {
2726 	struct vfio_domain *domain;
2727 	int ret = 1;
2728 
2729 	mutex_lock(&iommu->lock);
2730 	list_for_each_entry(domain, &iommu->domain_list, next) {
2731 		if (!(domain->prot & IOMMU_CACHE)) {
2732 			ret = 0;
2733 			break;
2734 		}
2735 	}
2736 	mutex_unlock(&iommu->lock);
2737 
2738 	return ret;
2739 }
2740 
2741 static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2742 					    unsigned long arg)
2743 {
2744 	switch (arg) {
2745 	case VFIO_TYPE1_IOMMU:
2746 	case VFIO_TYPE1v2_IOMMU:
2747 	case VFIO_TYPE1_NESTING_IOMMU:
2748 	case VFIO_UNMAP_ALL:
2749 	case VFIO_UPDATE_VADDR:
2750 		return 1;
2751 	case VFIO_DMA_CC_IOMMU:
2752 		if (!iommu)
2753 			return 0;
2754 		return vfio_domains_have_iommu_cache(iommu);
2755 	default:
2756 		return 0;
2757 	}
2758 }
2759 
2760 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2761 		 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2762 		 size_t size)
2763 {
2764 	struct vfio_info_cap_header *header;
2765 	struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2766 
2767 	header = vfio_info_cap_add(caps, size,
2768 				   VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2769 	if (IS_ERR(header))
2770 		return PTR_ERR(header);
2771 
2772 	iova_cap = container_of(header,
2773 				struct vfio_iommu_type1_info_cap_iova_range,
2774 				header);
2775 	iova_cap->nr_iovas = cap_iovas->nr_iovas;
2776 	memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2777 	       cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2778 	return 0;
2779 }
2780 
2781 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2782 				      struct vfio_info_cap *caps)
2783 {
2784 	struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2785 	struct vfio_iova *iova;
2786 	size_t size;
2787 	int iovas = 0, i = 0, ret;
2788 
2789 	list_for_each_entry(iova, &iommu->iova_list, list)
2790 		iovas++;
2791 
2792 	if (!iovas) {
2793 		/*
2794 		 * Return 0 as a container with a single mdev device
2795 		 * will have an empty list
2796 		 */
2797 		return 0;
2798 	}
2799 
2800 	size = struct_size(cap_iovas, iova_ranges, iovas);
2801 
2802 	cap_iovas = kzalloc(size, GFP_KERNEL);
2803 	if (!cap_iovas)
2804 		return -ENOMEM;
2805 
2806 	cap_iovas->nr_iovas = iovas;
2807 
2808 	list_for_each_entry(iova, &iommu->iova_list, list) {
2809 		cap_iovas->iova_ranges[i].start = iova->start;
2810 		cap_iovas->iova_ranges[i].end = iova->end;
2811 		i++;
2812 	}
2813 
2814 	ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2815 
2816 	kfree(cap_iovas);
2817 	return ret;
2818 }
2819 
2820 static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2821 					   struct vfio_info_cap *caps)
2822 {
2823 	struct vfio_iommu_type1_info_cap_migration cap_mig;
2824 
2825 	cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2826 	cap_mig.header.version = 1;
2827 
2828 	cap_mig.flags = 0;
2829 	/* support minimum pgsize */
2830 	cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2831 	cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2832 
2833 	return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2834 }
2835 
2836 static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu,
2837 					   struct vfio_info_cap *caps)
2838 {
2839 	struct vfio_iommu_type1_info_dma_avail cap_dma_avail;
2840 
2841 	cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL;
2842 	cap_dma_avail.header.version = 1;
2843 
2844 	cap_dma_avail.avail = iommu->dma_avail;
2845 
2846 	return vfio_info_add_capability(caps, &cap_dma_avail.header,
2847 					sizeof(cap_dma_avail));
2848 }
2849 
2850 static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2851 				     unsigned long arg)
2852 {
2853 	struct vfio_iommu_type1_info info;
2854 	unsigned long minsz;
