1 /*
2  * VFIO: IOMMU DMA mapping support for Type1 IOMMU
3  *
4  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
5  *     Author: Alex Williamson <alex.williamson@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Derived from original vfio:
12  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
13  * Author: Tom Lyon, pugs@cisco.com
14  *
15  * We arbitrarily define a Type1 IOMMU as one matching the below code.
16  * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
17  * VT-d, but that makes it harder to re-use as theoretically anyone
18  * implementing a similar IOMMU could make use of this.  We expect the
19  * IOMMU to support the IOMMU API and have few to no restrictions around
20  * the IOVA range that can be mapped.  The Type1 IOMMU is currently
21  * optimized for relatively static mappings of a userspace process with
22  * userpsace pages pinned into memory.  We also assume devices and IOMMU
23  * domains are PCI based as the IOMMU API is still centered around a
24  * device/bus interface rather than a group interface.
25  */
26 
27 #include <linux/compat.h>
28 #include <linux/device.h>
29 #include <linux/fs.h>
30 #include <linux/iommu.h>
31 #include <linux/module.h>
32 #include <linux/mm.h>
33 #include <linux/rbtree.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39 
40 #define DRIVER_VERSION  "0.2"
41 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
42 #define DRIVER_DESC     "Type1 IOMMU driver for VFIO"
43 
44 static bool allow_unsafe_interrupts;
45 module_param_named(allow_unsafe_interrupts,
46 		   allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
47 MODULE_PARM_DESC(allow_unsafe_interrupts,
48 		 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
49 
50 static bool disable_hugepages;
51 module_param_named(disable_hugepages,
52 		   disable_hugepages, bool, S_IRUGO | S_IWUSR);
53 MODULE_PARM_DESC(disable_hugepages,
54 		 "Disable VFIO IOMMU support for IOMMU hugepages.");
55 
56 struct vfio_iommu {
57 	struct list_head	domain_list;
58 	struct mutex		lock;
59 	struct rb_root		dma_list;
60 	bool v2;
61 };
62 
63 struct vfio_domain {
64 	struct iommu_domain	*domain;
65 	struct list_head	next;
66 	struct list_head	group_list;
67 	int			prot;		/* IOMMU_CACHE */
68 };
69 
70 struct vfio_dma {
71 	struct rb_node		node;
72 	dma_addr_t		iova;		/* Device address */
73 	unsigned long		vaddr;		/* Process virtual addr */
74 	size_t			size;		/* Map size (bytes) */
75 	int			prot;		/* IOMMU_READ/WRITE */
76 };
77 
78 struct vfio_group {
79 	struct iommu_group	*iommu_group;
80 	struct list_head	next;
81 };
82 
83 /*
84  * This code handles mapping and unmapping of user data buffers
85  * into DMA'ble space using the IOMMU
86  */
87 
88 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
89 				      dma_addr_t start, size_t size)
90 {
91 	struct rb_node *node = iommu->dma_list.rb_node;
92 
93 	while (node) {
94 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
95 
96 		if (start + size <= dma->iova)
97 			node = node->rb_left;
98 		else if (start >= dma->iova + dma->size)
99 			node = node->rb_right;
100 		else
101 			return dma;
102 	}
103 
104 	return NULL;
105 }
106 
107 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
108 {
109 	struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
110 	struct vfio_dma *dma;
111 
112 	while (*link) {
113 		parent = *link;
114 		dma = rb_entry(parent, struct vfio_dma, node);
115 
116 		if (new->iova + new->size <= dma->iova)
117 			link = &(*link)->rb_left;
118 		else
119 			link = &(*link)->rb_right;
120 	}
121 
122 	rb_link_node(&new->node, parent, link);
123 	rb_insert_color(&new->node, &iommu->dma_list);
124 }
125 
