1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * Derived from original vfio:
9  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
10  * Author: Tom Lyon, pugs@cisco.com
11  *
12  * We arbitrarily define a Type1 IOMMU as one matching the below code.
13  * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14  * VT-d, but that makes it harder to re-use as theoretically anyone
15  * implementing a similar IOMMU could make use of this.  We expect the
16  * IOMMU to support the IOMMU API and have few to no restrictions around
17  * the IOVA range that can be mapped.  The Type1 IOMMU is currently
18  * optimized for relatively static mappings of a userspace process with
19  * userspace pages pinned into memory.  We also assume devices and IOMMU
20  * domains are PCI based as the IOMMU API is still centered around a
21  * device/bus interface rather than a group interface.
22  */
23 
24 #include <linux/compat.h>
25 #include <linux/device.h>
26 #include <linux/fs.h>
27 #include <linux/highmem.h>
28 #include <linux/iommu.h>
29 #include <linux/module.h>
30 #include <linux/mm.h>
31 #include <linux/kthread.h>
32 #include <linux/rbtree.h>
33 #include <linux/sched/signal.h>
34 #include <linux/sched/mm.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39 #include <linux/notifier.h>
40 #include <linux/dma-iommu.h>
41 #include <linux/irqdomain.h>
42 #include "vfio.h"
43 
44 #define DRIVER_VERSION  "0.2"
45 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
46 #define DRIVER_DESC     "Type1 IOMMU driver for VFIO"
47 
48 static bool allow_unsafe_interrupts;
49 module_param_named(allow_unsafe_interrupts,
50 		   allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
51 MODULE_PARM_DESC(allow_unsafe_interrupts,
52 		 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
53 
54 static bool disable_hugepages;
55 module_param_named(disable_hugepages,
56 		   disable_hugepages, bool, S_IRUGO | S_IWUSR);
57 MODULE_PARM_DESC(disable_hugepages,
58 		 "Disable VFIO IOMMU support for IOMMU hugepages.");
59 
60 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
61 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
62 MODULE_PARM_DESC(dma_entry_limit,
63 		 "Maximum number of user DMA mappings per container (65535).");
64 
65 struct vfio_iommu {
66 	struct list_head	domain_list;
67 	struct list_head	iova_list;
68 	struct mutex		lock;
69 	struct rb_root		dma_list;
70 	struct list_head	device_list;
71 	struct mutex		device_list_lock;
72 	unsigned int		dma_avail;
73 	unsigned int		vaddr_invalid_count;
74 	uint64_t		pgsize_bitmap;
75 	uint64_t		num_non_pinned_groups;
76 	wait_queue_head_t	vaddr_wait;
77 	bool			v2;
78 	bool			nesting;
79 	bool			dirty_page_tracking;
80 	bool			container_open;
81 	struct list_head	emulated_iommu_groups;
82 };
83 
84 struct vfio_domain {
85 	struct iommu_domain	*domain;
86 	struct list_head	next;
87 	struct list_head	group_list;
88 	bool			fgsp : 1;	/* Fine-grained super pages */
89 	bool			enforce_cache_coherency : 1;
90 };
91 
92 struct vfio_dma {
93 	struct rb_node		node;
94 	dma_addr_t		iova;		/* Device address */
95 	unsigned long		vaddr;		/* Process virtual addr */
96 	size_t			size;		/* Map size (bytes) */
97 	int			prot;		/* IOMMU_READ/WRITE */
98 	bool			iommu_mapped;
99 	bool			lock_cap;	/* capable(CAP_IPC_LOCK) */
100 	bool			vaddr_invalid;
101 	struct task_struct	*task;
102 	struct rb_root		pfn_list;	/* Ex-user pinned pfn list */
103 	unsigned long		*bitmap;
104 };
105 
106 struct vfio_batch {
107 	struct page		**pages;	/* for pin_user_pages_remote */
108 	struct page		*fallback_page; /* if pages alloc fails */
109 	int			capacity;	/* length of pages array */
110 	int			size;		/* of batch currently */
111 	int			offset;		/* of next entry in pages */
112 };
113 
114 struct vfio_iommu_group {
115 	struct iommu_group	*iommu_group;
116 	struct list_head	next;
117 	bool			pinned_page_dirty_scope;
118 };
119 
120 struct vfio_iova {
121 	struct list_head	list;
122 	dma_addr_t		start;
123 	dma_addr_t		end;
124 };
125 
126 /*
127  * Guest RAM pinning working set or DMA target
128  */
129 struct vfio_pfn {
130 	struct rb_node		node;
131 	dma_addr_t		iova;		/* Device address */
132 	unsigned long		pfn;		/* Host pfn */
133 	unsigned int		ref_count;
134 };
135 
136 struct vfio_regions {
137 	struct list_head list;
138 	dma_addr_t iova;
139 	phys_addr_t phys;
140 	size_t len;
141 };
142 
143 #define DIRTY_BITMAP_BYTES(n)	(ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
144 
145 /*
146  * Input argument of number of bits to bitmap_set() is unsigned integer, which
147  * further casts to signed integer for unaligned multi-bit operation,
148  * __bitmap_set().
149  * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
150  * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
151  * system.
152  */
153 #define DIRTY_BITMAP_PAGES_MAX	 ((u64)INT_MAX)
154 #define DIRTY_BITMAP_SIZE_MAX	 DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
155 
156 #define WAITED 1
157 
158 static int put_pfn(unsigned long pfn, int prot);
159 
160 static struct vfio_iommu_group*
161 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
162 			    struct iommu_group *iommu_group);
163 
164 /*
165  * This code handles mapping and unmapping of user data buffers
166  * into DMA'ble space using the IOMMU
167  */
168 
169 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
170 				      dma_addr_t start, size_t size)
171 {
172 	struct rb_node *node = iommu->dma_list.rb_node;
173 
174 	while (node) {
175 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
176 
177 		if (start + size <= dma->iova)
178 			node = node->rb_left;
179 		else if (start >= dma->iova + dma->size)
180 			node = node->rb_right;
181 		else
182 			return dma;
183 	}
184 
185 	return NULL;
186 }
187 
188 static struct rb_node *vfio_find_dma_first_node(struct vfio_iommu *iommu,
189 						dma_addr_t start, u64 size)
190 {
191 	struct rb_node *res = NULL;
192 	struct rb_node *node = iommu->dma_list.rb_node;
193 	struct vfio_dma *dma_res = NULL;
194 
195 	while (node) {
196 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
197 
198 		if (start < dma->iova + dma->size) {
199 			res = node;
200 			dma_res = dma;
201 			if (start >= dma->iova)
202 				break;
203 			node = node->rb_left;
204 		} else {
205 			node = node->rb_right;
206 		}
207 	}
208 	if (res && size && dma_res->iova >= start + size)
209 		res = NULL;
210 	return res;
211 }
212 
213 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
214 {
215 	struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
216 	struct vfio_dma *dma;
217 
218 	while (*link) {
219 		parent = *link;
220 		dma = rb_entry(parent, struct vfio_dma, node);
221 
222 		if (new->iova + new->size <= dma->iova)
223 			link = &(*link)->rb_left;
224 		else
225 			link = &(*link)->rb_right;
226 	}
227 
228 	rb_link_node(&new->node, parent, link);
229 	rb_insert_color(&new->node, &iommu->dma_list);
230 }
231 
232 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
233 {
234 	rb_erase(&old->node, &iommu->dma_list);
235 }
236 
237 
238 static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
239 {
240 	uint64_t npages = dma->size / pgsize;
241 
242 	if (npages > DIRTY_BITMAP_PAGES_MAX)
243 		return -EINVAL;
244 
245 	/*
246 	 * Allocate extra 64 bits that are used to calculate shift required for
247 	 * bitmap_shift_left() to manipulate and club unaligned number of pages
248 	 * in adjacent vfio_dma ranges.
249 	 */
250 	dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
251 			       GFP_KERNEL);
252 	if (!dma->bitmap)
253 		return -ENOMEM;
254 
255 	return 0;
256 }
257 
258 static void vfio_dma_bitmap_free(struct vfio_dma *dma)
259 {
260 	kvfree(dma->bitmap);
261 	dma->bitmap = NULL;
262 }
263 
264 static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
265 {
266 	struct rb_node *p;
267 	unsigned long pgshift = __ffs(pgsize);
268 
269 	for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
270 		struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
271 
272 		bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
273 	}
274 }
275 
276 static void vfio_iommu_populate_bitmap_full(struct vfio_iommu *iommu)
277 {
278 	struct rb_node *n;
279 	unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
280 
281 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
282 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
283 
284 		bitmap_set(dma->bitmap, 0, dma->size >> pgshift);
285 	}
286 }
287 
288 static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
289 {
290 	struct rb_node *n;
291 
292 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
293 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
294 		int ret;
295 
296 		ret = vfio_dma_bitmap_alloc(dma, pgsize);
297 		if (ret) {
298 			struct rb_node *p;
299 
300 			for (p = rb_prev(n); p; p = rb_prev(p)) {
301 				struct vfio_dma *dma = rb_entry(n,
302 							struct vfio_dma, node);
303 
304 				vfio_dma_bitmap_free(dma);
305 			}
306 			return ret;
307 		}
308 		vfio_dma_populate_bitmap(dma, pgsize);
309 	}
310 	return 0;
311 }
312 
313 static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
314 {
315 	struct rb_node *n;
316 
317 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
318 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
319 
320 		vfio_dma_bitmap_free(dma);
321 	}
322 }
323 
324 /*
325  * Helper Functions for host iova-pfn list
326  */
327 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
328 {
329 	struct vfio_pfn *vpfn;
330 	struct rb_node *node = dma->pfn_list.rb_node;
331 
332 	while (node) {
333 		vpfn = rb_entry(node, struct vfio_pfn, node);
334 
335 		if (iova < vpfn->iova)
336 			node = node->rb_left;
337 		else if (iova > vpfn->iova)
338 			node = node->rb_right;
339 		else
340 			return vpfn;
341 	}
342 	return NULL;
343 }
344 
345 static void vfio_link_pfn(struct vfio_dma *dma,
346 			  struct vfio_pfn *new)
347 {
348 	struct rb_node **link, *parent = NULL;
349 	struct vfio_pfn *vpfn;
350 
351 	link = &dma->pfn_list.rb_node;
352 	while (*link) {
353 		parent = *link;
354 		vpfn = rb_entry(parent, struct vfio_pfn, node);
355 
356 		if (new->iova < vpfn->iova)
357 			link = &(*link)->rb_left;
358 		else
359 			link = &(*link)->rb_right;
360 	}
361 
362 	rb_link_node(&new->node, parent, link);
363 	rb_insert_color(&new->node, &dma->pfn_list);
364 }
365 
366 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
367 {
368 	rb_erase(&old->node, &dma->pfn_list);
369 }
370 
371 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
372 				unsigned long pfn)
373 {
374 	struct vfio_pfn *vpfn;
375 
376 	vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
377 	if (!vpfn)
378 		return -ENOMEM;
379 
380 	vpfn->iova = iova;
381 	vpfn->pfn = pfn;
382 	vpfn->ref_count = 1;
383 	vfio_link_pfn(dma, vpfn);
384 	return 0;
385 }
386 
387 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
388 				      struct vfio_pfn *vpfn)
389 {
390 	vfio_unlink_pfn(dma, vpfn);
391 	kfree(vpfn);
392 }
393 
394 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
395 					       unsigned long iova)
396 {
397 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
398 
399 	if (vpfn)
400 		vpfn->ref_count++;
401 	return vpfn;
402 }
403 
404 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
405 {
406 	int ret = 0;
407 
408 	vpfn->ref_count--;
409 	if (!vpfn->ref_count) {
410 		ret = put_pfn(vpfn->pfn, dma->prot);
411 		vfio_remove_from_pfn_list(dma, vpfn);
412 	}
413 	return ret;
414 }
415 
416 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
417 {
418 	struct mm_struct *mm;
419 	int ret;
420 
421 	if (!npage)
422 		return 0;
423 
424 	mm = async ? get_task_mm(dma->task) : dma->task->mm;
425 	if (!mm)
426 		return -ESRCH; /* process exited */
427 
428 	ret = mmap_write_lock_killable(mm);
429 	if (!ret) {
430 		ret = __account_locked_vm(mm, abs(npage), npage > 0, dma->task,
431 					  dma->lock_cap);
432 		mmap_write_unlock(mm);
433 	}
434 
435 	if (async)
436 		mmput(mm);
437 
438 	return ret;
439 }
440 
441 /*
442  * Some mappings aren't backed by a struct page, for example an mmap'd
443  * MMIO range for our own or another device.  These use a different
444  * pfn conversion and shouldn't be tracked as locked pages.
445  * For compound pages, any driver that sets the reserved bit in head
446  * page needs to set the reserved bit in all subpages to be safe.