2855 	struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2856 	unsigned long capsz;
2857 	int ret;
2858 
2859 	minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2860 
2861 	/* For backward compatibility, cannot require this */
2862 	capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset);
2863 
2864 	if (copy_from_user(&info, (void __user *)arg, minsz))
2865 		return -EFAULT;
2866 
2867 	if (info.argsz < minsz)
2868 		return -EINVAL;
2869 
2870 	if (info.argsz >= capsz) {
2871 		minsz = capsz;
2872 		info.cap_offset = 0; /* output, no-recopy necessary */
2873 	}
2874 
2875 	mutex_lock(&iommu->lock);
2876 	info.flags = VFIO_IOMMU_INFO_PGSIZES;
2877 
2878 	info.iova_pgsizes = iommu->pgsize_bitmap;
2879 
2880 	ret = vfio_iommu_migration_build_caps(iommu, &caps);
2881 
2882 	if (!ret)
2883 		ret = vfio_iommu_dma_avail_build_caps(iommu, &caps);
2884 
2885 	if (!ret)
2886 		ret = vfio_iommu_iova_build_caps(iommu, &caps);
2887 
2888 	mutex_unlock(&iommu->lock);
2889 
2890 	if (ret)
2891 		return ret;
2892 
2893 	if (caps.size) {
2894 		info.flags |= VFIO_IOMMU_INFO_CAPS;
2895 
2896 		if (info.argsz < sizeof(info) + caps.size) {
2897 			info.argsz = sizeof(info) + caps.size;
2898 		} else {
2899 			vfio_info_cap_shift(&caps, sizeof(info));
2900 			if (copy_to_user((void __user *)arg +
2901 					sizeof(info), caps.buf,
2902 					caps.size)) {
2903 				kfree(caps.buf);
2904 				return -EFAULT;
2905 			}
2906 			info.cap_offset = sizeof(info);
2907 		}
2908 
2909 		kfree(caps.buf);
2910 	}
2911 
2912 	return copy_to_user((void __user *)arg, &info, minsz) ?
2913 			-EFAULT : 0;
2914 }
2915 
2916 static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2917 				    unsigned long arg)
2918 {
2919 	struct vfio_iommu_type1_dma_map map;
2920 	unsigned long minsz;
2921 	uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE |
2922 			VFIO_DMA_MAP_FLAG_VADDR;
2923 
2924 	minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2925 
2926 	if (copy_from_user(&map, (void __user *)arg, minsz))
2927 		return -EFAULT;
2928 
2929 	if (map.argsz < minsz || map.flags & ~mask)
2930 		return -EINVAL;
2931 
2932 	return vfio_dma_do_map(iommu, &map);
2933 }
2934 
2935 static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2936 				      unsigned long arg)
2937 {
2938 	struct vfio_iommu_type1_dma_unmap unmap;
2939 	struct vfio_bitmap bitmap = { 0 };
2940 	uint32_t mask = VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP |
2941 			VFIO_DMA_UNMAP_FLAG_VADDR |
2942 			VFIO_DMA_UNMAP_FLAG_ALL;
2943 	unsigned long minsz;
2944 	int ret;
2945 
2946 	minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2947 
2948 	if (copy_from_user(&unmap, (void __user *)arg, minsz))
2949 		return -EFAULT;
2950 
2951 	if (unmap.argsz < minsz || unmap.flags & ~mask)
2952 		return -EINVAL;
2953 
2954 	if ((unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
2955 	    (unmap.flags & (VFIO_DMA_UNMAP_FLAG_ALL |
2956 			    VFIO_DMA_UNMAP_FLAG_VADDR)))
2957 		return -EINVAL;
2958 
2959 	if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2960 		unsigned long pgshift;
2961 
2962 		if (unmap.argsz < (minsz + sizeof(bitmap)))
2963 			return -EINVAL;
2964 
2965 		if (copy_from_user(&bitmap,
2966 				   (void __user *)(arg + minsz),
2967 				   sizeof(bitmap)))
2968 			return -EFAULT;
2969 
2970 		if (!access_ok((void __user *)bitmap.data, bitmap.size))
2971 			return -EINVAL;
2972 
2973 		pgshift = __ffs(bitmap.pgsize);
2974 		ret = verify_bitmap_size(unmap.size >> pgshift,
2975 					 bitmap.size);
2976 		if (ret)
2977 			return ret;
2978 	}
2979 
2980 	ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2981 	if (ret)
2982 		return ret;
2983 
2984 	return copy_to_user((void __user *)arg, &unmap, minsz) ?
