1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * Derived from original vfio:
9  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
10  * Author: Tom Lyon, pugs@cisco.com
11  *
12  * We arbitrarily define a Type1 IOMMU as one matching the below code.
13  * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14  * VT-d, but that makes it harder to re-use as theoretically anyone
15  * implementing a similar IOMMU could make use of this.  We expect the
16  * IOMMU to support the IOMMU API and have few to no restrictions around
17  * the IOVA range that can be mapped.  The Type1 IOMMU is currently
18  * optimized for relatively static mappings of a userspace process with
19  * userpsace pages pinned into memory.  We also assume devices and IOMMU
20  * domains are PCI based as the IOMMU API is still centered around a
21  * device/bus interface rather than a group interface.
22  */
23 
24 #include <linux/compat.h>
25 #include <linux/device.h>
26 #include <linux/fs.h>
27 #include <linux/highmem.h>
28 #include <linux/iommu.h>
29 #include <linux/module.h>
30 #include <linux/mm.h>
31 #include <linux/kthread.h>
32 #include <linux/rbtree.h>
33 #include <linux/sched/signal.h>
34 #include <linux/sched/mm.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39 #include <linux/mdev.h>
40 #include <linux/notifier.h>
41 #include <linux/dma-iommu.h>
42 #include <linux/irqdomain.h>
43 
44 #define DRIVER_VERSION  "0.2"
45 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
46 #define DRIVER_DESC     "Type1 IOMMU driver for VFIO"
47 
48 static bool allow_unsafe_interrupts;
49 module_param_named(allow_unsafe_interrupts,
50 		   allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
51 MODULE_PARM_DESC(allow_unsafe_interrupts,
52 		 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
53 
54 static bool disable_hugepages;
55 module_param_named(disable_hugepages,
56 		   disable_hugepages, bool, S_IRUGO | S_IWUSR);
57 MODULE_PARM_DESC(disable_hugepages,
58 		 "Disable VFIO IOMMU support for IOMMU hugepages.");
59 
60 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
61 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
62 MODULE_PARM_DESC(dma_entry_limit,
63 		 "Maximum number of user DMA mappings per container (65535).");
64 
65 struct vfio_iommu {
66 	struct list_head	domain_list;
67 	struct list_head	iova_list;
68 	struct vfio_domain	*external_domain; /* domain for external user */
69 	struct mutex		lock;
70 	struct rb_root		dma_list;
71 	struct blocking_notifier_head notifier;
72 	unsigned int		dma_avail;
73 	unsigned int		vaddr_invalid_count;
74 	uint64_t		pgsize_bitmap;
75 	uint64_t		num_non_pinned_groups;
76 	wait_queue_head_t	vaddr_wait;
77 	bool			v2;
78 	bool			nesting;
79 	bool			dirty_page_tracking;
80 	bool			pinned_page_dirty_scope;
81 	bool			container_open;
82 };
83 
84 struct vfio_domain {
85 	struct iommu_domain	*domain;
86 	struct list_head	next;
87 	struct list_head	group_list;
88 	int			prot;		/* IOMMU_CACHE */
89 	bool			fgsp;		/* Fine-grained super pages */
90 };
91 
92 struct vfio_dma {
93 	struct rb_node		node;
94 	dma_addr_t		iova;		/* Device address */
95 	unsigned long		vaddr;		/* Process virtual addr */
96 	size_t			size;		/* Map size (bytes) */
97 	int			prot;		/* IOMMU_READ/WRITE */
98 	bool			iommu_mapped;
99 	bool			lock_cap;	/* capable(CAP_IPC_LOCK) */
100 	bool			vaddr_invalid;
101 	struct task_struct	*task;
102 	struct rb_root		pfn_list;	/* Ex-user pinned pfn list */
103 	unsigned long		*bitmap;
104 };
105 
106 struct vfio_batch {
107 	struct page		**pages;	/* for pin_user_pages_remote */
108 	struct page		*fallback_page; /* if pages alloc fails */
109 	int			capacity;	/* length of pages array */
110 	int			size;		/* of batch currently */
111 	int			offset;		/* of next entry in pages */
112 };
113 
114 struct vfio_group {
115 	struct iommu_group	*iommu_group;
116 	struct list_head	next;
117 	bool			mdev_group;	/* An mdev group */
118 	bool			pinned_page_dirty_scope;
119 };
120 
121 struct vfio_iova {
122 	struct list_head	list;
123 	dma_addr_t		start;
124 	dma_addr_t		end;
125 };
126 
127 /*
128  * Guest RAM pinning working set or DMA target
129  */
130 struct vfio_pfn {
131 	struct rb_node		node;
132 	dma_addr_t		iova;		/* Device address */
133 	unsigned long		pfn;		/* Host pfn */
134 	unsigned int		ref_count;
135 };
136 
137 struct vfio_regions {
138 	struct list_head list;
139 	dma_addr_t iova;
140 	phys_addr_t phys;
141 	size_t len;
142 };
143 
144 #define IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu)	\
145 					(!list_empty(&iommu->domain_list))
146 
147 #define DIRTY_BITMAP_BYTES(n)	(ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
148 
149 /*
150  * Input argument of number of bits to bitmap_set() is unsigned integer, which
151  * further casts to signed integer for unaligned multi-bit operation,
152  * __bitmap_set().
153  * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
154  * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
155  * system.
156  */
157 #define DIRTY_BITMAP_PAGES_MAX	 ((u64)INT_MAX)
158 #define DIRTY_BITMAP_SIZE_MAX	 DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
159 
160 #define WAITED 1
161 
162 static int put_pfn(unsigned long pfn, int prot);
163 
164 static struct vfio_group *vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
165 					       struct iommu_group *iommu_group);
166 
167 /*
168  * This code handles mapping and unmapping of user data buffers
169  * into DMA'ble space using the IOMMU
170  */
171 
172 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
173 				      dma_addr_t start, size_t size)
174 {
175 	struct rb_node *node = iommu->dma_list.rb_node;
176 
177 	while (node) {
178 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
179 
180 		if (start + size <= dma->iova)
181 			node = node->rb_left;
182 		else if (start >= dma->iova + dma->size)
183 			node = node->rb_right;
184 		else
185 			return dma;
186 	}
187 
188 	return NULL;
189 }
190 
191 static struct rb_node *vfio_find_dma_first_node(struct vfio_iommu *iommu,
192 						dma_addr_t start, size_t size)
193 {
194 	struct rb_node *res = NULL;
195 	struct rb_node *node = iommu->dma_list.rb_node;
196 	struct vfio_dma *dma_res = NULL;
197 
198 	while (node) {
199 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
200 
201 		if (start < dma->iova + dma->size) {
202 			res = node;
203 			dma_res = dma;
204 			if (start >= dma->iova)
205 				break;
206 			node = node->rb_left;
207 		} else {
208 			node = node->rb_right;
209 		}
210 	}
211 	if (res && size && dma_res->iova >= start + size)
212 		res = NULL;
213 	return res;
214 }
215 
216 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
217 {
218 	struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
219 	struct vfio_dma *dma;
220 
221 	while (*link) {
222 		parent = *link;
223 		dma = rb_entry(parent, struct vfio_dma, node);
224 
225 		if (new->iova + new->size <= dma->iova)
226 			link = &(*link)->rb_left;
227 		else
228 			link = &(*link)->rb_right;
229 	}
230 
231 	rb_link_node(&new->node, parent, link);
232 	rb_insert_color(&new->node, &iommu->dma_list);
233 }
234 
235 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
236 {
237 	rb_erase(&old->node, &iommu->dma_list);
238 }
239 
240 
241 static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
242 {
243 	uint64_t npages = dma->size / pgsize;
244 
245 	if (npages > DIRTY_BITMAP_PAGES_MAX)
246 		return -EINVAL;
247 
248 	/*
249 	 * Allocate extra 64 bits that are used to calculate shift required for
250 	 * bitmap_shift_left() to manipulate and club unaligned number of pages
251 	 * in adjacent vfio_dma ranges.
252 	 */
253 	dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
254 			       GFP_KERNEL);
255 	if (!dma->bitmap)
256 		return -ENOMEM;
257 
258 	return 0;
259 }
260 
261 static void vfio_dma_bitmap_free(struct vfio_dma *dma)
262 {
263 	kfree(dma->bitmap);
264 	dma->bitmap = NULL;
265 }
266 
267 static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
268 {
269 	struct rb_node *p;
270 	unsigned long pgshift = __ffs(pgsize);
271 
272 	for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
273 		struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
274 
275 		bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
276 	}
277 }
278 
279 static void vfio_iommu_populate_bitmap_full(struct vfio_iommu *iommu)
280 {
281 	struct rb_node *n;
282 	unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
283 
284 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
285 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
286 
287 		bitmap_set(dma->bitmap, 0, dma->size >> pgshift);
288 	}
289 }
290 
291 static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
292 {
293 	struct rb_node *n;
294 
295 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
296 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
297 		int ret;
298 
299 		ret = vfio_dma_bitmap_alloc(dma, pgsize);
300 		if (ret) {
301 			struct rb_node *p;
302 
303 			for (p = rb_prev(n); p; p = rb_prev(p)) {
304 				struct vfio_dma *dma = rb_entry(n,
305 							struct vfio_dma, node);
306 
307 				vfio_dma_bitmap_free(dma);
308 			}
309 			return ret;
310 		}
311 		vfio_dma_populate_bitmap(dma, pgsize);
312 	}
313 	return 0;
314 }
315 
316 static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
317 {
318 	struct rb_node *n;
319 
320 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
321 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
322 
323 		vfio_dma_bitmap_free(dma);
324 	}
325 }
326 
327 /*
328  * Helper Functions for host iova-pfn list
329  */
330 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
331 {
332 	struct vfio_pfn *vpfn;
333 	struct rb_node *node = dma->pfn_list.rb_node;
334 
335 	while (node) {
336 		vpfn = rb_entry(node, struct vfio_pfn, node);
337 
338 		if (iova < vpfn->iova)
339 			node = node->rb_left;
340 		else if (iova > vpfn->iova)
341 			node = node->rb_right;
342 		else
343 			return vpfn;
344 	}
345 	return NULL;
346 }
347 
348 static void vfio_link_pfn(struct vfio_dma *dma,
349 			  struct vfio_pfn *new)
350 {
351 	struct rb_node **link, *parent = NULL;
352 	struct vfio_pfn *vpfn;
353 
354 	link = &dma->pfn_list.rb_node;
355 	while (*link) {
356 		parent = *link;
357 		vpfn = rb_entry(parent, struct vfio_pfn, node);
358 
359 		if (new->iova < vpfn->iova)
360 			link = &(*link)->rb_left;
361 		else
362 			link = &(*link)->rb_right;
363 	}
364 
365 	rb_link_node(&new->node, parent, link);
366 	rb_insert_color(&new->node, &dma->pfn_list);
367 }
368 
369 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
370 {
371 	rb_erase(&old->node, &dma->pfn_list);
372 }
373 
374 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
375 				unsigned long pfn)
376 {
377 	struct vfio_pfn *vpfn;
378 
379 	vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
380 	if (!vpfn)
381 		return -ENOMEM;
382 
383 	vpfn->iova = iova;
384 	vpfn->pfn = pfn;
385 	vpfn->ref_count = 1;
386 	vfio_link_pfn(dma, vpfn);
387 	return 0;
388 }
389 
390 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
391 				      struct vfio_pfn *vpfn)
392 {
393 	vfio_unlink_pfn(dma, vpfn);
394 	kfree(vpfn);
395 }
396 
397 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
398 					       unsigned long iova)
399 {
400 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
401 
402 	if (vpfn)
403 		vpfn->ref_count++;
404 	return vpfn;
405 }
406 
407 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
408 {
409 	int ret = 0;
410 
411 	vpfn->ref_count--;
412 	if (!vpfn->ref_count) {
413 		ret = put_pfn(vpfn->pfn, dma->prot);
414 		vfio_remove_from_pfn_list(dma, vpfn);
415 	}
416 	return ret;
417 }
418 
419 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
420 {
421 	struct mm_struct *mm;
422 	int ret;
423 
424 	if (!npage)
425 		return 0;
426 
427 	mm = async ? get_task_mm(dma->task) : dma->task->mm;
428 	if (!mm)
429 		return -ESRCH; /* process exited */
430 
431 	ret = mmap_write_lock_killable(mm);
432 	if (!ret) {
433 		ret = __account_locked_vm(mm, abs(npage), npage > 0, dma->task,
434 					  dma->lock_cap);
435 		mmap_write_unlock(mm);
436 	}
437 
438 	if (async)
439 		mmput(mm);
440 
441 	return ret;
442 }
443 
444 /*
445  * Some mappings aren't backed by a struct page, for example an mmap'd
446  * MMIO range for our own or another device.  These use a different
447  * pfn conversion and shouldn't be tracked as locked pages.