447  */
448 static bool is_invalid_reserved_pfn(unsigned long pfn)
449 {
450 	if (pfn_valid(pfn))
451 		return PageReserved(pfn_to_page(pfn));
452 
453 	return true;
454 }
455 
456 static int put_pfn(unsigned long pfn, int prot)
457 {
458 	if (!is_invalid_reserved_pfn(pfn)) {
459 		struct page *page = pfn_to_page(pfn);
460 
461 		unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
462 		return 1;
463 	}
464 	return 0;
465 }
466 
467 #define VFIO_BATCH_MAX_CAPACITY (PAGE_SIZE / sizeof(struct page *))
468 
469 static void vfio_batch_init(struct vfio_batch *batch)
470 {
471 	batch->size = 0;
472 	batch->offset = 0;
473 
474 	if (unlikely(disable_hugepages))
475 		goto fallback;
476 
477 	batch->pages = (struct page **) __get_free_page(GFP_KERNEL);
478 	if (!batch->pages)
479 		goto fallback;
480 
481 	batch->capacity = VFIO_BATCH_MAX_CAPACITY;
482 	return;
483 
484 fallback:
485 	batch->pages = &batch->fallback_page;
486 	batch->capacity = 1;
487 }
488 
489 static void vfio_batch_unpin(struct vfio_batch *batch, struct vfio_dma *dma)
490 {
491 	while (batch->size) {
492 		unsigned long pfn = page_to_pfn(batch->pages[batch->offset]);
493 
494 		put_pfn(pfn, dma->prot);
495 		batch->offset++;
496 		batch->size--;
497 	}
498 }
499 
500 static void vfio_batch_fini(struct vfio_batch *batch)
501 {
502 	if (batch->capacity == VFIO_BATCH_MAX_CAPACITY)
503 		free_page((unsigned long)batch->pages);
504 }
505 
506 static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
507 			    unsigned long vaddr, unsigned long *pfn,
508 			    bool write_fault)
509 {
510 	pte_t *ptep;
511 	spinlock_t *ptl;
512 	int ret;
513 
514 	ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
515 	if (ret) {
516 		bool unlocked = false;
517 
518 		ret = fixup_user_fault(mm, vaddr,
519 				       FAULT_FLAG_REMOTE |
520 				       (write_fault ?  FAULT_FLAG_WRITE : 0),
521 				       &unlocked);
522 		if (unlocked)
523 			return -EAGAIN;
524 
525 		if (ret)
526 			return ret;
527 
528 		ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
529 		if (ret)
530 			return ret;
531 	}
532 
533 	if (write_fault && !pte_write(*ptep))
534 		ret = -EFAULT;
535 	else
536 		*pfn = pte_pfn(*ptep);
537 
538 	pte_unmap_unlock(ptep, ptl);
539 	return ret;
540 }
541 
542 /*
543  * Returns the positive number of pfns successfully obtained or a negative
544  * error code.
545  */
546 static int vaddr_get_pfns(struct mm_struct *mm, unsigned long vaddr,
547 			  long npages, int prot, unsigned long *pfn,
548 			  struct page **pages)
549 {
550 	struct vm_area_struct *vma;
551 	unsigned int flags = 0;
552 	int ret;
553 
554 	if (prot & IOMMU_WRITE)
555 		flags |= FOLL_WRITE;
556 
557 	mmap_read_lock(mm);
558 	ret = pin_user_pages_remote(mm, vaddr, npages, flags | FOLL_LONGTERM,
559 				    pages, NULL, NULL);
560 	if (ret > 0) {
561 		*pfn = page_to_pfn(pages[0]);
562 		goto done;
563 	}
564 
565 	vaddr = untagged_addr(vaddr);
566 
567 retry:
568 	vma = vma_lookup(mm, vaddr);
569 
570 	if (vma && vma->vm_flags & VM_PFNMAP) {
571 		ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE);
572 		if (ret == -EAGAIN)
573 			goto retry;
574 
575 		if (!ret) {
576 			if (is_invalid_reserved_pfn(*pfn))
577 				ret = 1;
578 			else
579 				ret = -EFAULT;
580 		}
581 	}
582 done:
583 	mmap_read_unlock(mm);
584 	return ret;
585 }
586 
587 static int vfio_wait(struct vfio_iommu *iommu)
588 {
589 	DEFINE_WAIT(wait);
590 
591 	prepare_to_wait(&iommu->vaddr_wait, &wait, TASK_KILLABLE);
592 	mutex_unlock(&iommu->lock);
593 	schedule();
594 	mutex_lock(&iommu->lock);
595 	finish_wait(&iommu->vaddr_wait, &wait);
596 	if (kthread_should_stop() || !iommu->container_open ||
597 	    fatal_signal_pending(current)) {
598 		return -EFAULT;
599 	}
600 	return WAITED;
601 }
602 
603 /*
604  * Find dma struct and wait for its vaddr to be valid.  iommu lock is dropped
605  * if the task waits, but is re-locked on return.  Return result in *dma_p.
606  * Return 0 on success with no waiting, WAITED on success if waited, and -errno
607  * on error.
608  */
609 static int vfio_find_dma_valid(struct vfio_iommu *iommu, dma_addr_t start,
610 			       size_t size, struct vfio_dma **dma_p)
611 {
612 	int ret = 0;
613 
614 	do {
615 		*dma_p = vfio_find_dma(iommu, start, size);
616 		if (!*dma_p)
617 			return -EINVAL;
618 		else if (!(*dma_p)->vaddr_invalid)
619 			return ret;
620 		else
621 			ret = vfio_wait(iommu);
622 	} while (ret == WAITED);
623 
624 	return ret;
625 }
626 
627 /*
628  * Wait for all vaddr in the dma_list to become valid.  iommu lock is dropped
629  * if the task waits, but is re-locked on return.  Return 0 on success with no
630  * waiting, WAITED on success if waited, and -errno on error.
631  */
632 static int vfio_wait_all_valid(struct vfio_iommu *iommu)
633 {
634 	int ret = 0;
635 
636 	while (iommu->vaddr_invalid_count && ret >= 0)
637 		ret = vfio_wait(iommu);
638 
639 	return ret;
640 }
641 
642 /*
643  * Attempt to pin pages.  We really don't want to track all the pfns and
644  * the iommu can only map chunks of consecutive pfns anyway, so get the
645  * first page and all consecutive pages with the same locking.
646  */
647 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
648 				  long npage, unsigned long *pfn_base,
649 				  unsigned long limit, struct vfio_batch *batch)
650 {
651 	unsigned long pfn;
652 	struct mm_struct *mm = current->mm;
653 	long ret, pinned = 0, lock_acct = 0;
654 	bool rsvd;
655 	dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
656 
657 	/* This code path is only user initiated */
658 	if (!mm)
659 		return -ENODEV;
660 
661 	if (batch->size) {
662 		/* Leftover pages in batch from an earlier call. */
663 		*pfn_base = page_to_pfn(batch->pages[batch->offset]);
664 		pfn = *pfn_base;
665 		rsvd = is_invalid_reserved_pfn(*pfn_base);
666 	} else {
667 		*pfn_base = 0;
668 	}
669 
670 	while (npage) {
671 		if (!batch->size) {
672 			/* Empty batch, so refill it. */
673 			long req_pages = min_t(long, npage, batch->capacity);
674 
675 			ret = vaddr_get_pfns(mm, vaddr, req_pages, dma->prot,
676 					     &pfn, batch->pages);
677 			if (ret < 0)
678 				goto unpin_out;
679 
680 			batch->size = ret;
681 			batch->offset = 0;
682 
683 			if (!*pfn_base) {
684 				*pfn_base = pfn;
685 				rsvd = is_invalid_reserved_pfn(*pfn_base);
686 			}
687 		}
688 
689 		/*
690 		 * pfn is preset for the first iteration of this inner loop and
691 		 * updated at the end to handle a VM_PFNMAP pfn.  In that case,
692 		 * batch->pages isn't valid (there's no struct page), so allow
693 		 * batch->pages to be touched only when there's more than one
694 		 * pfn to check, which guarantees the pfns are from a
695 		 * !VM_PFNMAP vma.
696 		 */
697 		while (true) {
698 			if (pfn != *pfn_base + pinned ||
699 			    rsvd != is_invalid_reserved_pfn(pfn))
700 				goto out;
701 
702 			/*
703 			 * Reserved pages aren't counted against the user,
704 			 * externally pinned pages are already counted against
705 			 * the user.
706 			 */
707 			if (!rsvd && !vfio_find_vpfn(dma, iova)) {
708 				if (!dma->lock_cap &&
709 				    mm->locked_vm + lock_acct + 1 > limit) {
710 					pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
711 						__func__, limit << PAGE_SHIFT);
712 					ret = -ENOMEM;
713 					goto unpin_out;
714 				}
715 				lock_acct++;
716 			}
717 
718 			pinned++;
719 			npage--;
720 			vaddr += PAGE_SIZE;
721 			iova += PAGE_SIZE;
722 			batch->offset++;
723 			batch->size--;
724 
725 			if (!batch->size)
726 				break;
727 
728 			pfn = page_to_pfn(batch->pages[batch->offset]);
729 		}
730 
731 		if (unlikely(disable_hugepages))
732 			break;
733 	}
734 
735 out:
736 	ret = vfio_lock_acct(dma, lock_acct, false);
737 
738 unpin_out:
739 	if (batch->size == 1 && !batch->offset) {
740 		/* May be a VM_PFNMAP pfn, which the batch can't remember. */
741 		put_pfn(pfn, dma->prot);
742 		batch->size = 0;
743 	}
744 
745 	if (ret < 0) {
746 		if (pinned && !rsvd) {
747 			for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
748 				put_pfn(pfn, dma->prot);
749 		}
750 		vfio_batch_unpin(batch, dma);
751 
752 		return ret;
753 	}
754 
755 	return pinned;
756 }
757 
758 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
759 				    unsigned long pfn, long npage,
760 				    bool do_accounting)
761 {
762 	long unlocked = 0, locked = 0;
763 	long i;
764 
765 	for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
766 		if (put_pfn(pfn++, dma->prot)) {
767 			unlocked++;
768 			if (vfio_find_vpfn(dma, iova))
769 				locked++;
770 		}
771 	}
772 
773 	if (do_accounting)
774 		vfio_lock_acct(dma, locked - unlocked, true);
775 
776 	return unlocked;
777 }
778 
779 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
780 				  unsigned long *pfn_base, bool do_accounting)
781 {
782 	struct page *pages[1];
783 	struct mm_struct *mm;
784 	int ret;
785 
786 	mm = get_task_mm(dma->task);
787 	if (!mm)
788 		return -ENODEV;
789 
790 	ret = vaddr_get_pfns(mm, vaddr, 1, dma->prot, pfn_base, pages);
791 	if (ret != 1)
792 		goto out;
793 
794 	ret = 0;
795 
796 	if (do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
797 		ret = vfio_lock_acct(dma, 1, true);
798 		if (ret) {
799 			put_pfn(*pfn_base, dma->prot);
800 			if (ret == -ENOMEM)
801 				pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
802 					"(%ld) exceeded\n", __func__,
803 					dma->task->comm, task_pid_nr(dma->task),
804 					task_rlimit(dma->task, RLIMIT_MEMLOCK));
805 		}
806 	}
807 
808 out:
809 	mmput(mm);
810 	return ret;
811 }
812 
813 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
814 				    bool do_accounting)
815 {
816 	int unlocked;
817 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
818 
819 	if (!vpfn)
820 		return 0;
821 
822 	unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
823 
824 	if (do_accounting)
825 		vfio_lock_acct(dma, -unlocked, true);
826 
827 	return unlocked;
828 }
829 
830 static int vfio_iommu_type1_pin_pages(void *iommu_data,
831 				      struct iommu_group *iommu_group,
832 				      dma_addr_t user_iova,
833 				      int npage, int prot,
834 				      struct page **pages)
835 {
836 	struct vfio_iommu *iommu = iommu_data;
837 	struct vfio_iommu_group *group;
838 	int i, j, ret;
839 	unsigned long remote_vaddr;
840 	struct vfio_dma *dma;
841 	bool do_accounting;
842 	dma_addr_t iova;
843 
844 	if (!iommu || !pages)
845 		return -EINVAL;
846 
847 	/* Supported for v2 version only */
848 	if (!iommu->v2)
849 		return -EACCES;
850 
851 	mutex_lock(&iommu->lock);
852 
853 	/*
854 	 * Wait for all necessary vaddr's to be valid so they can be used in
855 	 * the main loop without dropping the lock, to avoid racing vs unmap.
856 	 */
857 again:
858 	if (iommu->vaddr_invalid_count) {
859 		for (i = 0; i < npage; i++) {
860 			iova = user_iova + PAGE_SIZE * i;
861 			ret = vfio_find_dma_valid(iommu, iova, PAGE_SIZE, &dma);
862 			if (ret < 0)
863 				goto pin_done;
864 			if (ret == WAITED)
865 				goto again;
866 		}
867 	}
868 
869 	/* Fail if no dma_umap notifier is registered */
870 	if (list_empty(&iommu->device_list)) {
871 		ret = -EINVAL;
872 		goto pin_done;
873 	}
874 
875 	/*
876 	 * If iommu capable domain exist in the container then all pages are
877 	 * already pinned and accounted. Accounting should be done if there is no
878 	 * iommu capable domain in the container.
