1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * Derived from original vfio:
9  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
10  * Author: Tom Lyon, pugs@cisco.com
11  *
12  * We arbitrarily define a Type1 IOMMU as one matching the below code.
13  * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14  * VT-d, but that makes it harder to re-use as theoretically anyone
15  * implementing a similar IOMMU could make use of this.  We expect the
16  * IOMMU to support the IOMMU API and have few to no restrictions around
17  * the IOVA range that can be mapped.  The Type1 IOMMU is currently
18  * optimized for relatively static mappings of a userspace process with
19  * userpsace pages pinned into memory.  We also assume devices and IOMMU
20  * domains are PCI based as the IOMMU API is still centered around a
21  * device/bus interface rather than a group interface.
22  */
23 
24 #include <linux/compat.h>
25 #include <linux/device.h>
26 #include <linux/fs.h>
27 #include <linux/iommu.h>
28 #include <linux/module.h>
29 #include <linux/mm.h>
30 #include <linux/kthread.h>
31 #include <linux/rbtree.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/slab.h>
35 #include <linux/uaccess.h>
36 #include <linux/vfio.h>
37 #include <linux/workqueue.h>
38 #include <linux/mdev.h>
39 #include <linux/notifier.h>
40 #include <linux/dma-iommu.h>
41 #include <linux/irqdomain.h>
42 
43 #define DRIVER_VERSION  "0.2"
44 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
45 #define DRIVER_DESC     "Type1 IOMMU driver for VFIO"
46 
47 static bool allow_unsafe_interrupts;
48 module_param_named(allow_unsafe_interrupts,
49 		   allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
50 MODULE_PARM_DESC(allow_unsafe_interrupts,
51 		 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
52 
53 static bool disable_hugepages;
54 module_param_named(disable_hugepages,
55 		   disable_hugepages, bool, S_IRUGO | S_IWUSR);
56 MODULE_PARM_DESC(disable_hugepages,
57 		 "Disable VFIO IOMMU support for IOMMU hugepages.");
58 
59 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
60 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
61 MODULE_PARM_DESC(dma_entry_limit,
62 		 "Maximum number of user DMA mappings per container (65535).");
63 
64 struct vfio_iommu {
65 	struct list_head	domain_list;
66 	struct list_head	iova_list;
67 	struct vfio_domain	*external_domain; /* domain for external user */
68 	struct mutex		lock;
69 	struct rb_root		dma_list;
70 	struct blocking_notifier_head notifier;
71 	unsigned int		dma_avail;
72 	uint64_t		pgsize_bitmap;
73 	bool			v2;
74 	bool			nesting;
75 	bool			dirty_page_tracking;
76 	bool			pinned_page_dirty_scope;
77 };
78 
79 struct vfio_domain {
80 	struct iommu_domain	*domain;
81 	struct list_head	next;
82 	struct list_head	group_list;
83 	int			prot;		/* IOMMU_CACHE */
84 	bool			fgsp;		/* Fine-grained super pages */
85 };
86 
87 struct vfio_dma {
88 	struct rb_node		node;
89 	dma_addr_t		iova;		/* Device address */
90 	unsigned long		vaddr;		/* Process virtual addr */
91 	size_t			size;		/* Map size (bytes) */
92 	int			prot;		/* IOMMU_READ/WRITE */
93 	bool			iommu_mapped;
94 	bool			lock_cap;	/* capable(CAP_IPC_LOCK) */
95 	struct task_struct	*task;
96 	struct rb_root		pfn_list;	/* Ex-user pinned pfn list */
97 	unsigned long		*bitmap;
98 };
99 
100 struct vfio_group {
101 	struct iommu_group	*iommu_group;
102 	struct list_head	next;
103 	bool			mdev_group;	/* An mdev group */
104 	bool			pinned_page_dirty_scope;
105 };
106 
107 struct vfio_iova {
108 	struct list_head	list;
109 	dma_addr_t		start;
110 	dma_addr_t		end;
111 };
112 
113 /*
114  * Guest RAM pinning working set or DMA target
115  */
116 struct vfio_pfn {
117 	struct rb_node		node;
118 	dma_addr_t		iova;		/* Device address */
119 	unsigned long		pfn;		/* Host pfn */
120 	unsigned int		ref_count;
121 };
122 
123 struct vfio_regions {
124 	struct list_head list;
125 	dma_addr_t iova;
126 	phys_addr_t phys;
127 	size_t len;
128 };
129 
130 #define IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu)	\
131 					(!list_empty(&iommu->domain_list))
132 
133 #define DIRTY_BITMAP_BYTES(n)	(ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
134 
135 /*
136  * Input argument of number of bits to bitmap_set() is unsigned integer, which
137  * further casts to signed integer for unaligned multi-bit operation,
138  * __bitmap_set().
139  * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
140  * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
141  * system.
142  */
143 #define DIRTY_BITMAP_PAGES_MAX	 ((u64)INT_MAX)
144 #define DIRTY_BITMAP_SIZE_MAX	 DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
145 
146 static int put_pfn(unsigned long pfn, int prot);
147 
148 static struct vfio_group *vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
149 					       struct iommu_group *iommu_group);
150 
151 static void update_pinned_page_dirty_scope(struct vfio_iommu *iommu);
152 /*
153  * This code handles mapping and unmapping of user data buffers
154  * into DMA'ble space using the IOMMU
155  */
156 
157 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
158 				      dma_addr_t start, size_t size)
159 {
160 	struct rb_node *node = iommu->dma_list.rb_node;
161 
162 	while (node) {
163 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
164 
165 		if (start + size <= dma->iova)
166 			node = node->rb_left;
167 		else if (start >= dma->iova + dma->size)
168 			node = node->rb_right;
169 		else
170 			return dma;
171 	}
172 
173 	return NULL;
174 }
175 
176 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
177 {
178 	struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
179 	struct vfio_dma *dma;
180 
181 	while (*link) {
182 		parent = *link;
183 		dma = rb_entry(parent, struct vfio_dma, node);
184 
185 		if (new->iova + new->size <= dma->iova)
186 			link = &(*link)->rb_left;
187 		else
188 			link = &(*link)->rb_right;
189 	}
190 
191 	rb_link_node(&new->node, parent, link);
192 	rb_insert_color(&new->node, &iommu->dma_list);
193 }
194 
195 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
196 {
197 	rb_erase(&old->node, &iommu->dma_list);
198 }
199 
200 
201 static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
202 {
203 	uint64_t npages = dma->size / pgsize;
204 
205 	if (npages > DIRTY_BITMAP_PAGES_MAX)
206 		return -EINVAL;
207 
208 	/*
209 	 * Allocate extra 64 bits that are used to calculate shift required for
210 	 * bitmap_shift_left() to manipulate and club unaligned number of pages
211 	 * in adjacent vfio_dma ranges.
212 	 */
213 	dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
214 			       GFP_KERNEL);
215 	if (!dma->bitmap)
216 		return -ENOMEM;
217 
218 	return 0;
219 }
220 
221 static void vfio_dma_bitmap_free(struct vfio_dma *dma)
222 {
223 	kfree(dma->bitmap);
224 	dma->bitmap = NULL;
225 }
226 
227 static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
228 {
229 	struct rb_node *p;
230 	unsigned long pgshift = __ffs(pgsize);
231 
232 	for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
233 		struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
234 
235 		bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
236 	}
237 }
238 
239 static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
240 {
241 	struct rb_node *n;
242 
243 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
244 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
245 		int ret;
246 
247 		ret = vfio_dma_bitmap_alloc(dma, pgsize);
248 		if (ret) {
249 			struct rb_node *p;
250 
251 			for (p = rb_prev(n); p; p = rb_prev(p)) {
252 				struct vfio_dma *dma = rb_entry(n,
253 							struct vfio_dma, node);
254 
255 				vfio_dma_bitmap_free(dma);
256 			}
257 			return ret;
258 		}
259 		vfio_dma_populate_bitmap(dma, pgsize);
260 	}
261 	return 0;
262 }
263 
264 static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
265 {
266 	struct rb_node *n;
267 
268 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
269 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
270 
271 		vfio_dma_bitmap_free(dma);
272 	}
273 }
274 
275 /*
276  * Helper Functions for host iova-pfn list
277  */
278 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
279 {
280 	struct vfio_pfn *vpfn;
281 	struct rb_node *node = dma->pfn_list.rb_node;
282 
283 	while (node) {
284 		vpfn = rb_entry(node, struct vfio_pfn, node);
285 
286 		if (iova < vpfn->iova)
287 			node = node->rb_left;
288 		else if (iova > vpfn->iova)
289 			node = node->rb_right;
290 		else
291 			return vpfn;
292 	}
293 	return NULL;
294 }
295 
296 static void vfio_link_pfn(struct vfio_dma *dma,
297 			  struct vfio_pfn *new)
298 {
299 	struct rb_node **link, *parent = NULL;
300 	struct vfio_pfn *vpfn;
301 
302 	link = &dma->pfn_list.rb_node;
303 	while (*link) {
304 		parent = *link;
305 		vpfn = rb_entry(parent, struct vfio_pfn, node);
306 
307 		if (new->iova < vpfn->iova)
308 			link = &(*link)->rb_left;
309 		else
310 			link = &(*link)->rb_right;
311 	}
312 
313 	rb_link_node(&new->node, parent, link);
314 	rb_insert_color(&new->node, &dma->pfn_list);
315 }
316 
317 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
318 {
319 	rb_erase(&old->node, &dma->pfn_list);
320 }
321 
322 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
323 				unsigned long pfn)
324 {
325 	struct vfio_pfn *vpfn;
326 
327 	vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
328 	if (!vpfn)
329 		return -ENOMEM;
330 
331 	vpfn->iova = iova;
332 	vpfn->pfn = pfn;
333 	vpfn->ref_count = 1;
334 	vfio_link_pfn(dma, vpfn);
335 	return 0;
336 }
337 
338 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
339 				      struct vfio_pfn *vpfn)
340 {
341 	vfio_unlink_pfn(dma, vpfn);
342 	kfree(vpfn);
343 }
344 
345 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
346 					       unsigned long iova)
347 {
348 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
349 
350 	if (vpfn)
351 		vpfn->ref_count++;
352 	return vpfn;
353 }
354 
355 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
356 {
357 	int ret = 0;
358 
359 	vpfn->ref_count--;
360 	if (!vpfn->ref_count) {
361 		ret = put_pfn(vpfn->pfn, dma->prot);
362 		vfio_remove_from_pfn_list(dma, vpfn);
363 	}
364 	return ret;
365 }
366 
367 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
368 {
369 	struct mm_struct *mm;
370 	int ret;
371 
372 	if (!npage)
373 		return 0;
374 
375 	mm = async ? get_task_mm(dma->task) : dma->task->mm;
376 	if (!mm)
377 		return -ESRCH; /* process exited */
378 
379 	ret = mmap_write_lock_killable(mm);
380 	if (!ret) {
381 		ret = __account_locked_vm(mm, abs(npage), npage > 0, dma->task,
382 					  dma->lock_cap);
383 		mmap_write_unlock(mm);
384 	}
385 
386 	if (async)
387 		mmput(mm);
388 
389 	return ret;
390 }
391 
392 /*
393  * Some mappings aren't backed by a struct page, for example an mmap'd
394  * MMIO range for our own or another device.  These use a different
395  * pfn conversion and shouldn't be tracked as locked pages.
396  * For compound pages, any driver that sets the reserved bit in head
397  * page needs to set the reserved bit in all subpages to be safe.