126 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
127 {
128 	rb_erase(&old->node, &iommu->dma_list);
129 }
130 
131 struct vwork {
132 	struct mm_struct	*mm;
133 	long			npage;
134 	struct work_struct	work;
135 };
136 
137 /* delayed decrement/increment for locked_vm */
138 static void vfio_lock_acct_bg(struct work_struct *work)
139 {
140 	struct vwork *vwork = container_of(work, struct vwork, work);
141 	struct mm_struct *mm;
142 
143 	mm = vwork->mm;
144 	down_write(&mm->mmap_sem);
145 	mm->locked_vm += vwork->npage;
146 	up_write(&mm->mmap_sem);
147 	mmput(mm);
148 	kfree(vwork);
149 }
150 
151 static void vfio_lock_acct(long npage)
152 {
153 	struct vwork *vwork;
154 	struct mm_struct *mm;
155 
156 	if (!current->mm || !npage)
157 		return; /* process exited or nothing to do */
158 
159 	if (down_write_trylock(&current->mm->mmap_sem)) {
160 		current->mm->locked_vm += npage;
161 		up_write(&current->mm->mmap_sem);
162 		return;
163 	}
164 
165 	/*
166 	 * Couldn't get mmap_sem lock, so must setup to update
167 	 * mm->locked_vm later. If locked_vm were atomic, we
168 	 * wouldn't need this silliness
169 	 */
170 	vwork = kmalloc(sizeof(struct vwork), GFP_KERNEL);
171 	if (!vwork)
172 		return;
173 	mm = get_task_mm(current);
174 	if (!mm) {
175 		kfree(vwork);
176 		return;
177 	}
178 	INIT_WORK(&vwork->work, vfio_lock_acct_bg);
179 	vwork->mm = mm;
180 	vwork->npage = npage;
181 	schedule_work(&vwork->work);
182 }
183 
184 /*
185  * Some mappings aren't backed by a struct page, for example an mmap'd
186  * MMIO range for our own or another device.  These use a different
187  * pfn conversion and shouldn't be tracked as locked pages.
188  */
189 static bool is_invalid_reserved_pfn(unsigned long pfn)
190 {
191 	if (pfn_valid(pfn)) {
192 		bool reserved;
193 		struct page *tail = pfn_to_page(pfn);
194 		struct page *head = compound_head(tail);
195 		reserved = !!(PageReserved(head));
196 		if (head != tail) {
197 			/*
198 			 * "head" is not a dangling pointer
199 			 * (compound_head takes care of that)
200 			 * but the hugepage may have been split
201 			 * from under us (and we may not hold a
202 			 * reference count on the head page so it can
203 			 * be reused before we run PageReferenced), so
204 			 * we've to check PageTail before returning
205 			 * what we just read.
206 			 */
207 			smp_rmb();
208 			if (PageTail(tail))
209 				return reserved;
210 		}
211 		return PageReserved(tail);
212 	}
213 
214 	return true;
215 }
216 
217 static int put_pfn(unsigned long pfn, int prot)
218 {
219 	if (!is_invalid_reserved_pfn(pfn)) {
220 		struct page *page = pfn_to_page(pfn);
221 		if (prot & IOMMU_WRITE)
222 			SetPageDirty(page);
223 		put_page(page);
224 		return 1;
225 	}
226 	return 0;
227 }
228 
229 static int vaddr_get_pfn(unsigned long vaddr, int prot, unsigned long *pfn)
230 {
231 	struct page *page[1];
232 	struct vm_area_struct *vma;
233 	int ret = -EFAULT;
234 
235 	if (get_user_pages_fast(vaddr, 1, !!(prot & IOMMU_WRITE), page) == 1) {
236 		*pfn = page_to_pfn(page[0]);
237 		return 0;
238 	}
239 
240 	down_read(&current->mm->mmap_sem);
241 
242 	vma = find_vma_intersection(current->mm, vaddr, vaddr + 1);
243 
244 	if (vma && vma->vm_flags & VM_PFNMAP) {
245 		*pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
246 		if (is_invalid_reserved_pfn(*pfn))
247 			ret = 0;
248 	}
249 
250 	up_read(&current->mm->mmap_sem);
251 
252 	return ret;
253 }
254 
255 /*
256  * Attempt to pin pages.  We really don't want to track all the pfns and
257  * the iommu can only map chunks of consecutive pfns anyway, so get the
258  * first page and all consecutive pages with the same locking.