879 	 */
880 	do_accounting = list_empty(&iommu->domain_list);
881 
882 	for (i = 0; i < npage; i++) {
883 		unsigned long phys_pfn;
884 		struct vfio_pfn *vpfn;
885 
886 		iova = user_iova + PAGE_SIZE * i;
887 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
888 		if (!dma) {
889 			ret = -EINVAL;
890 			goto pin_unwind;
891 		}
892 
893 		if ((dma->prot & prot) != prot) {
894 			ret = -EPERM;
895 			goto pin_unwind;
896 		}
897 
898 		vpfn = vfio_iova_get_vfio_pfn(dma, iova);
899 		if (vpfn) {
900 			pages[i] = pfn_to_page(vpfn->pfn);
901 			continue;
902 		}
903 
904 		remote_vaddr = dma->vaddr + (iova - dma->iova);
905 		ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn,
906 					     do_accounting);
907 		if (ret)
908 			goto pin_unwind;
909 
910 		ret = vfio_add_to_pfn_list(dma, iova, phys_pfn);
911 		if (ret) {
912 			if (put_pfn(phys_pfn, dma->prot) && do_accounting)
913 				vfio_lock_acct(dma, -1, true);
914 			goto pin_unwind;
915 		}
916 
917 		pages[i] = pfn_to_page(phys_pfn);
918 
919 		if (iommu->dirty_page_tracking) {
920 			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
921 
922 			/*
923 			 * Bitmap populated with the smallest supported page
924 			 * size
925 			 */
926 			bitmap_set(dma->bitmap,
927 				   (iova - dma->iova) >> pgshift, 1);
928 		}
929 	}
930 	ret = i;
931 
932 	group = vfio_iommu_find_iommu_group(iommu, iommu_group);
933 	if (!group->pinned_page_dirty_scope) {
934 		group->pinned_page_dirty_scope = true;
935 		iommu->num_non_pinned_groups--;
936 	}
937 
938 	goto pin_done;
939 
940 pin_unwind:
941 	pages[i] = NULL;
942 	for (j = 0; j < i; j++) {
943 		dma_addr_t iova;
944 
945 		iova = user_iova + PAGE_SIZE * j;
946 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
947 		vfio_unpin_page_external(dma, iova, do_accounting);
948 		pages[j] = NULL;
949 	}
950 pin_done:
951 	mutex_unlock(&iommu->lock);
952 	return ret;
953 }
954 
955 static void vfio_iommu_type1_unpin_pages(void *iommu_data,
956 					 dma_addr_t user_iova, int npage)
957 {
958 	struct vfio_iommu *iommu = iommu_data;
959 	bool do_accounting;
960 	int i;
961 
962 	/* Supported for v2 version only */
963 	if (WARN_ON(!iommu->v2))
964 		return;
965 
966 	mutex_lock(&iommu->lock);
967 
968 	do_accounting = list_empty(&iommu->domain_list);
969 	for (i = 0; i < npage; i++) {
970 		dma_addr_t iova = user_iova + PAGE_SIZE * i;
971 		struct vfio_dma *dma;
972 
973 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
974 		if (!dma)
975 			break;
976 
977 		vfio_unpin_page_external(dma, iova, do_accounting);
978 	}
979 
980 	mutex_unlock(&iommu->lock);
981 
982 	WARN_ON(i != npage);
983 }
984 
985 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
986 			    struct list_head *regions,
987 			    struct iommu_iotlb_gather *iotlb_gather)
988 {
989 	long unlocked = 0;
990 	struct vfio_regions *entry, *next;
991 
992 	iommu_iotlb_sync(domain->domain, iotlb_gather);
993 
994 	list_for_each_entry_safe(entry, next, regions, list) {
995 		unlocked += vfio_unpin_pages_remote(dma,
996 						    entry->iova,
997 						    entry->phys >> PAGE_SHIFT,
998 						    entry->len >> PAGE_SHIFT,
999 						    false);
1000 		list_del(&entry->list);
1001 		kfree(entry);
1002 	}
1003 
1004 	cond_resched();
1005 
1006 	return unlocked;
1007 }
1008 
1009 /*
1010  * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
1011  * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
1012  * of these regions (currently using a list).
1013  *
1014  * This value specifies maximum number of regions for each IOTLB flush sync.
1015  */
1016 #define VFIO_IOMMU_TLB_SYNC_MAX		512
1017 
1018 static size_t unmap_unpin_fast(struct vfio_domain *domain,
1019 			       struct vfio_dma *dma, dma_addr_t *iova,
1020 			       size_t len, phys_addr_t phys, long *unlocked,
1021 			       struct list_head *unmapped_list,
1022 			       int *unmapped_cnt,
1023 			       struct iommu_iotlb_gather *iotlb_gather)
1024 {
1025 	size_t unmapped = 0;
1026 	struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1027 
1028 	if (entry) {
1029 		unmapped = iommu_unmap_fast(domain->domain, *iova, len,
1030 					    iotlb_gather);
1031 
1032 		if (!unmapped) {
1033 			kfree(entry);
1034 		} else {
1035 			entry->iova = *iova;
1036 			entry->phys = phys;
1037 			entry->len  = unmapped;
1038 			list_add_tail(&entry->list, unmapped_list);
1039 
1040 			*iova += unmapped;
1041 			(*unmapped_cnt)++;
1042 		}
1043 	}
1044 
1045 	/*
1046 	 * Sync if the number of fast-unmap regions hits the limit
1047 	 * or in case of errors.
1048 	 */
1049 	if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
1050 		*unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
1051 					     iotlb_gather);
1052 		*unmapped_cnt = 0;
1053 	}
1054 
1055 	return unmapped;
1056 }
1057 
1058 static size_t unmap_unpin_slow(struct vfio_domain *domain,
1059 			       struct vfio_dma *dma, dma_addr_t *iova,
1060 			       size_t len, phys_addr_t phys,
1061 			       long *unlocked)
1062 {
1063 	size_t unmapped = iommu_unmap(domain->domain, *iova, len);
1064 
1065 	if (unmapped) {
1066 		*unlocked += vfio_unpin_pages_remote(dma, *iova,
1067 						     phys >> PAGE_SHIFT,
1068 						     unmapped >> PAGE_SHIFT,
1069 						     false);
1070 		*iova += unmapped;
1071 		cond_resched();
1072 	}
1073 	return unmapped;
1074 }
1075 
1076 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
1077 			     bool do_accounting)
1078 {
1079 	dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
1080 	struct vfio_domain *domain, *d;
1081 	LIST_HEAD(unmapped_region_list);
1082 	struct iommu_iotlb_gather iotlb_gather;
1083 	int unmapped_region_cnt = 0;
1084 	long unlocked = 0;
1085 
1086 	if (!dma->size)
1087 		return 0;
1088 
1089 	if (list_empty(&iommu->domain_list))
1090 		return 0;
1091 
1092 	/*
1093 	 * We use the IOMMU to track the physical addresses, otherwise we'd
1094 	 * need a much more complicated tracking system.  Unfortunately that
1095 	 * means we need to use one of the iommu domains to figure out the
1096 	 * pfns to unpin.  The rest need to be unmapped in advance so we have
1097 	 * no iommu translations remaining when the pages are unpinned.
1098 	 */
1099 	domain = d = list_first_entry(&iommu->domain_list,
1100 				      struct vfio_domain, next);
1101 
1102 	list_for_each_entry_continue(d, &iommu->domain_list, next) {
1103 		iommu_unmap(d->domain, dma->iova, dma->size);
1104 		cond_resched();
1105 	}
1106 
1107 	iommu_iotlb_gather_init(&iotlb_gather);
1108 	while (iova < end) {
1109 		size_t unmapped, len;
1110 		phys_addr_t phys, next;
1111 
1112 		phys = iommu_iova_to_phys(domain->domain, iova);
1113 		if (WARN_ON(!phys)) {
1114 			iova += PAGE_SIZE;
1115 			continue;
1116 		}
1117 
1118 		/*
1119 		 * To optimize for fewer iommu_unmap() calls, each of which
1120 		 * may require hardware cache flushing, try to find the
1121 		 * largest contiguous physical memory chunk to unmap.
1122 		 */
1123 		for (len = PAGE_SIZE;
1124 		     !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
1125 			next = iommu_iova_to_phys(domain->domain, iova + len);
1126 			if (next != phys + len)
1127 				break;
1128 		}
1129 
1130 		/*
1131 		 * First, try to use fast unmap/unpin. In case of failure,
1132 		 * switch to slow unmap/unpin path.
1133 		 */
1134 		unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
1135 					    &unlocked, &unmapped_region_list,
1136 					    &unmapped_region_cnt,
1137 					    &iotlb_gather);
1138 		if (!unmapped) {
1139 			unmapped = unmap_unpin_slow(domain, dma, &iova, len,
1140 						    phys, &unlocked);
1141 			if (WARN_ON(!unmapped))
1142 				break;
1143 		}
1144 	}
1145 
1146 	dma->iommu_mapped = false;
1147 
1148 	if (unmapped_region_cnt) {
1149 		unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
1150 					    &iotlb_gather);
1151 	}
1152 
1153 	if (do_accounting) {
1154 		vfio_lock_acct(dma, -unlocked, true);
1155 		return 0;
1156 	}
1157 	return unlocked;
1158 }
1159 
1160 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
1161 {
1162 	WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list));
1163 	vfio_unmap_unpin(iommu, dma, true);
1164 	vfio_unlink_dma(iommu, dma);
1165 	put_task_struct(dma->task);
1166 	vfio_dma_bitmap_free(dma);
1167 	if (dma->vaddr_invalid) {
1168 		iommu->vaddr_invalid_count--;
1169 		wake_up_all(&iommu->vaddr_wait);
1170 	}
1171 	kfree(dma);
1172 	iommu->dma_avail++;
1173 }
1174 
1175 static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
1176 {
1177 	struct vfio_domain *domain;
1178 
1179 	iommu->pgsize_bitmap = ULONG_MAX;
1180 
1181 	list_for_each_entry(domain, &iommu->domain_list, next)
1182 		iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
1183 
1184 	/*
1185 	 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
1186 	 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
1187 	 * That way the user will be able to map/unmap buffers whose size/
1188 	 * start address is aligned with PAGE_SIZE. Pinning code uses that
1189 	 * granularity while iommu driver can use the sub-PAGE_SIZE size
1190 	 * to map the buffer.
1191 	 */
1192 	if (iommu->pgsize_bitmap & ~PAGE_MASK) {
1193 		iommu->pgsize_bitmap &= PAGE_MASK;
1194 		iommu->pgsize_bitmap |= PAGE_SIZE;
1195 	}
1196 }
1197 
1198 static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1199 			      struct vfio_dma *dma, dma_addr_t base_iova,
1200 			      size_t pgsize)
1201 {
1202 	unsigned long pgshift = __ffs(pgsize);
1203 	unsigned long nbits = dma->size >> pgshift;
1204 	unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
1205 	unsigned long copy_offset = bit_offset / BITS_PER_LONG;
1206 	unsigned long shift = bit_offset % BITS_PER_LONG;
1207 	unsigned long leftover;
1208 
1209 	/*
1210 	 * mark all pages dirty if any IOMMU capable device is not able
1211 	 * to report dirty pages and all pages are pinned and mapped.
1212 	 */
1213 	if (iommu->num_non_pinned_groups && dma->iommu_mapped)
1214 		bitmap_set(dma->bitmap, 0, nbits);
1215 
1216 	if (shift) {
1217 		bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
1218 				  nbits + shift);
1219 
1220 		if (copy_from_user(&leftover,
1221 				   (void __user *)(bitmap + copy_offset),
1222 				   sizeof(leftover)))
1223 			return -EFAULT;
1224 
1225 		bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1226 	}
1227 
1228 	if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1229 			 DIRTY_BITMAP_BYTES(nbits + shift)))
1230 		return -EFAULT;
1231 
1232 	return 0;
1233 }
1234 
1235 static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1236 				  dma_addr_t iova, size_t size, size_t pgsize)
1237 {
1238 	struct vfio_dma *dma;
1239 	struct rb_node *n;
1240 	unsigned long pgshift = __ffs(pgsize);
1241 	int ret;
1242 
1243 	/*
1244 	 * GET_BITMAP request must fully cover vfio_dma mappings.  Multiple
1245 	 * vfio_dma mappings may be clubbed by specifying large ranges, but
1246 	 * there must not be any previous mappings bisected by the range.
1247 	 * An error will be returned if these conditions are not met.
1248 	 */
1249 	dma = vfio_find_dma(iommu, iova, 1);
1250 	if (dma && dma->iova != iova)
1251 		return -EINVAL;
1252 
1253 	dma = vfio_find_dma(iommu, iova + size - 1, 0);
1254 	if (dma && dma->iova + dma->size != iova + size)
1255 		return -EINVAL;
1256 
1257 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1258 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1259 
1260 		if (dma->iova < iova)
1261 			continue;
1262 
1263 		if (dma->iova > iova + size - 1)
1264 			break;
1265 
1266 		ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1267 		if (ret)
1268 			return ret;
1269 
1270 		/*
1271 		 * Re-populate bitmap to include all pinned pages which are
1272 		 * considered as dirty but exclude pages which are unpinned and
1273 		 * pages which are marked dirty by vfio_dma_rw()
1274 		 */
1275 		bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1276 		vfio_dma_populate_bitmap(dma, pgsize);
1277 	}
1278 	return 0;
1279 }
1280 
1281 static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1282 {
1283 	if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1284 	    (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1285 		return -EINVAL;
1286 
1287 	return 0;
1288 }
1289 
1290 /*
1291  * Notify VFIO drivers using vfio_register_emulated_iommu_dev() to invalidate
1292  * and unmap iovas within the range we're about to unmap. Drivers MUST unpin
1293  * pages in response to an invalidation.