398  */
399 static bool is_invalid_reserved_pfn(unsigned long pfn)
400 {
401 	if (pfn_valid(pfn))
402 		return PageReserved(pfn_to_page(pfn));
403 
404 	return true;
405 }
406 
407 static int put_pfn(unsigned long pfn, int prot)
408 {
409 	if (!is_invalid_reserved_pfn(pfn)) {
410 		struct page *page = pfn_to_page(pfn);
411 
412 		unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
413 		return 1;
414 	}
415 	return 0;
416 }
417 
418 static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
419 			    unsigned long vaddr, unsigned long *pfn,
420 			    bool write_fault)
421 {
422 	int ret;
423 
424 	ret = follow_pfn(vma, vaddr, pfn);
425 	if (ret) {
426 		bool unlocked = false;
427 
428 		ret = fixup_user_fault(mm, vaddr,
429 				       FAULT_FLAG_REMOTE |
430 				       (write_fault ?  FAULT_FLAG_WRITE : 0),
431 				       &unlocked);
432 		if (unlocked)
433 			return -EAGAIN;
434 
435 		if (ret)
436 			return ret;
437 
438 		ret = follow_pfn(vma, vaddr, pfn);
439 	}
440 
441 	return ret;
442 }
443 
444 static int vaddr_get_pfn(struct mm_struct *mm, unsigned long vaddr,
445 			 int prot, unsigned long *pfn)
446 {
447 	struct page *page[1];
448 	struct vm_area_struct *vma;
449 	unsigned int flags = 0;
450 	int ret;
451 
452 	if (prot & IOMMU_WRITE)
453 		flags |= FOLL_WRITE;
454 
455 	mmap_read_lock(mm);
456 	ret = pin_user_pages_remote(mm, vaddr, 1, flags | FOLL_LONGTERM,
457 				    page, NULL, NULL);
458 	if (ret == 1) {
459 		*pfn = page_to_pfn(page[0]);
460 		ret = 0;
461 		goto done;
462 	}
463 
464 	vaddr = untagged_addr(vaddr);
465 
466 retry:
467 	vma = find_vma_intersection(mm, vaddr, vaddr + 1);
468 
469 	if (vma && vma->vm_flags & VM_PFNMAP) {
470 		ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE);
471 		if (ret == -EAGAIN)
472 			goto retry;
473 
474 		if (!ret && !is_invalid_reserved_pfn(*pfn))
475 			ret = -EFAULT;
476 	}
477 done:
478 	mmap_read_unlock(mm);
479 	return ret;
480 }
481 
482 /*
483  * Attempt to pin pages.  We really don't want to track all the pfns and
484  * the iommu can only map chunks of consecutive pfns anyway, so get the
485  * first page and all consecutive pages with the same locking.
486  */
487 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
488 				  long npage, unsigned long *pfn_base,
489 				  unsigned long limit)
490 {
491 	unsigned long pfn = 0;
492 	long ret, pinned = 0, lock_acct = 0;
493 	bool rsvd;
494 	dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
495 
496 	/* This code path is only user initiated */
497 	if (!current->mm)
498 		return -ENODEV;
499 
500 	ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, pfn_base);
501 	if (ret)
502 		return ret;
503 
504 	pinned++;
505 	rsvd = is_invalid_reserved_pfn(*pfn_base);
506 
507 	/*
508 	 * Reserved pages aren't counted against the user, externally pinned
509 	 * pages are already counted against the user.
510 	 */
511 	if (!rsvd && !vfio_find_vpfn(dma, iova)) {
512 		if (!dma->lock_cap && current->mm->locked_vm + 1 > limit) {
513 			put_pfn(*pfn_base, dma->prot);
514 			pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
515 					limit << PAGE_SHIFT);
516 			return -ENOMEM;
517 		}
518 		lock_acct++;
519 	}
520 
521 	if (unlikely(disable_hugepages))
522 		goto out;
523 
524 	/* Lock all the consecutive pages from pfn_base */
525 	for (vaddr += PAGE_SIZE, iova += PAGE_SIZE; pinned < npage;
526 	     pinned++, vaddr += PAGE_SIZE, iova += PAGE_SIZE) {
527 		ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, &pfn);
528 		if (ret)
529 			break;
530 
531 		if (pfn != *pfn_base + pinned ||
532 		    rsvd != is_invalid_reserved_pfn(pfn)) {
533 			put_pfn(pfn, dma->prot);
534 			break;
535 		}
536 
537 		if (!rsvd && !vfio_find_vpfn(dma, iova)) {
538 			if (!dma->lock_cap &&
539 			    current->mm->locked_vm + lock_acct + 1 > limit) {
540 				put_pfn(pfn, dma->prot);
541 				pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
542 					__func__, limit << PAGE_SHIFT);
543 				ret = -ENOMEM;
544 				goto unpin_out;
545 			}
546 			lock_acct++;
547 		}
548 	}
549 
550 out:
551 	ret = vfio_lock_acct(dma, lock_acct, false);
552 
553 unpin_out:
554 	if (ret) {
555 		if (!rsvd) {
556 			for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
557 				put_pfn(pfn, dma->prot);
558 		}
559 
560 		return ret;
561 	}
562 
563 	return pinned;
564 }
565 
566 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
567 				    unsigned long pfn, long npage,
568 				    bool do_accounting)
569 {
570 	long unlocked = 0, locked = 0;
571 	long i;
572 
573 	for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
574 		if (put_pfn(pfn++, dma->prot)) {
575 			unlocked++;
576 			if (vfio_find_vpfn(dma, iova))
577 				locked++;
578 		}
579 	}
580 
581 	if (do_accounting)
582 		vfio_lock_acct(dma, locked - unlocked, true);
583 
584 	return unlocked;
585 }
586 
587 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
588 				  unsigned long *pfn_base, bool do_accounting)
589 {
590 	struct mm_struct *mm;
591 	int ret;
592 
593 	mm = get_task_mm(dma->task);
594 	if (!mm)
595 		return -ENODEV;
596 
597 	ret = vaddr_get_pfn(mm, vaddr, dma->prot, pfn_base);
598 	if (!ret && do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
599 		ret = vfio_lock_acct(dma, 1, true);
600 		if (ret) {
601 			put_pfn(*pfn_base, dma->prot);
602 			if (ret == -ENOMEM)
603 				pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
604 					"(%ld) exceeded\n", __func__,
605 					dma->task->comm, task_pid_nr(dma->task),
606 					task_rlimit(dma->task, RLIMIT_MEMLOCK));
607 		}
608 	}
609 
610 	mmput(mm);
611 	return ret;
612 }
613 
614 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
615 				    bool do_accounting)
616 {
617 	int unlocked;
618 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
619 
620 	if (!vpfn)
621 		return 0;
622 
623 	unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
624 
625 	if (do_accounting)
626 		vfio_lock_acct(dma, -unlocked, true);
627 
628 	return unlocked;
629 }
630 
631 static int vfio_iommu_type1_pin_pages(void *iommu_data,
632 				      struct iommu_group *iommu_group,
633 				      unsigned long *user_pfn,
634 				      int npage, int prot,
635 				      unsigned long *phys_pfn)
636 {
637 	struct vfio_iommu *iommu = iommu_data;
638 	struct vfio_group *group;
639 	int i, j, ret;
640 	unsigned long remote_vaddr;
641 	struct vfio_dma *dma;
642 	bool do_accounting;
643 
644 	if (!iommu || !user_pfn || !phys_pfn)
645 		return -EINVAL;
646 
647 	/* Supported for v2 version only */
648 	if (!iommu->v2)
649 		return -EACCES;
650 
651 	mutex_lock(&iommu->lock);
652 
653 	/* Fail if notifier list is empty */
654 	if (!iommu->notifier.head) {
655 		ret = -EINVAL;
656 		goto pin_done;
657 	}
658 
659 	/*
660 	 * If iommu capable domain exist in the container then all pages are
661 	 * already pinned and accounted. Accouting should be done if there is no
662 	 * iommu capable domain in the container.
663 	 */
664 	do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
665 
666 	for (i = 0; i < npage; i++) {
667 		dma_addr_t iova;
668 		struct vfio_pfn *vpfn;
669 
670 		iova = user_pfn[i] << PAGE_SHIFT;
671 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
672 		if (!dma) {
673 			ret = -EINVAL;
674 			goto pin_unwind;
675 		}
676 
677 		if ((dma->prot & prot) != prot) {
678 			ret = -EPERM;
679 			goto pin_unwind;
680 		}
681 
682 		vpfn = vfio_iova_get_vfio_pfn(dma, iova);
683 		if (vpfn) {
684 			phys_pfn[i] = vpfn->pfn;
685 			continue;
686 		}
687 
688 		remote_vaddr = dma->vaddr + (iova - dma->iova);
689 		ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn[i],
690 					     do_accounting);
691 		if (ret)
692 			goto pin_unwind;
693 
694 		ret = vfio_add_to_pfn_list(dma, iova, phys_pfn[i]);
695 		if (ret) {
696 			vfio_unpin_page_external(dma, iova, do_accounting);
697 			goto pin_unwind;
698 		}
699 
700 		if (iommu->dirty_page_tracking) {
701 			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
702 
703 			/*
704 			 * Bitmap populated with the smallest supported page
705 			 * size
706 			 */
707 			bitmap_set(dma->bitmap,
708 				   (iova - dma->iova) >> pgshift, 1);
709 		}
710 	}
711 	ret = i;
712 
713 	group = vfio_iommu_find_iommu_group(iommu, iommu_group);
714 	if (!group->pinned_page_dirty_scope) {
715 		group->pinned_page_dirty_scope = true;
716 		update_pinned_page_dirty_scope(iommu);
717 	}
718 
719 	goto pin_done;
720 
721 pin_unwind:
722 	phys_pfn[i] = 0;
723 	for (j = 0; j < i; j++) {
724 		dma_addr_t iova;
725 
726 		iova = user_pfn[j] << PAGE_SHIFT;
727 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
728 		vfio_unpin_page_external(dma, iova, do_accounting);
729 		phys_pfn[j] = 0;
730 	}
731 pin_done:
732 	mutex_unlock(&iommu->lock);
733 	return ret;
734 }
735 
736 static int vfio_iommu_type1_unpin_pages(void *iommu_data,
737 					unsigned long *user_pfn,
738 					int npage)
739 {
740 	struct vfio_iommu *iommu = iommu_data;
741 	bool do_accounting;
742 	int i;
743 
744 	if (!iommu || !user_pfn)
745 		return -EINVAL;
746 
747 	/* Supported for v2 version only */
748 	if (!iommu->v2)
749 		return -EACCES;
750 
751 	mutex_lock(&iommu->lock);
752 
753 	do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
754 	for (i = 0; i < npage; i++) {
755 		struct vfio_dma *dma;
756 		dma_addr_t iova;
757 
758 		iova = user_pfn[i] << PAGE_SHIFT;
759 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
760 		if (!dma)
761 			goto unpin_exit;
762 		vfio_unpin_page_external(dma, iova, do_accounting);
763 	}
764 
765 unpin_exit:
766 	mutex_unlock(&iommu->lock);
767 	return i > npage ? npage : (i > 0 ? i : -EINVAL);
768 }
769 
770 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
771 			    struct list_head *regions,
772 			    struct iommu_iotlb_gather *iotlb_gather)
773 {
774 	long unlocked = 0;
775 	struct vfio_regions *entry, *next;
776 
777 	iommu_tlb_sync(domain->domain, iotlb_gather);
778 
779 	list_for_each_entry_safe(entry, next, regions, list) {
780 		unlocked += vfio_unpin_pages_remote(dma,
781 						    entry->iova,
782 						    entry->phys >> PAGE_SHIFT,
783 						    entry->len >> PAGE_SHIFT,
784 						    false);
785 		list_del(&entry->list);
786 		kfree(entry);
787 	}
788 
789 	cond_resched();
790 
791 	return unlocked;
792 }
793 
794 /*
795  * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
796  * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
797  * of these regions (currently using a list).
798  *
799  * This value specifies maximum number of regions for each IOTLB flush sync.