448  * For compound pages, any driver that sets the reserved bit in head
449  * page needs to set the reserved bit in all subpages to be safe.
450  */
451 static bool is_invalid_reserved_pfn(unsigned long pfn)
452 {
453 	if (pfn_valid(pfn))
454 		return PageReserved(pfn_to_page(pfn));
455 
456 	return true;
457 }
458 
459 static int put_pfn(unsigned long pfn, int prot)
460 {
461 	if (!is_invalid_reserved_pfn(pfn)) {
462 		struct page *page = pfn_to_page(pfn);
463 
464 		unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
465 		return 1;
466 	}
467 	return 0;
468 }
469 
470 #define VFIO_BATCH_MAX_CAPACITY (PAGE_SIZE / sizeof(struct page *))
471 
472 static void vfio_batch_init(struct vfio_batch *batch)
473 {
474 	batch->size = 0;
475 	batch->offset = 0;
476 
477 	if (unlikely(disable_hugepages))
478 		goto fallback;
479 
480 	batch->pages = (struct page **) __get_free_page(GFP_KERNEL);
481 	if (!batch->pages)
482 		goto fallback;
483 
484 	batch->capacity = VFIO_BATCH_MAX_CAPACITY;
485 	return;
486 
487 fallback:
488 	batch->pages = &batch->fallback_page;
489 	batch->capacity = 1;
490 }
491 
492 static void vfio_batch_unpin(struct vfio_batch *batch, struct vfio_dma *dma)
493 {
494 	while (batch->size) {
495 		unsigned long pfn = page_to_pfn(batch->pages[batch->offset]);
496 
497 		put_pfn(pfn, dma->prot);
498 		batch->offset++;
499 		batch->size--;
500 	}
501 }
502 
503 static void vfio_batch_fini(struct vfio_batch *batch)
504 {
505 	if (batch->capacity == VFIO_BATCH_MAX_CAPACITY)
506 		free_page((unsigned long)batch->pages);
507 }
508 
509 static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
510 			    unsigned long vaddr, unsigned long *pfn,
511 			    bool write_fault)
512 {
513 	pte_t *ptep;
514 	spinlock_t *ptl;
515 	int ret;
516 
517 	ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
518 	if (ret) {
519 		bool unlocked = false;
520 
521 		ret = fixup_user_fault(mm, vaddr,
522 				       FAULT_FLAG_REMOTE |
523 				       (write_fault ?  FAULT_FLAG_WRITE : 0),
524 				       &unlocked);
525 		if (unlocked)
526 			return -EAGAIN;
527 
528 		if (ret)
529 			return ret;
530 
531 		ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
532 		if (ret)
533 			return ret;
534 	}
535 
536 	if (write_fault && !pte_write(*ptep))
537 		ret = -EFAULT;
538 	else
539 		*pfn = pte_pfn(*ptep);
540 
541 	pte_unmap_unlock(ptep, ptl);
542 	return ret;
543 }
544 
545 /*
546  * Returns the positive number of pfns successfully obtained or a negative
547  * error code.
548  */
549 static int vaddr_get_pfns(struct mm_struct *mm, unsigned long vaddr,
550 			  long npages, int prot, unsigned long *pfn,
551 			  struct page **pages)
552 {
553 	struct vm_area_struct *vma;
554 	unsigned int flags = 0;
555 	int ret;
556 
557 	if (prot & IOMMU_WRITE)
558 		flags |= FOLL_WRITE;
559 
560 	mmap_read_lock(mm);
561 	ret = pin_user_pages_remote(mm, vaddr, npages, flags | FOLL_LONGTERM,
562 				    pages, NULL, NULL);
563 	if (ret > 0) {
564 		*pfn = page_to_pfn(pages[0]);
565 		goto done;
566 	}
567 
568 	vaddr = untagged_addr(vaddr);
569 
570 retry:
571 	vma = find_vma_intersection(mm, vaddr, vaddr + 1);
572 
573 	if (vma && vma->vm_flags & VM_PFNMAP) {
574 		ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE);
575 		if (ret == -EAGAIN)
576 			goto retry;
577 
578 		if (!ret) {
579 			if (is_invalid_reserved_pfn(*pfn))
580 				ret = 1;
581 			else
582 				ret = -EFAULT;
583 		}
584 	}
585 done:
586 	mmap_read_unlock(mm);
587 	return ret;
588 }
589 
590 static int vfio_wait(struct vfio_iommu *iommu)
591 {
592 	DEFINE_WAIT(wait);
593 
594 	prepare_to_wait(&iommu->vaddr_wait, &wait, TASK_KILLABLE);
595 	mutex_unlock(&iommu->lock);
596 	schedule();
597 	mutex_lock(&iommu->lock);
598 	finish_wait(&iommu->vaddr_wait, &wait);
599 	if (kthread_should_stop() || !iommu->container_open ||
600 	    fatal_signal_pending(current)) {
601 		return -EFAULT;
602 	}
603 	return WAITED;
604 }
605 
606 /*
607  * Find dma struct and wait for its vaddr to be valid.  iommu lock is dropped
608  * if the task waits, but is re-locked on return.  Return result in *dma_p.
609  * Return 0 on success with no waiting, WAITED on success if waited, and -errno
610  * on error.
611  */
612 static int vfio_find_dma_valid(struct vfio_iommu *iommu, dma_addr_t start,
613 			       size_t size, struct vfio_dma **dma_p)
614 {
615 	int ret;
616 
617 	do {
618 		*dma_p = vfio_find_dma(iommu, start, size);
619 		if (!*dma_p)
620 			ret = -EINVAL;
621 		else if (!(*dma_p)->vaddr_invalid)
622 			ret = 0;
623 		else
624 			ret = vfio_wait(iommu);
625 	} while (ret > 0);
626 
627 	return ret;
628 }
629 
630 /*
631  * Wait for all vaddr in the dma_list to become valid.  iommu lock is dropped
632  * if the task waits, but is re-locked on return.  Return 0 on success with no
633  * waiting, WAITED on success if waited, and -errno on error.
634  */
635 static int vfio_wait_all_valid(struct vfio_iommu *iommu)
636 {
637 	int ret = 0;
638 
639 	while (iommu->vaddr_invalid_count && ret >= 0)
640 		ret = vfio_wait(iommu);
641 
642 	return ret;
643 }
644 
645 /*
646  * Attempt to pin pages.  We really don't want to track all the pfns and
647  * the iommu can only map chunks of consecutive pfns anyway, so get the
648  * first page and all consecutive pages with the same locking.
649  */
650 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
651 				  long npage, unsigned long *pfn_base,
652 				  unsigned long limit, struct vfio_batch *batch)
653 {
654 	unsigned long pfn;
655 	struct mm_struct *mm = current->mm;
656 	long ret, pinned = 0, lock_acct = 0;
657 	bool rsvd;
658 	dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
659 
660 	/* This code path is only user initiated */
661 	if (!mm)
662 		return -ENODEV;
663 
664 	if (batch->size) {
665 		/* Leftover pages in batch from an earlier call. */
666 		*pfn_base = page_to_pfn(batch->pages[batch->offset]);
667 		pfn = *pfn_base;
668 		rsvd = is_invalid_reserved_pfn(*pfn_base);
669 	} else {
670 		*pfn_base = 0;
671 	}
672 
673 	while (npage) {
674 		if (!batch->size) {
675 			/* Empty batch, so refill it. */
676 			long req_pages = min_t(long, npage, batch->capacity);
677 
678 			ret = vaddr_get_pfns(mm, vaddr, req_pages, dma->prot,
679 					     &pfn, batch->pages);
680 			if (ret < 0)
681 				goto unpin_out;
682 
683 			batch->size = ret;
684 			batch->offset = 0;
685 
686 			if (!*pfn_base) {
687 				*pfn_base = pfn;
688 				rsvd = is_invalid_reserved_pfn(*pfn_base);
689 			}
690 		}
691 
692 		/*
693 		 * pfn is preset for the first iteration of this inner loop and
694 		 * updated at the end to handle a VM_PFNMAP pfn.  In that case,
695 		 * batch->pages isn't valid (there's no struct page), so allow
696 		 * batch->pages to be touched only when there's more than one
697 		 * pfn to check, which guarantees the pfns are from a
698 		 * !VM_PFNMAP vma.
699 		 */
700 		while (true) {
701 			if (pfn != *pfn_base + pinned ||
702 			    rsvd != is_invalid_reserved_pfn(pfn))
703 				goto out;
704 
705 			/*
706 			 * Reserved pages aren't counted against the user,
707 			 * externally pinned pages are already counted against
708 			 * the user.
709 			 */
710 			if (!rsvd && !vfio_find_vpfn(dma, iova)) {
711 				if (!dma->lock_cap &&
712 				    mm->locked_vm + lock_acct + 1 > limit) {
713 					pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
714 						__func__, limit << PAGE_SHIFT);
715 					ret = -ENOMEM;
716 					goto unpin_out;
717 				}
718 				lock_acct++;
719 			}
720 
721 			pinned++;
722 			npage--;
723 			vaddr += PAGE_SIZE;
724 			iova += PAGE_SIZE;
725 			batch->offset++;
726 			batch->size--;
727 
728 			if (!batch->size)
729 				break;
730 
731 			pfn = page_to_pfn(batch->pages[batch->offset]);
732 		}
733 
734 		if (unlikely(disable_hugepages))
735 			break;
736 	}
737 
738 out:
739 	ret = vfio_lock_acct(dma, lock_acct, false);
740 
741 unpin_out:
742 	if (ret < 0) {
743 		if (pinned && !rsvd) {
744 			for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
745 				put_pfn(pfn, dma->prot);
746 		}
747 		vfio_batch_unpin(batch, dma);
748 
749 		return ret;
750 	}
751 
752 	return pinned;
753 }
754 
755 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
756 				    unsigned long pfn, long npage,
757 				    bool do_accounting)
758 {
759 	long unlocked = 0, locked = 0;
760 	long i;
761 
762 	for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
763 		if (put_pfn(pfn++, dma->prot)) {
764 			unlocked++;
765 			if (vfio_find_vpfn(dma, iova))
766 				locked++;
767 		}
768 	}
769 
770 	if (do_accounting)
771 		vfio_lock_acct(dma, locked - unlocked, true);
772 
773 	return unlocked;
774 }
775 
776 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
777 				  unsigned long *pfn_base, bool do_accounting)
778 {
779 	struct page *pages[1];
780 	struct mm_struct *mm;
781 	int ret;
782 
783 	mm = get_task_mm(dma->task);
784 	if (!mm)
785 		return -ENODEV;
786 
787 	ret = vaddr_get_pfns(mm, vaddr, 1, dma->prot, pfn_base, pages);
788 	if (ret == 1 && do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
789 		ret = vfio_lock_acct(dma, 1, true);
790 		if (ret) {
791 			put_pfn(*pfn_base, dma->prot);
792 			if (ret == -ENOMEM)
793 				pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
794 					"(%ld) exceeded\n", __func__,
795 					dma->task->comm, task_pid_nr(dma->task),
796 					task_rlimit(dma->task, RLIMIT_MEMLOCK));
797 		}
798 	}
799 
800 	mmput(mm);
801 	return ret;
802 }
803 
804 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
805 				    bool do_accounting)
806 {
807 	int unlocked;
808 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
809 
810 	if (!vpfn)
811 		return 0;
812 
813 	unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
814 
815 	if (do_accounting)
816 		vfio_lock_acct(dma, -unlocked, true);
817 
818 	return unlocked;
819 }
820 
821 static int vfio_iommu_type1_pin_pages(void *iommu_data,
822 				      struct iommu_group *iommu_group,
823 				      unsigned long *user_pfn,
824 				      int npage, int prot,
825 				      unsigned long *phys_pfn)
826 {
827 	struct vfio_iommu *iommu = iommu_data;
828 	struct vfio_group *group;
829 	int i, j, ret;
830 	unsigned long remote_vaddr;
831 	struct vfio_dma *dma;
832 	bool do_accounting;
833 	dma_addr_t iova;
834 
835 	if (!iommu || !user_pfn || !phys_pfn)
836 		return -EINVAL;
837 
838 	/* Supported for v2 version only */
839 	if (!iommu->v2)
840 		return -EACCES;
841 
842 	mutex_lock(&iommu->lock);
843 
844 	/*
845 	 * Wait for all necessary vaddr's to be valid so they can be used in
846 	 * the main loop without dropping the lock, to avoid racing vs unmap.