1294  */
1295 static void vfio_notify_dma_unmap(struct vfio_iommu *iommu,
1296 				  struct vfio_dma *dma)
1297 {
1298 	struct vfio_device *device;
1299 
1300 	if (list_empty(&iommu->device_list))
1301 		return;
1302 
1303 	/*
1304 	 * The device is expected to call vfio_unpin_pages() for any IOVA it has
1305 	 * pinned within the range. Since vfio_unpin_pages() will eventually
1306 	 * call back down to this code and try to obtain the iommu->lock we must
1307 	 * drop it.
1308 	 */
1309 	mutex_lock(&iommu->device_list_lock);
1310 	mutex_unlock(&iommu->lock);
1311 
1312 	list_for_each_entry(device, &iommu->device_list, iommu_entry)
1313 		device->ops->dma_unmap(device, dma->iova, dma->size);
1314 
1315 	mutex_unlock(&iommu->device_list_lock);
1316 	mutex_lock(&iommu->lock);
1317 }
1318 
1319 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1320 			     struct vfio_iommu_type1_dma_unmap *unmap,
1321 			     struct vfio_bitmap *bitmap)
1322 {
1323 	struct vfio_dma *dma, *dma_last = NULL;
1324 	size_t unmapped = 0, pgsize;
1325 	int ret = -EINVAL, retries = 0;
1326 	unsigned long pgshift;
1327 	dma_addr_t iova = unmap->iova;
1328 	u64 size = unmap->size;
1329 	bool unmap_all = unmap->flags & VFIO_DMA_UNMAP_FLAG_ALL;
1330 	bool invalidate_vaddr = unmap->flags & VFIO_DMA_UNMAP_FLAG_VADDR;
1331 	struct rb_node *n, *first_n;
1332 
1333 	mutex_lock(&iommu->lock);
1334 
1335 	pgshift = __ffs(iommu->pgsize_bitmap);
1336 	pgsize = (size_t)1 << pgshift;
1337 
1338 	if (iova & (pgsize - 1))
1339 		goto unlock;
1340 
1341 	if (unmap_all) {
1342 		if (iova || size)
1343 			goto unlock;
1344 		size = U64_MAX;
1345 	} else if (!size || size & (pgsize - 1) ||
1346 		   iova + size - 1 < iova || size > SIZE_MAX) {
1347 		goto unlock;
1348 	}
1349 
1350 	/* When dirty tracking is enabled, allow only min supported pgsize */
1351 	if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1352 	    (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1353 		goto unlock;
1354 	}
1355 
1356 	WARN_ON((pgsize - 1) & PAGE_MASK);
1357 again:
1358 	/*
1359 	 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1360 	 * avoid tracking individual mappings.  This means that the granularity
1361 	 * of the original mapping was lost and the user was allowed to attempt
1362 	 * to unmap any range.  Depending on the contiguousness of physical
1363 	 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1364 	 * or may not have worked.  We only guaranteed unmap granularity
1365 	 * matching the original mapping; even though it was untracked here,
1366 	 * the original mappings are reflected in IOMMU mappings.  This
1367 	 * resulted in a couple unusual behaviors.  First, if a range is not
1368 	 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1369 	 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1370 	 * a zero sized unmap.  Also, if an unmap request overlaps the first
1371 	 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1372 	 * This also returns success and the returned unmap size reflects the
1373 	 * actual size unmapped.
1374 	 *
1375 	 * We attempt to maintain compatibility with this "v1" interface, but
1376 	 * we take control out of the hands of the IOMMU.  Therefore, an unmap
1377 	 * request offset from the beginning of the original mapping will
1378 	 * return success with zero sized unmap.  And an unmap request covering
1379 	 * the first iova of mapping will unmap the entire range.
1380 	 *
1381 	 * The v2 version of this interface intends to be more deterministic.
1382 	 * Unmap requests must fully cover previous mappings.  Multiple
1383 	 * mappings may still be unmaped by specifying large ranges, but there
1384 	 * must not be any previous mappings bisected by the range.  An error
1385 	 * will be returned if these conditions are not met.  The v2 interface
1386 	 * will only return success and a size of zero if there were no
1387 	 * mappings within the range.
1388 	 */
1389 	if (iommu->v2 && !unmap_all) {
1390 		dma = vfio_find_dma(iommu, iova, 1);
1391 		if (dma && dma->iova != iova)
1392 			goto unlock;
1393 
1394 		dma = vfio_find_dma(iommu, iova + size - 1, 0);
1395 		if (dma && dma->iova + dma->size != iova + size)
1396 			goto unlock;
1397 	}
1398 
1399 	ret = 0;
1400 	n = first_n = vfio_find_dma_first_node(iommu, iova, size);
1401 
1402 	while (n) {
1403 		dma = rb_entry(n, struct vfio_dma, node);
1404 		if (dma->iova >= iova + size)
1405 			break;
1406 
1407 		if (!iommu->v2 && iova > dma->iova)
1408 			break;
1409 
1410 		if (invalidate_vaddr) {
1411 			if (dma->vaddr_invalid) {
1412 				struct rb_node *last_n = n;
1413 
1414 				for (n = first_n; n != last_n; n = rb_next(n)) {
1415 					dma = rb_entry(n,
1416 						       struct vfio_dma, node);
1417 					dma->vaddr_invalid = false;
1418 					iommu->vaddr_invalid_count--;
1419 				}
1420 				ret = -EINVAL;
1421 				unmapped = 0;
1422 				break;
1423 			}
1424 			dma->vaddr_invalid = true;
1425 			iommu->vaddr_invalid_count++;
1426 			unmapped += dma->size;
1427 			n = rb_next(n);
1428 			continue;
1429 		}
1430 
1431 		if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1432 			if (dma_last == dma) {
1433 				BUG_ON(++retries > 10);
1434 			} else {
1435 				dma_last = dma;
1436 				retries = 0;
1437 			}
1438 
1439 			vfio_notify_dma_unmap(iommu, dma);
1440 			goto again;
1441 		}
1442 
1443 		if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1444 			ret = update_user_bitmap(bitmap->data, iommu, dma,
1445 						 iova, pgsize);
1446 			if (ret)
1447 				break;
1448 		}
1449 
1450 		unmapped += dma->size;
1451 		n = rb_next(n);
1452 		vfio_remove_dma(iommu, dma);
1453 	}
1454 
1455 unlock:
1456 	mutex_unlock(&iommu->lock);
1457 
1458 	/* Report how much was unmapped */
1459 	unmap->size = unmapped;
1460 
1461 	return ret;
1462 }
1463 
1464 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1465 			  unsigned long pfn, long npage, int prot)
1466 {
1467 	struct vfio_domain *d;
1468 	int ret;
1469 
1470 	list_for_each_entry(d, &iommu->domain_list, next) {
1471 		ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1472 				npage << PAGE_SHIFT, prot | IOMMU_CACHE);
1473 		if (ret)
1474 			goto unwind;
1475 
1476 		cond_resched();
1477 	}
1478 
1479 	return 0;
1480 
1481 unwind:
1482 	list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1483 		iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1484 		cond_resched();
1485 	}
1486 
1487 	return ret;
1488 }
1489 
1490 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1491 			    size_t map_size)
1492 {
1493 	dma_addr_t iova = dma->iova;
1494 	unsigned long vaddr = dma->vaddr;
1495 	struct vfio_batch batch;
1496 	size_t size = map_size;
1497 	long npage;
1498 	unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1499 	int ret = 0;
1500 
1501 	vfio_batch_init(&batch);
1502 
1503 	while (size) {
1504 		/* Pin a contiguous chunk of memory */
1505 		npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1506 					      size >> PAGE_SHIFT, &pfn, limit,
1507 					      &batch);
1508 		if (npage <= 0) {
1509 			WARN_ON(!npage);
1510 			ret = (int)npage;
1511 			break;
1512 		}
1513 
1514 		/* Map it! */
1515 		ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1516 				     dma->prot);
1517 		if (ret) {
1518 			vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1519 						npage, true);
1520 			vfio_batch_unpin(&batch, dma);
1521 			break;
1522 		}
1523 
1524 		size -= npage << PAGE_SHIFT;
1525 		dma->size += npage << PAGE_SHIFT;
1526 	}
1527 
1528 	vfio_batch_fini(&batch);
1529 	dma->iommu_mapped = true;
1530 
1531 	if (ret)
1532 		vfio_remove_dma(iommu, dma);
1533 
1534 	return ret;
1535 }
1536 
1537 /*
1538  * Check dma map request is within a valid iova range
1539  */
1540 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1541 				      dma_addr_t start, dma_addr_t end)
1542 {
1543 	struct list_head *iova = &iommu->iova_list;
1544 	struct vfio_iova *node;
1545 
1546 	list_for_each_entry(node, iova, list) {
1547 		if (start >= node->start && end <= node->end)
1548 			return true;
1549 	}
1550 
1551 	/*
1552 	 * Check for list_empty() as well since a container with
1553 	 * a single mdev device will have an empty list.
1554 	 */
1555 	return list_empty(iova);
1556 }
1557 
1558 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1559 			   struct vfio_iommu_type1_dma_map *map)
1560 {
1561 	bool set_vaddr = map->flags & VFIO_DMA_MAP_FLAG_VADDR;
1562 	dma_addr_t iova = map->iova;
1563 	unsigned long vaddr = map->vaddr;
1564 	size_t size = map->size;
1565 	int ret = 0, prot = 0;
1566 	size_t pgsize;
1567 	struct vfio_dma *dma;
1568 
1569 	/* Verify that none of our __u64 fields overflow */
1570 	if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1571 		return -EINVAL;
1572 
1573 	/* READ/WRITE from device perspective */
1574 	if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1575 		prot |= IOMMU_WRITE;
1576 	if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1577 		prot |= IOMMU_READ;
1578 
1579 	if ((prot && set_vaddr) || (!prot && !set_vaddr))
1580 		return -EINVAL;
1581 
1582 	mutex_lock(&iommu->lock);
1583 
1584 	pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1585 
1586 	WARN_ON((pgsize - 1) & PAGE_MASK);
1587 
1588 	if (!size || (size | iova | vaddr) & (pgsize - 1)) {
1589 		ret = -EINVAL;
1590 		goto out_unlock;
1591 	}
1592 
1593 	/* Don't allow IOVA or virtual address wrap */
1594 	if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1595 		ret = -EINVAL;
1596 		goto out_unlock;
1597 	}
1598 
1599 	dma = vfio_find_dma(iommu, iova, size);
1600 	if (set_vaddr) {
1601 		if (!dma) {
1602 			ret = -ENOENT;
1603 		} else if (!dma->vaddr_invalid || dma->iova != iova ||
1604 			   dma->size != size) {
1605 			ret = -EINVAL;
1606 		} else {
1607 			dma->vaddr = vaddr;
1608 			dma->vaddr_invalid = false;
1609 			iommu->vaddr_invalid_count--;
1610 			wake_up_all(&iommu->vaddr_wait);
1611 		}
1612 		goto out_unlock;
1613 	} else if (dma) {
1614 		ret = -EEXIST;
1615 		goto out_unlock;
1616 	}
1617 
1618 	if (!iommu->dma_avail) {
1619 		ret = -ENOSPC;
1620 		goto out_unlock;
1621 	}
1622 
1623 	if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1624 		ret = -EINVAL;
1625 		goto out_unlock;
1626 	}
1627 
1628 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1629 	if (!dma) {
1630 		ret = -ENOMEM;
1631 		goto out_unlock;
1632 	}
1633 
1634 	iommu->dma_avail--;
1635 	dma->iova = iova;
1636 	dma->vaddr = vaddr;
1637 	dma->prot = prot;
1638 
1639 	/*
1640 	 * We need to be able to both add to a task's locked memory and test
1641 	 * against the locked memory limit and we need to be able to do both
1642 	 * outside of this call path as pinning can be asynchronous via the
1643 	 * external interfaces for mdev devices.  RLIMIT_MEMLOCK requires a
1644 	 * task_struct and VM locked pages requires an mm_struct, however
1645 	 * holding an indefinite mm reference is not recommended, therefore we
1646 	 * only hold a reference to a task.  We could hold a reference to
1647 	 * current, however QEMU uses this call path through vCPU threads,
1648 	 * which can be killed resulting in a NULL mm and failure in the unmap
1649 	 * path when called via a different thread.  Avoid this problem by
1650 	 * using the group_leader as threads within the same group require
1651 	 * both CLONE_THREAD and CLONE_VM and will therefore use the same
1652 	 * mm_struct.
1653 	 *
1654 	 * Previously we also used the task for testing CAP_IPC_LOCK at the
1655 	 * time of pinning and accounting, however has_capability() makes use
1656 	 * of real_cred, a copy-on-write field, so we can't guarantee that it
1657 	 * matches group_leader, or in fact that it might not change by the
1658 	 * time it's evaluated.  If a process were to call MAP_DMA with
1659 	 * CAP_IPC_LOCK but later drop it, it doesn't make sense that they
1660 	 * possibly see different results for an iommu_mapped vfio_dma vs
1661 	 * externally mapped.  Therefore track CAP_IPC_LOCK in vfio_dma at the
1662 	 * time of calling MAP_DMA.