800  */
801 #define VFIO_IOMMU_TLB_SYNC_MAX		512
802 
803 static size_t unmap_unpin_fast(struct vfio_domain *domain,
804 			       struct vfio_dma *dma, dma_addr_t *iova,
805 			       size_t len, phys_addr_t phys, long *unlocked,
806 			       struct list_head *unmapped_list,
807 			       int *unmapped_cnt,
808 			       struct iommu_iotlb_gather *iotlb_gather)
809 {
810 	size_t unmapped = 0;
811 	struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
812 
813 	if (entry) {
814 		unmapped = iommu_unmap_fast(domain->domain, *iova, len,
815 					    iotlb_gather);
816 
817 		if (!unmapped) {
818 			kfree(entry);
819 		} else {
820 			entry->iova = *iova;
821 			entry->phys = phys;
822 			entry->len  = unmapped;
823 			list_add_tail(&entry->list, unmapped_list);
824 
825 			*iova += unmapped;
826 			(*unmapped_cnt)++;
827 		}
828 	}
829 
830 	/*
831 	 * Sync if the number of fast-unmap regions hits the limit
832 	 * or in case of errors.
833 	 */
834 	if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
835 		*unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
836 					     iotlb_gather);
837 		*unmapped_cnt = 0;
838 	}
839 
840 	return unmapped;
841 }
842 
843 static size_t unmap_unpin_slow(struct vfio_domain *domain,
844 			       struct vfio_dma *dma, dma_addr_t *iova,
845 			       size_t len, phys_addr_t phys,
846 			       long *unlocked)
847 {
848 	size_t unmapped = iommu_unmap(domain->domain, *iova, len);
849 
850 	if (unmapped) {
851 		*unlocked += vfio_unpin_pages_remote(dma, *iova,
852 						     phys >> PAGE_SHIFT,
853 						     unmapped >> PAGE_SHIFT,
854 						     false);
855 		*iova += unmapped;
856 		cond_resched();
857 	}
858 	return unmapped;
859 }
860 
861 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
862 			     bool do_accounting)
863 {
864 	dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
865 	struct vfio_domain *domain, *d;
866 	LIST_HEAD(unmapped_region_list);
867 	struct iommu_iotlb_gather iotlb_gather;
868 	int unmapped_region_cnt = 0;
869 	long unlocked = 0;
870 
871 	if (!dma->size)
872 		return 0;
873 
874 	if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
875 		return 0;
876 
877 	/*
878 	 * We use the IOMMU to track the physical addresses, otherwise we'd
879 	 * need a much more complicated tracking system.  Unfortunately that
880 	 * means we need to use one of the iommu domains to figure out the
881 	 * pfns to unpin.  The rest need to be unmapped in advance so we have
882 	 * no iommu translations remaining when the pages are unpinned.
883 	 */
884 	domain = d = list_first_entry(&iommu->domain_list,
885 				      struct vfio_domain, next);
886 
887 	list_for_each_entry_continue(d, &iommu->domain_list, next) {
888 		iommu_unmap(d->domain, dma->iova, dma->size);
889 		cond_resched();
890 	}
891 
892 	iommu_iotlb_gather_init(&iotlb_gather);
893 	while (iova < end) {
894 		size_t unmapped, len;
895 		phys_addr_t phys, next;
896 
897 		phys = iommu_iova_to_phys(domain->domain, iova);
898 		if (WARN_ON(!phys)) {
899 			iova += PAGE_SIZE;
900 			continue;
901 		}
902 
903 		/*
904 		 * To optimize for fewer iommu_unmap() calls, each of which
905 		 * may require hardware cache flushing, try to find the
906 		 * largest contiguous physical memory chunk to unmap.
907 		 */
908 		for (len = PAGE_SIZE;
909 		     !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
910 			next = iommu_iova_to_phys(domain->domain, iova + len);
911 			if (next != phys + len)
912 				break;
913 		}
914 
915 		/*
916 		 * First, try to use fast unmap/unpin. In case of failure,
917 		 * switch to slow unmap/unpin path.
918 		 */
919 		unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
920 					    &unlocked, &unmapped_region_list,
921 					    &unmapped_region_cnt,
922 					    &iotlb_gather);
923 		if (!unmapped) {
924 			unmapped = unmap_unpin_slow(domain, dma, &iova, len,
925 						    phys, &unlocked);
926 			if (WARN_ON(!unmapped))
927 				break;
928 		}
929 	}
930 
931 	dma->iommu_mapped = false;
932 
933 	if (unmapped_region_cnt) {
934 		unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
935 					    &iotlb_gather);
936 	}
937 
938 	if (do_accounting) {
939 		vfio_lock_acct(dma, -unlocked, true);
940 		return 0;
941 	}
942 	return unlocked;
943 }
944 
945 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
946 {
947 	vfio_unmap_unpin(iommu, dma, true);
948 	vfio_unlink_dma(iommu, dma);
949 	put_task_struct(dma->task);
950 	vfio_dma_bitmap_free(dma);
951 	kfree(dma);
952 	iommu->dma_avail++;
953 }
954 
955 static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
956 {
957 	struct vfio_domain *domain;
958 
959 	iommu->pgsize_bitmap = ULONG_MAX;
960 
961 	list_for_each_entry(domain, &iommu->domain_list, next)
962 		iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
963 
964 	/*
965 	 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
966 	 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
967 	 * That way the user will be able to map/unmap buffers whose size/
968 	 * start address is aligned with PAGE_SIZE. Pinning code uses that
969 	 * granularity while iommu driver can use the sub-PAGE_SIZE size
970 	 * to map the buffer.
971 	 */
972 	if (iommu->pgsize_bitmap & ~PAGE_MASK) {
973 		iommu->pgsize_bitmap &= PAGE_MASK;
974 		iommu->pgsize_bitmap |= PAGE_SIZE;
975 	}
976 }
977 
978 static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
979 			      struct vfio_dma *dma, dma_addr_t base_iova,
980 			      size_t pgsize)
981 {
982 	unsigned long pgshift = __ffs(pgsize);
983 	unsigned long nbits = dma->size >> pgshift;
984 	unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
985 	unsigned long copy_offset = bit_offset / BITS_PER_LONG;
986 	unsigned long shift = bit_offset % BITS_PER_LONG;
987 	unsigned long leftover;
988 
989 	/*
990 	 * mark all pages dirty if any IOMMU capable device is not able
991 	 * to report dirty pages and all pages are pinned and mapped.
992 	 */
993 	if (!iommu->pinned_page_dirty_scope && dma->iommu_mapped)
994 		bitmap_set(dma->bitmap, 0, nbits);
995 
996 	if (shift) {
997 		bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
998 				  nbits + shift);
999 
1000 		if (copy_from_user(&leftover,
1001 				   (void __user *)(bitmap + copy_offset),
1002 				   sizeof(leftover)))
1003 			return -EFAULT;
1004 
1005 		bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1006 	}
1007 
1008 	if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1009 			 DIRTY_BITMAP_BYTES(nbits + shift)))
1010 		return -EFAULT;
1011 
1012 	return 0;
1013 }
1014 
1015 static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1016 				  dma_addr_t iova, size_t size, size_t pgsize)
1017 {
1018 	struct vfio_dma *dma;
1019 	struct rb_node *n;
1020 	unsigned long pgshift = __ffs(pgsize);
1021 	int ret;
1022 
1023 	/*
1024 	 * GET_BITMAP request must fully cover vfio_dma mappings.  Multiple
1025 	 * vfio_dma mappings may be clubbed by specifying large ranges, but
1026 	 * there must not be any previous mappings bisected by the range.
1027 	 * An error will be returned if these conditions are not met.
1028 	 */
1029 	dma = vfio_find_dma(iommu, iova, 1);
1030 	if (dma && dma->iova != iova)
1031 		return -EINVAL;
1032 
1033 	dma = vfio_find_dma(iommu, iova + size - 1, 0);
1034 	if (dma && dma->iova + dma->size != iova + size)
1035 		return -EINVAL;
1036 
1037 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1038 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1039 
1040 		if (dma->iova < iova)
1041 			continue;
1042 
1043 		if (dma->iova > iova + size - 1)
1044 			break;
1045 
1046 		ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1047 		if (ret)
1048 			return ret;
1049 
1050 		/*
1051 		 * Re-populate bitmap to include all pinned pages which are
1052 		 * considered as dirty but exclude pages which are unpinned and
1053 		 * pages which are marked dirty by vfio_dma_rw()
1054 		 */
1055 		bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1056 		vfio_dma_populate_bitmap(dma, pgsize);
1057 	}
1058 	return 0;
1059 }
1060 
1061 static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1062 {
1063 	if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1064 	    (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1065 		return -EINVAL;
1066 
1067 	return 0;
1068 }
1069 
1070 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1071 			     struct vfio_iommu_type1_dma_unmap *unmap,
1072 			     struct vfio_bitmap *bitmap)
1073 {
1074 	struct vfio_dma *dma, *dma_last = NULL;
1075 	size_t unmapped = 0, pgsize;
1076 	int ret = 0, retries = 0;
1077 	unsigned long pgshift;
1078 
1079 	mutex_lock(&iommu->lock);
1080 
1081 	pgshift = __ffs(iommu->pgsize_bitmap);
1082 	pgsize = (size_t)1 << pgshift;
1083 
1084 	if (unmap->iova & (pgsize - 1)) {
1085 		ret = -EINVAL;
1086 		goto unlock;
1087 	}
1088 
1089 	if (!unmap->size || unmap->size & (pgsize - 1)) {
1090 		ret = -EINVAL;
1091 		goto unlock;
1092 	}
1093 
1094 	if (unmap->iova + unmap->size - 1 < unmap->iova ||
1095 	    unmap->size > SIZE_MAX) {
1096 		ret = -EINVAL;
1097 		goto unlock;
1098 	}
1099 
1100 	/* When dirty tracking is enabled, allow only min supported pgsize */
1101 	if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1102 	    (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1103 		ret = -EINVAL;
1104 		goto unlock;
1105 	}
1106 
1107 	WARN_ON((pgsize - 1) & PAGE_MASK);
1108 again:
1109 	/*
1110 	 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1111 	 * avoid tracking individual mappings.  This means that the granularity
1112 	 * of the original mapping was lost and the user was allowed to attempt
1113 	 * to unmap any range.  Depending on the contiguousness of physical
1114 	 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1115 	 * or may not have worked.  We only guaranteed unmap granularity
1116 	 * matching the original mapping; even though it was untracked here,
1117 	 * the original mappings are reflected in IOMMU mappings.  This
1118 	 * resulted in a couple unusual behaviors.  First, if a range is not
1119 	 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1120 	 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1121 	 * a zero sized unmap.  Also, if an unmap request overlaps the first
1122 	 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1123 	 * This also returns success and the returned unmap size reflects the
1124 	 * actual size unmapped.
1125 	 *
1126 	 * We attempt to maintain compatibility with this "v1" interface, but
1127 	 * we take control out of the hands of the IOMMU.  Therefore, an unmap
1128 	 * request offset from the beginning of the original mapping will
1129 	 * return success with zero sized unmap.  And an unmap request covering
1130 	 * the first iova of mapping will unmap the entire range.
1131 	 *
1132 	 * The v2 version of this interface intends to be more deterministic.
1133 	 * Unmap requests must fully cover previous mappings.  Multiple
1134 	 * mappings may still be unmaped by specifying large ranges, but there
1135 	 * must not be any previous mappings bisected by the range.  An error
1136 	 * will be returned if these conditions are not met.  The v2 interface
1137 	 * will only return success and a size of zero if there were no
1138 	 * mappings within the range.
1139 	 */
1140 	if (iommu->v2) {
1141 		dma = vfio_find_dma(iommu, unmap->iova, 1);
1142 		if (dma && dma->iova != unmap->iova) {
1143 			ret = -EINVAL;
1144 			goto unlock;
1145 		}
1146 		dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
1147 		if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
1148 			ret = -EINVAL;
1149 			goto unlock;
1150 		}
1151 	}
1152 
1153 	while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
1154 		if (!iommu->v2 && unmap->iova > dma->iova)
1155 			break;
1156 		/*
1157 		 * Task with same address space who mapped this iova range is
1158 		 * allowed to unmap the iova range.