847 	 */
848 again:
849 	if (iommu->vaddr_invalid_count) {
850 		for (i = 0; i < npage; i++) {
851 			iova = user_pfn[i] << PAGE_SHIFT;
852 			ret = vfio_find_dma_valid(iommu, iova, PAGE_SIZE, &dma);
853 			if (ret < 0)
854 				goto pin_done;
855 			if (ret == WAITED)
856 				goto again;
857 		}
858 	}
859 
860 	/* Fail if notifier list is empty */
861 	if (!iommu->notifier.head) {
862 		ret = -EINVAL;
863 		goto pin_done;
864 	}
865 
866 	/*
867 	 * If iommu capable domain exist in the container then all pages are
868 	 * already pinned and accounted. Accouting should be done if there is no
869 	 * iommu capable domain in the container.
870 	 */
871 	do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
872 
873 	for (i = 0; i < npage; i++) {
874 		struct vfio_pfn *vpfn;
875 
876 		iova = user_pfn[i] << PAGE_SHIFT;
877 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
878 		if (!dma) {
879 			ret = -EINVAL;
880 			goto pin_unwind;
881 		}
882 
883 		if ((dma->prot & prot) != prot) {
884 			ret = -EPERM;
885 			goto pin_unwind;
886 		}
887 
888 		vpfn = vfio_iova_get_vfio_pfn(dma, iova);
889 		if (vpfn) {
890 			phys_pfn[i] = vpfn->pfn;
891 			continue;
892 		}
893 
894 		remote_vaddr = dma->vaddr + (iova - dma->iova);
895 		ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn[i],
896 					     do_accounting);
897 		if (ret)
898 			goto pin_unwind;
899 
900 		ret = vfio_add_to_pfn_list(dma, iova, phys_pfn[i]);
901 		if (ret) {
902 			if (put_pfn(phys_pfn[i], dma->prot) && do_accounting)
903 				vfio_lock_acct(dma, -1, true);
904 			goto pin_unwind;
905 		}
906 
907 		if (iommu->dirty_page_tracking) {
908 			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
909 
910 			/*
911 			 * Bitmap populated with the smallest supported page
912 			 * size
913 			 */
914 			bitmap_set(dma->bitmap,
915 				   (iova - dma->iova) >> pgshift, 1);
916 		}
917 	}
918 	ret = i;
919 
920 	group = vfio_iommu_find_iommu_group(iommu, iommu_group);
921 	if (!group->pinned_page_dirty_scope) {
922 		group->pinned_page_dirty_scope = true;
923 		iommu->num_non_pinned_groups--;
924 	}
925 
926 	goto pin_done;
927 
928 pin_unwind:
929 	phys_pfn[i] = 0;
930 	for (j = 0; j < i; j++) {
931 		dma_addr_t iova;
932 
933 		iova = user_pfn[j] << PAGE_SHIFT;
934 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
935 		vfio_unpin_page_external(dma, iova, do_accounting);
936 		phys_pfn[j] = 0;
937 	}
938 pin_done:
939 	mutex_unlock(&iommu->lock);
940 	return ret;
941 }
942 
943 static int vfio_iommu_type1_unpin_pages(void *iommu_data,
944 					unsigned long *user_pfn,
945 					int npage)
946 {
947 	struct vfio_iommu *iommu = iommu_data;
948 	bool do_accounting;
949 	int i;
950 
951 	if (!iommu || !user_pfn)
952 		return -EINVAL;
953 
954 	/* Supported for v2 version only */
955 	if (!iommu->v2)
956 		return -EACCES;
957 
958 	mutex_lock(&iommu->lock);
959 
960 	do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
961 	for (i = 0; i < npage; i++) {
962 		struct vfio_dma *dma;
963 		dma_addr_t iova;
964 
965 		iova = user_pfn[i] << PAGE_SHIFT;
966 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
967 		if (!dma)
968 			goto unpin_exit;
969 		vfio_unpin_page_external(dma, iova, do_accounting);
970 	}
971 
972 unpin_exit:
973 	mutex_unlock(&iommu->lock);
974 	return i > npage ? npage : (i > 0 ? i : -EINVAL);
975 }
976 
977 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
978 			    struct list_head *regions,
979 			    struct iommu_iotlb_gather *iotlb_gather)
980 {
981 	long unlocked = 0;
982 	struct vfio_regions *entry, *next;
983 
984 	iommu_iotlb_sync(domain->domain, iotlb_gather);
985 
986 	list_for_each_entry_safe(entry, next, regions, list) {
987 		unlocked += vfio_unpin_pages_remote(dma,
988 						    entry->iova,
989 						    entry->phys >> PAGE_SHIFT,
990 						    entry->len >> PAGE_SHIFT,
991 						    false);
992 		list_del(&entry->list);
993 		kfree(entry);
994 	}
995 
996 	cond_resched();
997 
998 	return unlocked;
999 }
1000 
1001 /*
1002  * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
1003  * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
1004  * of these regions (currently using a list).
1005  *
1006  * This value specifies maximum number of regions for each IOTLB flush sync.
1007  */
1008 #define VFIO_IOMMU_TLB_SYNC_MAX		512
1009 
1010 static size_t unmap_unpin_fast(struct vfio_domain *domain,
1011 			       struct vfio_dma *dma, dma_addr_t *iova,
1012 			       size_t len, phys_addr_t phys, long *unlocked,
1013 			       struct list_head *unmapped_list,
1014 			       int *unmapped_cnt,
1015 			       struct iommu_iotlb_gather *iotlb_gather)
1016 {
1017 	size_t unmapped = 0;
1018 	struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1019 
1020 	if (entry) {
1021 		unmapped = iommu_unmap_fast(domain->domain, *iova, len,
1022 					    iotlb_gather);
1023 
1024 		if (!unmapped) {
1025 			kfree(entry);
1026 		} else {
1027 			entry->iova = *iova;
1028 			entry->phys = phys;
1029 			entry->len  = unmapped;
1030 			list_add_tail(&entry->list, unmapped_list);
1031 
1032 			*iova += unmapped;
1033 			(*unmapped_cnt)++;
1034 		}
1035 	}
1036 
1037 	/*
1038 	 * Sync if the number of fast-unmap regions hits the limit
1039 	 * or in case of errors.
1040 	 */
1041 	if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
1042 		*unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
1043 					     iotlb_gather);
1044 		*unmapped_cnt = 0;
1045 	}
1046 
1047 	return unmapped;
1048 }
1049 
1050 static size_t unmap_unpin_slow(struct vfio_domain *domain,
1051 			       struct vfio_dma *dma, dma_addr_t *iova,
1052 			       size_t len, phys_addr_t phys,
1053 			       long *unlocked)
1054 {
1055 	size_t unmapped = iommu_unmap(domain->domain, *iova, len);
1056 
1057 	if (unmapped) {
1058 		*unlocked += vfio_unpin_pages_remote(dma, *iova,
1059 						     phys >> PAGE_SHIFT,
1060 						     unmapped >> PAGE_SHIFT,
1061 						     false);
1062 		*iova += unmapped;
1063 		cond_resched();
1064 	}
1065 	return unmapped;
1066 }
1067 
1068 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
1069 			     bool do_accounting)
1070 {
1071 	dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
1072 	struct vfio_domain *domain, *d;
1073 	LIST_HEAD(unmapped_region_list);
1074 	struct iommu_iotlb_gather iotlb_gather;
1075 	int unmapped_region_cnt = 0;
1076 	long unlocked = 0;
1077 
1078 	if (!dma->size)
1079 		return 0;
1080 
1081 	if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1082 		return 0;
1083 
1084 	/*
1085 	 * We use the IOMMU to track the physical addresses, otherwise we'd
1086 	 * need a much more complicated tracking system.  Unfortunately that
1087 	 * means we need to use one of the iommu domains to figure out the
1088 	 * pfns to unpin.  The rest need to be unmapped in advance so we have
1089 	 * no iommu translations remaining when the pages are unpinned.
1090 	 */
1091 	domain = d = list_first_entry(&iommu->domain_list,
1092 				      struct vfio_domain, next);
1093 
1094 	list_for_each_entry_continue(d, &iommu->domain_list, next) {
1095 		iommu_unmap(d->domain, dma->iova, dma->size);
1096 		cond_resched();
1097 	}
1098 
1099 	iommu_iotlb_gather_init(&iotlb_gather);
1100 	while (iova < end) {
1101 		size_t unmapped, len;
1102 		phys_addr_t phys, next;
1103 
1104 		phys = iommu_iova_to_phys(domain->domain, iova);
1105 		if (WARN_ON(!phys)) {
1106 			iova += PAGE_SIZE;
1107 			continue;
1108 		}
1109 
1110 		/*
1111 		 * To optimize for fewer iommu_unmap() calls, each of which
1112 		 * may require hardware cache flushing, try to find the
1113 		 * largest contiguous physical memory chunk to unmap.
1114 		 */
1115 		for (len = PAGE_SIZE;
1116 		     !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
1117 			next = iommu_iova_to_phys(domain->domain, iova + len);
1118 			if (next != phys + len)
1119 				break;
1120 		}
1121 
1122 		/*
1123 		 * First, try to use fast unmap/unpin. In case of failure,
1124 		 * switch to slow unmap/unpin path.
1125 		 */
1126 		unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
1127 					    &unlocked, &unmapped_region_list,
1128 					    &unmapped_region_cnt,
1129 					    &iotlb_gather);
1130 		if (!unmapped) {
1131 			unmapped = unmap_unpin_slow(domain, dma, &iova, len,
1132 						    phys, &unlocked);
1133 			if (WARN_ON(!unmapped))
1134 				break;
1135 		}
1136 	}
1137 
1138 	dma->iommu_mapped = false;
1139 
1140 	if (unmapped_region_cnt) {
1141 		unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
1142 					    &iotlb_gather);
1143 	}
1144 
1145 	if (do_accounting) {
1146 		vfio_lock_acct(dma, -unlocked, true);
1147 		return 0;
1148 	}
1149 	return unlocked;
1150 }
1151 
1152 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
1153 {
1154 	WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list));
1155 	vfio_unmap_unpin(iommu, dma, true);
1156 	vfio_unlink_dma(iommu, dma);
1157 	put_task_struct(dma->task);
1158 	vfio_dma_bitmap_free(dma);
1159 	if (dma->vaddr_invalid) {
1160 		iommu->vaddr_invalid_count--;
1161 		wake_up_all(&iommu->vaddr_wait);
1162 	}
1163 	kfree(dma);
1164 	iommu->dma_avail++;
1165 }
1166 
1167 static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
1168 {
1169 	struct vfio_domain *domain;
1170 
1171 	iommu->pgsize_bitmap = ULONG_MAX;
1172 
1173 	list_for_each_entry(domain, &iommu->domain_list, next)
1174 		iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
1175 
1176 	/*
1177 	 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
1178 	 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
1179 	 * That way the user will be able to map/unmap buffers whose size/
1180 	 * start address is aligned with PAGE_SIZE. Pinning code uses that
1181 	 * granularity while iommu driver can use the sub-PAGE_SIZE size
1182 	 * to map the buffer.
1183 	 */
1184 	if (iommu->pgsize_bitmap & ~PAGE_MASK) {
1185 		iommu->pgsize_bitmap &= PAGE_MASK;
1186 		iommu->pgsize_bitmap |= PAGE_SIZE;
1187 	}
1188 }
1189 
1190 static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1191 			      struct vfio_dma *dma, dma_addr_t base_iova,
1192 			      size_t pgsize)
1193 {
1194 	unsigned long pgshift = __ffs(pgsize);
1195 	unsigned long nbits = dma->size >> pgshift;
1196 	unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
1197 	unsigned long copy_offset = bit_offset / BITS_PER_LONG;
1198 	unsigned long shift = bit_offset % BITS_PER_LONG;
1199 	unsigned long leftover;
1200 
1201 	/*
1202 	 * mark all pages dirty if any IOMMU capable device is not able
1203 	 * to report dirty pages and all pages are pinned and mapped.
1204 	 */
1205 	if (iommu->num_non_pinned_groups && dma->iommu_mapped)
1206 		bitmap_set(dma->bitmap, 0, nbits);
1207 
1208 	if (shift) {
1209 		bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
1210 				  nbits + shift);
1211 
1212 		if (copy_from_user(&leftover,
1213 				   (void __user *)(bitmap + copy_offset),
1214 				   sizeof(leftover)))
1215 			return -EFAULT;
1216 
1217 		bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1218 	}
1219 
1220 	if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1221 			 DIRTY_BITMAP_BYTES(nbits + shift)))
1222 		return -EFAULT;
1223 
1224 	return 0;
1225 }
1226 
1227 static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1228 				  dma_addr_t iova, size_t size, size_t pgsize)
1229 {
1230 	struct vfio_dma *dma;
1231 	struct rb_node *n;
1232 	unsigned long pgshift = __ffs(pgsize);
1233 	int ret;
1234 
1235 	/*
1236 	 * GET_BITMAP request must fully cover vfio_dma mappings.  Multiple
1237 	 * vfio_dma mappings may be clubbed by specifying large ranges, but
1238 	 * there must not be any previous mappings bisected by the range.