1663 	 */
1664 	get_task_struct(current->group_leader);
1665 	dma->task = current->group_leader;
1666 	dma->lock_cap = capable(CAP_IPC_LOCK);
1667 
1668 	dma->pfn_list = RB_ROOT;
1669 
1670 	/* Insert zero-sized and grow as we map chunks of it */
1671 	vfio_link_dma(iommu, dma);
1672 
1673 	/* Don't pin and map if container doesn't contain IOMMU capable domain*/
1674 	if (list_empty(&iommu->domain_list))
1675 		dma->size = size;
1676 	else
1677 		ret = vfio_pin_map_dma(iommu, dma, size);
1678 
1679 	if (!ret && iommu->dirty_page_tracking) {
1680 		ret = vfio_dma_bitmap_alloc(dma, pgsize);
1681 		if (ret)
1682 			vfio_remove_dma(iommu, dma);
1683 	}
1684 
1685 out_unlock:
1686 	mutex_unlock(&iommu->lock);
1687 	return ret;
1688 }
1689 
1690 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1691 			     struct vfio_domain *domain)
1692 {
1693 	struct vfio_batch batch;
1694 	struct vfio_domain *d = NULL;
1695 	struct rb_node *n;
1696 	unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1697 	int ret;
1698 
1699 	ret = vfio_wait_all_valid(iommu);
1700 	if (ret < 0)
1701 		return ret;
1702 
1703 	/* Arbitrarily pick the first domain in the list for lookups */
1704 	if (!list_empty(&iommu->domain_list))
1705 		d = list_first_entry(&iommu->domain_list,
1706 				     struct vfio_domain, next);
1707 
1708 	vfio_batch_init(&batch);
1709 
1710 	n = rb_first(&iommu->dma_list);
1711 
1712 	for (; n; n = rb_next(n)) {
1713 		struct vfio_dma *dma;
1714 		dma_addr_t iova;
1715 
1716 		dma = rb_entry(n, struct vfio_dma, node);
1717 		iova = dma->iova;
1718 
1719 		while (iova < dma->iova + dma->size) {
1720 			phys_addr_t phys;
1721 			size_t size;
1722 
1723 			if (dma->iommu_mapped) {
1724 				phys_addr_t p;
1725 				dma_addr_t i;
1726 
1727 				if (WARN_ON(!d)) { /* mapped w/o a domain?! */
1728 					ret = -EINVAL;
1729 					goto unwind;
1730 				}
1731 
1732 				phys = iommu_iova_to_phys(d->domain, iova);
1733 
1734 				if (WARN_ON(!phys)) {
1735 					iova += PAGE_SIZE;
1736 					continue;
1737 				}
1738 
1739 				size = PAGE_SIZE;
1740 				p = phys + size;
1741 				i = iova + size;
1742 				while (i < dma->iova + dma->size &&
1743 				       p == iommu_iova_to_phys(d->domain, i)) {
1744 					size += PAGE_SIZE;
1745 					p += PAGE_SIZE;
1746 					i += PAGE_SIZE;
1747 				}
1748 			} else {
1749 				unsigned long pfn;
1750 				unsigned long vaddr = dma->vaddr +
1751 						     (iova - dma->iova);
1752 				size_t n = dma->iova + dma->size - iova;
1753 				long npage;
1754 
1755 				npage = vfio_pin_pages_remote(dma, vaddr,
1756 							      n >> PAGE_SHIFT,
1757 							      &pfn, limit,
1758 							      &batch);
1759 				if (npage <= 0) {
1760 					WARN_ON(!npage);
1761 					ret = (int)npage;
1762 					goto unwind;
1763 				}
1764 
1765 				phys = pfn << PAGE_SHIFT;
1766 				size = npage << PAGE_SHIFT;
1767 			}
1768 
1769 			ret = iommu_map(domain->domain, iova, phys,
1770 					size, dma->prot | IOMMU_CACHE);
1771 			if (ret) {
1772 				if (!dma->iommu_mapped) {
1773 					vfio_unpin_pages_remote(dma, iova,
1774 							phys >> PAGE_SHIFT,
1775 							size >> PAGE_SHIFT,
1776 							true);
1777 					vfio_batch_unpin(&batch, dma);
1778 				}
1779 				goto unwind;
1780 			}
1781 
1782 			iova += size;
1783 		}
1784 	}
1785 
1786 	/* All dmas are now mapped, defer to second tree walk for unwind */
1787 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1788 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1789 
1790 		dma->iommu_mapped = true;
1791 	}
1792 
1793 	vfio_batch_fini(&batch);
1794 	return 0;
1795 
1796 unwind:
1797 	for (; n; n = rb_prev(n)) {
1798 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1799 		dma_addr_t iova;
1800 
1801 		if (dma->iommu_mapped) {
1802 			iommu_unmap(domain->domain, dma->iova, dma->size);
1803 			continue;
1804 		}
1805 
1806 		iova = dma->iova;
1807 		while (iova < dma->iova + dma->size) {
1808 			phys_addr_t phys, p;
1809 			size_t size;
1810 			dma_addr_t i;
1811 
1812 			phys = iommu_iova_to_phys(domain->domain, iova);
1813 			if (!phys) {
1814 				iova += PAGE_SIZE;
1815 				continue;
1816 			}
1817 
1818 			size = PAGE_SIZE;
1819 			p = phys + size;
1820 			i = iova + size;
1821 			while (i < dma->iova + dma->size &&
1822 			       p == iommu_iova_to_phys(domain->domain, i)) {
1823 				size += PAGE_SIZE;
1824 				p += PAGE_SIZE;
1825 				i += PAGE_SIZE;
1826 			}
1827 
1828 			iommu_unmap(domain->domain, iova, size);
1829 			vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT,
1830 						size >> PAGE_SHIFT, true);
1831 		}
1832 	}
1833 
1834 	vfio_batch_fini(&batch);
1835 	return ret;
1836 }
1837 
1838 /*
1839  * We change our unmap behavior slightly depending on whether the IOMMU
1840  * supports fine-grained superpages.  IOMMUs like AMD-Vi will use a superpage
1841  * for practically any contiguous power-of-two mapping we give it.  This means
1842  * we don't need to look for contiguous chunks ourselves to make unmapping
1843  * more efficient.  On IOMMUs with coarse-grained super pages, like Intel VT-d
1844  * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1845  * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1846  * hugetlbfs is in use.
1847  */
1848 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
1849 {
1850 	struct page *pages;
1851 	int ret, order = get_order(PAGE_SIZE * 2);
1852 
1853 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1854 	if (!pages)
1855 		return;
1856 
1857 	ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
1858 			IOMMU_READ | IOMMU_WRITE | IOMMU_CACHE);
1859 	if (!ret) {
1860 		size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
1861 
1862 		if (unmapped == PAGE_SIZE)
1863 			iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
1864 		else
1865 			domain->fgsp = true;
1866 	}
1867 
1868 	__free_pages(pages, order);
1869 }
1870 
1871 static struct vfio_iommu_group *find_iommu_group(struct vfio_domain *domain,
1872 						 struct iommu_group *iommu_group)
1873 {
1874 	struct vfio_iommu_group *g;
1875 
1876 	list_for_each_entry(g, &domain->group_list, next) {
1877 		if (g->iommu_group == iommu_group)
1878 			return g;
1879 	}
1880 
1881 	return NULL;
1882 }
1883 
1884 static struct vfio_iommu_group*
1885 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1886 			    struct iommu_group *iommu_group)
1887 {
1888 	struct vfio_iommu_group *group;
1889 	struct vfio_domain *domain;
1890 
1891 	list_for_each_entry(domain, &iommu->domain_list, next) {
1892 		group = find_iommu_group(domain, iommu_group);
1893 		if (group)
1894 			return group;
1895 	}
1896 
1897 	list_for_each_entry(group, &iommu->emulated_iommu_groups, next)
1898 		if (group->iommu_group == iommu_group)
1899 			return group;
1900 	return NULL;
1901 }
1902 
1903 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1904 				  phys_addr_t *base)
1905 {
1906 	struct iommu_resv_region *region;
1907 	bool ret = false;
1908 
1909 	list_for_each_entry(region, group_resv_regions, list) {
1910 		/*
1911 		 * The presence of any 'real' MSI regions should take
1912 		 * precedence over the software-managed one if the
1913 		 * IOMMU driver happens to advertise both types.
1914 		 */
1915 		if (region->type == IOMMU_RESV_MSI) {
1916 			ret = false;
1917 			break;
1918 		}
1919 
1920 		if (region->type == IOMMU_RESV_SW_MSI) {
1921 			*base = region->start;
1922 			ret = true;
1923 		}
1924 	}
1925 
1926 	return ret;
1927 }
1928 
1929 /*
1930  * This is a helper function to insert an address range to iova list.
1931  * The list is initially created with a single entry corresponding to
1932  * the IOMMU domain geometry to which the device group is attached.
1933  * The list aperture gets modified when a new domain is added to the
1934  * container if the new aperture doesn't conflict with the current one
1935  * or with any existing dma mappings. The list is also modified to
1936  * exclude any reserved regions associated with the device group.
1937  */
1938 static int vfio_iommu_iova_insert(struct list_head *head,
1939 				  dma_addr_t start, dma_addr_t end)
1940 {
1941 	struct vfio_iova *region;
1942 
1943 	region = kmalloc(sizeof(*region), GFP_KERNEL);
1944 	if (!region)
1945 		return -ENOMEM;
1946 
1947 	INIT_LIST_HEAD(&region->list);
1948 	region->start = start;
1949 	region->end = end;
1950 
1951 	list_add_tail(&region->list, head);
1952 	return 0;
1953 }
1954 
1955 /*
1956  * Check the new iommu aperture conflicts with existing aper or with any
1957  * existing dma mappings.
1958  */
1959 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
1960 				     dma_addr_t start, dma_addr_t end)
1961 {
1962 	struct vfio_iova *first, *last;
1963 	struct list_head *iova = &iommu->iova_list;
1964 
1965 	if (list_empty(iova))
1966 		return false;
1967 
1968 	/* Disjoint sets, return conflict */
1969 	first = list_first_entry(iova, struct vfio_iova, list);
1970 	last = list_last_entry(iova, struct vfio_iova, list);
1971 	if (start > last->end || end < first->start)
1972 		return true;
1973 
1974 	/* Check for any existing dma mappings below the new start */
1975 	if (start > first->start) {
1976 		if (vfio_find_dma(iommu, first->start, start - first->start))
1977 			return true;
1978 	}
1979 
1980 	/* Check for any existing dma mappings beyond the new end */
1981 	if (end < last->end) {
1982 		if (vfio_find_dma(iommu, end + 1, last->end - end))
1983 			return true;
1984 	}
1985 
1986 	return false;
1987 }
1988 
1989 /*
1990  * Resize iommu iova aperture window. This is called only if the new
1991  * aperture has no conflict with existing aperture and dma mappings.
1992  */
1993 static int vfio_iommu_aper_resize(struct list_head *iova,
1994 				  dma_addr_t start, dma_addr_t end)
1995 {
1996 	struct vfio_iova *node, *next;
1997 
1998 	if (list_empty(iova))
1999 		return vfio_iommu_iova_insert(iova, start, end);
2000 
2001 	/* Adjust iova list start */
2002 	list_for_each_entry_safe(node, next, iova, list) {
2003 		if (start < node->start)
2004 			break;
2005 		if (start >= node->start && start < node->end) {
2006 			node->start = start;
2007 			break;
2008 		}
2009 		/* Delete nodes before new start */
2010 		list_del(&node->list);
2011 		kfree(node);
2012 	}
2013 
2014 	/* Adjust iova list end */
2015 	list_for_each_entry_safe(node, next, iova, list) {
2016 		if (end > node->end)
2017 			continue;
2018 		if (end > node->start && end <= node->end) {
2019 			node->end = end;
2020 			continue;
2021 		}
2022 		/* Delete nodes after new end */
2023 		list_del(&node->list);
2024 		kfree(node);
2025 	}
2026 
2027 	return 0;
2028 }
2029 
2030 /*
2031  * Check reserved region conflicts with existing dma mappings
2032  */
2033 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
2034 				     struct list_head *resv_regions)
2035 {
2036 	struct iommu_resv_region *region;
2037 
2038 	/* Check for conflict with existing dma mappings */
2039 	list_for_each_entry(region, resv_regions, list) {
2040 		if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
2041 			continue;
2042 
2043 		if (vfio_find_dma(iommu, region->start, region->length))
2044 			return true;
2045 	}
2046 
2047 	return false;
2048 }
2049 
2050 /*
2051  * Check iova region overlap with  reserved regions and
2052  * exclude them from the iommu iova range
2053  */
2054 static int vfio_iommu_resv_exclude(struct list_head *iova,
2055 				   struct list_head *resv_regions)
2056 {
2057 	struct iommu_resv_region *resv;
2058 	struct vfio_iova *n, *next;
2059 
2060 	list_for_each_entry(resv, resv_regions, list) {
2061 		phys_addr_t start, end;
2062 
2063 		if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
2064 			continue;
2065 
2066 		start = resv->start;
2067 		end = resv->start + resv->length - 1;
2068 
2069 		list_for_each_entry_safe(n, next, iova, list) {
2070 			int ret = 0;
2071 
2072 			/* No overlap */
2073 			if (start > n->end || end < n->start)
2074 				continue;
2075 			/*
2076 			 * Insert a new node if current node overlaps with the
2077 			 * reserve region to exclude that from valid iova range.