259  */
260 static long vfio_pin_pages(unsigned long vaddr, long npage,
261 			   int prot, unsigned long *pfn_base)
262 {
263 	unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
264 	bool lock_cap = capable(CAP_IPC_LOCK);
265 	long ret, i;
266 
267 	if (!current->mm)
268 		return -ENODEV;
269 
270 	ret = vaddr_get_pfn(vaddr, prot, pfn_base);
271 	if (ret)
272 		return ret;
273 
274 	if (is_invalid_reserved_pfn(*pfn_base))
275 		return 1;
276 
277 	if (!lock_cap && current->mm->locked_vm + 1 > limit) {
278 		put_pfn(*pfn_base, prot);
279 		pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
280 			limit << PAGE_SHIFT);
281 		return -ENOMEM;
282 	}
283 
284 	if (unlikely(disable_hugepages)) {
285 		vfio_lock_acct(1);
286 		return 1;
287 	}
288 
289 	/* Lock all the consecutive pages from pfn_base */
290 	for (i = 1, vaddr += PAGE_SIZE; i < npage; i++, vaddr += PAGE_SIZE) {
291 		unsigned long pfn = 0;
292 
293 		ret = vaddr_get_pfn(vaddr, prot, &pfn);
294 		if (ret)
295 			break;
296 
297 		if (pfn != *pfn_base + i || is_invalid_reserved_pfn(pfn)) {
298 			put_pfn(pfn, prot);
299 			break;
300 		}
301 
302 		if (!lock_cap && current->mm->locked_vm + i + 1 > limit) {
303 			put_pfn(pfn, prot);
304 			pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
305 				__func__, limit << PAGE_SHIFT);
306 			break;
307 		}
308 	}
309 
310 	vfio_lock_acct(i);
311 
312 	return i;
313 }
314 
315 static long vfio_unpin_pages(unsigned long pfn, long npage,
316 			     int prot, bool do_accounting)
317 {
318 	unsigned long unlocked = 0;
319 	long i;
320 
321 	for (i = 0; i < npage; i++)
322 		unlocked += put_pfn(pfn++, prot);
323 
324 	if (do_accounting)
325 		vfio_lock_acct(-unlocked);
326 
327 	return unlocked;
328 }
329 
330 static void vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma)
331 {
332 	dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
333 	struct vfio_domain *domain, *d;
334 	long unlocked = 0;
335 
336 	if (!dma->size)
337 		return;
338 	/*
339 	 * We use the IOMMU to track the physical addresses, otherwise we'd
340 	 * need a much more complicated tracking system.  Unfortunately that
341 	 * means we need to use one of the iommu domains to figure out the
342 	 * pfns to unpin.  The rest need to be unmapped in advance so we have
343 	 * no iommu translations remaining when the pages are unpinned.