1239 	 * An error will be returned if these conditions are not met.
1240 	 */
1241 	dma = vfio_find_dma(iommu, iova, 1);
1242 	if (dma && dma->iova != iova)
1243 		return -EINVAL;
1244 
1245 	dma = vfio_find_dma(iommu, iova + size - 1, 0);
1246 	if (dma && dma->iova + dma->size != iova + size)
1247 		return -EINVAL;
1248 
1249 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1250 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1251 
1252 		if (dma->iova < iova)
1253 			continue;
1254 
1255 		if (dma->iova > iova + size - 1)
1256 			break;
1257 
1258 		ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1259 		if (ret)
1260 			return ret;
1261 
1262 		/*
1263 		 * Re-populate bitmap to include all pinned pages which are
1264 		 * considered as dirty but exclude pages which are unpinned and
1265 		 * pages which are marked dirty by vfio_dma_rw()
1266 		 */
1267 		bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1268 		vfio_dma_populate_bitmap(dma, pgsize);
1269 	}
1270 	return 0;
1271 }
1272 
1273 static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1274 {
1275 	if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1276 	    (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1277 		return -EINVAL;
1278 
1279 	return 0;
1280 }
1281 
1282 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1283 			     struct vfio_iommu_type1_dma_unmap *unmap,
1284 			     struct vfio_bitmap *bitmap)
1285 {
1286 	struct vfio_dma *dma, *dma_last = NULL;
1287 	size_t unmapped = 0, pgsize;
1288 	int ret = -EINVAL, retries = 0;
1289 	unsigned long pgshift;
1290 	dma_addr_t iova = unmap->iova;
1291 	unsigned long size = unmap->size;
1292 	bool unmap_all = unmap->flags & VFIO_DMA_UNMAP_FLAG_ALL;
1293 	bool invalidate_vaddr = unmap->flags & VFIO_DMA_UNMAP_FLAG_VADDR;
1294 	struct rb_node *n, *first_n;
1295 
1296 	mutex_lock(&iommu->lock);
1297 
1298 	pgshift = __ffs(iommu->pgsize_bitmap);
1299 	pgsize = (size_t)1 << pgshift;
1300 
1301 	if (iova & (pgsize - 1))
1302 		goto unlock;
1303 
1304 	if (unmap_all) {
1305 		if (iova || size)
1306 			goto unlock;
1307 		size = SIZE_MAX;
1308 	} else if (!size || size & (pgsize - 1)) {
1309 		goto unlock;
1310 	}
1311 
1312 	if (iova + size - 1 < iova || size > SIZE_MAX)
1313 		goto unlock;
1314 
1315 	/* When dirty tracking is enabled, allow only min supported pgsize */
1316 	if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1317 	    (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1318 		goto unlock;
1319 	}
1320 
1321 	WARN_ON((pgsize - 1) & PAGE_MASK);
1322 again:
1323 	/*
1324 	 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1325 	 * avoid tracking individual mappings.  This means that the granularity
1326 	 * of the original mapping was lost and the user was allowed to attempt
1327 	 * to unmap any range.  Depending on the contiguousness of physical
1328 	 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1329 	 * or may not have worked.  We only guaranteed unmap granularity
1330 	 * matching the original mapping; even though it was untracked here,
1331 	 * the original mappings are reflected in IOMMU mappings.  This
1332 	 * resulted in a couple unusual behaviors.  First, if a range is not
1333 	 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1334 	 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1335 	 * a zero sized unmap.  Also, if an unmap request overlaps the first
1336 	 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1337 	 * This also returns success and the returned unmap size reflects the
1338 	 * actual size unmapped.
1339 	 *
1340 	 * We attempt to maintain compatibility with this "v1" interface, but
1341 	 * we take control out of the hands of the IOMMU.  Therefore, an unmap
1342 	 * request offset from the beginning of the original mapping will
1343 	 * return success with zero sized unmap.  And an unmap request covering
1344 	 * the first iova of mapping will unmap the entire range.
1345 	 *
1346 	 * The v2 version of this interface intends to be more deterministic.
1347 	 * Unmap requests must fully cover previous mappings.  Multiple
1348 	 * mappings may still be unmaped by specifying large ranges, but there
1349 	 * must not be any previous mappings bisected by the range.  An error
1350 	 * will be returned if these conditions are not met.  The v2 interface
1351 	 * will only return success and a size of zero if there were no
1352 	 * mappings within the range.
1353 	 */
1354 	if (iommu->v2 && !unmap_all) {
1355 		dma = vfio_find_dma(iommu, iova, 1);
1356 		if (dma && dma->iova != iova)
1357 			goto unlock;
1358 
1359 		dma = vfio_find_dma(iommu, iova + size - 1, 0);
1360 		if (dma && dma->iova + dma->size != iova + size)
1361 			goto unlock;
1362 	}
1363 
1364 	ret = 0;
1365 	n = first_n = vfio_find_dma_first_node(iommu, iova, size);
1366 
1367 	while (n) {
1368 		dma = rb_entry(n, struct vfio_dma, node);
1369 		if (dma->iova >= iova + size)
1370 			break;
1371 
1372 		if (!iommu->v2 && iova > dma->iova)
1373 			break;
1374 		/*
1375 		 * Task with same address space who mapped this iova range is
1376 		 * allowed to unmap the iova range.
1377 		 */
1378 		if (dma->task->mm != current->mm)
1379 			break;
1380 
1381 		if (invalidate_vaddr) {
1382 			if (dma->vaddr_invalid) {
1383 				struct rb_node *last_n = n;
1384 
1385 				for (n = first_n; n != last_n; n = rb_next(n)) {
1386 					dma = rb_entry(n,
1387 						       struct vfio_dma, node);
1388 					dma->vaddr_invalid = false;
1389 					iommu->vaddr_invalid_count--;
1390 				}
1391 				ret = -EINVAL;
1392 				unmapped = 0;
1393 				break;
1394 			}
1395 			dma->vaddr_invalid = true;
1396 			iommu->vaddr_invalid_count++;
1397 			unmapped += dma->size;
1398 			n = rb_next(n);
1399 			continue;
1400 		}
1401 
1402 		if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1403 			struct vfio_iommu_type1_dma_unmap nb_unmap;
1404 
1405 			if (dma_last == dma) {
1406 				BUG_ON(++retries > 10);
1407 			} else {
1408 				dma_last = dma;
1409 				retries = 0;
1410 			}
1411 
1412 			nb_unmap.iova = dma->iova;
1413 			nb_unmap.size = dma->size;
1414 
1415 			/*
1416 			 * Notify anyone (mdev vendor drivers) to invalidate and
1417 			 * unmap iovas within the range we're about to unmap.
1418 			 * Vendor drivers MUST unpin pages in response to an
1419 			 * invalidation.
1420 			 */
1421 			mutex_unlock(&iommu->lock);
1422 			blocking_notifier_call_chain(&iommu->notifier,
1423 						    VFIO_IOMMU_NOTIFY_DMA_UNMAP,
1424 						    &nb_unmap);
1425 			mutex_lock(&iommu->lock);
1426 			goto again;
1427 		}
1428 
1429 		if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1430 			ret = update_user_bitmap(bitmap->data, iommu, dma,
1431 						 iova, pgsize);
1432 			if (ret)
1433 				break;
1434 		}
1435 
1436 		unmapped += dma->size;
1437 		n = rb_next(n);
1438 		vfio_remove_dma(iommu, dma);
1439 	}
1440 
1441 unlock:
1442 	mutex_unlock(&iommu->lock);
1443 
1444 	/* Report how much was unmapped */
1445 	unmap->size = unmapped;
1446 
1447 	return ret;
1448 }
1449 
1450 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1451 			  unsigned long pfn, long npage, int prot)
1452 {
1453 	struct vfio_domain *d;
1454 	int ret;
1455 
1456 	list_for_each_entry(d, &iommu->domain_list, next) {
1457 		ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1458 				npage << PAGE_SHIFT, prot | d->prot);
1459 		if (ret)
1460 			goto unwind;
1461 
1462 		cond_resched();
1463 	}
1464 
1465 	return 0;
1466 
1467 unwind:
1468 	list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1469 		iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1470 		cond_resched();
1471 	}
1472 
1473 	return ret;
1474 }
1475 
1476 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1477 			    size_t map_size)
1478 {
1479 	dma_addr_t iova = dma->iova;
1480 	unsigned long vaddr = dma->vaddr;
1481 	struct vfio_batch batch;
1482 	size_t size = map_size;
1483 	long npage;
1484 	unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1485 	int ret = 0;
1486 
1487 	vfio_batch_init(&batch);
1488 
1489 	while (size) {
1490 		/* Pin a contiguous chunk of memory */
1491 		npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1492 					      size >> PAGE_SHIFT, &pfn, limit,
1493 					      &batch);
1494 		if (npage <= 0) {
1495 			WARN_ON(!npage);
1496 			ret = (int)npage;
1497 			break;
1498 		}
1499 
1500 		/* Map it! */
1501 		ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1502 				     dma->prot);
1503 		if (ret) {
1504 			vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1505 						npage, true);
1506 			vfio_batch_unpin(&batch, dma);
1507 			break;
1508 		}
1509 
1510 		size -= npage << PAGE_SHIFT;
1511 		dma->size += npage << PAGE_SHIFT;
1512 	}
1513 
1514 	vfio_batch_fini(&batch);
1515 	dma->iommu_mapped = true;
1516 
1517 	if (ret)
1518 		vfio_remove_dma(iommu, dma);
1519 
1520 	return ret;
1521 }
1522 
1523 /*
1524  * Check dma map request is within a valid iova range
1525  */
1526 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1527 				      dma_addr_t start, dma_addr_t end)
1528 {
1529 	struct list_head *iova = &iommu->iova_list;
1530 	struct vfio_iova *node;
1531 
1532 	list_for_each_entry(node, iova, list) {
1533 		if (start >= node->start && end <= node->end)
1534 			return true;
1535 	}
1536 
1537 	/*
1538 	 * Check for list_empty() as well since a container with
1539 	 * a single mdev device will have an empty list.
1540 	 */
1541 	return list_empty(iova);
1542 }
1543 
1544 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1545 			   struct vfio_iommu_type1_dma_map *map)
1546 {
1547 	bool set_vaddr = map->flags & VFIO_DMA_MAP_FLAG_VADDR;
1548 	dma_addr_t iova = map->iova;
1549 	unsigned long vaddr = map->vaddr;
1550 	size_t size = map->size;
1551 	int ret = 0, prot = 0;
1552 	size_t pgsize;
1553 	struct vfio_dma *dma;
1554 
1555 	/* Verify that none of our __u64 fields overflow */
1556 	if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1557 		return -EINVAL;
1558 
1559 	/* READ/WRITE from device perspective */
1560 	if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1561 		prot |= IOMMU_WRITE;
1562 	if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1563 		prot |= IOMMU_READ;
1564 
1565 	if ((prot && set_vaddr) || (!prot && !set_vaddr))
1566 		return -EINVAL;
1567 
1568 	mutex_lock(&iommu->lock);
1569 
1570 	pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1571 
1572 	WARN_ON((pgsize - 1) & PAGE_MASK);
1573 
1574 	if (!size || (size | iova | vaddr) & (pgsize - 1)) {
1575 		ret = -EINVAL;
1576 		goto out_unlock;
1577 	}
1578 
1579 	/* Don't allow IOVA or virtual address wrap */
1580 	if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1581 		ret = -EINVAL;
1582 		goto out_unlock;
1583 	}
1584 
1585 	dma = vfio_find_dma(iommu, iova, size);
1586 	if (set_vaddr) {
1587 		if (!dma) {
1588 			ret = -ENOENT;
1589 		} else if (!dma->vaddr_invalid || dma->iova != iova ||
1590 			   dma->size != size) {
1591 			ret = -EINVAL;
1592 		} else {
1593 			dma->vaddr = vaddr;
1594 			dma->vaddr_invalid = false;
1595 			iommu->vaddr_invalid_count--;
1596 			wake_up_all(&iommu->vaddr_wait);
1597 		}
1598 		goto out_unlock;
1599 	} else if (dma) {
1600 		ret = -EEXIST;
1601 		goto out_unlock;
1602 	}
1603 
1604 	if (!iommu->dma_avail) {
1605 		ret = -ENOSPC;
1606 		goto out_unlock;
1607 	}
1608 
1609 	if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1610 		ret = -EINVAL;
1611 		goto out_unlock;
1612 	}
1613 
1614 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1615 	if (!dma) {
1616 		ret = -ENOMEM;
1617 		goto out_unlock;
1618 	}
1619 
1620 	iommu->dma_avail--;
1621 	dma->iova = iova;
1622 	dma->vaddr = vaddr;
1623 	dma->prot = prot;
1624 
1625 	/*
1626 	 * We need to be able to both add to a task's locked memory and test
1627 	 * against the locked memory limit and we need to be able to do both
1628 	 * outside of this call path as pinning can be asynchronous via the
1629 	 * external interfaces for mdev devices.  RLIMIT_MEMLOCK requires a
1630 	 * task_struct and VM locked pages requires an mm_struct, however
1631 	 * holding an indefinite mm reference is not recommended, therefore we
1632 	 * only hold a reference to a task.  We could hold a reference to
1633 	 * current, however QEMU uses this call path through vCPU threads,
1634 	 * which can be killed resulting in a NULL mm and failure in the unmap
1635 	 * path when called via a different thread.  Avoid this problem by
1636 	 * using the group_leader as threads within the same group require
1637 	 * both CLONE_THREAD and CLONE_VM and will therefore use the same
1638 	 * mm_struct.