1159 		 */
1160 		if (dma->task->mm != current->mm)
1161 			break;
1162 
1163 		if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1164 			struct vfio_iommu_type1_dma_unmap nb_unmap;
1165 
1166 			if (dma_last == dma) {
1167 				BUG_ON(++retries > 10);
1168 			} else {
1169 				dma_last = dma;
1170 				retries = 0;
1171 			}
1172 
1173 			nb_unmap.iova = dma->iova;
1174 			nb_unmap.size = dma->size;
1175 
1176 			/*
1177 			 * Notify anyone (mdev vendor drivers) to invalidate and
1178 			 * unmap iovas within the range we're about to unmap.
1179 			 * Vendor drivers MUST unpin pages in response to an
1180 			 * invalidation.
1181 			 */
1182 			mutex_unlock(&iommu->lock);
1183 			blocking_notifier_call_chain(&iommu->notifier,
1184 						    VFIO_IOMMU_NOTIFY_DMA_UNMAP,
1185 						    &nb_unmap);
1186 			mutex_lock(&iommu->lock);
1187 			goto again;
1188 		}
1189 
1190 		if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1191 			ret = update_user_bitmap(bitmap->data, iommu, dma,
1192 						 unmap->iova, pgsize);
1193 			if (ret)
1194 				break;
1195 		}
1196 
1197 		unmapped += dma->size;
1198 		vfio_remove_dma(iommu, dma);
1199 	}
1200 
1201 unlock:
1202 	mutex_unlock(&iommu->lock);
1203 
1204 	/* Report how much was unmapped */
1205 	unmap->size = unmapped;
1206 
1207 	return ret;
1208 }
1209 
1210 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1211 			  unsigned long pfn, long npage, int prot)
1212 {
1213 	struct vfio_domain *d;
1214 	int ret;
1215 
1216 	list_for_each_entry(d, &iommu->domain_list, next) {
1217 		ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1218 				npage << PAGE_SHIFT, prot | d->prot);
1219 		if (ret)
1220 			goto unwind;
1221 
1222 		cond_resched();
1223 	}
1224 
1225 	return 0;
1226 
1227 unwind:
1228 	list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1229 		iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1230 		cond_resched();
1231 	}
1232 
1233 	return ret;
1234 }
1235 
1236 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1237 			    size_t map_size)
1238 {
1239 	dma_addr_t iova = dma->iova;
1240 	unsigned long vaddr = dma->vaddr;
1241 	size_t size = map_size;
1242 	long npage;
1243 	unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1244 	int ret = 0;
1245 
1246 	while (size) {
1247 		/* Pin a contiguous chunk of memory */
1248 		npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1249 					      size >> PAGE_SHIFT, &pfn, limit);
1250 		if (npage <= 0) {
1251 			WARN_ON(!npage);
1252 			ret = (int)npage;
1253 			break;
1254 		}
1255 
1256 		/* Map it! */
1257 		ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1258 				     dma->prot);
1259 		if (ret) {
1260 			vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1261 						npage, true);
1262 			break;
1263 		}
1264 
1265 		size -= npage << PAGE_SHIFT;
1266 		dma->size += npage << PAGE_SHIFT;
1267 	}
1268 
1269 	dma->iommu_mapped = true;
1270 
1271 	if (ret)
1272 		vfio_remove_dma(iommu, dma);
1273 
1274 	return ret;
1275 }
1276 
1277 /*
1278  * Check dma map request is within a valid iova range
1279  */
1280 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1281 				      dma_addr_t start, dma_addr_t end)
1282 {
1283 	struct list_head *iova = &iommu->iova_list;
1284 	struct vfio_iova *node;
1285 
1286 	list_for_each_entry(node, iova, list) {
1287 		if (start >= node->start && end <= node->end)
1288 			return true;
1289 	}
1290 
1291 	/*
1292 	 * Check for list_empty() as well since a container with
1293 	 * a single mdev device will have an empty list.
1294 	 */
1295 	return list_empty(iova);
1296 }
1297 
1298 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1299 			   struct vfio_iommu_type1_dma_map *map)
1300 {
1301 	dma_addr_t iova = map->iova;
1302 	unsigned long vaddr = map->vaddr;
1303 	size_t size = map->size;
1304 	int ret = 0, prot = 0;
1305 	size_t pgsize;
1306 	struct vfio_dma *dma;
1307 
1308 	/* Verify that none of our __u64 fields overflow */
1309 	if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1310 		return -EINVAL;
1311 
1312 	/* READ/WRITE from device perspective */
1313 	if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1314 		prot |= IOMMU_WRITE;
1315 	if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1316 		prot |= IOMMU_READ;
1317 
1318 	mutex_lock(&iommu->lock);
1319 
1320 	pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1321 
1322 	WARN_ON((pgsize - 1) & PAGE_MASK);
1323 
1324 	if (!prot || !size || (size | iova | vaddr) & (pgsize - 1)) {
1325 		ret = -EINVAL;
1326 		goto out_unlock;
1327 	}
1328 
1329 	/* Don't allow IOVA or virtual address wrap */
1330 	if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1331 		ret = -EINVAL;
1332 		goto out_unlock;
1333 	}
1334 
1335 	if (vfio_find_dma(iommu, iova, size)) {
1336 		ret = -EEXIST;
1337 		goto out_unlock;
1338 	}
1339 
1340 	if (!iommu->dma_avail) {
1341 		ret = -ENOSPC;
1342 		goto out_unlock;
1343 	}
1344 
1345 	if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1346 		ret = -EINVAL;
1347 		goto out_unlock;
1348 	}
1349 
1350 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1351 	if (!dma) {
1352 		ret = -ENOMEM;
1353 		goto out_unlock;
1354 	}
1355 
1356 	iommu->dma_avail--;
1357 	dma->iova = iova;
1358 	dma->vaddr = vaddr;
1359 	dma->prot = prot;
1360 
1361 	/*
1362 	 * We need to be able to both add to a task's locked memory and test
1363 	 * against the locked memory limit and we need to be able to do both
1364 	 * outside of this call path as pinning can be asynchronous via the
1365 	 * external interfaces for mdev devices.  RLIMIT_MEMLOCK requires a
1366 	 * task_struct and VM locked pages requires an mm_struct, however
1367 	 * holding an indefinite mm reference is not recommended, therefore we
1368 	 * only hold a reference to a task.  We could hold a reference to
1369 	 * current, however QEMU uses this call path through vCPU threads,
1370 	 * which can be killed resulting in a NULL mm and failure in the unmap
1371 	 * path when called via a different thread.  Avoid this problem by
1372 	 * using the group_leader as threads within the same group require
1373 	 * both CLONE_THREAD and CLONE_VM and will therefore use the same
1374 	 * mm_struct.
1375 	 *
1376 	 * Previously we also used the task for testing CAP_IPC_LOCK at the
1377 	 * time of pinning and accounting, however has_capability() makes use
1378 	 * of real_cred, a copy-on-write field, so we can't guarantee that it
1379 	 * matches group_leader, or in fact that it might not change by the
1380 	 * time it's evaluated.  If a process were to call MAP_DMA with
1381 	 * CAP_IPC_LOCK but later drop it, it doesn't make sense that they
1382 	 * possibly see different results for an iommu_mapped vfio_dma vs
1383 	 * externally mapped.  Therefore track CAP_IPC_LOCK in vfio_dma at the
1384 	 * time of calling MAP_DMA.
1385 	 */
1386 	get_task_struct(current->group_leader);
1387 	dma->task = current->group_leader;
1388 	dma->lock_cap = capable(CAP_IPC_LOCK);
1389 
1390 	dma->pfn_list = RB_ROOT;
1391 
1392 	/* Insert zero-sized and grow as we map chunks of it */
1393 	vfio_link_dma(iommu, dma);
1394 
1395 	/* Don't pin and map if container doesn't contain IOMMU capable domain*/
1396 	if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1397 		dma->size = size;
1398 	else
1399 		ret = vfio_pin_map_dma(iommu, dma, size);
1400 
1401 	if (!ret && iommu->dirty_page_tracking) {
1402 		ret = vfio_dma_bitmap_alloc(dma, pgsize);
1403 		if (ret)
1404 			vfio_remove_dma(iommu, dma);
1405 	}
1406 
1407 out_unlock:
1408 	mutex_unlock(&iommu->lock);
1409 	return ret;
1410 }
1411 
1412 static int vfio_bus_type(struct device *dev, void *data)
1413 {
1414 	struct bus_type **bus = data;
1415 
1416 	if (*bus && *bus != dev->bus)
1417 		return -EINVAL;
1418 
1419 	*bus = dev->bus;
1420 
1421 	return 0;
1422 }
1423 
1424 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1425 			     struct vfio_domain *domain)
1426 {
1427 	struct vfio_domain *d;
1428 	struct rb_node *n;
1429 	unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1430 	int ret;
1431 
1432 	/* Arbitrarily pick the first domain in the list for lookups */
1433 	d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
1434 	n = rb_first(&iommu->dma_list);
1435 
1436 	for (; n; n = rb_next(n)) {
1437 		struct vfio_dma *dma;
1438 		dma_addr_t iova;
1439 
1440 		dma = rb_entry(n, struct vfio_dma, node);
1441 		iova = dma->iova;
1442 
1443 		while (iova < dma->iova + dma->size) {
1444 			phys_addr_t phys;
1445 			size_t size;
1446 
1447 			if (dma->iommu_mapped) {
1448 				phys_addr_t p;
1449 				dma_addr_t i;
1450 
1451 				phys = iommu_iova_to_phys(d->domain, iova);
1452 
1453 				if (WARN_ON(!phys)) {
1454 					iova += PAGE_SIZE;
1455 					continue;
1456 				}
1457 
1458 				size = PAGE_SIZE;
1459 				p = phys + size;
1460 				i = iova + size;
1461 				while (i < dma->iova + dma->size &&
1462 				       p == iommu_iova_to_phys(d->domain, i)) {
1463 					size += PAGE_SIZE;
1464 					p += PAGE_SIZE;
1465 					i += PAGE_SIZE;
1466 				}
1467 			} else {
1468 				unsigned long pfn;
1469 				unsigned long vaddr = dma->vaddr +
1470 						     (iova - dma->iova);
1471 				size_t n = dma->iova + dma->size - iova;
1472 				long npage;
1473 
1474 				npage = vfio_pin_pages_remote(dma, vaddr,
1475 							      n >> PAGE_SHIFT,
1476 							      &pfn, limit);
1477 				if (npage <= 0) {
1478 					WARN_ON(!npage);
1479 					ret = (int)npage;
1480 					return ret;
1481 				}
1482 
1483 				phys = pfn << PAGE_SHIFT;
1484 				size = npage << PAGE_SHIFT;
1485 			}
1486 
1487 			ret = iommu_map(domain->domain, iova, phys,
1488 					size, dma->prot | domain->prot);
1489 			if (ret)
1490 				return ret;
1491 
1492 			iova += size;
1493 		}
1494 		dma->iommu_mapped = true;
1495 	}
1496 	return 0;
1497 }
1498 
1499 /*
1500  * We change our unmap behavior slightly depending on whether the IOMMU
1501  * supports fine-grained superpages.  IOMMUs like AMD-Vi will use a superpage
1502  * for practically any contiguous power-of-two mapping we give it.  This means
1503  * we don't need to look for contiguous chunks ourselves to make unmapping
1504  * more efficient.  On IOMMUs with coarse-grained super pages, like Intel VT-d
1505  * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1506  * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1507  * hugetlbfs is in use.