344 	 */
345 	domain = d = list_first_entry(&iommu->domain_list,
346 				      struct vfio_domain, next);
347 
348 	list_for_each_entry_continue(d, &iommu->domain_list, next)
349 		iommu_unmap(d->domain, dma->iova, dma->size);
350 
351 	while (iova < end) {
352 		size_t unmapped;
353 		phys_addr_t phys;
354 
355 		phys = iommu_iova_to_phys(domain->domain, iova);
356 		if (WARN_ON(!phys)) {
357 			iova += PAGE_SIZE;
358 			continue;
359 		}
360 
361 		unmapped = iommu_unmap(domain->domain, iova, PAGE_SIZE);
362 		if (WARN_ON(!unmapped))
363 			break;
364 
365 		unlocked += vfio_unpin_pages(phys >> PAGE_SHIFT,
366 					     unmapped >> PAGE_SHIFT,
367 					     dma->prot, false);
368 		iova += unmapped;
369 	}
370 
371 	vfio_lock_acct(-unlocked);
372 }
373 
374 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
375 {
376 	vfio_unmap_unpin(iommu, dma);
377 	vfio_unlink_dma(iommu, dma);
378 	kfree(dma);
379 }
380 
381 static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
382 {
383 	struct vfio_domain *domain;
384 	unsigned long bitmap = PAGE_MASK;
385 
386 	mutex_lock(&iommu->lock);
387 	list_for_each_entry(domain, &iommu->domain_list, next)
388 		bitmap &= domain->domain->ops->pgsize_bitmap;
389 	mutex_unlock(&iommu->lock);
390 
391 	return bitmap;
392 }
393 
394 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
395 			     struct vfio_iommu_type1_dma_unmap *unmap)
396 {
397 	uint64_t mask;
398 	struct vfio_dma *dma;
399 	size_t unmapped = 0;
400 	int ret = 0;
401 
402 	mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
403 
404 	if (unmap->iova & mask)
405 		return -EINVAL;
406 	if (!unmap->size || unmap->size & mask)
407 		return -EINVAL;
408 
409 	WARN_ON(mask & PAGE_MASK);
410 
411 	mutex_lock(&iommu->lock);
412 
413 	/*
414 	 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
415 	 * avoid tracking individual mappings.  This means that the granularity
416 	 * of the original mapping was lost and the user was allowed to attempt
417 	 * to unmap any range.  Depending on the contiguousness of physical
418 	 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
419 	 * or may not have worked.  We only guaranteed unmap granularity
420 	 * matching the original mapping; even though it was untracked here,
421 	 * the original mappings are reflected in IOMMU mappings.  This
422 	 * resulted in a couple unusual behaviors.  First, if a range is not
423 	 * able to be unmapped, ex. a set of 4k pages that was mapped as a
424 	 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
425 	 * a zero sized unmap.  Also, if an unmap request overlaps the first
426 	 * address of a hugepage, the IOMMU will unmap the entire hugepage.
427 	 * This also returns success and the returned unmap size reflects the
428 	 * actual size unmapped.
429 	 *
430 	 * We attempt to maintain compatibility with this "v1" interface, but
431 	 * we take control out of the hands of the IOMMU.  Therefore, an unmap
432 	 * request offset from the beginning of the original mapping will
433 	 * return success with zero sized unmap.  And an unmap request covering
434 	 * the first iova of mapping will unmap the entire range.
435 	 *
436 	 * The v2 version of this interface intends to be more deterministic.
437 	 * Unmap requests must fully cover previous mappings.  Multiple
438 	 * mappings may still be unmaped by specifying large ranges, but there
439 	 * must not be any previous mappings bisected by the range.  An error
440 	 * will be returned if these conditions are not met.  The v2 interface
441 	 * will only return success and a size of zero if there were no
442 	 * mappings within the range.
443 	 */
444 	if (iommu->v2) {
445 		dma = vfio_find_dma(iommu, unmap->iova, 0);
446 		if (dma && dma->iova != unmap->iova) {
447 			ret = -EINVAL;
448 			goto unlock;
449 		}
450 		dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
451 		if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
452 			ret = -EINVAL;
453 			goto unlock;
454 		}
455 	}
456 
457 	while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
458 		if (!iommu->v2 && unmap->iova > dma->iova)
459 			break;
460 		unmapped += dma->size;
461 		vfio_remove_dma(iommu, dma);
462 	}
463 
464 unlock:
465 	mutex_unlock(&iommu->lock);
466 
467 	/* Report how much was unmapped */
468 	unmap->size = unmapped;
469 
470 	return ret;
471 }
472 
473 /*
474  * Turns out AMD IOMMU has a page table bug where it won't map large pages
475  * to a region that previously mapped smaller pages.  This should be fixed
476  * soon, so this is just a temporary workaround to break mappings down into
477  * PAGE_SIZE.  Better to map smaller pages than nothing.