1639 	 *
1640 	 * Previously we also used the task for testing CAP_IPC_LOCK at the
1641 	 * time of pinning and accounting, however has_capability() makes use
1642 	 * of real_cred, a copy-on-write field, so we can't guarantee that it
1643 	 * matches group_leader, or in fact that it might not change by the
1644 	 * time it's evaluated.  If a process were to call MAP_DMA with
1645 	 * CAP_IPC_LOCK but later drop it, it doesn't make sense that they
1646 	 * possibly see different results for an iommu_mapped vfio_dma vs
1647 	 * externally mapped.  Therefore track CAP_IPC_LOCK in vfio_dma at the
1648 	 * time of calling MAP_DMA.
1649 	 */
1650 	get_task_struct(current->group_leader);
1651 	dma->task = current->group_leader;
1652 	dma->lock_cap = capable(CAP_IPC_LOCK);
1653 
1654 	dma->pfn_list = RB_ROOT;
1655 
1656 	/* Insert zero-sized and grow as we map chunks of it */
1657 	vfio_link_dma(iommu, dma);
1658 
1659 	/* Don't pin and map if container doesn't contain IOMMU capable domain*/
1660 	if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1661 		dma->size = size;
1662 	else
1663 		ret = vfio_pin_map_dma(iommu, dma, size);
1664 
1665 	if (!ret && iommu->dirty_page_tracking) {
1666 		ret = vfio_dma_bitmap_alloc(dma, pgsize);
1667 		if (ret)
1668 			vfio_remove_dma(iommu, dma);
1669 	}
1670 
1671 out_unlock:
1672 	mutex_unlock(&iommu->lock);
1673 	return ret;
1674 }
1675 
1676 static int vfio_bus_type(struct device *dev, void *data)
1677 {
1678 	struct bus_type **bus = data;
1679 
1680 	if (*bus && *bus != dev->bus)
1681 		return -EINVAL;
1682 
1683 	*bus = dev->bus;
1684 
1685 	return 0;
1686 }
1687 
1688 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1689 			     struct vfio_domain *domain)
1690 {
1691 	struct vfio_batch batch;
1692 	struct vfio_domain *d = NULL;
1693 	struct rb_node *n;
1694 	unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1695 	int ret;
1696 
1697 	ret = vfio_wait_all_valid(iommu);
1698 	if (ret < 0)
1699 		return ret;
1700 
1701 	/* Arbitrarily pick the first domain in the list for lookups */
1702 	if (!list_empty(&iommu->domain_list))
1703 		d = list_first_entry(&iommu->domain_list,
1704 				     struct vfio_domain, next);
1705 
1706 	vfio_batch_init(&batch);
1707 
1708 	n = rb_first(&iommu->dma_list);
1709 
1710 	for (; n; n = rb_next(n)) {
1711 		struct vfio_dma *dma;
1712 		dma_addr_t iova;
1713 
1714 		dma = rb_entry(n, struct vfio_dma, node);
1715 		iova = dma->iova;
1716 
1717 		while (iova < dma->iova + dma->size) {
1718 			phys_addr_t phys;
1719 			size_t size;
1720 
1721 			if (dma->iommu_mapped) {
1722 				phys_addr_t p;
1723 				dma_addr_t i;
1724 
1725 				if (WARN_ON(!d)) { /* mapped w/o a domain?! */
1726 					ret = -EINVAL;
1727 					goto unwind;
1728 				}
1729 
1730 				phys = iommu_iova_to_phys(d->domain, iova);
1731 
1732 				if (WARN_ON(!phys)) {
1733 					iova += PAGE_SIZE;
1734 					continue;
1735 				}
1736 
1737 				size = PAGE_SIZE;
1738 				p = phys + size;
1739 				i = iova + size;
1740 				while (i < dma->iova + dma->size &&
1741 				       p == iommu_iova_to_phys(d->domain, i)) {
1742 					size += PAGE_SIZE;
1743 					p += PAGE_SIZE;
1744 					i += PAGE_SIZE;
1745 				}
1746 			} else {
1747 				unsigned long pfn;
1748 				unsigned long vaddr = dma->vaddr +
1749 						     (iova - dma->iova);
1750 				size_t n = dma->iova + dma->size - iova;
1751 				long npage;
1752 
1753 				npage = vfio_pin_pages_remote(dma, vaddr,
1754 							      n >> PAGE_SHIFT,
1755 							      &pfn, limit,
1756 							      &batch);
1757 				if (npage <= 0) {
1758 					WARN_ON(!npage);
1759 					ret = (int)npage;
1760 					goto unwind;
1761 				}
1762 
1763 				phys = pfn << PAGE_SHIFT;
1764 				size = npage << PAGE_SHIFT;
1765 			}
1766 
1767 			ret = iommu_map(domain->domain, iova, phys,
1768 					size, dma->prot | domain->prot);
1769 			if (ret) {
1770 				if (!dma->iommu_mapped) {
1771 					vfio_unpin_pages_remote(dma, iova,
1772 							phys >> PAGE_SHIFT,
1773 							size >> PAGE_SHIFT,
1774 							true);
1775 					vfio_batch_unpin(&batch, dma);
1776 				}
1777 				goto unwind;
1778 			}
1779 
1780 			iova += size;
1781 		}
1782 	}
1783 
1784 	/* All dmas are now mapped, defer to second tree walk for unwind */
1785 	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1786 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1787 
1788 		dma->iommu_mapped = true;
1789 	}
1790 
1791 	vfio_batch_fini(&batch);
1792 	return 0;
1793 
1794 unwind:
1795 	for (; n; n = rb_prev(n)) {
1796 		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1797 		dma_addr_t iova;
1798 
1799 		if (dma->iommu_mapped) {
1800 			iommu_unmap(domain->domain, dma->iova, dma->size);
1801 			continue;
1802 		}
1803 
1804 		iova = dma->iova;
1805 		while (iova < dma->iova + dma->size) {
1806 			phys_addr_t phys, p;
1807 			size_t size;
1808 			dma_addr_t i;
1809 
1810 			phys = iommu_iova_to_phys(domain->domain, iova);
1811 			if (!phys) {
1812 				iova += PAGE_SIZE;
1813 				continue;
1814 			}
1815 
1816 			size = PAGE_SIZE;
1817 			p = phys + size;
1818 			i = iova + size;
1819 			while (i < dma->iova + dma->size &&
1820 			       p == iommu_iova_to_phys(domain->domain, i)) {
1821 				size += PAGE_SIZE;
1822 				p += PAGE_SIZE;
1823 				i += PAGE_SIZE;
1824 			}
1825 
1826 			iommu_unmap(domain->domain, iova, size);
1827 			vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT,
1828 						size >> PAGE_SHIFT, true);
1829 		}
1830 	}
1831 
1832 	vfio_batch_fini(&batch);
1833 	return ret;
1834 }
1835 
1836 /*
1837  * We change our unmap behavior slightly depending on whether the IOMMU
1838  * supports fine-grained superpages.  IOMMUs like AMD-Vi will use a superpage
1839  * for practically any contiguous power-of-two mapping we give it.  This means
1840  * we don't need to look for contiguous chunks ourselves to make unmapping
1841  * more efficient.  On IOMMUs with coarse-grained super pages, like Intel VT-d
1842  * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1843  * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1844  * hugetlbfs is in use.
1845  */
1846 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
1847 {
1848 	struct page *pages;
1849 	int ret, order = get_order(PAGE_SIZE * 2);
1850 
1851 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1852 	if (!pages)
1853 		return;
1854 
1855 	ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
1856 			IOMMU_READ | IOMMU_WRITE | domain->prot);
1857 	if (!ret) {
1858 		size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
1859 
1860 		if (unmapped == PAGE_SIZE)
1861 			iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
1862 		else
1863 			domain->fgsp = true;
1864 	}
1865 
1866 	__free_pages(pages, order);
1867 }
1868 
1869 static struct vfio_group *find_iommu_group(struct vfio_domain *domain,
1870 					   struct iommu_group *iommu_group)
1871 {
1872 	struct vfio_group *g;
1873 
1874 	list_for_each_entry(g, &domain->group_list, next) {
1875 		if (g->iommu_group == iommu_group)
1876 			return g;
1877 	}
1878 
1879 	return NULL;
1880 }
1881 
1882 static struct vfio_group *vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1883 					       struct iommu_group *iommu_group)
1884 {
1885 	struct vfio_domain *domain;
1886 	struct vfio_group *group = NULL;
1887 
1888 	list_for_each_entry(domain, &iommu->domain_list, next) {
1889 		group = find_iommu_group(domain, iommu_group);
1890 		if (group)
1891 			return group;
1892 	}
1893 
1894 	if (iommu->external_domain)
1895 		group = find_iommu_group(iommu->external_domain, iommu_group);
1896 
1897 	return group;
1898 }
1899 
1900 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1901 				  phys_addr_t *base)
1902 {
1903 	struct iommu_resv_region *region;
1904 	bool ret = false;
1905 
1906 	list_for_each_entry(region, group_resv_regions, list) {
1907 		/*
1908 		 * The presence of any 'real' MSI regions should take
1909 		 * precedence over the software-managed one if the
1910 		 * IOMMU driver happens to advertise both types.
1911 		 */
1912 		if (region->type == IOMMU_RESV_MSI) {
1913 			ret = false;
1914 			break;
1915 		}
1916 
1917 		if (region->type == IOMMU_RESV_SW_MSI) {
1918 			*base = region->start;
1919 			ret = true;
1920 		}
1921 	}
1922 
1923 	return ret;
1924 }
1925 
1926 static struct device *vfio_mdev_get_iommu_device(struct device *dev)
1927 {
1928 	struct device *(*fn)(struct device *dev);
1929 	struct device *iommu_device;
1930 
1931 	fn = symbol_get(mdev_get_iommu_device);
1932 	if (fn) {
1933 		iommu_device = fn(dev);
1934 		symbol_put(mdev_get_iommu_device);
1935 
1936 		return iommu_device;
1937 	}
1938 
1939 	return NULL;
1940 }
1941 
1942 static int vfio_mdev_attach_domain(struct device *dev, void *data)
1943 {
1944 	struct iommu_domain *domain = data;
1945 	struct device *iommu_device;
1946 
1947 	iommu_device = vfio_mdev_get_iommu_device(dev);
1948 	if (iommu_device) {
1949 		if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
1950 			return iommu_aux_attach_device(domain, iommu_device);
1951 		else
1952 			return iommu_attach_device(domain, iommu_device);
1953 	}
1954 
1955 	return -EINVAL;
1956 }
1957 
1958 static int vfio_mdev_detach_domain(struct device *dev, void *data)
1959 {
1960 	struct iommu_domain *domain = data;
1961 	struct device *iommu_device;
1962 
1963 	iommu_device = vfio_mdev_get_iommu_device(dev);
1964 	if (iommu_device) {
1965 		if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
1966 			iommu_aux_detach_device(domain, iommu_device);
1967 		else
1968 			iommu_detach_device(domain, iommu_device);
1969 	}
1970 
1971 	return 0;
1972 }
1973 
1974 static int vfio_iommu_attach_group(struct vfio_domain *domain,
1975 				   struct vfio_group *group)
1976 {
1977 	if (group->mdev_group)
1978 		return iommu_group_for_each_dev(group->iommu_group,
1979 						domain->domain,
1980 						vfio_mdev_attach_domain);
1981 	else
1982 		return iommu_attach_group(domain->domain, group->iommu_group);
1983 }
1984 
1985 static void vfio_iommu_detach_group(struct vfio_domain *domain,
1986 				    struct vfio_group *group)
1987 {
1988 	if (group->mdev_group)
1989 		iommu_group_for_each_dev(group->iommu_group, domain->domain,
1990 					 vfio_mdev_detach_domain);
1991 	else
1992 		iommu_detach_group(domain->domain, group->iommu_group);
1993 }
1994 
1995 static bool vfio_bus_is_mdev(struct bus_type *bus)
1996 {
1997 	struct bus_type *mdev_bus;
1998 	bool ret = false;
1999 
2000 	mdev_bus = symbol_get(mdev_bus_type);
2001 	if (mdev_bus) {
2002 		ret = (bus == mdev_bus);
2003 		symbol_put(mdev_bus_type);
2004 	}
2005 
2006 	return ret;
2007 }
2008 
2009 static int vfio_mdev_iommu_device(struct device *dev, void *data)
2010 {
2011 	struct device **old = data, *new;
2012 
2013 	new = vfio_mdev_get_iommu_device(dev);
2014 	if (!new || (*old && *old != new))
2015 		return -EINVAL;
2016 
2017 	*old = new;
2018 
2019 	return 0;
2020 }
2021 
2022 /*
2023  * This is a helper function to insert an address range to iova list.