2985 			-EFAULT : 0;
2986 }
2987 
2988 static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2989 					unsigned long arg)
2990 {
2991 	struct vfio_iommu_type1_dirty_bitmap dirty;
2992 	uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2993 			VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2994 			VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2995 	unsigned long minsz;
2996 	int ret = 0;
2997 
2998 	if (!iommu->v2)
2999 		return -EACCES;
3000 
3001 	minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
3002 
3003 	if (copy_from_user(&dirty, (void __user *)arg, minsz))
3004 		return -EFAULT;
3005 
3006 	if (dirty.argsz < minsz || dirty.flags & ~mask)
3007 		return -EINVAL;
3008 
3009 	/* only one flag should be set at a time */
3010 	if (__ffs(dirty.flags) != __fls(dirty.flags))
3011 		return -EINVAL;
3012 
3013 	if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
3014 		size_t pgsize;
3015 
3016 		mutex_lock(&iommu->lock);
3017 		pgsize = 1 << __ffs(iommu->pgsize_bitmap);
3018 		if (!iommu->dirty_page_tracking) {
3019 			ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
3020 			if (!ret)
3021 				iommu->dirty_page_tracking = true;
3022 		}
3023 		mutex_unlock(&iommu->lock);
3024 		return ret;
3025 	} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
3026 		mutex_lock(&iommu->lock);
3027 		if (iommu->dirty_page_tracking) {
3028 			iommu->dirty_page_tracking = false;
3029 			vfio_dma_bitmap_free_all(iommu);
3030 		}
3031 		mutex_unlock(&iommu->lock);
3032 		return 0;
3033 	} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
3034 		struct vfio_iommu_type1_dirty_bitmap_get range;
3035 		unsigned long pgshift;
3036 		size_t data_size = dirty.argsz - minsz;
3037 		size_t iommu_pgsize;
3038 
3039 		if (!data_size || data_size < sizeof(range))
3040 			return -EINVAL;
3041 
3042 		if (copy_from_user(&range, (void __user *)(arg + minsz),
3043 				   sizeof(range)))
3044 			return -EFAULT;
3045 
3046 		if (range.iova + range.size < range.iova)
3047 			return -EINVAL;
3048 		if (!access_ok((void __user *)range.bitmap.data,
3049 			       range.bitmap.size))
3050 			return -EINVAL;
3051 
3052 		pgshift = __ffs(range.bitmap.pgsize);
3053 		ret = verify_bitmap_size(range.size >> pgshift,
3054 					 range.bitmap.size);
3055 		if (ret)
3056 			return ret;
3057 
3058 		mutex_lock(&iommu->lock);
3059 
3060 		iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
3061 
3062 		/* allow only smallest supported pgsize */
3063 		if (range.bitmap.pgsize != iommu_pgsize) {
3064 			ret = -EINVAL;
3065 			goto out_unlock;
3066 		}
3067 		if (range.iova & (iommu_pgsize - 1)) {
3068 			ret = -EINVAL;
3069 			goto out_unlock;
3070 		}
3071 		if (!range.size || range.size & (iommu_pgsize - 1)) {
3072 			ret = -EINVAL;
3073 			goto out_unlock;
3074 		}
3075 
3076 		if (iommu->dirty_page_tracking)
3077 			ret = vfio_iova_dirty_bitmap(range.bitmap.data,
3078 						     iommu, range.iova,
3079 						     range.size,
3080 						     range.bitmap.pgsize);