478  */
479 static int map_try_harder(struct vfio_domain *domain, dma_addr_t iova,
480 			  unsigned long pfn, long npage, int prot)
481 {
482 	long i;
483 	int ret;
484 
485 	for (i = 0; i < npage; i++, pfn++, iova += PAGE_SIZE) {
486 		ret = iommu_map(domain->domain, iova,
487 				(phys_addr_t)pfn << PAGE_SHIFT,
488 				PAGE_SIZE, prot | domain->prot);
489 		if (ret)
490 			break;
491 	}
492 
493 	for (; i < npage && i > 0; i--, iova -= PAGE_SIZE)
494 		iommu_unmap(domain->domain, iova, PAGE_SIZE);
495 
496 	return ret;
497 }
498 
499 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
500 			  unsigned long pfn, long npage, int prot)
501 {
502 	struct vfio_domain *d;
503 	int ret;
504 
505 	list_for_each_entry(d, &iommu->domain_list, next) {
506 		ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
507 				npage << PAGE_SHIFT, prot | d->prot);
508 		if (ret) {
509 			if (ret != -EBUSY ||
510 			    map_try_harder(d, iova, pfn, npage, prot))
511 				goto unwind;
512 		}
513 	}
514 
515 	return 0;
516 
517 unwind:
518 	list_for_each_entry_continue_reverse(d, &iommu->domain_list, next)
519 		iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
520 
521 	return ret;
522 }
523 
524 static int vfio_dma_do_map(struct vfio_iommu *iommu,
525 			   struct vfio_iommu_type1_dma_map *map)
526 {
527 	dma_addr_t iova = map->iova;
528 	unsigned long vaddr = map->vaddr;
529 	size_t size = map->size;
530 	long npage;
531 	int ret = 0, prot = 0;
532 	uint64_t mask;
533 	struct vfio_dma *dma;
534 	unsigned long pfn;
535 
536 	/* Verify that none of our __u64 fields overflow */
537 	if (map->size != size || map->vaddr != vaddr || map->iova != iova)
538 		return -EINVAL;
539 
540 	mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
541 
542 	WARN_ON(mask & PAGE_MASK);
543 
544 	/* READ/WRITE from device perspective */
545 	if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
546 		prot |= IOMMU_WRITE;
547 	if (map->flags & VFIO_DMA_MAP_FLAG_READ)
548 		prot |= IOMMU_READ;
549 
550 	if (!prot || !size || (size | iova | vaddr) & mask)
551 		return -EINVAL;
552 
553 	/* Don't allow IOVA or virtual address wrap */
554 	if (iova + size - 1 < iova || vaddr + size - 1 < vaddr)
555 		return -EINVAL;
556 
557 	mutex_lock(&iommu->lock);
558 
559 	if (vfio_find_dma(iommu, iova, size)) {
560 		mutex_unlock(&iommu->lock);
561 		return -EEXIST;
562 	}
563 
564 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
565 	if (!dma) {
566 		mutex_unlock(&iommu->lock);
567 		return -ENOMEM;
568 	}
569 
570 	dma->iova = iova;
571 	dma->vaddr = vaddr;
572 	dma->prot = prot;
573 
574 	/* Insert zero-sized and grow as we map chunks of it */
575 	vfio_link_dma(iommu, dma);
576 
577 	while (size) {
578 		/* Pin a contiguous chunk of memory */
579 		npage = vfio_pin_pages(vaddr + dma->size,
580 				       size >> PAGE_SHIFT, prot, &pfn);
581 		if (npage <= 0) {
582 			WARN_ON(!npage);
583 			ret = (int)npage;
584 			break;
585 		}
586 
587 		/* Map it! */
588 		ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage, prot);
589 		if (ret) {
590 			vfio_unpin_pages(pfn, npage, prot, true);
591 			break;
592 		}
593 
594 		size -= npage << PAGE_SHIFT;
595 		dma->size += npage << PAGE_SHIFT;
596 	}
597 
598 	if (ret)
599 		vfio_remove_dma(iommu, dma);
600 
601 	mutex_unlock(&iommu->lock);
602 	return ret;
603 }
604 
605 static int vfio_bus_type(struct device *dev, void *data)
606 {
607 	struct bus_type **bus = data;