2078 			 * Note that, new node is inserted before the current
2079 			 * node and finally the current node is deleted keeping
2080 			 * the list updated and sorted.
2081 			 */
2082 			if (start > n->start)
2083 				ret = vfio_iommu_iova_insert(&n->list, n->start,
2084 							     start - 1);
2085 			if (!ret && end < n->end)
2086 				ret = vfio_iommu_iova_insert(&n->list, end + 1,
2087 							     n->end);
2088 			if (ret)
2089 				return ret;
2090 
2091 			list_del(&n->list);
2092 			kfree(n);
2093 		}
2094 	}
2095 
2096 	if (list_empty(iova))
2097 		return -EINVAL;
2098 
2099 	return 0;
2100 }
2101 
2102 static void vfio_iommu_resv_free(struct list_head *resv_regions)
2103 {
2104 	struct iommu_resv_region *n, *next;
2105 
2106 	list_for_each_entry_safe(n, next, resv_regions, list) {
2107 		list_del(&n->list);
2108 		kfree(n);
2109 	}
2110 }
2111 
2112 static void vfio_iommu_iova_free(struct list_head *iova)
2113 {
2114 	struct vfio_iova *n, *next;
2115 
2116 	list_for_each_entry_safe(n, next, iova, list) {
2117 		list_del(&n->list);
2118 		kfree(n);
2119 	}
2120 }
2121 
2122 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
2123 				    struct list_head *iova_copy)
2124 {
2125 	struct list_head *iova = &iommu->iova_list;
2126 	struct vfio_iova *n;
2127 	int ret;
2128 
2129 	list_for_each_entry(n, iova, list) {
2130 		ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
2131 		if (ret)
2132 			goto out_free;
2133 	}
2134 
2135 	return 0;
2136 
2137 out_free:
2138 	vfio_iommu_iova_free(iova_copy);
2139 	return ret;
2140 }
2141 
2142 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
2143 					struct list_head *iova_copy)
2144 {
2145 	struct list_head *iova = &iommu->iova_list;
2146 
2147 	vfio_iommu_iova_free(iova);
2148 
2149 	list_splice_tail(iova_copy, iova);
2150 }
2151 
2152 /* Redundantly walks non-present capabilities to simplify caller */
2153 static int vfio_iommu_device_capable(struct device *dev, void *data)
2154 {
2155 	return device_iommu_capable(dev, (enum iommu_cap)data);
2156 }
2157 
2158 static int vfio_iommu_domain_alloc(struct device *dev, void *data)
2159 {
2160 	struct iommu_domain **domain = data;
2161 
2162 	*domain = iommu_domain_alloc(dev->bus);
2163 	return 1; /* Don't iterate */
2164 }
2165 
2166 static int vfio_iommu_type1_attach_group(void *iommu_data,
2167 		struct iommu_group *iommu_group, enum vfio_group_type type)
2168 {
2169 	struct vfio_iommu *iommu = iommu_data;
2170 	struct vfio_iommu_group *group;
2171 	struct vfio_domain *domain, *d;
2172 	bool resv_msi, msi_remap;
2173 	phys_addr_t resv_msi_base = 0;
2174 	struct iommu_domain_geometry *geo;
2175 	LIST_HEAD(iova_copy);
2176 	LIST_HEAD(group_resv_regions);
2177 	int ret = -EINVAL;
2178 
2179 	mutex_lock(&iommu->lock);
2180 
2181 	/* Check for duplicates */
2182 	if (vfio_iommu_find_iommu_group(iommu, iommu_group))
2183 		goto out_unlock;
2184 
2185 	ret = -ENOMEM;
2186 	group = kzalloc(sizeof(*group), GFP_KERNEL);
2187 	if (!group)
2188 		goto out_unlock;
2189 	group->iommu_group = iommu_group;
2190 
2191 	if (type == VFIO_EMULATED_IOMMU) {
2192 		list_add(&group->next, &iommu->emulated_iommu_groups);
2193 		/*
2194 		 * An emulated IOMMU group cannot dirty memory directly, it can
2195 		 * only use interfaces that provide dirty tracking.
2196 		 * The iommu scope can only be promoted with the addition of a
2197 		 * dirty tracking group.
2198 		 */
2199 		group->pinned_page_dirty_scope = true;
2200 		ret = 0;
2201 		goto out_unlock;
2202 	}
2203 
2204 	ret = -ENOMEM;
2205 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2206 	if (!domain)
2207 		goto out_free_group;
2208 
2209 	/*
2210 	 * Going via the iommu_group iterator avoids races, and trivially gives
2211 	 * us a representative device for the IOMMU API call. We don't actually
2212 	 * want to iterate beyond the first device (if any).
2213 	 */
2214 	ret = -EIO;
2215 	iommu_group_for_each_dev(iommu_group, &domain->domain,
2216 				 vfio_iommu_domain_alloc);
2217 	if (!domain->domain)
2218 		goto out_free_domain;
2219 
2220 	if (iommu->nesting) {
2221 		ret = iommu_enable_nesting(domain->domain);
2222 		if (ret)
2223 			goto out_domain;
2224 	}
2225 
2226 	ret = iommu_attach_group(domain->domain, group->iommu_group);
2227 	if (ret)
2228 		goto out_domain;
2229 
2230 	/* Get aperture info */
2231 	geo = &domain->domain->geometry;
2232 	if (vfio_iommu_aper_conflict(iommu, geo->aperture_start,
2233 				     geo->aperture_end)) {
2234 		ret = -EINVAL;
2235 		goto out_detach;
2236 	}
2237 
2238 	ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2239 	if (ret)
2240 		goto out_detach;
2241 
2242 	if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2243 		ret = -EINVAL;
2244 		goto out_detach;
2245 	}
2246 
2247 	/*
2248 	 * We don't want to work on the original iova list as the list
2249 	 * gets modified and in case of failure we have to retain the
2250 	 * original list. Get a copy here.
2251 	 */
2252 	ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2253 	if (ret)
2254 		goto out_detach;
2255 
2256 	ret = vfio_iommu_aper_resize(&iova_copy, geo->aperture_start,
2257 				     geo->aperture_end);
2258 	if (ret)
2259 		goto out_detach;
2260 
2261 	ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2262 	if (ret)
2263 		goto out_detach;
2264 
2265 	resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2266 
2267 	INIT_LIST_HEAD(&domain->group_list);
2268 	list_add(&group->next, &domain->group_list);
2269 
2270 	msi_remap = irq_domain_check_msi_remap() ||
2271 		    iommu_group_for_each_dev(iommu_group, (void *)IOMMU_CAP_INTR_REMAP,
2272 					     vfio_iommu_device_capable);
2273 
2274 	if (!allow_unsafe_interrupts && !msi_remap) {
2275 		pr_warn("%s: No interrupt remapping support.  Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2276 		       __func__);
2277 		ret = -EPERM;
2278 		goto out_detach;
2279 	}
2280 
2281 	/*
2282 	 * If the IOMMU can block non-coherent operations (ie PCIe TLPs with
2283 	 * no-snoop set) then VFIO always turns this feature on because on Intel
2284 	 * platforms it optimizes KVM to disable wbinvd emulation.
2285 	 */
2286 	if (domain->domain->ops->enforce_cache_coherency)
2287 		domain->enforce_cache_coherency =
2288 			domain->domain->ops->enforce_cache_coherency(
2289 				domain->domain);
2290 
2291 	/*
2292 	 * Try to match an existing compatible domain.  We don't want to
2293 	 * preclude an IOMMU driver supporting multiple bus_types and being
2294 	 * able to include different bus_types in the same IOMMU domain, so
2295 	 * we test whether the domains use the same iommu_ops rather than
2296 	 * testing if they're on the same bus_type.
2297 	 */
2298 	list_for_each_entry(d, &iommu->domain_list, next) {
2299 		if (d->domain->ops == domain->domain->ops &&
2300 		    d->enforce_cache_coherency ==
2301 			    domain->enforce_cache_coherency) {
2302 			iommu_detach_group(domain->domain, group->iommu_group);
2303 			if (!iommu_attach_group(d->domain,
2304 						group->iommu_group)) {
2305 				list_add(&group->next, &d->group_list);
2306 				iommu_domain_free(domain->domain);
2307 				kfree(domain);
2308 				goto done;
2309 			}
2310 
2311 			ret = iommu_attach_group(domain->domain,
2312 						 group->iommu_group);
2313 			if (ret)
2314 				goto out_domain;
2315 		}
2316 	}
2317 
2318 	vfio_test_domain_fgsp(domain);
2319 
2320 	/* replay mappings on new domains */
2321 	ret = vfio_iommu_replay(iommu, domain);
2322 	if (ret)
2323 		goto out_detach;
2324 
2325 	if (resv_msi) {
2326 		ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2327 		if (ret && ret != -ENODEV)
2328 			goto out_detach;
2329 	}
2330 
2331 	list_add(&domain->next, &iommu->domain_list);
2332 	vfio_update_pgsize_bitmap(iommu);
2333 done:
2334 	/* Delete the old one and insert new iova list */
2335 	vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2336 
2337 	/*
2338 	 * An iommu backed group can dirty memory directly and therefore
2339 	 * demotes the iommu scope until it declares itself dirty tracking
2340 	 * capable via the page pinning interface.
2341 	 */
2342 	iommu->num_non_pinned_groups++;
2343 	mutex_unlock(&iommu->lock);
2344 	vfio_iommu_resv_free(&group_resv_regions);
2345 
2346 	return 0;
2347 
2348 out_detach:
2349 	iommu_detach_group(domain->domain, group->iommu_group);
2350 out_domain:
2351 	iommu_domain_free(domain->domain);
2352 	vfio_iommu_iova_free(&iova_copy);
2353 	vfio_iommu_resv_free(&group_resv_regions);
2354 out_free_domain:
2355 	kfree(domain);
2356 out_free_group:
2357 	kfree(group);
2358 out_unlock:
2359 	mutex_unlock(&iommu->lock);
2360 	return ret;
2361 }
2362 
2363 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2364 {
2365 	struct rb_node *node;
2366 
2367 	while ((node = rb_first(&iommu->dma_list)))
2368 		vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2369 }
2370 
2371 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2372 {
2373 	struct rb_node *n, *p;
2374 
2375 	n = rb_first(&iommu->dma_list);
2376 	for (; n; n = rb_next(n)) {
2377 		struct vfio_dma *dma;
2378 		long locked = 0, unlocked = 0;
2379 
2380 		dma = rb_entry(n, struct vfio_dma, node);
2381 		unlocked += vfio_unmap_unpin(iommu, dma, false);
2382 		p = rb_first(&dma->pfn_list);
2383 		for (; p; p = rb_next(p)) {
2384 			struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2385 							 node);
2386 
2387 			if (!is_invalid_reserved_pfn(vpfn->pfn))
2388 				locked++;
2389 		}
2390 		vfio_lock_acct(dma, locked - unlocked, true);
2391 	}
2392 }
2393 
2394 /*
2395  * Called when a domain is removed in detach. It is possible that
2396  * the removed domain decided the iova aperture window. Modify the
2397  * iova aperture with the smallest window among existing domains.
2398  */
2399 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2400 				   struct list_head *iova_copy)
2401 {
2402 	struct vfio_domain *domain;
2403 	struct vfio_iova *node;
2404 	dma_addr_t start = 0;
2405 	dma_addr_t end = (dma_addr_t)~0;
2406 
2407 	if (list_empty(iova_copy))
2408 		return;
2409 
2410 	list_for_each_entry(domain, &iommu->domain_list, next) {
2411 		struct iommu_domain_geometry *geo = &domain->domain->geometry;
2412 
2413 		if (geo->aperture_start > start)
2414 			start = geo->aperture_start;
2415 		if (geo->aperture_end < end)
2416 			end = geo->aperture_end;
2417 	}
2418 
2419 	/* Modify aperture limits. The new aper is either same or bigger */
2420 	node = list_first_entry(iova_copy, struct vfio_iova, list);
2421 	node->start = start;
2422 	node = list_last_entry(iova_copy, struct vfio_iova, list);
2423 	node->end = end;
2424 }
2425 
2426 /*
2427  * Called when a group is detached. The reserved regions for that
2428  * group can be part of valid iova now. But since reserved regions
2429  * may be duplicated among groups, populate the iova valid regions
2430  * list again.