2024  * The list is initially created with a single entry corresponding to
2025  * the IOMMU domain geometry to which the device group is attached.
2026  * The list aperture gets modified when a new domain is added to the
2027  * container if the new aperture doesn't conflict with the current one
2028  * or with any existing dma mappings. The list is also modified to
2029  * exclude any reserved regions associated with the device group.
2030  */
2031 static int vfio_iommu_iova_insert(struct list_head *head,
2032 				  dma_addr_t start, dma_addr_t end)
2033 {
2034 	struct vfio_iova *region;
2035 
2036 	region = kmalloc(sizeof(*region), GFP_KERNEL);
2037 	if (!region)
2038 		return -ENOMEM;
2039 
2040 	INIT_LIST_HEAD(&region->list);
2041 	region->start = start;
2042 	region->end = end;
2043 
2044 	list_add_tail(&region->list, head);
2045 	return 0;
2046 }
2047 
2048 /*
2049  * Check the new iommu aperture conflicts with existing aper or with any
2050  * existing dma mappings.
2051  */
2052 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
2053 				     dma_addr_t start, dma_addr_t end)
2054 {
2055 	struct vfio_iova *first, *last;
2056 	struct list_head *iova = &iommu->iova_list;
2057 
2058 	if (list_empty(iova))
2059 		return false;
2060 
2061 	/* Disjoint sets, return conflict */
2062 	first = list_first_entry(iova, struct vfio_iova, list);
2063 	last = list_last_entry(iova, struct vfio_iova, list);
2064 	if (start > last->end || end < first->start)
2065 		return true;
2066 
2067 	/* Check for any existing dma mappings below the new start */
2068 	if (start > first->start) {
2069 		if (vfio_find_dma(iommu, first->start, start - first->start))
2070 			return true;
2071 	}
2072 
2073 	/* Check for any existing dma mappings beyond the new end */
2074 	if (end < last->end) {
2075 		if (vfio_find_dma(iommu, end + 1, last->end - end))
2076 			return true;
2077 	}
2078 
2079 	return false;
2080 }
2081 
2082 /*
2083  * Resize iommu iova aperture window. This is called only if the new
2084  * aperture has no conflict with existing aperture and dma mappings.
2085  */
2086 static int vfio_iommu_aper_resize(struct list_head *iova,
2087 				  dma_addr_t start, dma_addr_t end)
2088 {
2089 	struct vfio_iova *node, *next;
2090 
2091 	if (list_empty(iova))
2092 		return vfio_iommu_iova_insert(iova, start, end);
2093 
2094 	/* Adjust iova list start */
2095 	list_for_each_entry_safe(node, next, iova, list) {
2096 		if (start < node->start)
2097 			break;
2098 		if (start >= node->start && start < node->end) {
2099 			node->start = start;
2100 			break;
2101 		}
2102 		/* Delete nodes before new start */
2103 		list_del(&node->list);
2104 		kfree(node);
2105 	}
2106 
2107 	/* Adjust iova list end */
2108 	list_for_each_entry_safe(node, next, iova, list) {
2109 		if (end > node->end)
2110 			continue;
2111 		if (end > node->start && end <= node->end) {
2112 			node->end = end;
2113 			continue;
2114 		}
2115 		/* Delete nodes after new end */
2116 		list_del(&node->list);
2117 		kfree(node);
2118 	}
2119 
2120 	return 0;
2121 }
2122 
2123 /*
2124  * Check reserved region conflicts with existing dma mappings
2125  */
2126 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
2127 				     struct list_head *resv_regions)
2128 {
2129 	struct iommu_resv_region *region;
2130 
2131 	/* Check for conflict with existing dma mappings */
2132 	list_for_each_entry(region, resv_regions, list) {
2133 		if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
2134 			continue;
2135 
2136 		if (vfio_find_dma(iommu, region->start, region->length))
2137 			return true;
2138 	}
2139 
2140 	return false;
2141 }
2142 
2143 /*
2144  * Check iova region overlap with  reserved regions and
2145  * exclude them from the iommu iova range
2146  */
2147 static int vfio_iommu_resv_exclude(struct list_head *iova,
2148 				   struct list_head *resv_regions)
2149 {
2150 	struct iommu_resv_region *resv;
2151 	struct vfio_iova *n, *next;
2152 
2153 	list_for_each_entry(resv, resv_regions, list) {
2154 		phys_addr_t start, end;
2155 
2156 		if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
2157 			continue;
2158 
2159 		start = resv->start;
2160 		end = resv->start + resv->length - 1;
2161 
2162 		list_for_each_entry_safe(n, next, iova, list) {
2163 			int ret = 0;
2164 
2165 			/* No overlap */
2166 			if (start > n->end || end < n->start)
2167 				continue;
2168 			/*
2169 			 * Insert a new node if current node overlaps with the
2170 			 * reserve region to exlude that from valid iova range.
2171 			 * Note that, new node is inserted before the current
2172 			 * node and finally the current node is deleted keeping
2173 			 * the list updated and sorted.
2174 			 */
2175 			if (start > n->start)
2176 				ret = vfio_iommu_iova_insert(&n->list, n->start,
2177 							     start - 1);
2178 			if (!ret && end < n->end)
2179 				ret = vfio_iommu_iova_insert(&n->list, end + 1,
2180 							     n->end);
2181 			if (ret)
2182 				return ret;
2183 
2184 			list_del(&n->list);
2185 			kfree(n);
2186 		}
2187 	}
2188 
2189 	if (list_empty(iova))
2190 		return -EINVAL;
2191 
2192 	return 0;
2193 }
2194 
2195 static void vfio_iommu_resv_free(struct list_head *resv_regions)
2196 {
2197 	struct iommu_resv_region *n, *next;
2198 
2199 	list_for_each_entry_safe(n, next, resv_regions, list) {
2200 		list_del(&n->list);
2201 		kfree(n);
2202 	}
2203 }
2204 
2205 static void vfio_iommu_iova_free(struct list_head *iova)
2206 {
2207 	struct vfio_iova *n, *next;
2208 
2209 	list_for_each_entry_safe(n, next, iova, list) {
2210 		list_del(&n->list);
2211 		kfree(n);
2212 	}
2213 }
2214 
2215 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
2216 				    struct list_head *iova_copy)
2217 {
2218 	struct list_head *iova = &iommu->iova_list;
2219 	struct vfio_iova *n;
2220 	int ret;
2221 
2222 	list_for_each_entry(n, iova, list) {
2223 		ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
2224 		if (ret)
2225 			goto out_free;
2226 	}
2227 
2228 	return 0;
2229 
2230 out_free:
2231 	vfio_iommu_iova_free(iova_copy);
2232 	return ret;
2233 }
2234 
2235 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
2236 					struct list_head *iova_copy)
2237 {
2238 	struct list_head *iova = &iommu->iova_list;
2239 
2240 	vfio_iommu_iova_free(iova);
2241 
2242 	list_splice_tail(iova_copy, iova);
2243 }
2244 
2245 static int vfio_iommu_type1_attach_group(void *iommu_data,
2246 					 struct iommu_group *iommu_group)
2247 {
2248 	struct vfio_iommu *iommu = iommu_data;
2249 	struct vfio_group *group;
2250 	struct vfio_domain *domain, *d;
2251 	struct bus_type *bus = NULL;
2252 	int ret;
2253 	bool resv_msi, msi_remap;
2254 	phys_addr_t resv_msi_base = 0;
2255 	struct iommu_domain_geometry geo;
2256 	LIST_HEAD(iova_copy);
2257 	LIST_HEAD(group_resv_regions);
2258 
2259 	mutex_lock(&iommu->lock);
2260 
2261 	/* Check for duplicates */
2262 	if (vfio_iommu_find_iommu_group(iommu, iommu_group)) {
2263 		mutex_unlock(&iommu->lock);
2264 		return -EINVAL;
2265 	}
2266 
2267 	group = kzalloc(sizeof(*group), GFP_KERNEL);
2268 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2269 	if (!group || !domain) {
2270 		ret = -ENOMEM;
2271 		goto out_free;
2272 	}
2273 
2274 	group->iommu_group = iommu_group;
2275 
2276 	/* Determine bus_type in order to allocate a domain */
2277 	ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
2278 	if (ret)
2279 		goto out_free;
2280 
2281 	if (vfio_bus_is_mdev(bus)) {
2282 		struct device *iommu_device = NULL;
2283 
2284 		group->mdev_group = true;
2285 
2286 		/* Determine the isolation type */
2287 		ret = iommu_group_for_each_dev(iommu_group, &iommu_device,
2288 					       vfio_mdev_iommu_device);
2289 		if (ret || !iommu_device) {
2290 			if (!iommu->external_domain) {
2291 				INIT_LIST_HEAD(&domain->group_list);
2292 				iommu->external_domain = domain;
2293 				vfio_update_pgsize_bitmap(iommu);
2294 			} else {
2295 				kfree(domain);
2296 			}
2297 
2298 			list_add(&group->next,
2299 				 &iommu->external_domain->group_list);
2300 			/*
2301 			 * Non-iommu backed group cannot dirty memory directly,
2302 			 * it can only use interfaces that provide dirty
2303 			 * tracking.
2304 			 * The iommu scope can only be promoted with the
2305 			 * addition of a dirty tracking group.
2306 			 */
2307 			group->pinned_page_dirty_scope = true;
2308 			mutex_unlock(&iommu->lock);
2309 
2310 			return 0;
2311 		}
2312 
2313 		bus = iommu_device->bus;
2314 	}
2315 
2316 	domain->domain = iommu_domain_alloc(bus);
2317 	if (!domain->domain) {
2318 		ret = -EIO;
2319 		goto out_free;
2320 	}
2321 
2322 	if (iommu->nesting) {
2323 		int attr = 1;
2324 
2325 		ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
2326 					    &attr);
2327 		if (ret)
2328 			goto out_domain;
2329 	}
2330 
2331 	ret = vfio_iommu_attach_group(domain, group);
2332 	if (ret)
2333 		goto out_domain;
2334 
2335 	/* Get aperture info */
2336 	iommu_domain_get_attr(domain->domain, DOMAIN_ATTR_GEOMETRY, &geo);
2337 
2338 	if (vfio_iommu_aper_conflict(iommu, geo.aperture_start,
2339 				     geo.aperture_end)) {
2340 		ret = -EINVAL;
2341 		goto out_detach;
2342 	}
2343 
2344 	ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2345 	if (ret)
2346 		goto out_detach;
2347 
2348 	if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2349 		ret = -EINVAL;
2350 		goto out_detach;
2351 	}
2352 
2353 	/*
2354 	 * We don't want to work on the original iova list as the list
2355 	 * gets modified and in case of failure we have to retain the
2356 	 * original list. Get a copy here.