608 
609 	if (*bus && *bus != dev->bus)
610 		return -EINVAL;
611 
612 	*bus = dev->bus;
613 
614 	return 0;
615 }
616 
617 static int vfio_iommu_replay(struct vfio_iommu *iommu,
618 			     struct vfio_domain *domain)
619 {
620 	struct vfio_domain *d;
621 	struct rb_node *n;
622 	int ret;
623 
624 	/* Arbitrarily pick the first domain in the list for lookups */
625 	d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
626 	n = rb_first(&iommu->dma_list);
627 
628 	/* If there's not a domain, there better not be any mappings */
629 	if (WARN_ON(n && !d))
630 		return -EINVAL;
631 
632 	for (; n; n = rb_next(n)) {
633 		struct vfio_dma *dma;
634 		dma_addr_t iova;
635 
636 		dma = rb_entry(n, struct vfio_dma, node);
637 		iova = dma->iova;
638 
639 		while (iova < dma->iova + dma->size) {
640 			phys_addr_t phys = iommu_iova_to_phys(d->domain, iova);
641 			size_t size;
642 
643 			if (WARN_ON(!phys)) {
644 				iova += PAGE_SIZE;
645 				continue;
646 			}
647 
648 			size = PAGE_SIZE;
649 
650 			while (iova + size < dma->iova + dma->size &&
651 			       phys + size == iommu_iova_to_phys(d->domain,
652 								 iova + size))
653 				size += PAGE_SIZE;
654 
655 			ret = iommu_map(domain->domain, iova, phys,
656 					size, dma->prot | domain->prot);
657 			if (ret)
658 				return ret;
659 
660 			iova += size;
661 		}
662 	}
663 
664 	return 0;
665 }
666 
667 static int vfio_iommu_type1_attach_group(void *iommu_data,
668 					 struct iommu_group *iommu_group)
669 {
670 	struct vfio_iommu *iommu = iommu_data;
671 	struct vfio_group *group, *g;
672 	struct vfio_domain *domain, *d;
673 	struct bus_type *bus = NULL;
674 	int ret;
675 
676 	mutex_lock(&iommu->lock);
677 
678 	list_for_each_entry(d, &iommu->domain_list, next) {
679 		list_for_each_entry(g, &d->group_list, next) {
680 			if (g->iommu_group != iommu_group)
681 				continue;
682 
683 			mutex_unlock(&iommu->lock);
684 			return -EINVAL;
685 		}
686 	}
687 
688 	group = kzalloc(sizeof(*group), GFP_KERNEL);
689 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
690 	if (!group || !domain) {
691 		ret = -ENOMEM;
692 		goto out_free;
693 	}
694 
695 	group->iommu_group = iommu_group;
696 
697 	/* Determine bus_type in order to allocate a domain */
698 	ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
699 	if (ret)
700 		goto out_free;
701 
702 	domain->domain = iommu_domain_alloc(bus);
703 	if (!domain->domain) {
704 		ret = -EIO;
705 		goto out_free;
706 	}
707 
708 	ret = iommu_attach_group(domain->domain, iommu_group);
709 	if (ret)
710 		goto out_domain;
711 
712 	INIT_LIST_HEAD(&domain->group_list);
713 	list_add(&group->next, &domain->group_list);
714 
715 	if (!allow_unsafe_interrupts &&
716 	    !iommu_domain_has_cap(domain->domain, IOMMU_CAP_INTR_REMAP)) {
717 		pr_warn("%s: No interrupt remapping support.  Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
718 		       __func__);
719 		ret = -EPERM;
720 		goto out_detach;
721 	}
722 
723 	if (iommu_domain_has_cap(domain->domain, IOMMU_CAP_CACHE_COHERENCY))
724 		domain->prot |= IOMMU_CACHE;
725 
726 	/*
727 	 * Try to match an existing compatible domain.  We don't want to
728 	 * preclude an IOMMU driver supporting multiple bus_types and being
729 	 * able to include different bus_types in the same IOMMU domain, so
730 	 * we test whether the domains use the same iommu_ops rather than
731 	 * testing if they're on the same bus_type.