2431  */
2432 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2433 				   struct list_head *iova_copy)
2434 {
2435 	struct vfio_domain *d;
2436 	struct vfio_iommu_group *g;
2437 	struct vfio_iova *node;
2438 	dma_addr_t start, end;
2439 	LIST_HEAD(resv_regions);
2440 	int ret;
2441 
2442 	if (list_empty(iova_copy))
2443 		return -EINVAL;
2444 
2445 	list_for_each_entry(d, &iommu->domain_list, next) {
2446 		list_for_each_entry(g, &d->group_list, next) {
2447 			ret = iommu_get_group_resv_regions(g->iommu_group,
2448 							   &resv_regions);
2449 			if (ret)
2450 				goto done;
2451 		}
2452 	}
2453 
2454 	node = list_first_entry(iova_copy, struct vfio_iova, list);
2455 	start = node->start;
2456 	node = list_last_entry(iova_copy, struct vfio_iova, list);
2457 	end = node->end;
2458 
2459 	/* purge the iova list and create new one */
2460 	vfio_iommu_iova_free(iova_copy);
2461 
2462 	ret = vfio_iommu_aper_resize(iova_copy, start, end);
2463 	if (ret)
2464 		goto done;
2465 
2466 	/* Exclude current reserved regions from iova ranges */
2467 	ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2468 done:
2469 	vfio_iommu_resv_free(&resv_regions);
2470 	return ret;
2471 }
2472 
2473 static void vfio_iommu_type1_detach_group(void *iommu_data,
2474 					  struct iommu_group *iommu_group)
2475 {
2476 	struct vfio_iommu *iommu = iommu_data;
2477 	struct vfio_domain *domain;
2478 	struct vfio_iommu_group *group;
2479 	bool update_dirty_scope = false;
2480 	LIST_HEAD(iova_copy);
2481 
2482 	mutex_lock(&iommu->lock);
2483 	list_for_each_entry(group, &iommu->emulated_iommu_groups, next) {
2484 		if (group->iommu_group != iommu_group)
2485 			continue;
2486 		update_dirty_scope = !group->pinned_page_dirty_scope;
2487 		list_del(&group->next);
2488 		kfree(group);
2489 
2490 		if (list_empty(&iommu->emulated_iommu_groups) &&
2491 		    list_empty(&iommu->domain_list)) {
2492 			WARN_ON(!list_empty(&iommu->device_list));
2493 			vfio_iommu_unmap_unpin_all(iommu);
2494 		}
2495 		goto detach_group_done;
2496 	}
2497 
2498 	/*
2499 	 * Get a copy of iova list. This will be used to update
2500 	 * and to replace the current one later. Please note that
2501 	 * we will leave the original list as it is if update fails.
2502 	 */
2503 	vfio_iommu_iova_get_copy(iommu, &iova_copy);
2504 
2505 	list_for_each_entry(domain, &iommu->domain_list, next) {
2506 		group = find_iommu_group(domain, iommu_group);
2507 		if (!group)
2508 			continue;
2509 
2510 		iommu_detach_group(domain->domain, group->iommu_group);
2511 		update_dirty_scope = !group->pinned_page_dirty_scope;
2512 		list_del(&group->next);
2513 		kfree(group);
2514 		/*
2515 		 * Group ownership provides privilege, if the group list is
2516 		 * empty, the domain goes away. If it's the last domain with
2517 		 * iommu and external domain doesn't exist, then all the
2518 		 * mappings go away too. If it's the last domain with iommu and
2519 		 * external domain exist, update accounting
2520 		 */
2521 		if (list_empty(&domain->group_list)) {
2522 			if (list_is_singular(&iommu->domain_list)) {
2523 				if (list_empty(&iommu->emulated_iommu_groups)) {
2524 					WARN_ON(!list_empty(
2525 						&iommu->device_list));
2526 					vfio_iommu_unmap_unpin_all(iommu);
2527 				} else {
2528 					vfio_iommu_unmap_unpin_reaccount(iommu);
2529 				}
2530 			}
2531 			iommu_domain_free(domain->domain);
2532 			list_del(&domain->next);
2533 			kfree(domain);
2534 			vfio_iommu_aper_expand(iommu, &iova_copy);
2535 			vfio_update_pgsize_bitmap(iommu);
2536 		}
2537 		break;
2538 	}
2539 
2540 	if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2541 		vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2542 	else
2543 		vfio_iommu_iova_free(&iova_copy);
2544 
2545 detach_group_done:
2546 	/*
2547 	 * Removal of a group without dirty tracking may allow the iommu scope
2548 	 * to be promoted.
2549 	 */
2550 	if (update_dirty_scope) {
2551 		iommu->num_non_pinned_groups--;
2552 		if (iommu->dirty_page_tracking)
2553 			vfio_iommu_populate_bitmap_full(iommu);
2554 	}
2555 	mutex_unlock(&iommu->lock);
2556 }
2557 
2558 static void *vfio_iommu_type1_open(unsigned long arg)
2559 {
2560 	struct vfio_iommu *iommu;
2561 
2562 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2563 	if (!iommu)
2564 		return ERR_PTR(-ENOMEM);
2565 
2566 	switch (arg) {
2567 	case VFIO_TYPE1_IOMMU:
2568 		break;
2569 	case VFIO_TYPE1_NESTING_IOMMU:
2570 		iommu->nesting = true;
2571 		fallthrough;
2572 	case VFIO_TYPE1v2_IOMMU:
2573 		iommu->v2 = true;
2574 		break;
2575 	default:
2576 		kfree(iommu);
2577 		return ERR_PTR(-EINVAL);
2578 	}
2579 
2580 	INIT_LIST_HEAD(&iommu->domain_list);
2581 	INIT_LIST_HEAD(&iommu->iova_list);
2582 	iommu->dma_list = RB_ROOT;
2583 	iommu->dma_avail = dma_entry_limit;
2584 	iommu->container_open = true;
2585 	mutex_init(&iommu->lock);
2586 	mutex_init(&iommu->device_list_lock);
2587 	INIT_LIST_HEAD(&iommu->device_list);
2588 	init_waitqueue_head(&iommu->vaddr_wait);
2589 	iommu->pgsize_bitmap = PAGE_MASK;
2590 	INIT_LIST_HEAD(&iommu->emulated_iommu_groups);
2591 
2592 	return iommu;
2593 }
2594 
2595 static void vfio_release_domain(struct vfio_domain *domain)
2596 {
2597 	struct vfio_iommu_group *group, *group_tmp;
2598 
2599 	list_for_each_entry_safe(group, group_tmp,
2600 				 &domain->group_list, next) {
2601 		iommu_detach_group(domain->domain, group->iommu_group);
2602 		list_del(&group->next);
2603 		kfree(group);
2604 	}
2605 
2606 	iommu_domain_free(domain->domain);
2607 }
2608 
2609 static void vfio_iommu_type1_release(void *iommu_data)
2610 {
2611 	struct vfio_iommu *iommu = iommu_data;
2612 	struct vfio_domain *domain, *domain_tmp;
2613 	struct vfio_iommu_group *group, *next_group;
2614 
2615 	list_for_each_entry_safe(group, next_group,
2616 			&iommu->emulated_iommu_groups, next) {
2617 		list_del(&group->next);
2618 		kfree(group);
2619 	}
2620 
2621 	vfio_iommu_unmap_unpin_all(iommu);
2622 
2623 	list_for_each_entry_safe(domain, domain_tmp,
2624 				 &iommu->domain_list, next) {
2625 		vfio_release_domain(domain);
2626 		list_del(&domain->next);
2627 		kfree(domain);
2628 	}
2629 
2630 	vfio_iommu_iova_free(&iommu->iova_list);
2631 
2632 	kfree(iommu);
2633 }
2634 
2635 static int vfio_domains_have_enforce_cache_coherency(struct vfio_iommu *iommu)
2636 {
2637 	struct vfio_domain *domain;
2638 	int ret = 1;
2639 
2640 	mutex_lock(&iommu->lock);
2641 	list_for_each_entry(domain, &iommu->domain_list, next) {
2642 		if (!(domain->enforce_cache_coherency)) {
2643 			ret = 0;
2644 			break;
2645 		}
2646 	}
2647 	mutex_unlock(&iommu->lock);
2648 
2649 	return ret;
2650 }
2651 
2652 static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2653 					    unsigned long arg)
2654 {
2655 	switch (arg) {
2656 	case VFIO_TYPE1_IOMMU:
2657 	case VFIO_TYPE1v2_IOMMU:
2658 	case VFIO_TYPE1_NESTING_IOMMU:
2659 	case VFIO_UNMAP_ALL:
2660 	case VFIO_UPDATE_VADDR:
2661 		return 1;
2662 	case VFIO_DMA_CC_IOMMU:
2663 		if (!iommu)
2664 			return 0;
2665 		return vfio_domains_have_enforce_cache_coherency(iommu);
2666 	default:
2667 		return 0;
2668 	}
2669 }
2670 
2671 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2672 		 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2673 		 size_t size)
2674 {
2675 	struct vfio_info_cap_header *header;
2676 	struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2677 
2678 	header = vfio_info_cap_add(caps, size,
2679 				   VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2680 	if (IS_ERR(header))
2681 		return PTR_ERR(header);
2682 
2683 	iova_cap = container_of(header,
2684 				struct vfio_iommu_type1_info_cap_iova_range,
2685 				header);
2686 	iova_cap->nr_iovas = cap_iovas->nr_iovas;
2687 	memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2688 	       cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2689 	return 0;
2690 }
2691 
2692 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2693 				      struct vfio_info_cap *caps)
2694 {
2695 	struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2696 	struct vfio_iova *iova;
2697 	size_t size;
2698 	int iovas = 0, i = 0, ret;
2699 
2700 	list_for_each_entry(iova, &iommu->iova_list, list)
2701 		iovas++;
2702 
2703 	if (!iovas) {
2704 		/*
2705 		 * Return 0 as a container with a single mdev device
2706 		 * will have an empty list
2707 		 */
2708 		return 0;
2709 	}
2710 
2711 	size = struct_size(cap_iovas, iova_ranges, iovas);
2712 
2713 	cap_iovas = kzalloc(size, GFP_KERNEL);
2714 	if (!cap_iovas)
2715 		return -ENOMEM;
2716 
2717 	cap_iovas->nr_iovas = iovas;
2718 
2719 	list_for_each_entry(iova, &iommu->iova_list, list) {
2720 		cap_iovas->iova_ranges[i].start = iova->start;
2721 		cap_iovas->iova_ranges[i].end = iova->end;
2722 		i++;
2723 	}
2724 
2725 	ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2726 
2727 	kfree(cap_iovas);
2728 	return ret;
2729 }
2730 
2731 static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2732 					   struct vfio_info_cap *caps)
2733 {
2734 	struct vfio_iommu_type1_info_cap_migration cap_mig;
2735 
2736 	cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2737 	cap_mig.header.version = 1;
2738 
2739 	cap_mig.flags = 0;
2740 	/* support minimum pgsize */
2741 	cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2742 	cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2743 
2744 	return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2745 }
2746 
2747 static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu,
2748 					   struct vfio_info_cap *caps)
2749 {
2750 	struct vfio_iommu_type1_info_dma_avail cap_dma_avail;
2751 
2752 	cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL;
2753 	cap_dma_avail.header.version = 1;
2754 
2755 	cap_dma_avail.avail = iommu->dma_avail;
2756 
2757 	return vfio_info_add_capability(caps, &cap_dma_avail.header,
2758 					sizeof(cap_dma_avail));
2759 }
2760 
2761 static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2762 				     unsigned long arg)
2763 {
2764 	struct vfio_iommu_type1_info info;
2765 	unsigned long minsz;
2766 	struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2767 	unsigned long capsz;
2768 	int ret;
2769 
2770 	minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2771 
2772 	/* For backward compatibility, cannot require this */
2773 	capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset);
2774 
2775 	if (copy_from_user(&info, (void __user *)arg, minsz))
2776 		return -EFAULT;
2777 
2778 	if (info.argsz < minsz)
2779 		return -EINVAL;
2780 
2781 	if (info.argsz >= capsz) {
2782 		minsz = capsz;
2783 		info.cap_offset = 0; /* output, no-recopy necessary */
2784 	}
2785 
2786 	mutex_lock(&iommu->lock);
2787 	info.flags = VFIO_IOMMU_INFO_PGSIZES;
2788 
2789 	info.iova_pgsizes = iommu->pgsize_bitmap;
2790 
2791 	ret = vfio_iommu_migration_build_caps(iommu, &caps);
2792 
2793 	if (!ret)
2794 		ret = vfio_iommu_dma_avail_build_caps(iommu, &caps);
2795 
2796 	if (!ret)
2797 		ret = vfio_iommu_iova_build_caps(iommu, &caps);
2798 
2799 	mutex_unlock(&iommu->lock);
2800 
2801 	if (ret)
2802 		return ret;
2803 
2804 	if (caps.size) {
2805 		info.flags |= VFIO_IOMMU_INFO_CAPS;
2806 
2807 		if (info.argsz < sizeof(info) + caps.size) {
2808 			info.argsz = sizeof(info) + caps.size;
2809 		} else {
2810 			vfio_info_cap_shift(&caps, sizeof(info));
2811 			if (copy_to_user((void __user *)arg +
2812 					sizeof(info), caps.buf,
2813 					caps.size)) {
2814 				kfree(caps.buf);
2815 				return -EFAULT;
2816 			}
2817 			info.cap_offset = sizeof(info);
2818 		}
2819 
2820 		kfree(caps.buf);
2821 	}
2822 
2823 	return copy_to_user((void __user *)arg, &info, minsz) ?