3081 		else
3082 			ret = -EINVAL;
3083 out_unlock:
3084 		mutex_unlock(&iommu->lock);
3085 
3086 		return ret;
3087 	}
3088 
3089 	return -EINVAL;
3090 }
3091 
3092 static long vfio_iommu_type1_ioctl(void *iommu_data,
3093 				   unsigned int cmd, unsigned long arg)
3094 {
3095 	struct vfio_iommu *iommu = iommu_data;
3096 
3097 	switch (cmd) {
3098 	case VFIO_CHECK_EXTENSION:
3099 		return vfio_iommu_type1_check_extension(iommu, arg);
3100 	case VFIO_IOMMU_GET_INFO:
3101 		return vfio_iommu_type1_get_info(iommu, arg);
3102 	case VFIO_IOMMU_MAP_DMA:
3103 		return vfio_iommu_type1_map_dma(iommu, arg);
3104 	case VFIO_IOMMU_UNMAP_DMA:
3105 		return vfio_iommu_type1_unmap_dma(iommu, arg);
3106 	case VFIO_IOMMU_DIRTY_PAGES:
3107 		return vfio_iommu_type1_dirty_pages(iommu, arg);
3108 	default:
3109 		return -ENOTTY;
3110 	}
3111 }
3112 
3113 static int vfio_iommu_type1_register_notifier(void *iommu_data,
3114 					      unsigned long *events,
3115 					      struct notifier_block *nb)
3116 {
3117 	struct vfio_iommu *iommu = iommu_data;
3118 
3119 	/* clear known events */
3120 	*events &= ~VFIO_IOMMU_NOTIFY_DMA_UNMAP;
3121 
3122 	/* refuse to register if still events remaining */
3123 	if (*events)
3124 		return -EINVAL;
3125 
3126 	return blocking_notifier_chain_register(&iommu->notifier, nb);
3127 }
3128 
3129 static int vfio_iommu_type1_unregister_notifier(void *iommu_data,
3130 						struct notifier_block *nb)
3131 {
3132 	struct vfio_iommu *iommu = iommu_data;
3133 
3134 	return blocking_notifier_chain_unregister(&iommu->notifier, nb);
3135 }
3136 
3137 static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
3138 					 dma_addr_t user_iova, void *data,
3139 					 size_t count, bool write,
3140 					 size_t *copied)
3141 {
3142 	struct mm_struct *mm;
3143 	unsigned long vaddr;
3144 	struct vfio_dma *dma;
3145 	bool kthread = current->mm == NULL;
3146 	size_t offset;
3147 	int ret;
3148 
3149 	*copied = 0;
3150 
3151 	ret = vfio_find_dma_valid(iommu, user_iova, 1, &dma);
3152 	if (ret < 0)
3153 		return ret;
3154 
3155 	if ((write && !(dma->prot & IOMMU_WRITE)) ||
3156 			!(dma->prot & IOMMU_READ))
3157 		return -EPERM;
3158 
3159 	mm = get_task_mm(dma->task);
3160 
3161 	if (!mm)
3162 		return -EPERM;
3163 
3164 	if (kthread)
3165 		kthread_use_mm(mm);
3166 	else if (current->mm != mm)
3167 		goto out;
3168 
3169 	offset = user_iova - dma->iova;
3170 
3171 	if (count > dma->size - offset)
3172 		count = dma->size - offset;
3173 
3174 	vaddr = dma->vaddr + offset;
3175 
3176 	if (write) {
3177 		*copied = copy_to_user((void __user *)vaddr, data,
3178 					 count) ? 0 : count;
3179 		if (*copied && iommu->dirty_page_tracking) {
3180 			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
3181 			/*
3182 			 * Bitmap populated with the smallest supported page
3183 			 * size
3184 			 */
3185 			bitmap_set(dma->bitmap, offset >> pgshift,
3186 				   ((offset + *copied - 1) >> pgshift) -
3187 				   (offset >> pgshift) + 1);
3188 		}
3189 	} else