732 	 */
733 	list_for_each_entry(d, &iommu->domain_list, next) {
734 		if (d->domain->ops == domain->domain->ops &&
735 		    d->prot == domain->prot) {
736 			iommu_detach_group(domain->domain, iommu_group);
737 			if (!iommu_attach_group(d->domain, iommu_group)) {
738 				list_add(&group->next, &d->group_list);
739 				iommu_domain_free(domain->domain);
740 				kfree(domain);
741 				mutex_unlock(&iommu->lock);
742 				return 0;
743 			}
744 
745 			ret = iommu_attach_group(domain->domain, iommu_group);
746 			if (ret)
747 				goto out_domain;
748 		}
749 	}
750 
751 	/* replay mappings on new domains */
752 	ret = vfio_iommu_replay(iommu, domain);
753 	if (ret)
754 		goto out_detach;
755 
756 	list_add(&domain->next, &iommu->domain_list);
757 
758 	mutex_unlock(&iommu->lock);
759 
760 	return 0;
761 
762 out_detach:
763 	iommu_detach_group(domain->domain, iommu_group);
764 out_domain:
765 	iommu_domain_free(domain->domain);
766 out_free:
767 	kfree(domain);
768 	kfree(group);
769 	mutex_unlock(&iommu->lock);
770 	return ret;
771 }
772 
773 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
774 {
775 	struct rb_node *node;
776 
777 	while ((node = rb_first(&iommu->dma_list)))
778 		vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
779 }
780 
781 static void vfio_iommu_type1_detach_group(void *iommu_data,
782 					  struct iommu_group *iommu_group)
783 {
784 	struct vfio_iommu *iommu = iommu_data;
785 	struct vfio_domain *domain;
786 	struct vfio_group *group;
787 
788 	mutex_lock(&iommu->lock);
789 
790 	list_for_each_entry(domain, &iommu->domain_list, next) {
791 		list_for_each_entry(group, &domain->group_list, next) {
792 			if (group->iommu_group != iommu_group)
793 				continue;
794 
795 			iommu_detach_group(domain->domain, iommu_group);
796 			list_del(&group->next);
797 			kfree(group);
798 			/*
799 			 * Group ownership provides privilege, if the group
800 			 * list is empty, the domain goes away.  If it's the
801 			 * last domain, then all the mappings go away too.
802 			 */
803 			if (list_empty(&domain->group_list)) {
804 				if (list_is_singular(&iommu->domain_list))
805 					vfio_iommu_unmap_unpin_all(iommu);
806 				iommu_domain_free(domain->domain);
807 				list_del(&domain->next);
808 				kfree(domain);
809 			}
810 			goto done;
811 		}
812 	}
813 
814 done:
815 	mutex_unlock(&iommu->lock);
816 }
817 
818 static void *vfio_iommu_type1_open(unsigned long arg)
819 {
820 	struct vfio_iommu *iommu;
821 
822 	if (arg != VFIO_TYPE1_IOMMU && arg != VFIO_TYPE1v2_IOMMU)
823 		return ERR_PTR(-EINVAL);
824 
825 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
826 	if (!iommu)
827 		return ERR_PTR(-ENOMEM);
828 
829 	INIT_LIST_HEAD(&iommu->domain_list);
830 	iommu->dma_list = RB_ROOT;
831 	mutex_init(&iommu->lock);
832 	iommu->v2 = (arg == VFIO_TYPE1v2_IOMMU);
833 
834 	return iommu;
835 }
836 
837 static void vfio_iommu_type1_release(void *iommu_data)
838 {
839 	struct vfio_iommu *iommu = iommu_data;
840 	struct vfio_domain *domain, *domain_tmp;
841 	struct vfio_group *group, *group_tmp;
842 
843 	vfio_iommu_unmap_unpin_all(iommu);
844 
845 	list_for_each_entry_safe(domain, domain_tmp,
846 				 &iommu->domain_list, next) {
847 		list_for_each_entry_safe(group, group_tmp,
848 					 &domain->group_list, next) {
849 			iommu_detach_group(domain->domain, group->iommu_group);