2824 			-EFAULT : 0;
2825 }
2826 
2827 static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2828 				    unsigned long arg)
2829 {
2830 	struct vfio_iommu_type1_dma_map map;
2831 	unsigned long minsz;
2832 	uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE |
2833 			VFIO_DMA_MAP_FLAG_VADDR;
2834 
2835 	minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2836 
2837 	if (copy_from_user(&map, (void __user *)arg, minsz))
2838 		return -EFAULT;
2839 
2840 	if (map.argsz < minsz || map.flags & ~mask)
2841 		return -EINVAL;
2842 
2843 	return vfio_dma_do_map(iommu, &map);
2844 }
2845 
2846 static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2847 				      unsigned long arg)
2848 {
2849 	struct vfio_iommu_type1_dma_unmap unmap;
2850 	struct vfio_bitmap bitmap = { 0 };
2851 	uint32_t mask = VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP |
2852 			VFIO_DMA_UNMAP_FLAG_VADDR |
2853 			VFIO_DMA_UNMAP_FLAG_ALL;
2854 	unsigned long minsz;
2855 	int ret;
2856 
2857 	minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2858 
2859 	if (copy_from_user(&unmap, (void __user *)arg, minsz))
2860 		return -EFAULT;
2861 
2862 	if (unmap.argsz < minsz || unmap.flags & ~mask)
2863 		return -EINVAL;
2864 
2865 	if ((unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
2866 	    (unmap.flags & (VFIO_DMA_UNMAP_FLAG_ALL |
2867 			    VFIO_DMA_UNMAP_FLAG_VADDR)))
2868 		return -EINVAL;
2869 
2870 	if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2871 		unsigned long pgshift;
2872 
2873 		if (unmap.argsz < (minsz + sizeof(bitmap)))
2874 			return -EINVAL;
2875 
2876 		if (copy_from_user(&bitmap,
2877 				   (void __user *)(arg + minsz),
2878 				   sizeof(bitmap)))
2879 			return -EFAULT;
2880 
2881 		if (!access_ok((void __user *)bitmap.data, bitmap.size))
2882 			return -EINVAL;
2883 
2884 		pgshift = __ffs(bitmap.pgsize);
2885 		ret = verify_bitmap_size(unmap.size >> pgshift,
2886 					 bitmap.size);
2887 		if (ret)
2888 			return ret;
2889 	}
2890 
2891 	ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2892 	if (ret)
2893 		return ret;
2894 
2895 	return copy_to_user((void __user *)arg, &unmap, minsz) ?
2896 			-EFAULT : 0;
2897 }
2898 
2899 static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2900 					unsigned long arg)
2901 {
2902 	struct vfio_iommu_type1_dirty_bitmap dirty;
2903 	uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2904 			VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2905 			VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2906 	unsigned long minsz;
2907 	int ret = 0;
2908 
2909 	if (!iommu->v2)
2910 		return -EACCES;
2911 
2912 	minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
2913 
2914 	if (copy_from_user(&dirty, (void __user *)arg, minsz))
2915 		return -EFAULT;
2916 
2917 	if (dirty.argsz < minsz || dirty.flags & ~mask)
2918 		return -EINVAL;
2919 
2920 	/* only one flag should be set at a time */
2921 	if (__ffs(dirty.flags) != __fls(dirty.flags))
2922 		return -EINVAL;
2923 
2924 	if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
2925 		size_t pgsize;
2926 
2927 		mutex_lock(&iommu->lock);
2928 		pgsize = 1 << __ffs(iommu->pgsize_bitmap);
2929 		if (!iommu->dirty_page_tracking) {
2930 			ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
2931 			if (!ret)
2932 				iommu->dirty_page_tracking = true;
2933 		}
2934 		mutex_unlock(&iommu->lock);
2935 		return ret;
2936 	} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
2937 		mutex_lock(&iommu->lock);
2938 		if (iommu->dirty_page_tracking) {
2939 			iommu->dirty_page_tracking = false;
2940 			vfio_dma_bitmap_free_all(iommu);
2941 		}
2942 		mutex_unlock(&iommu->lock);
2943 		return 0;
2944 	} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
2945 		struct vfio_iommu_type1_dirty_bitmap_get range;
2946 		unsigned long pgshift;
2947 		size_t data_size = dirty.argsz - minsz;
2948 		size_t iommu_pgsize;
2949 
2950 		if (!data_size || data_size < sizeof(range))
2951 			return -EINVAL;
2952 
2953 		if (copy_from_user(&range, (void __user *)(arg + minsz),
2954 				   sizeof(range)))
2955 			return -EFAULT;
2956 
2957 		if (range.iova + range.size < range.iova)
2958 			return -EINVAL;
2959 		if (!access_ok((void __user *)range.bitmap.data,
2960 			       range.bitmap.size))
2961 			return -EINVAL;
2962 
2963 		pgshift = __ffs(range.bitmap.pgsize);
2964 		ret = verify_bitmap_size(range.size >> pgshift,
2965 					 range.bitmap.size);
2966 		if (ret)
2967 			return ret;
2968 
2969 		mutex_lock(&iommu->lock);
2970 
2971 		iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2972 
2973 		/* allow only smallest supported pgsize */
2974 		if (range.bitmap.pgsize != iommu_pgsize) {
2975 			ret = -EINVAL;
2976 			goto out_unlock;
2977 		}
2978 		if (range.iova & (iommu_pgsize - 1)) {
2979 			ret = -EINVAL;
2980 			goto out_unlock;
2981 		}
2982 		if (!range.size || range.size & (iommu_pgsize - 1)) {
2983 			ret = -EINVAL;
2984 			goto out_unlock;
2985 		}
2986 
2987 		if (iommu->dirty_page_tracking)
2988 			ret = vfio_iova_dirty_bitmap(range.bitmap.data,
2989 						     iommu, range.iova,
2990 						     range.size,
2991 						     range.bitmap.pgsize);
2992 		else
2993 			ret = -EINVAL;
2994 out_unlock:
2995 		mutex_unlock(&iommu->lock);
2996 
2997 		return ret;
2998 	}
2999 
3000 	return -EINVAL;
3001 }
3002 
3003 static long vfio_iommu_type1_ioctl(void *iommu_data,
3004 				   unsigned int cmd, unsigned long arg)
3005 {
3006 	struct vfio_iommu *iommu = iommu_data;
3007 
3008 	switch (cmd) {
3009 	case VFIO_CHECK_EXTENSION:
3010 		return vfio_iommu_type1_check_extension(iommu, arg);
3011 	case VFIO_IOMMU_GET_INFO:
3012 		return vfio_iommu_type1_get_info(iommu, arg);
3013 	case VFIO_IOMMU_MAP_DMA:
3014 		return vfio_iommu_type1_map_dma(iommu, arg);
3015 	case VFIO_IOMMU_UNMAP_DMA:
3016 		return vfio_iommu_type1_unmap_dma(iommu, arg);
3017 	case VFIO_IOMMU_DIRTY_PAGES:
3018 		return vfio_iommu_type1_dirty_pages(iommu, arg);
3019 	default:
3020 		return -ENOTTY;
3021 	}
3022 }
3023 
3024 static void vfio_iommu_type1_register_device(void *iommu_data,
3025 					     struct vfio_device *vdev)
3026 {
3027 	struct vfio_iommu *iommu = iommu_data;
3028 
3029 	if (!vdev->ops->dma_unmap)
3030 		return;
3031 
3032 	/*
3033 	 * list_empty(&iommu->device_list) is tested under the iommu->lock while
3034 	 * iteration for dma_unmap must be done under the device_list_lock.
3035 	 * Holding both locks here allows avoiding the device_list_lock in
3036 	 * several fast paths. See vfio_notify_dma_unmap()
3037 	 */
3038 	mutex_lock(&iommu->lock);
3039 	mutex_lock(&iommu->device_list_lock);
3040 	list_add(&vdev->iommu_entry, &iommu->device_list);
3041 	mutex_unlock(&iommu->device_list_lock);
3042 	mutex_unlock(&iommu->lock);
3043 }
3044 
3045 static void vfio_iommu_type1_unregister_device(void *iommu_data,
3046 					       struct vfio_device *vdev)
3047 {
3048 	struct vfio_iommu *iommu = iommu_data;
3049 
3050 	if (!vdev->ops->dma_unmap)
3051 		return;
3052 
3053 	mutex_lock(&iommu->lock);
3054 	mutex_lock(&iommu->device_list_lock);
3055 	list_del(&vdev->iommu_entry);
3056 	mutex_unlock(&iommu->device_list_lock);
3057 	mutex_unlock(&iommu->lock);
3058 }
3059 
3060 static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
3061 					 dma_addr_t user_iova, void *data,
3062 					 size_t count, bool write,
3063 					 size_t *copied)
3064 {
3065 	struct mm_struct *mm;
3066 	unsigned long vaddr;
3067 	struct vfio_dma *dma;
3068 	bool kthread = current->mm == NULL;
3069 	size_t offset;
3070 	int ret;
3071 
3072 	*copied = 0;
3073 
3074 	ret = vfio_find_dma_valid(iommu, user_iova, 1, &dma);
3075 	if (ret < 0)
3076 		return ret;
3077 
3078 	if ((write && !(dma->prot & IOMMU_WRITE)) ||
3079 			!(dma->prot & IOMMU_READ))
3080 		return -EPERM;
3081 
3082 	mm = get_task_mm(dma->task);
3083 
3084 	if (!mm)
3085 		return -EPERM;
3086 
3087 	if (kthread)
3088 		kthread_use_mm(mm);
3089 	else if (current->mm != mm)
3090 		goto out;
3091 
3092 	offset = user_iova - dma->iova;
3093 
3094 	if (count > dma->size - offset)
3095 		count = dma->size - offset;
3096 
3097 	vaddr = dma->vaddr + offset;
3098 
3099 	if (write) {
3100 		*copied = copy_to_user((void __user *)vaddr, data,
3101 					 count) ? 0 : count;
3102 		if (*copied && iommu->dirty_page_tracking) {
3103 			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
3104 			/*
3105 			 * Bitmap populated with the smallest supported page
3106 			 * size
3107 			 */
3108 			bitmap_set(dma->bitmap, offset >> pgshift,
3109 				   ((offset + *copied - 1) >> pgshift) -
3110 				   (offset >> pgshift) + 1);
3111 		}
3112 	} else
3113 		*copied = copy_from_user(data, (void __user *)vaddr,
3114 					   count) ? 0 : count;
3115 	if (kthread)
3116 		kthread_unuse_mm(mm);
3117 out:
3118 	mmput(mm);
3119 	return *copied ? 0 : -EFAULT;
3120 }
3121 
3122 static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
3123 				   void *data, size_t count, bool write)
3124 {
3125 	struct vfio_iommu *iommu = iommu_data;
3126 	int ret = 0;
3127 	size_t done;
3128 
3129 	mutex_lock(&iommu->lock);
3130 	while (count > 0) {
3131 		ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
3132 						    count, write, &done);
3133 		if (ret)
3134 			break;
3135 
3136 		count -= done;
3137 		data += done;
3138 		user_iova += done;
3139 	}
3140 
3141 	mutex_unlock(&iommu->lock);
3142 	return ret;
3143 }
3144 
3145 static struct iommu_domain *
3146 vfio_iommu_type1_group_iommu_domain(void *iommu_data,
3147 				    struct iommu_group *iommu_group)
3148 {
3149 	struct iommu_domain *domain = ERR_PTR(-ENODEV);
3150 	struct vfio_iommu *iommu = iommu_data;
3151 	struct vfio_domain *d;
3152 
3153 	if (!iommu || !iommu_group)
3154 		return ERR_PTR(-EINVAL);
3155 
3156 	mutex_lock(&iommu->lock);
3157 	list_for_each_entry(d, &iommu->domain_list, next) {
3158 		if (find_iommu_group(d, iommu_group)) {
3159 			domain = d->domain;
3160 			break;
3161 		}
3162 	}
3163 	mutex_unlock(&iommu->lock);
3164 
3165 	return domain;
3166 }
3167 
3168 static void vfio_iommu_type1_notify(void *iommu_data,
3169 				    enum vfio_iommu_notify_type event)
3170 {
3171 	struct vfio_iommu *iommu = iommu_data;
3172 
3173 	if (event != VFIO_IOMMU_CONTAINER_CLOSE)
3174 		return;
3175 	mutex_lock(&iommu->lock);
3176 	iommu->container_open = false;
3177 	mutex_unlock(&iommu->lock);
3178 	wake_up_all(&iommu->vaddr_wait);
3179 }
3180 
3181 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
3182 	.name			= "vfio-iommu-type1",
3183 	.owner			= THIS_MODULE,
3184 	.open			= vfio_iommu_type1_open,
3185 	.release		= vfio_iommu_type1_release,
3186 	.ioctl			= vfio_iommu_type1_ioctl,
3187 	.attach_group		= vfio_iommu_type1_attach_group,
3188 	.detach_group		= vfio_iommu_type1_detach_group,
3189 	.pin_pages		= vfio_iommu_type1_pin_pages,
3190 	.unpin_pages		= vfio_iommu_type1_unpin_pages,
3191 	.register_device	= vfio_iommu_type1_register_device,
3192 	.unregister_device	= vfio_iommu_type1_unregister_device,
3193 	.dma_rw			= vfio_iommu_type1_dma_rw,
3194 	.group_iommu_domain	= vfio_iommu_type1_group_iommu_domain,
3195 	.notify			= vfio_iommu_type1_notify,
3196 };
3197 
3198 static int __init vfio_iommu_type1_init(void)
3199 {
3200 	return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
3201 }
3202 
3203 static void __exit vfio_iommu_type1_cleanup(void)
3204 {
3205 	vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
3206 }
3207 
3208 module_init(vfio_iommu_type1_init);
3209 module_exit(vfio_iommu_type1_cleanup);
3210 
3211 MODULE_VERSION(DRIVER_VERSION);
3212 MODULE_LICENSE("GPL v2");
3213 MODULE_AUTHOR(DRIVER_AUTHOR);
3214 MODULE_DESCRIPTION(DRIVER_DESC);
3215