2357 	 */
2358 	ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2359 	if (ret)
2360 		goto out_detach;
2361 
2362 	ret = vfio_iommu_aper_resize(&iova_copy, geo.aperture_start,
2363 				     geo.aperture_end);
2364 	if (ret)
2365 		goto out_detach;
2366 
2367 	ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2368 	if (ret)
2369 		goto out_detach;
2370 
2371 	resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2372 
2373 	INIT_LIST_HEAD(&domain->group_list);
2374 	list_add(&group->next, &domain->group_list);
2375 
2376 	msi_remap = irq_domain_check_msi_remap() ||
2377 		    iommu_capable(bus, IOMMU_CAP_INTR_REMAP);
2378 
2379 	if (!allow_unsafe_interrupts && !msi_remap) {
2380 		pr_warn("%s: No interrupt remapping support.  Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2381 		       __func__);
2382 		ret = -EPERM;
2383 		goto out_detach;
2384 	}
2385 
2386 	if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
2387 		domain->prot |= IOMMU_CACHE;
2388 
2389 	/*
2390 	 * Try to match an existing compatible domain.  We don't want to
2391 	 * preclude an IOMMU driver supporting multiple bus_types and being
2392 	 * able to include different bus_types in the same IOMMU domain, so
2393 	 * we test whether the domains use the same iommu_ops rather than
2394 	 * testing if they're on the same bus_type.
2395 	 */
2396 	list_for_each_entry(d, &iommu->domain_list, next) {
2397 		if (d->domain->ops == domain->domain->ops &&
2398 		    d->prot == domain->prot) {
2399 			vfio_iommu_detach_group(domain, group);
2400 			if (!vfio_iommu_attach_group(d, group)) {
2401 				list_add(&group->next, &d->group_list);
2402 				iommu_domain_free(domain->domain);
2403 				kfree(domain);
2404 				goto done;
2405 			}
2406 
2407 			ret = vfio_iommu_attach_group(domain, group);
2408 			if (ret)
2409 				goto out_domain;
2410 		}
2411 	}
2412 
2413 	vfio_test_domain_fgsp(domain);
2414 
2415 	/* replay mappings on new domains */
2416 	ret = vfio_iommu_replay(iommu, domain);
2417 	if (ret)
2418 		goto out_detach;
2419 
2420 	if (resv_msi) {
2421 		ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2422 		if (ret && ret != -ENODEV)
2423 			goto out_detach;
2424 	}
2425 
2426 	list_add(&domain->next, &iommu->domain_list);
2427 	vfio_update_pgsize_bitmap(iommu);
2428 done:
2429 	/* Delete the old one and insert new iova list */
2430 	vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2431 
2432 	/*
2433 	 * An iommu backed group can dirty memory directly and therefore
2434 	 * demotes the iommu scope until it declares itself dirty tracking
2435 	 * capable via the page pinning interface.
2436 	 */
2437 	iommu->num_non_pinned_groups++;
2438 	mutex_unlock(&iommu->lock);
2439 	vfio_iommu_resv_free(&group_resv_regions);
2440 
2441 	return 0;
2442 
2443 out_detach:
2444 	vfio_iommu_detach_group(domain, group);
2445 out_domain:
2446 	iommu_domain_free(domain->domain);
2447 	vfio_iommu_iova_free(&iova_copy);
2448 	vfio_iommu_resv_free(&group_resv_regions);
2449 out_free:
2450 	kfree(domain);
2451 	kfree(group);
2452 	mutex_unlock(&iommu->lock);
2453 	return ret;
2454 }
2455 
2456 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2457 {
2458 	struct rb_node *node;
2459 
2460 	while ((node = rb_first(&iommu->dma_list)))
2461 		vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2462 }
2463 
2464 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2465 {
2466 	struct rb_node *n, *p;
2467 
2468 	n = rb_first(&iommu->dma_list);
2469 	for (; n; n = rb_next(n)) {
2470 		struct vfio_dma *dma;
2471 		long locked = 0, unlocked = 0;
2472 
2473 		dma = rb_entry(n, struct vfio_dma, node);
2474 		unlocked += vfio_unmap_unpin(iommu, dma, false);
2475 		p = rb_first(&dma->pfn_list);
2476 		for (; p; p = rb_next(p)) {
2477 			struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2478 							 node);
2479 
2480 			if (!is_invalid_reserved_pfn(vpfn->pfn))
2481 				locked++;
2482 		}
2483 		vfio_lock_acct(dma, locked - unlocked, true);
2484 	}
2485 }
2486 
2487 /*
2488  * Called when a domain is removed in detach. It is possible that
2489  * the removed domain decided the iova aperture window. Modify the
2490  * iova aperture with the smallest window among existing domains.
2491  */
2492 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2493 				   struct list_head *iova_copy)
2494 {
2495 	struct vfio_domain *domain;
2496 	struct iommu_domain_geometry geo;
2497 	struct vfio_iova *node;
2498 	dma_addr_t start = 0;
2499 	dma_addr_t end = (dma_addr_t)~0;
2500 
2501 	if (list_empty(iova_copy))
2502 		return;
2503 
2504 	list_for_each_entry(domain, &iommu->domain_list, next) {
2505 		iommu_domain_get_attr(domain->domain, DOMAIN_ATTR_GEOMETRY,
2506 				      &geo);
2507 		if (geo.aperture_start > start)
2508 			start = geo.aperture_start;
2509 		if (geo.aperture_end < end)
2510 			end = geo.aperture_end;
2511 	}
2512 
2513 	/* Modify aperture limits. The new aper is either same or bigger */
2514 	node = list_first_entry(iova_copy, struct vfio_iova, list);
2515 	node->start = start;
2516 	node = list_last_entry(iova_copy, struct vfio_iova, list);
2517 	node->end = end;
2518 }
2519 
2520 /*
2521  * Called when a group is detached. The reserved regions for that
2522  * group can be part of valid iova now. But since reserved regions
2523  * may be duplicated among groups, populate the iova valid regions
2524  * list again.
2525  */
2526 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2527 				   struct list_head *iova_copy)
2528 {
2529 	struct vfio_domain *d;
2530 	struct vfio_group *g;
2531 	struct vfio_iova *node;
2532 	dma_addr_t start, end;
2533 	LIST_HEAD(resv_regions);
2534 	int ret;
2535 
2536 	if (list_empty(iova_copy))
2537 		return -EINVAL;
2538 
2539 	list_for_each_entry(d, &iommu->domain_list, next) {
2540 		list_for_each_entry(g, &d->group_list, next) {
2541 			ret = iommu_get_group_resv_regions(g->iommu_group,
2542 							   &resv_regions);
2543 			if (ret)
2544 				goto done;
2545 		}
2546 	}
2547 
2548 	node = list_first_entry(iova_copy, struct vfio_iova, list);
2549 	start = node->start;
2550 	node = list_last_entry(iova_copy, struct vfio_iova, list);
2551 	end = node->end;
2552 
2553 	/* purge the iova list and create new one */
2554 	vfio_iommu_iova_free(iova_copy);
2555 
2556 	ret = vfio_iommu_aper_resize(iova_copy, start, end);
2557 	if (ret)
2558 		goto done;
2559 
2560 	/* Exclude current reserved regions from iova ranges */
2561 	ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2562 done:
2563 	vfio_iommu_resv_free(&resv_regions);
2564 	return ret;
2565 }
2566 
2567 static void vfio_iommu_type1_detach_group(void *iommu_data,
2568 					  struct iommu_group *iommu_group)
2569 {
2570 	struct vfio_iommu *iommu = iommu_data;
2571 	struct vfio_domain *domain;
2572 	struct vfio_group *group;
2573 	bool update_dirty_scope = false;
2574 	LIST_HEAD(iova_copy);
2575 
2576 	mutex_lock(&iommu->lock);
2577 
2578 	if (iommu->external_domain) {
2579 		group = find_iommu_group(iommu->external_domain, iommu_group);
2580 		if (group) {
2581 			update_dirty_scope = !group->pinned_page_dirty_scope;
2582 			list_del(&group->next);
2583 			kfree(group);
2584 
2585 			if (list_empty(&iommu->external_domain->group_list)) {
2586 				if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu)) {
2587 					WARN_ON(iommu->notifier.head);
2588 					vfio_iommu_unmap_unpin_all(iommu);
2589 				}
2590 
2591 				kfree(iommu->external_domain);
2592 				iommu->external_domain = NULL;
2593 			}
2594 			goto detach_group_done;
2595 		}
2596 	}
2597 
2598 	/*
2599 	 * Get a copy of iova list. This will be used to update
2600 	 * and to replace the current one later. Please note that
2601 	 * we will leave the original list as it is if update fails.
2602 	 */
2603 	vfio_iommu_iova_get_copy(iommu, &iova_copy);
2604 
2605 	list_for_each_entry(domain, &iommu->domain_list, next) {
2606 		group = find_iommu_group(domain, iommu_group);
2607 		if (!group)
2608 			continue;
2609 
2610 		vfio_iommu_detach_group(domain, group);
2611 		update_dirty_scope = !group->pinned_page_dirty_scope;
2612 		list_del(&group->next);
2613 		kfree(group);
2614 		/*
2615 		 * Group ownership provides privilege, if the group list is
2616 		 * empty, the domain goes away. If it's the last domain with
2617 		 * iommu and external domain doesn't exist, then all the
2618 		 * mappings go away too. If it's the last domain with iommu and
2619 		 * external domain exist, update accounting
2620 		 */
2621 		if (list_empty(&domain->group_list)) {
2622 			if (list_is_singular(&iommu->domain_list)) {
2623 				if (!iommu->external_domain) {
2624 					WARN_ON(iommu->notifier.head);
2625 					vfio_iommu_unmap_unpin_all(iommu);
2626 				} else {
2627 					vfio_iommu_unmap_unpin_reaccount(iommu);
2628 				}
2629 			}
2630 			iommu_domain_free(domain->domain);
2631 			list_del(&domain->next);
2632 			kfree(domain);
2633 			vfio_iommu_aper_expand(iommu, &iova_copy);
2634 			vfio_update_pgsize_bitmap(iommu);
2635 		}
2636 		break;
2637 	}
2638 
2639 	if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2640 		vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2641 	else
2642 		vfio_iommu_iova_free(&iova_copy);
2643 
2644 detach_group_done:
2645 	/*
2646 	 * Removal of a group without dirty tracking may allow the iommu scope
2647 	 * to be promoted.