850 			list_del(&group->next);
851 			kfree(group);
852 		}
853 		iommu_domain_free(domain->domain);
854 		list_del(&domain->next);
855 		kfree(domain);
856 	}
857 
858 	kfree(iommu);
859 }
860 
861 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
862 {
863 	struct vfio_domain *domain;
864 	int ret = 1;
865 
866 	mutex_lock(&iommu->lock);
867 	list_for_each_entry(domain, &iommu->domain_list, next) {
868 		if (!(domain->prot & IOMMU_CACHE)) {
869 			ret = 0;
870 			break;
871 		}
872 	}
873 	mutex_unlock(&iommu->lock);
874 
875 	return ret;
876 }
877 
878 static long vfio_iommu_type1_ioctl(void *iommu_data,
879 				   unsigned int cmd, unsigned long arg)
880 {
881 	struct vfio_iommu *iommu = iommu_data;
882 	unsigned long minsz;
883 
884 	if (cmd == VFIO_CHECK_EXTENSION) {
885 		switch (arg) {
886 		case VFIO_TYPE1_IOMMU:
887 		case VFIO_TYPE1v2_IOMMU:
888 			return 1;
889 		case VFIO_DMA_CC_IOMMU:
890 			if (!iommu)
891 				return 0;
892 			return vfio_domains_have_iommu_cache(iommu);
893 		default:
894 			return 0;
895 		}
896 	} else if (cmd == VFIO_IOMMU_GET_INFO) {
897 		struct vfio_iommu_type1_info info;
898 
899 		minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
900 
901 		if (copy_from_user(&info, (void __user *)arg, minsz))
902 			return -EFAULT;
903 
904 		if (info.argsz < minsz)
905 			return -EINVAL;
906 
907 		info.flags = 0;
908 
909 		info.iova_pgsizes = vfio_pgsize_bitmap(iommu);
910 
911 		return copy_to_user((void __user *)arg, &info, minsz);
912 
913 	} else if (cmd == VFIO_IOMMU_MAP_DMA) {
914 		struct vfio_iommu_type1_dma_map map;
915 		uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
916 				VFIO_DMA_MAP_FLAG_WRITE;
917 
918 		minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
919 
920 		if (copy_from_user(&map, (void __user *)arg, minsz))
921 			return -EFAULT;
922 
923 		if (map.argsz < minsz || map.flags & ~mask)
924 			return -EINVAL;
925 
926 		return vfio_dma_do_map(iommu, &map);
927 
928 	} else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
929 		struct vfio_iommu_type1_dma_unmap unmap;
930 		long ret;
931 
932 		minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
933 
934 		if (copy_from_user(&unmap, (void __user *)arg, minsz))
935 			return -EFAULT;
936 
937 		if (unmap.argsz < minsz || unmap.flags)
938 			return -EINVAL;
939 
940 		ret = vfio_dma_do_unmap(iommu, &unmap);
941 		if (ret)
942 			return ret;
943 
944 		return copy_to_user((void __user *)arg, &unmap, minsz);
945 	}
946 
947 	return -ENOTTY;
948 }
949 
950 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
951 	.name		= "vfio-iommu-type1",
952 	.owner		= THIS_MODULE,
953 	.open		= vfio_iommu_type1_open,
954 	.release	= vfio_iommu_type1_release,
955 	.ioctl		= vfio_iommu_type1_ioctl,
956 	.attach_group	= vfio_iommu_type1_attach_group,
957 	.detach_group	= vfio_iommu_type1_detach_group,
958 };
959 
960 static int __init vfio_iommu_type1_init(void)
961 {
962 	return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
963 }
964 
965 static void __exit vfio_iommu_type1_cleanup(void)
966 {
967 	vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
968 }
969 
970 module_init(vfio_iommu_type1_init);
971 module_exit(vfio_iommu_type1_cleanup);
972 
973 MODULE_VERSION(DRIVER_VERSION);
974 MODULE_LICENSE("GPL v2");
975 MODULE_AUTHOR(DRIVER_AUTHOR);
976 MODULE_DESCRIPTION(DRIVER_DESC);
977