1508  */
1509 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
1510 {
1511 	struct page *pages;
1512 	int ret, order = get_order(PAGE_SIZE * 2);
1513 
1514 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1515 	if (!pages)
1516 		return;
1517 
1518 	ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
1519 			IOMMU_READ | IOMMU_WRITE | domain->prot);
1520 	if (!ret) {
1521 		size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
1522 
1523 		if (unmapped == PAGE_SIZE)
1524 			iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
1525 		else
1526 			domain->fgsp = true;
1527 	}
1528 
1529 	__free_pages(pages, order);
1530 }
1531 
1532 static struct vfio_group *find_iommu_group(struct vfio_domain *domain,
1533 					   struct iommu_group *iommu_group)
1534 {
1535 	struct vfio_group *g;
1536 
1537 	list_for_each_entry(g, &domain->group_list, next) {
1538 		if (g->iommu_group == iommu_group)
1539 			return g;
1540 	}
1541 
1542 	return NULL;
1543 }
1544 
1545 static struct vfio_group *vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1546 					       struct iommu_group *iommu_group)
1547 {
1548 	struct vfio_domain *domain;
1549 	struct vfio_group *group = NULL;
1550 
1551 	list_for_each_entry(domain, &iommu->domain_list, next) {
1552 		group = find_iommu_group(domain, iommu_group);
1553 		if (group)
1554 			return group;
1555 	}
1556 
1557 	if (iommu->external_domain)
1558 		group = find_iommu_group(iommu->external_domain, iommu_group);
1559 
1560 	return group;
1561 }
1562 
1563 static void update_pinned_page_dirty_scope(struct vfio_iommu *iommu)
1564 {
1565 	struct vfio_domain *domain;
1566 	struct vfio_group *group;
1567 
1568 	list_for_each_entry(domain, &iommu->domain_list, next) {
1569 		list_for_each_entry(group, &domain->group_list, next) {
1570 			if (!group->pinned_page_dirty_scope) {
1571 				iommu->pinned_page_dirty_scope = false;
1572 				return;
1573 			}
1574 		}
1575 	}
1576 
1577 	if (iommu->external_domain) {
1578 		domain = iommu->external_domain;
1579 		list_for_each_entry(group, &domain->group_list, next) {
1580 			if (!group->pinned_page_dirty_scope) {
1581 				iommu->pinned_page_dirty_scope = false;
1582 				return;
1583 			}
1584 		}
1585 	}
1586 
1587 	iommu->pinned_page_dirty_scope = true;
1588 }
1589 
1590 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1591 				  phys_addr_t *base)
1592 {
1593 	struct iommu_resv_region *region;
1594 	bool ret = false;
1595 
1596 	list_for_each_entry(region, group_resv_regions, list) {
1597 		/*
1598 		 * The presence of any 'real' MSI regions should take
1599 		 * precedence over the software-managed one if the
1600 		 * IOMMU driver happens to advertise both types.
1601 		 */
1602 		if (region->type == IOMMU_RESV_MSI) {
1603 			ret = false;
1604 			break;
1605 		}
1606 
1607 		if (region->type == IOMMU_RESV_SW_MSI) {
1608 			*base = region->start;
1609 			ret = true;
1610 		}
1611 	}
1612 
1613 	return ret;
1614 }
1615 
1616 static struct device *vfio_mdev_get_iommu_device(struct device *dev)
1617 {
1618 	struct device *(*fn)(struct device *dev);
1619 	struct device *iommu_device;
1620 
1621 	fn = symbol_get(mdev_get_iommu_device);
1622 	if (fn) {
1623 		iommu_device = fn(dev);
1624 		symbol_put(mdev_get_iommu_device);
1625 
1626 		return iommu_device;
1627 	}
1628 
1629 	return NULL;
1630 }
1631 
1632 static int vfio_mdev_attach_domain(struct device *dev, void *data)
1633 {
1634 	struct iommu_domain *domain = data;
1635 	struct device *iommu_device;
1636 
1637 	iommu_device = vfio_mdev_get_iommu_device(dev);
1638 	if (iommu_device) {
1639 		if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
1640 			return iommu_aux_attach_device(domain, iommu_device);
1641 		else
1642 			return iommu_attach_device(domain, iommu_device);
1643 	}
1644 
1645 	return -EINVAL;
1646 }
1647 
1648 static int vfio_mdev_detach_domain(struct device *dev, void *data)
1649 {
1650 	struct iommu_domain *domain = data;
1651 	struct device *iommu_device;
1652 
1653 	iommu_device = vfio_mdev_get_iommu_device(dev);
1654 	if (iommu_device) {
1655 		if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
1656 			iommu_aux_detach_device(domain, iommu_device);
1657 		else
1658 			iommu_detach_device(domain, iommu_device);
1659 	}
1660 
1661 	return 0;
1662 }
1663 
1664 static int vfio_iommu_attach_group(struct vfio_domain *domain,
1665 				   struct vfio_group *group)
1666 {
1667 	if (group->mdev_group)
1668 		return iommu_group_for_each_dev(group->iommu_group,
1669 						domain->domain,
1670 						vfio_mdev_attach_domain);
1671 	else
1672 		return iommu_attach_group(domain->domain, group->iommu_group);
1673 }
1674 
1675 static void vfio_iommu_detach_group(struct vfio_domain *domain,
1676 				    struct vfio_group *group)
1677 {
1678 	if (group->mdev_group)
1679 		iommu_group_for_each_dev(group->iommu_group, domain->domain,
1680 					 vfio_mdev_detach_domain);
1681 	else
1682 		iommu_detach_group(domain->domain, group->iommu_group);
1683 }
1684 
1685 static bool vfio_bus_is_mdev(struct bus_type *bus)
1686 {
1687 	struct bus_type *mdev_bus;
1688 	bool ret = false;
1689 
1690 	mdev_bus = symbol_get(mdev_bus_type);
1691 	if (mdev_bus) {
1692 		ret = (bus == mdev_bus);
1693 		symbol_put(mdev_bus_type);
1694 	}
1695 
1696 	return ret;
1697 }
1698 
1699 static int vfio_mdev_iommu_device(struct device *dev, void *data)
1700 {
1701 	struct device **old = data, *new;
1702 
1703 	new = vfio_mdev_get_iommu_device(dev);
1704 	if (!new || (*old && *old != new))
1705 		return -EINVAL;
1706 
1707 	*old = new;
1708 
1709 	return 0;
1710 }
1711 
1712 /*
1713  * This is a helper function to insert an address range to iova list.
1714  * The list is initially created with a single entry corresponding to
1715  * the IOMMU domain geometry to which the device group is attached.
1716  * The list aperture gets modified when a new domain is added to the
1717  * container if the new aperture doesn't conflict with the current one
1718  * or with any existing dma mappings. The list is also modified to
1719  * exclude any reserved regions associated with the device group.
1720  */
1721 static int vfio_iommu_iova_insert(struct list_head *head,
1722 				  dma_addr_t start, dma_addr_t end)
1723 {
1724 	struct vfio_iova *region;
1725 
1726 	region = kmalloc(sizeof(*region), GFP_KERNEL);
1727 	if (!region)
1728 		return -ENOMEM;
1729 
1730 	INIT_LIST_HEAD(&region->list);
1731 	region->start = start;
1732 	region->end = end;
1733 
1734 	list_add_tail(&region->list, head);
1735 	return 0;
1736 }
1737 
1738 /*
1739  * Check the new iommu aperture conflicts with existing aper or with any
1740  * existing dma mappings.
1741  */
1742 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
1743 				     dma_addr_t start, dma_addr_t end)
1744 {
1745 	struct vfio_iova *first, *last;
1746 	struct list_head *iova = &iommu->iova_list;
1747 
1748 	if (list_empty(iova))
1749 		return false;
1750 
1751 	/* Disjoint sets, return conflict */
1752 	first = list_first_entry(iova, struct vfio_iova, list);
1753 	last = list_last_entry(iova, struct vfio_iova, list);
1754 	if (start > last->end || end < first->start)
1755 		return true;
1756 
1757 	/* Check for any existing dma mappings below the new start */
1758 	if (start > first->start) {
1759 		if (vfio_find_dma(iommu, first->start, start - first->start))
1760 			return true;
1761 	}
1762 
1763 	/* Check for any existing dma mappings beyond the new end */
1764 	if (end < last->end) {
1765 		if (vfio_find_dma(iommu, end + 1, last->end - end))
1766 			return true;
1767 	}
1768 
1769 	return false;
1770 }
1771 
1772 /*
1773  * Resize iommu iova aperture window. This is called only if the new
1774  * aperture has no conflict with existing aperture and dma mappings.
1775  */
1776 static int vfio_iommu_aper_resize(struct list_head *iova,
1777 				  dma_addr_t start, dma_addr_t end)
1778 {
1779 	struct vfio_iova *node, *next;
1780 
1781 	if (list_empty(iova))
1782 		return vfio_iommu_iova_insert(iova, start, end);
1783 
1784 	/* Adjust iova list start */
1785 	list_for_each_entry_safe(node, next, iova, list) {
1786 		if (start < node->start)
1787 			break;
1788 		if (start >= node->start && start < node->end) {
1789 			node->start = start;
1790 			break;
1791 		}
1792 		/* Delete nodes before new start */
1793 		list_del(&node->list);
1794 		kfree(node);
1795 	}
1796 
1797 	/* Adjust iova list end */
1798 	list_for_each_entry_safe(node, next, iova, list) {
1799 		if (end > node->end)
1800 			continue;
1801 		if (end > node->start && end <= node->end) {
1802 			node->end = end;
1803 			continue;
1804 		}
1805 		/* Delete nodes after new end */
1806 		list_del(&node->list);
1807 		kfree(node);
1808 	}
1809 
1810 	return 0;
1811 }
1812 
1813 /*
1814  * Check reserved region conflicts with existing dma mappings
1815  */
1816 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
1817 				     struct list_head *resv_regions)
1818 {
1819 	struct iommu_resv_region *region;
1820 
1821 	/* Check for conflict with existing dma mappings */
1822 	list_for_each_entry(region, resv_regions, list) {
1823 		if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
1824 			continue;
1825 
1826 		if (vfio_find_dma(iommu, region->start, region->length))
1827 			return true;
1828 	}
1829 
1830 	return false;
1831 }
1832 
1833 /*
1834  * Check iova region overlap with  reserved regions and
1835  * exclude them from the iommu iova range
1836  */
1837 static int vfio_iommu_resv_exclude(struct list_head *iova,
1838 				   struct list_head *resv_regions)
1839 {
1840 	struct iommu_resv_region *resv;
1841 	struct vfio_iova *n, *next;
1842 
1843 	list_for_each_entry(resv, resv_regions, list) {
1844 		phys_addr_t start, end;
1845 
1846 		if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
1847 			continue;
1848 
1849 		start = resv->start;
1850 		end = resv->start + resv->length - 1;
1851 
1852 		list_for_each_entry_safe(n, next, iova, list) {
1853 			int ret = 0;
1854 
1855 			/* No overlap */
1856 			if (start > n->end || end < n->start)
1857 				continue;
1858 			/*
1859 			 * Insert a new node if current node overlaps with the
1860 			 * reserve region to exlude that from valid iova range.
1861 			 * Note that, new node is inserted before the current
1862 			 * node and finally the current node is deleted keeping
1863 			 * the list updated and sorted.