3190 		*copied = copy_from_user(data, (void __user *)vaddr,
3191 					   count) ? 0 : count;
3192 	if (kthread)
3193 		kthread_unuse_mm(mm);
3194 out:
3195 	mmput(mm);
3196 	return *copied ? 0 : -EFAULT;
3197 }
3198 
3199 static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
3200 				   void *data, size_t count, bool write)
3201 {
3202 	struct vfio_iommu *iommu = iommu_data;
3203 	int ret = 0;
3204 	size_t done;
3205 
3206 	mutex_lock(&iommu->lock);
3207 	while (count > 0) {
3208 		ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
3209 						    count, write, &done);
3210 		if (ret)
3211 			break;
3212 
3213 		count -= done;
3214 		data += done;
3215 		user_iova += done;
3216 	}
3217 
3218 	mutex_unlock(&iommu->lock);
3219 	return ret;
3220 }
3221 
3222 static struct iommu_domain *
3223 vfio_iommu_type1_group_iommu_domain(void *iommu_data,
3224 				    struct iommu_group *iommu_group)
3225 {
3226 	struct iommu_domain *domain = ERR_PTR(-ENODEV);
3227 	struct vfio_iommu *iommu = iommu_data;
3228 	struct vfio_domain *d;
3229 
3230 	if (!iommu || !iommu_group)
3231 		return ERR_PTR(-EINVAL);
3232 
3233 	mutex_lock(&iommu->lock);
3234 	list_for_each_entry(d, &iommu->domain_list, next) {
3235 		if (find_iommu_group(d, iommu_group)) {
3236 			domain = d->domain;
3237 			break;
3238 		}
3239 	}
3240 	mutex_unlock(&iommu->lock);
3241 
3242 	return domain;
3243 }
3244 
3245 static void vfio_iommu_type1_notify(void *iommu_data,
3246 				    enum vfio_iommu_notify_type event)
3247 {
3248 	struct vfio_iommu *iommu = iommu_data;
3249 
3250 	if (event != VFIO_IOMMU_CONTAINER_CLOSE)
3251 		return;
3252 	mutex_lock(&iommu->lock);
3253 	iommu->container_open = false;
3254 	mutex_unlock(&iommu->lock);
3255 	wake_up_all(&iommu->vaddr_wait);
3256 }
3257 
3258 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
3259 	.name			= "vfio-iommu-type1",
3260 	.owner			= THIS_MODULE,
3261 	.open			= vfio_iommu_type1_open,
3262 	.release		= vfio_iommu_type1_release,
3263 	.ioctl			= vfio_iommu_type1_ioctl,
3264 	.attach_group		= vfio_iommu_type1_attach_group,
3265 	.detach_group		= vfio_iommu_type1_detach_group,
3266 	.pin_pages		= vfio_iommu_type1_pin_pages,
3267 	.unpin_pages		= vfio_iommu_type1_unpin_pages,
3268 	.register_notifier	= vfio_iommu_type1_register_notifier,
3269 	.unregister_notifier	= vfio_iommu_type1_unregister_notifier,
3270 	.dma_rw			= vfio_iommu_type1_dma_rw,
3271 	.group_iommu_domain	= vfio_iommu_type1_group_iommu_domain,
3272 	.notify			= vfio_iommu_type1_notify,
3273 };
3274 
3275 static int __init vfio_iommu_type1_init(void)
3276 {
3277 	return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
3278 }
3279 
3280 static void __exit vfio_iommu_type1_cleanup(void)
3281 {
3282 	vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
3283 }
3284 
3285 module_init(vfio_iommu_type1_init);
3286 module_exit(vfio_iommu_type1_cleanup);
3287 
3288 MODULE_VERSION(DRIVER_VERSION);
3289 MODULE_LICENSE("GPL v2");
3290 MODULE_AUTHOR(DRIVER_AUTHOR);
3291 MODULE_DESCRIPTION(DRIVER_DESC);
3292