1864 			 */
1865 			if (start > n->start)
1866 				ret = vfio_iommu_iova_insert(&n->list, n->start,
1867 							     start - 1);
1868 			if (!ret && end < n->end)
1869 				ret = vfio_iommu_iova_insert(&n->list, end + 1,
1870 							     n->end);
1871 			if (ret)
1872 				return ret;
1873 
1874 			list_del(&n->list);
1875 			kfree(n);
1876 		}
1877 	}
1878 
1879 	if (list_empty(iova))
1880 		return -EINVAL;
1881 
1882 	return 0;
1883 }
1884 
1885 static void vfio_iommu_resv_free(struct list_head *resv_regions)
1886 {
1887 	struct iommu_resv_region *n, *next;
1888 
1889 	list_for_each_entry_safe(n, next, resv_regions, list) {
1890 		list_del(&n->list);
1891 		kfree(n);
1892 	}
1893 }
1894 
1895 static void vfio_iommu_iova_free(struct list_head *iova)
1896 {
1897 	struct vfio_iova *n, *next;
1898 
1899 	list_for_each_entry_safe(n, next, iova, list) {
1900 		list_del(&n->list);
1901 		kfree(n);
1902 	}
1903 }
1904 
1905 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
1906 				    struct list_head *iova_copy)
1907 {
1908 	struct list_head *iova = &iommu->iova_list;
1909 	struct vfio_iova *n;
1910 	int ret;
1911 
1912 	list_for_each_entry(n, iova, list) {
1913 		ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
1914 		if (ret)
1915 			goto out_free;
1916 	}
1917 
1918 	return 0;
1919 
1920 out_free:
1921 	vfio_iommu_iova_free(iova_copy);
1922 	return ret;
1923 }
1924 
1925 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
1926 					struct list_head *iova_copy)
1927 {
1928 	struct list_head *iova = &iommu->iova_list;
1929 
1930 	vfio_iommu_iova_free(iova);
1931 
1932 	list_splice_tail(iova_copy, iova);
1933 }
1934 static int vfio_iommu_type1_attach_group(void *iommu_data,
1935 					 struct iommu_group *iommu_group)
1936 {
1937 	struct vfio_iommu *iommu = iommu_data;
1938 	struct vfio_group *group;
1939 	struct vfio_domain *domain, *d;
1940 	struct bus_type *bus = NULL;
1941 	int ret;
1942 	bool resv_msi, msi_remap;
1943 	phys_addr_t resv_msi_base = 0;
1944 	struct iommu_domain_geometry geo;
1945 	LIST_HEAD(iova_copy);
1946 	LIST_HEAD(group_resv_regions);
1947 
1948 	mutex_lock(&iommu->lock);
1949 
1950 	list_for_each_entry(d, &iommu->domain_list, next) {
1951 		if (find_iommu_group(d, iommu_group)) {
1952 			mutex_unlock(&iommu->lock);
1953 			return -EINVAL;
1954 		}
1955 	}
1956 
1957 	if (iommu->external_domain) {
1958 		if (find_iommu_group(iommu->external_domain, iommu_group)) {
1959 			mutex_unlock(&iommu->lock);
1960 			return -EINVAL;
1961 		}
1962 	}
1963 
1964 	group = kzalloc(sizeof(*group), GFP_KERNEL);
1965 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1966 	if (!group || !domain) {
1967 		ret = -ENOMEM;
1968 		goto out_free;
1969 	}
1970 
1971 	group->iommu_group = iommu_group;
1972 
1973 	/* Determine bus_type in order to allocate a domain */
1974 	ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
1975 	if (ret)
1976 		goto out_free;
1977 
1978 	if (vfio_bus_is_mdev(bus)) {
1979 		struct device *iommu_device = NULL;
1980 
1981 		group->mdev_group = true;
1982 
1983 		/* Determine the isolation type */
1984 		ret = iommu_group_for_each_dev(iommu_group, &iommu_device,
1985 					       vfio_mdev_iommu_device);
1986 		if (ret || !iommu_device) {
1987 			if (!iommu->external_domain) {
1988 				INIT_LIST_HEAD(&domain->group_list);
1989 				iommu->external_domain = domain;
1990 				vfio_update_pgsize_bitmap(iommu);
1991 			} else {
1992 				kfree(domain);
1993 			}
1994 
1995 			list_add(&group->next,
1996 				 &iommu->external_domain->group_list);
1997 			/*
1998 			 * Non-iommu backed group cannot dirty memory directly,
1999 			 * it can only use interfaces that provide dirty
2000 			 * tracking.
2001 			 * The iommu scope can only be promoted with the
2002 			 * addition of a dirty tracking group.
2003 			 */
2004 			group->pinned_page_dirty_scope = true;
2005 			if (!iommu->pinned_page_dirty_scope)
2006 				update_pinned_page_dirty_scope(iommu);
2007 			mutex_unlock(&iommu->lock);
2008 
2009 			return 0;
2010 		}
2011 
2012 		bus = iommu_device->bus;
2013 	}
2014 
2015 	domain->domain = iommu_domain_alloc(bus);
2016 	if (!domain->domain) {
2017 		ret = -EIO;
2018 		goto out_free;
2019 	}
2020 
2021 	if (iommu->nesting) {
2022 		int attr = 1;
2023 
2024 		ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
2025 					    &attr);
2026 		if (ret)
2027 			goto out_domain;
2028 	}
2029 
2030 	ret = vfio_iommu_attach_group(domain, group);
2031 	if (ret)
2032 		goto out_domain;
2033 
2034 	/* Get aperture info */
2035 	iommu_domain_get_attr(domain->domain, DOMAIN_ATTR_GEOMETRY, &geo);
2036 
2037 	if (vfio_iommu_aper_conflict(iommu, geo.aperture_start,
2038 				     geo.aperture_end)) {
2039 		ret = -EINVAL;
2040 		goto out_detach;
2041 	}
2042 
2043 	ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2044 	if (ret)
2045 		goto out_detach;
2046 
2047 	if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2048 		ret = -EINVAL;
2049 		goto out_detach;
2050 	}
2051 
2052 	/*
2053 	 * We don't want to work on the original iova list as the list
2054 	 * gets modified and in case of failure we have to retain the
2055 	 * original list. Get a copy here.
2056 	 */
2057 	ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2058 	if (ret)
2059 		goto out_detach;
2060 
2061 	ret = vfio_iommu_aper_resize(&iova_copy, geo.aperture_start,
2062 				     geo.aperture_end);
2063 	if (ret)
2064 		goto out_detach;
2065 
2066 	ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2067 	if (ret)
2068 		goto out_detach;
2069 
2070 	resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2071 
2072 	INIT_LIST_HEAD(&domain->group_list);
2073 	list_add(&group->next, &domain->group_list);
2074 
2075 	msi_remap = irq_domain_check_msi_remap() ||
2076 		    iommu_capable(bus, IOMMU_CAP_INTR_REMAP);
2077 
2078 	if (!allow_unsafe_interrupts && !msi_remap) {
2079 		pr_warn("%s: No interrupt remapping support.  Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2080 		       __func__);
2081 		ret = -EPERM;
2082 		goto out_detach;
2083 	}
2084 
2085 	if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
2086 		domain->prot |= IOMMU_CACHE;
2087 
2088 	/*
2089 	 * Try to match an existing compatible domain.  We don't want to
2090 	 * preclude an IOMMU driver supporting multiple bus_types and being
2091 	 * able to include different bus_types in the same IOMMU domain, so
2092 	 * we test whether the domains use the same iommu_ops rather than
2093 	 * testing if they're on the same bus_type.
2094 	 */
2095 	list_for_each_entry(d, &iommu->domain_list, next) {
2096 		if (d->domain->ops == domain->domain->ops &&
2097 		    d->prot == domain->prot) {
2098 			vfio_iommu_detach_group(domain, group);
2099 			if (!vfio_iommu_attach_group(d, group)) {
2100 				list_add(&group->next, &d->group_list);
2101 				iommu_domain_free(domain->domain);
2102 				kfree(domain);
2103 				goto done;
2104 			}
2105 
2106 			ret = vfio_iommu_attach_group(domain, group);
2107 			if (ret)
2108 				goto out_domain;
2109 		}
2110 	}
2111 
2112 	vfio_test_domain_fgsp(domain);
2113 
2114 	/* replay mappings on new domains */
2115 	ret = vfio_iommu_replay(iommu, domain);
2116 	if (ret)
2117 		goto out_detach;
2118 
2119 	if (resv_msi) {
2120 		ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2121 		if (ret && ret != -ENODEV)
2122 			goto out_detach;
2123 	}
2124 
2125 	list_add(&domain->next, &iommu->domain_list);
2126 	vfio_update_pgsize_bitmap(iommu);
2127 done:
2128 	/* Delete the old one and insert new iova list */
2129 	vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2130 
2131 	/*
2132 	 * An iommu backed group can dirty memory directly and therefore
2133 	 * demotes the iommu scope until it declares itself dirty tracking
2134 	 * capable via the page pinning interface.
2135 	 */
2136 	iommu->pinned_page_dirty_scope = false;
2137 	mutex_unlock(&iommu->lock);
2138 	vfio_iommu_resv_free(&group_resv_regions);
2139 
2140 	return 0;
2141 
2142 out_detach:
2143 	vfio_iommu_detach_group(domain, group);
2144 out_domain:
2145 	iommu_domain_free(domain->domain);
2146 	vfio_iommu_iova_free(&iova_copy);
2147 	vfio_iommu_resv_free(&group_resv_regions);
2148 out_free:
2149 	kfree(domain);
2150 	kfree(group);
2151 	mutex_unlock(&iommu->lock);
2152 	return ret;
2153 }
2154 
2155 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2156 {
2157 	struct rb_node *node;
2158 
2159 	while ((node = rb_first(&iommu->dma_list)))
2160 		vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2161 }
2162 
2163 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2164 {
2165 	struct rb_node *n, *p;
2166 
2167 	n = rb_first(&iommu->dma_list);
2168 	for (; n; n = rb_next(n)) {
2169 		struct vfio_dma *dma;
2170 		long locked = 0, unlocked = 0;
2171 
2172 		dma = rb_entry(n, struct vfio_dma, node);
2173 		unlocked += vfio_unmap_unpin(iommu, dma, false);
2174 		p = rb_first(&dma->pfn_list);
2175 		for (; p; p = rb_next(p)) {
2176 			struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2177 							 node);
2178 
2179 			if (!is_invalid_reserved_pfn(vpfn->pfn))
2180 				locked++;
2181 		}
2182 		vfio_lock_acct(dma, locked - unlocked, true);
2183 	}
2184 }
2185 
2186 static void vfio_sanity_check_pfn_list(struct vfio_iommu *iommu)
2187 {
2188 	struct rb_node *n;
2189 
2190 	n = rb_first(&iommu->dma_list);
2191 	for (; n; n = rb_next(n)) {
2192 		struct vfio_dma *dma;
2193 
2194 		dma = rb_entry(n, struct vfio_dma, node);
2195 
2196 		if (WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list)))
2197 			break;
2198 	}
2199 	/* mdev vendor driver must unregister notifier */
2200 	WARN_ON(iommu->notifier.head);
2201 }
2202 
2203 /*
2204  * Called when a domain is removed in detach. It is possible that
2205  * the removed domain decided the iova aperture window. Modify the
2206  * iova aperture with the smallest window among existing domains.
2207  */
2208 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2209 				   struct list_head *iova_copy)
2210 {
2211 	struct vfio_domain *domain;
2212 	struct iommu_domain_geometry geo;
2213 	struct vfio_iova *node;
2214 	dma_addr_t start = 0;
2215 	dma_addr_t end = (dma_addr_t)~0;
2216 
2217 	if (list_empty(iova_copy))
2218 		return;
2219 
2220 	list_for_each_entry(domain, &iommu->domain_list, next) {
2221 		iommu_domain_get_attr(domain->domain, DOMAIN_ATTR_GEOMETRY,
2222 				      &geo);
2223 		if (geo.aperture_start > start)
2224 			start = geo.aperture_start;
2225 		if (geo.aperture_end < end)
2226 			end = geo.aperture_end;
2227 	}
2228 
2229 	/* Modify aperture limits. The new aper is either same or bigger */
2230 	node = list_first_entry(iova_copy, struct vfio_iova, list);
2231 	node->start = start;
2232 	node = list_last_entry(iova_copy, struct vfio_iova, list);
2233 	node->end = end;
2234 }
2235 
2236 /*
2237  * Called when a group is detached. The reserved regions for that
2238  * group can be part of valid iova now. But since reserved regions
2239  * may be duplicated among groups, populate the iova valid regions
2240  * list again.
2241  */
2242 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2243 				   struct list_head *iova_copy)
2244 {
2245 	struct vfio_domain *d;
2246 	struct vfio_group *g;
2247 	struct vfio_iova *node;
2248 	dma_addr_t start, end;
2249 	LIST_HEAD(resv_regions);
2250 	int ret;
2251 
2252 	if (list_empty(iova_copy))
2253 		return -EINVAL;
2254 
2255 	list_for_each_entry(d, &iommu->domain_list, next) {
2256 		list_for_each_entry(g, &d->group_list, next) {
2257 			ret = iommu_get_group_resv_regions(g->iommu_group,
2258 							   &resv_regions);
2259 			if (ret)
2260 				goto done;
2261 		}
2262 	}
2263 
2264 	node = list_first_entry(iova_copy, struct vfio_iova, list);
2265 	start = node->start;
2266 	node = list_last_entry(iova_copy, struct vfio_iova, list);
2267 	end = node->end;
2268 
2269 	/* purge the iova list and create new one */
2270 	vfio_iommu_iova_free(iova_copy);
2271 
2272 	ret = vfio_iommu_aper_resize(iova_copy, start, end);
2273 	if (ret)
2274 		goto done;
2275 
2276 	/* Exclude current reserved regions from iova ranges */
2277 	ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2278 done:
2279 	vfio_iommu_resv_free(&resv_regions);
2280 	return ret;
2281 }
2282 
2283 static void vfio_iommu_type1_detach_group(void *iommu_data,
2284 					  struct iommu_group *iommu_group)
2285 {
2286 	struct vfio_iommu *iommu = iommu_data;
2287 	struct vfio_domain *domain;
2288 	struct vfio_group *group;
2289 	bool update_dirty_scope = false;
2290 	LIST_HEAD(iova_copy);
2291 
2292 	mutex_lock(&iommu->lock);
2293 
2294 	if (iommu->external_domain) {
2295 		group = find_iommu_group(iommu->external_domain, iommu_group);
2296 		if (group) {
2297 			update_dirty_scope = !group->pinned_page_dirty_scope;
2298 			list_del(&group->next);
2299 			kfree(group);
2300 
2301 			if (list_empty(&iommu->external_domain->group_list)) {
2302 				vfio_sanity_check_pfn_list(iommu);
2303 
2304 				if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
2305 					vfio_iommu_unmap_unpin_all(iommu);
2306 
2307 				kfree(iommu->external_domain);
2308 				iommu->external_domain = NULL;
2309 			}
2310 			goto detach_group_done;
2311 		}
2312 	}
2313 
2314 	/*
2315 	 * Get a copy of iova list. This will be used to update
2316 	 * and to replace the current one later. Please note that
2317 	 * we will leave the original list as it is if update fails.
2318 	 */
2319 	vfio_iommu_iova_get_copy(iommu, &iova_copy);
2320 
2321 	list_for_each_entry(domain, &iommu->domain_list, next) {
2322 		group = find_iommu_group(domain, iommu_group);
2323 		if (!group)
2324 			continue;
2325 
2326 		vfio_iommu_detach_group(domain, group);
2327 		update_dirty_scope = !group->pinned_page_dirty_scope;
2328 		list_del(&group->next);
2329 		kfree(group);
2330 		/*
2331 		 * Group ownership provides privilege, if the group list is
2332 		 * empty, the domain goes away. If it's the last domain with
2333 		 * iommu and external domain doesn't exist, then all the
2334 		 * mappings go away too. If it's the last domain with iommu and
2335 		 * external domain exist, update accounting
2336 		 */
2337 		if (list_empty(&domain->group_list)) {
2338 			if (list_is_singular(&iommu->domain_list)) {
2339 				if (!iommu->external_domain)
2340 					vfio_iommu_unmap_unpin_all(iommu);
2341 				else
2342 					vfio_iommu_unmap_unpin_reaccount(iommu);
2343 			}
2344 			iommu_domain_free(domain->domain);
2345 			list_del(&domain->next);
2346 			kfree(domain);
2347 			vfio_iommu_aper_expand(iommu, &iova_copy);
2348 			vfio_update_pgsize_bitmap(iommu);
2349 		}
2350 		break;
2351 	}
2352 
2353 	if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2354 		vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2355 	else
2356 		vfio_iommu_iova_free(&iova_copy);
2357 
2358 detach_group_done:
2359 	/*
2360 	 * Removal of a group without dirty tracking may allow the iommu scope
2361 	 * to be promoted.
2362 	 */
2363 	if (update_dirty_scope)
2364 		update_pinned_page_dirty_scope(iommu);
2365 	mutex_unlock(&iommu->lock);
2366 }
2367 
2368 static void *vfio_iommu_type1_open(unsigned long arg)
2369 {
2370 	struct vfio_iommu *iommu;
2371 
2372 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2373 	if (!iommu)
2374 		return ERR_PTR(-ENOMEM);
2375 
2376 	switch (arg) {
2377 	case VFIO_TYPE1_IOMMU:
2378 		break;
2379 	case VFIO_TYPE1_NESTING_IOMMU:
2380 		iommu->nesting = true;
2381 		/* fall through */
2382 	case VFIO_TYPE1v2_IOMMU:
2383 		iommu->v2 = true;
2384 		break;
2385 	default:
2386 		kfree(iommu);
2387 		return ERR_PTR(-EINVAL);
2388 	}
2389 
2390 	INIT_LIST_HEAD(&iommu->domain_list);
2391 	INIT_LIST_HEAD(&iommu->iova_list);
2392 	iommu->dma_list = RB_ROOT;
2393 	iommu->dma_avail = dma_entry_limit;
2394 	mutex_init(&iommu->lock);
2395 	BLOCKING_INIT_NOTIFIER_HEAD(&iommu->notifier);
2396 
2397 	return iommu;
2398 }
2399 
2400 static void vfio_release_domain(struct vfio_domain *domain, bool external)
2401 {
2402 	struct vfio_group *group, *group_tmp;
2403 
2404 	list_for_each_entry_safe(group, group_tmp,
2405 				 &domain->group_list, next) {
2406 		if (!external)
2407 			vfio_iommu_detach_group(domain, group);
2408 		list_del(&group->next);
2409 		kfree(group);
2410 	}
2411 
2412 	if (!external)
2413 		iommu_domain_free(domain->domain);
2414 }
2415 
2416 static void vfio_iommu_type1_release(void *iommu_data)
2417 {
2418 	struct vfio_iommu *iommu = iommu_data;
2419 	struct vfio_domain *domain, *domain_tmp;
2420 
2421 	if (iommu->external_domain) {
2422 		vfio_release_domain(iommu->external_domain, true);
2423 		vfio_sanity_check_pfn_list(iommu);
2424 		kfree(iommu->external_domain);
2425 	}
2426 
2427 	vfio_iommu_unmap_unpin_all(iommu);
2428 
2429 	list_for_each_entry_safe(domain, domain_tmp,
2430 				 &iommu->domain_list, next) {
2431 		vfio_release_domain(domain, false);
2432 		list_del(&domain->next);
2433 		kfree(domain);
2434 	}
2435 
2436 	vfio_iommu_iova_free(&iommu->iova_list);
2437 
2438 	kfree(iommu);
2439 }
2440 
2441 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
2442 {
2443 	struct vfio_domain *domain;
2444 	int ret = 1;
2445 
2446 	mutex_lock(&iommu->lock);
2447 	list_for_each_entry(domain, &iommu->domain_list, next) {
2448 		if (!(domain->prot & IOMMU_CACHE)) {
2449 			ret = 0;
2450 			break;
2451 		}
2452 	}
2453 	mutex_unlock(&iommu->lock);
2454 
2455 	return ret;
2456 }
2457 
2458 static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2459 					    unsigned long arg)
2460 {
2461 	switch (arg) {
2462 	case VFIO_TYPE1_IOMMU:
2463 	case VFIO_TYPE1v2_IOMMU:
2464 	case VFIO_TYPE1_NESTING_IOMMU:
2465 		return 1;
2466 	case VFIO_DMA_CC_IOMMU:
2467 		if (!iommu)
2468 			return 0;
2469 		return vfio_domains_have_iommu_cache(iommu);
2470 	default:
2471 		return 0;
2472 	}
2473 }
2474 
2475 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2476 		 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2477 		 size_t size)
2478 {
2479 	struct vfio_info_cap_header *header;
2480 	struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2481 
2482 	header = vfio_info_cap_add(caps, size,
2483 				   VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2484 	if (IS_ERR(header))
2485 		return PTR_ERR(header);
2486 
2487 	iova_cap = container_of(header,
2488 				struct vfio_iommu_type1_info_cap_iova_range,
2489 				header);
2490 	iova_cap->nr_iovas = cap_iovas->nr_iovas;
2491 	memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2492 	       cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2493 	return 0;
2494 }
2495 
2496 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2497 				      struct vfio_info_cap *caps)
2498 {
2499 	struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2500 	struct vfio_iova *iova;
2501 	size_t size;
2502 	int iovas = 0, i = 0, ret;
2503 
2504 	list_for_each_entry(iova, &iommu->iova_list, list)
2505 		iovas++;
2506 
2507 	if (!iovas) {
2508 		/*
2509 		 * Return 0 as a container with a single mdev device
2510 		 * will have an empty list
2511 		 */
2512 		return 0;
2513 	}
2514 
2515 	size = sizeof(*cap_iovas) + (iovas * sizeof(*cap_iovas->iova_ranges));
2516 
2517 	cap_iovas = kzalloc(size, GFP_KERNEL);
2518 	if (!cap_iovas)
2519 		return -ENOMEM;
2520 
2521 	cap_iovas->nr_iovas = iovas;
2522 
2523 	list_for_each_entry(iova, &iommu->iova_list, list) {
2524 		cap_iovas->iova_ranges[i].start = iova->start;
2525 		cap_iovas->iova_ranges[i].end = iova->end;
2526 		i++;
2527 	}
2528 
2529 	ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2530 
2531 	kfree(cap_iovas);
2532 	return ret;
2533 }
2534 
2535 static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2536 					   struct vfio_info_cap *caps)
2537 {
2538 	struct vfio_iommu_type1_info_cap_migration cap_mig;
2539 
2540 	cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2541 	cap_mig.header.version = 1;
2542 
2543 	cap_mig.flags = 0;
2544 	/* support minimum pgsize */
2545 	cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2546 	cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2547 
2548 	return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2549 }
2550 
2551 static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2552 				     unsigned long arg)
2553 {
2554 	struct vfio_iommu_type1_info info;
2555 	unsigned long minsz;
2556 	struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2557 	unsigned long capsz;
2558 	int ret;
2559 
2560 	minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2561 
2562 	/* For backward compatibility, cannot require this */
2563 	capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset);
2564 
2565 	if (copy_from_user(&info, (void __user *)arg, minsz))
2566 		return -EFAULT;
2567 
2568 	if (info.argsz < minsz)
2569 		return -EINVAL;
2570 
2571 	if (info.argsz >= capsz) {
2572 		minsz = capsz;
2573 		info.cap_offset = 0; /* output, no-recopy necessary */
2574 	}
2575 
2576 	mutex_lock(&iommu->lock);
2577 	info.flags = VFIO_IOMMU_INFO_PGSIZES;
2578 
2579 	info.iova_pgsizes = iommu->pgsize_bitmap;
2580 
2581 	ret = vfio_iommu_migration_build_caps(iommu, &caps);
2582 
2583 	if (!ret)
2584 		ret = vfio_iommu_iova_build_caps(iommu, &caps);
2585 
2586 	mutex_unlock(&iommu->lock);
2587 
2588 	if (ret)
2589 		return ret;
2590 
2591 	if (caps.size) {
2592 		info.flags |= VFIO_IOMMU_INFO_CAPS;
2593 
2594 		if (info.argsz < sizeof(info) + caps.size) {
2595 			info.argsz = sizeof(info) + caps.size;
2596 		} else {
2597 			vfio_info_cap_shift(&caps, sizeof(info));
2598 			if (copy_to_user((void __user *)arg +
2599 					sizeof(info), caps.buf,
2600 					caps.size)) {
2601 				kfree(caps.buf);
2602 				return -EFAULT;
2603 			}
2604 			info.cap_offset = sizeof(info);
2605 		}
2606 
2607 		kfree(caps.buf);
2608 	}
2609 
2610 	return copy_to_user((void __user *)arg, &info, minsz) ?
2611 			-EFAULT : 0;
2612 }
2613 
2614 static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2615 				    unsigned long arg)
2616 {
2617 	struct vfio_iommu_type1_dma_map map;
2618 	unsigned long minsz;
2619 	uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE;
2620 
2621 	minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2622 
2623 	if (copy_from_user(&map, (void __user *)arg, minsz))
2624 		return -EFAULT;
2625 
2626 	if (map.argsz < minsz || map.flags & ~mask)
2627 		return -EINVAL;
2628 
2629 	return vfio_dma_do_map(iommu, &map);
2630 }
2631 
2632 static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2633 				      unsigned long arg)
2634 {
2635 	struct vfio_iommu_type1_dma_unmap unmap;
2636 	struct vfio_bitmap bitmap = { 0 };
2637 	unsigned long minsz;
2638 	int ret;
2639 
2640 	minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2641 
2642 	if (copy_from_user(&unmap, (void __user *)arg, minsz))
2643 		return -EFAULT;
2644 
2645 	if (unmap.argsz < minsz ||
2646 	    unmap.flags & ~VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP)
2647 		return -EINVAL;
2648 
2649 	if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2650 		unsigned long pgshift;
2651 
2652 		if (unmap.argsz < (minsz + sizeof(bitmap)))
2653 			return -EINVAL;
2654 
2655 		if (copy_from_user(&bitmap,
2656 				   (void __user *)(arg + minsz),
2657 				   sizeof(bitmap)))
2658 			return -EFAULT;
2659 
2660 		if (!access_ok((void __user *)bitmap.data, bitmap.size))
2661 			return -EINVAL;
2662 
2663 		pgshift = __ffs(bitmap.pgsize);
2664 		ret = verify_bitmap_size(unmap.size >> pgshift,
2665 					 bitmap.size);
2666 		if (ret)
2667 			return ret;
2668 	}
2669 
2670 	ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2671 	if (ret)
2672 		return ret;
2673 
2674 	return copy_to_user((void __user *)arg, &unmap, minsz) ?
2675 			-EFAULT : 0;
2676 }
2677 
2678 static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2679 					unsigned long arg)
2680 {
2681 	struct vfio_iommu_type1_dirty_bitmap dirty;
2682 	uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2683 			VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2684 			VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2685 	unsigned long minsz;
2686 	int ret = 0;
2687 
2688 	if (!iommu->v2)
2689 		return -EACCES;
2690 
2691 	minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
2692 
2693 	if (copy_from_user(&dirty, (void __user *)arg, minsz))
2694 		return -EFAULT;
2695 
2696 	if (dirty.argsz < minsz || dirty.flags & ~mask)
2697 		return -EINVAL;
2698 
2699 	/* only one flag should be set at a time */
2700 	if (__ffs(dirty.flags) != __fls(dirty.flags))
2701 		return -EINVAL;
2702 
2703 	if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
2704 		size_t pgsize;
2705 
2706 		mutex_lock(&iommu->lock);
2707 		pgsize = 1 << __ffs(iommu->pgsize_bitmap);
2708 		if (!iommu->dirty_page_tracking) {
2709 			ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
2710 			if (!ret)
2711 				iommu->dirty_page_tracking = true;
2712 		}
2713 		mutex_unlock(&iommu->lock);
2714 		return ret;
2715 	} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
2716 		mutex_lock(&iommu->lock);
2717 		if (iommu->dirty_page_tracking) {
2718 			iommu->dirty_page_tracking = false;
2719 			vfio_dma_bitmap_free_all(iommu);
2720 		}
2721 		mutex_unlock(&iommu->lock);
2722 		return 0;
2723 	} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
2724 		struct vfio_iommu_type1_dirty_bitmap_get range;
2725 		unsigned long pgshift;
2726 		size_t data_size = dirty.argsz - minsz;
2727 		size_t iommu_pgsize;
2728 
2729 		if (!data_size || data_size < sizeof(range))
2730 			return -EINVAL;
2731 
2732 		if (copy_from_user(&range, (void __user *)(arg + minsz),
2733 				   sizeof(range)))
2734 			return -EFAULT;
2735 
2736 		if (range.iova + range.size < range.iova)
2737 			return -EINVAL;
2738 		if (!access_ok((void __user *)range.bitmap.data,
2739 			       range.bitmap.size))
2740 			return -EINVAL;
2741 
2742 		pgshift = __ffs(range.bitmap.pgsize);
2743 		ret = verify_bitmap_size(range.size >> pgshift,
2744 					 range.bitmap.size);
2745 		if (ret)
2746 			return ret;
2747 
2748 		mutex_lock(&iommu->lock);
2749 
2750 		iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2751 
2752 		/* allow only smallest supported pgsize */
2753 		if (range.bitmap.pgsize != iommu_pgsize) {
2754 			ret = -EINVAL;
2755 			goto out_unlock;
2756 		}
2757 		if (range.iova & (iommu_pgsize - 1)) {
2758 			ret = -EINVAL;
2759 			goto out_unlock;
2760 		}
2761 		if (!range.size || range.size & (iommu_pgsize - 1)) {
2762 			ret = -EINVAL;
2763 			goto out_unlock;
2764 		}
2765 
2766 		if (iommu->dirty_page_tracking)
2767 			ret = vfio_iova_dirty_bitmap(range.bitmap.data,
2768 						     iommu, range.iova,
2769 						     range.size,
2770 						     range.bitmap.pgsize);
2771 		else
2772 			ret = -EINVAL;
2773 out_unlock:
2774 		mutex_unlock(&iommu->lock);
2775 
2776 		return ret;
2777 	}
2778 
2779 	return -EINVAL;
2780 }
2781 
2782 static long vfio_iommu_type1_ioctl(void *iommu_data,
2783 				   unsigned int cmd, unsigned long arg)
2784 {
2785 	struct vfio_iommu *iommu = iommu_data;
2786 
2787 	switch (cmd) {
2788 	case VFIO_CHECK_EXTENSION:
2789 		return vfio_iommu_type1_check_extension(iommu, arg);
2790 	case VFIO_IOMMU_GET_INFO:
2791 		return vfio_iommu_type1_get_info(iommu, arg);
2792 	case VFIO_IOMMU_MAP_DMA:
2793 		return vfio_iommu_type1_map_dma(iommu, arg);
2794 	case VFIO_IOMMU_UNMAP_DMA:
2795 		return vfio_iommu_type1_unmap_dma(iommu, arg);
2796 	case VFIO_IOMMU_DIRTY_PAGES:
2797 		return vfio_iommu_type1_dirty_pages(iommu, arg);
2798 	default:
2799 		return -ENOTTY;
2800 	}
2801 }
2802 
2803 static int vfio_iommu_type1_register_notifier(void *iommu_data,
2804 					      unsigned long *events,
2805 					      struct notifier_block *nb)
2806 {
2807 	struct vfio_iommu *iommu = iommu_data;
2808 
2809 	/* clear known events */
2810 	*events &= ~VFIO_IOMMU_NOTIFY_DMA_UNMAP;
2811 
2812 	/* refuse to register if still events remaining */
2813 	if (*events)
2814 		return -EINVAL;
2815 
2816 	return blocking_notifier_chain_register(&iommu->notifier, nb);
2817 }
2818 
2819 static int vfio_iommu_type1_unregister_notifier(void *iommu_data,
2820 						struct notifier_block *nb)
2821 {
2822 	struct vfio_iommu *iommu = iommu_data;
2823 
2824 	return blocking_notifier_chain_unregister(&iommu->notifier, nb);
2825 }
2826 
2827 static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
2828 					 dma_addr_t user_iova, void *data,
2829 					 size_t count, bool write,
2830 					 size_t *copied)
2831 {
2832 	struct mm_struct *mm;
2833 	unsigned long vaddr;
2834 	struct vfio_dma *dma;
2835 	bool kthread = current->mm == NULL;
2836 	size_t offset;
2837 
2838 	*copied = 0;
2839 
2840 	dma = vfio_find_dma(iommu, user_iova, 1);
2841 	if (!dma)
2842 		return -EINVAL;
2843 
2844 	if ((write && !(dma->prot & IOMMU_WRITE)) ||
2845 			!(dma->prot & IOMMU_READ))
2846 		return -EPERM;
2847 
2848 	mm = get_task_mm(dma->task);
2849 
2850 	if (!mm)
2851 		return -EPERM;
2852 
2853 	if (kthread)
2854 		kthread_use_mm(mm);
2855 	else if (current->mm != mm)
2856 		goto out;
2857 
2858 	offset = user_iova - dma->iova;
2859 
2860 	if (count > dma->size - offset)
2861 		count = dma->size - offset;
2862 
2863 	vaddr = dma->vaddr + offset;
2864 
2865 	if (write) {
2866 		*copied = copy_to_user((void __user *)vaddr, data,
2867 					 count) ? 0 : count;
2868 		if (*copied && iommu->dirty_page_tracking) {
2869 			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
2870 			/*
2871 			 * Bitmap populated with the smallest supported page
2872 			 * size
2873 			 */
2874 			bitmap_set(dma->bitmap, offset >> pgshift,
2875 				   *copied >> pgshift);
2876 		}
2877 	} else
2878 		*copied = copy_from_user(data, (void __user *)vaddr,
2879 					   count) ? 0 : count;
2880 	if (kthread)
2881 		kthread_unuse_mm(mm);
2882 out:
2883 	mmput(mm);
2884 	return *copied ? 0 : -EFAULT;
2885 }
2886 
2887 static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
2888 				   void *data, size_t count, bool write)
2889 {
2890 	struct vfio_iommu *iommu = iommu_data;
2891 	int ret = 0;
2892 	size_t done;
2893 
2894 	mutex_lock(&iommu->lock);
2895 	while (count > 0) {
2896 		ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
2897 						    count, write, &done);
2898 		if (ret)
2899 			break;
2900 
2901 		count -= done;
2902 		data += done;
2903 		user_iova += done;
2904 	}
2905 
2906 	mutex_unlock(&iommu->lock);
2907 	return ret;
2908 }
2909 
2910 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
2911 	.name			= "vfio-iommu-type1",
2912 	.owner			= THIS_MODULE,
2913 	.open			= vfio_iommu_type1_open,
2914 	.release		= vfio_iommu_type1_release,
2915 	.ioctl			= vfio_iommu_type1_ioctl,
2916 	.attach_group		= vfio_iommu_type1_attach_group,
2917 	.detach_group		= vfio_iommu_type1_detach_group,
2918 	.pin_pages		= vfio_iommu_type1_pin_pages,
2919 	.unpin_pages		= vfio_iommu_type1_unpin_pages,
2920 	.register_notifier	= vfio_iommu_type1_register_notifier,
2921 	.unregister_notifier	= vfio_iommu_type1_unregister_notifier,
2922 	.dma_rw			= vfio_iommu_type1_dma_rw,
2923 };
2924 
2925 static int __init vfio_iommu_type1_init(void)
2926 {
2927 	return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
2928 }
2929 
2930 static void __exit vfio_iommu_type1_cleanup(void)
2931 {
2932 	vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
2933 }
2934 
2935 module_init(vfio_iommu_type1_init);
2936 module_exit(vfio_iommu_type1_cleanup);
2937 
2938 MODULE_VERSION(DRIVER_VERSION);
2939 MODULE_LICENSE("GPL v2");
2940 MODULE_AUTHOR(DRIVER_AUTHOR);
2941 MODULE_DESCRIPTION(DRIVER_DESC);
2942