2648 	 */
2649 	if (update_dirty_scope) {
2650 		iommu->num_non_pinned_groups--;
2651 		if (iommu->dirty_page_tracking)
2652 			vfio_iommu_populate_bitmap_full(iommu);
2653 	}
2654 	mutex_unlock(&iommu->lock);
2655 }
2656 
2657 static void *vfio_iommu_type1_open(unsigned long arg)
2658 {
2659 	struct vfio_iommu *iommu;
2660 
2661 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2662 	if (!iommu)
2663 		return ERR_PTR(-ENOMEM);
2664 
2665 	switch (arg) {
2666 	case VFIO_TYPE1_IOMMU:
2667 		break;
2668 	case VFIO_TYPE1_NESTING_IOMMU:
2669 		iommu->nesting = true;
2670 		fallthrough;
2671 	case VFIO_TYPE1v2_IOMMU:
2672 		iommu->v2 = true;
2673 		break;
2674 	default:
2675 		kfree(iommu);
2676 		return ERR_PTR(-EINVAL);
2677 	}
2678 
2679 	INIT_LIST_HEAD(&iommu->domain_list);
2680 	INIT_LIST_HEAD(&iommu->iova_list);
2681 	iommu->dma_list = RB_ROOT;
2682 	iommu->dma_avail = dma_entry_limit;
2683 	iommu->container_open = true;
2684 	mutex_init(&iommu->lock);
2685 	BLOCKING_INIT_NOTIFIER_HEAD(&iommu->notifier);
2686 	init_waitqueue_head(&iommu->vaddr_wait);
2687 
2688 	return iommu;
2689 }
2690 
2691 static void vfio_release_domain(struct vfio_domain *domain, bool external)
2692 {
2693 	struct vfio_group *group, *group_tmp;
2694 
2695 	list_for_each_entry_safe(group, group_tmp,
2696 				 &domain->group_list, next) {
2697 		if (!external)
2698 			vfio_iommu_detach_group(domain, group);
2699 		list_del(&group->next);
2700 		kfree(group);
2701 	}
2702 
2703 	if (!external)
2704 		iommu_domain_free(domain->domain);
2705 }
2706 
2707 static void vfio_iommu_type1_release(void *iommu_data)
2708 {
2709 	struct vfio_iommu *iommu = iommu_data;
2710 	struct vfio_domain *domain, *domain_tmp;
2711 
2712 	if (iommu->external_domain) {
2713 		vfio_release_domain(iommu->external_domain, true);
2714 		kfree(iommu->external_domain);
2715 	}
2716 
2717 	vfio_iommu_unmap_unpin_all(iommu);
2718 
2719 	list_for_each_entry_safe(domain, domain_tmp,
2720 				 &iommu->domain_list, next) {
2721 		vfio_release_domain(domain, false);
2722 		list_del(&domain->next);
2723 		kfree(domain);
2724 	}
2725 
2726 	vfio_iommu_iova_free(&iommu->iova_list);
2727 
2728 	kfree(iommu);
2729 }
2730 
2731 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
2732 {
2733 	struct vfio_domain *domain;
2734 	int ret = 1;
2735 
2736 	mutex_lock(&iommu->lock);
2737 	list_for_each_entry(domain, &iommu->domain_list, next) {
2738 		if (!(domain->prot & IOMMU_CACHE)) {
2739 			ret = 0;
2740 			break;
2741 		}
2742 	}
2743 	mutex_unlock(&iommu->lock);
2744 
2745 	return ret;
2746 }
2747 
2748 static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2749 					    unsigned long arg)
2750 {
2751 	switch (arg) {
2752 	case VFIO_TYPE1_IOMMU:
2753 	case VFIO_TYPE1v2_IOMMU:
2754 	case VFIO_TYPE1_NESTING_IOMMU:
2755 	case VFIO_UNMAP_ALL:
2756 	case VFIO_UPDATE_VADDR:
2757 		return 1;
2758 	case VFIO_DMA_CC_IOMMU:
2759 		if (!iommu)
2760 			return 0;
2761 		return vfio_domains_have_iommu_cache(iommu);
2762 	default:
2763 		return 0;
2764 	}
2765 }
2766 
2767 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2768 		 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2769 		 size_t size)
2770 {
2771 	struct vfio_info_cap_header *header;
2772 	struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2773 
2774 	header = vfio_info_cap_add(caps, size,
2775 				   VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2776 	if (IS_ERR(header))
2777 		return PTR_ERR(header);
2778 
2779 	iova_cap = container_of(header,
2780 				struct vfio_iommu_type1_info_cap_iova_range,
2781 				header);
2782 	iova_cap->nr_iovas = cap_iovas->nr_iovas;
2783 	memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2784 	       cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2785 	return 0;
2786 }
2787 
2788 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2789 				      struct vfio_info_cap *caps)
2790 {
2791 	struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2792 	struct vfio_iova *iova;
2793 	size_t size;
2794 	int iovas = 0, i = 0, ret;
2795 
2796 	list_for_each_entry(iova, &iommu->iova_list, list)
2797 		iovas++;
2798 
2799 	if (!iovas) {
2800 		/*
2801 		 * Return 0 as a container with a single mdev device
2802 		 * will have an empty list
2803 		 */
2804 		return 0;
2805 	}
2806 
2807 	size = sizeof(*cap_iovas) + (iovas * sizeof(*cap_iovas->iova_ranges));
2808 
2809 	cap_iovas = kzalloc(size, GFP_KERNEL);
2810 	if (!cap_iovas)
2811 		return -ENOMEM;
2812 
2813 	cap_iovas->nr_iovas = iovas;
2814 
2815 	list_for_each_entry(iova, &iommu->iova_list, list) {
2816 		cap_iovas->iova_ranges[i].start = iova->start;
2817 		cap_iovas->iova_ranges[i].end = iova->end;
2818 		i++;
2819 	}
2820 
2821 	ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2822 
2823 	kfree(cap_iovas);
2824 	return ret;
2825 }
2826 
2827 static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2828 					   struct vfio_info_cap *caps)
2829 {
2830 	struct vfio_iommu_type1_info_cap_migration cap_mig;
2831 
2832 	cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2833 	cap_mig.header.version = 1;
2834 
2835 	cap_mig.flags = 0;
2836 	/* support minimum pgsize */
2837 	cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2838 	cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2839 
2840 	return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2841 }
2842 
2843 static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu,
2844 					   struct vfio_info_cap *caps)
2845 {
2846 	struct vfio_iommu_type1_info_dma_avail cap_dma_avail;
2847 
2848 	cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL;
2849 	cap_dma_avail.header.version = 1;
2850 
2851 	cap_dma_avail.avail = iommu->dma_avail;
2852 
2853 	return vfio_info_add_capability(caps, &cap_dma_avail.header,
2854 					sizeof(cap_dma_avail));
2855 }
2856 
2857 static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2858 				     unsigned long arg)
2859 {
2860 	struct vfio_iommu_type1_info info;
2861 	unsigned long minsz;
2862 	struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2863 	unsigned long capsz;
2864 	int ret;
2865 
2866 	minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2867 
2868 	/* For backward compatibility, cannot require this */
2869 	capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset);
2870 
2871 	if (copy_from_user(&info, (void __user *)arg, minsz))
2872 		return -EFAULT;
2873 
2874 	if (info.argsz < minsz)
2875 		return -EINVAL;
2876 
2877 	if (info.argsz >= capsz) {
2878 		minsz = capsz;
2879 		info.cap_offset = 0; /* output, no-recopy necessary */
2880 	}
2881 
2882 	mutex_lock(&iommu->lock);
2883 	info.flags = VFIO_IOMMU_INFO_PGSIZES;
2884 
2885 	info.iova_pgsizes = iommu->pgsize_bitmap;
2886 
2887 	ret = vfio_iommu_migration_build_caps(iommu, &caps);
2888 
2889 	if (!ret)
2890 		ret = vfio_iommu_dma_avail_build_caps(iommu, &caps);
2891 
2892 	if (!ret)
2893 		ret = vfio_iommu_iova_build_caps(iommu, &caps);
2894 
2895 	mutex_unlock(&iommu->lock);
2896 
2897 	if (ret)
2898 		return ret;
2899 
2900 	if (caps.size) {
2901 		info.flags |= VFIO_IOMMU_INFO_CAPS;
2902 
2903 		if (info.argsz < sizeof(info) + caps.size) {
2904 			info.argsz = sizeof(info) + caps.size;
2905 		} else {
2906 			vfio_info_cap_shift(&caps, sizeof(info));
2907 			if (copy_to_user((void __user *)arg +
2908 					sizeof(info), caps.buf,
2909 					caps.size)) {
2910 				kfree(caps.buf);
2911 				return -EFAULT;
2912 			}
2913 			info.cap_offset = sizeof(info);
2914 		}
2915 
2916 		kfree(caps.buf);
2917 	}
2918 
2919 	return copy_to_user((void __user *)arg, &info, minsz) ?
2920 			-EFAULT : 0;
2921 }
2922 
2923 static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2924 				    unsigned long arg)
2925 {
2926 	struct vfio_iommu_type1_dma_map map;
2927 	unsigned long minsz;
2928 	uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE |
2929 			VFIO_DMA_MAP_FLAG_VADDR;
2930 
2931 	minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2932 
2933 	if (copy_from_user(&map, (void __user *)arg, minsz))
2934 		return -EFAULT;
2935 
2936 	if (map.argsz < minsz || map.flags & ~mask)
2937 		return -EINVAL;
2938 
2939 	return vfio_dma_do_map(iommu, &map);
2940 }
2941 
2942 static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2943 				      unsigned long arg)
2944 {
2945 	struct vfio_iommu_type1_dma_unmap unmap;
2946 	struct vfio_bitmap bitmap = { 0 };
2947 	uint32_t mask = VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP |
2948 			VFIO_DMA_UNMAP_FLAG_VADDR |
2949 			VFIO_DMA_UNMAP_FLAG_ALL;
2950 	unsigned long minsz;
2951 	int ret;
2952 
2953 	minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2954 
2955 	if (copy_from_user(&unmap, (void __user *)arg, minsz))
2956 		return -EFAULT;
2957 
2958 	if (unmap.argsz < minsz || unmap.flags & ~mask)
2959 		return -EINVAL;
2960 
2961 	if ((unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
2962 	    (unmap.flags & (VFIO_DMA_UNMAP_FLAG_ALL |
2963 			    VFIO_DMA_UNMAP_FLAG_VADDR)))
2964 		return -EINVAL;
2965 
2966 	if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2967 		unsigned long pgshift;
2968 
2969 		if (unmap.argsz < (minsz + sizeof(bitmap)))
2970 			return -EINVAL;
2971 
2972 		if (copy_from_user(&bitmap,
2973 				   (void __user *)(arg + minsz),
2974 				   sizeof(bitmap)))
2975 			return -EFAULT;
2976 
2977 		if (!access_ok((void __user *)bitmap.data, bitmap.size))
2978 			return -EINVAL;
2979 
2980 		pgshift = __ffs(bitmap.pgsize);
2981 		ret = verify_bitmap_size(unmap.size >> pgshift,
2982 					 bitmap.size);
2983 		if (ret)
2984 			return ret;
2985 	}
2986 
2987 	ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2988 	if (ret)
2989 		return ret;
2990 
2991 	return copy_to_user((void __user *)arg, &unmap, minsz) ?
2992 			-EFAULT : 0;
2993 }
2994 
2995 static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2996 					unsigned long arg)
2997 {
2998 	struct vfio_iommu_type1_dirty_bitmap dirty;
2999 	uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
3000 			VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
3001 			VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
3002 	unsigned long minsz;
3003 	int ret = 0;
3004 
3005 	if (!iommu->v2)
3006 		return -EACCES;
3007 
3008 	minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
3009 
3010 	if (copy_from_user(&dirty, (void __user *)arg, minsz))
3011 		return -EFAULT;
3012 
3013 	if (dirty.argsz < minsz || dirty.flags & ~mask)
3014 		return -EINVAL;
3015 
3016 	/* only one flag should be set at a time */
3017 	if (__ffs(dirty.flags) != __fls(dirty.flags))
3018 		return -EINVAL;
3019 
3020 	if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
3021 		size_t pgsize;
3022 
3023 		mutex_lock(&iommu->lock);
3024 		pgsize = 1 << __ffs(iommu->pgsize_bitmap);
3025 		if (!iommu->dirty_page_tracking) {
3026 			ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
3027 			if (!ret)
3028 				iommu->dirty_page_tracking = true;
3029 		}
3030 		mutex_unlock(&iommu->lock);
3031 		return ret;
3032 	} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
3033 		mutex_lock(&iommu->lock);
3034 		if (iommu->dirty_page_tracking) {
3035 			iommu->dirty_page_tracking = false;
3036 			vfio_dma_bitmap_free_all(iommu);
3037 		}
3038 		mutex_unlock(&iommu->lock);
3039 		return 0;
3040 	} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
3041 		struct vfio_iommu_type1_dirty_bitmap_get range;
3042 		unsigned long pgshift;
3043 		size_t data_size = dirty.argsz - minsz;
3044 		size_t iommu_pgsize;
3045 
3046 		if (!data_size || data_size < sizeof(range))
3047 			return -EINVAL;
3048 
3049 		if (copy_from_user(&range, (void __user *)(arg + minsz),
3050 				   sizeof(range)))
3051 			return -EFAULT;
3052 
3053 		if (range.iova + range.size < range.iova)
3054 			return -EINVAL;
3055 		if (!access_ok((void __user *)range.bitmap.data,
3056 			       range.bitmap.size))
3057 			return -EINVAL;
3058 
3059 		pgshift = __ffs(range.bitmap.pgsize);
3060 		ret = verify_bitmap_size(range.size >> pgshift,
3061 					 range.bitmap.size);
3062 		if (ret)
3063 			return ret;
3064 
3065 		mutex_lock(&iommu->lock);
3066 
3067 		iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
3068 
3069 		/* allow only smallest supported pgsize */
3070 		if (range.bitmap.pgsize != iommu_pgsize) {
3071 			ret = -EINVAL;
3072 			goto out_unlock;
3073 		}
3074 		if (range.iova & (iommu_pgsize - 1)) {
3075 			ret = -EINVAL;
3076 			goto out_unlock;
3077 		}
3078 		if (!range.size || range.size & (iommu_pgsize - 1)) {
3079 			ret = -EINVAL;
3080 			goto out_unlock;
3081 		}
3082 
3083 		if (iommu->dirty_page_tracking)
3084 			ret = vfio_iova_dirty_bitmap(range.bitmap.data,
3085 						     iommu, range.iova,
3086 						     range.size,
3087 						     range.bitmap.pgsize);
3088 		else
3089 			ret = -EINVAL;
3090 out_unlock:
3091 		mutex_unlock(&iommu->lock);
3092 
3093 		return ret;
3094 	}
3095 
3096 	return -EINVAL;
3097 }
3098 
3099 static long vfio_iommu_type1_ioctl(void *iommu_data,
3100 				   unsigned int cmd, unsigned long arg)
3101 {
3102 	struct vfio_iommu *iommu = iommu_data;
3103 
3104 	switch (cmd) {
3105 	case VFIO_CHECK_EXTENSION:
3106 		return vfio_iommu_type1_check_extension(iommu, arg);
3107 	case VFIO_IOMMU_GET_INFO:
3108 		return vfio_iommu_type1_get_info(iommu, arg);
3109 	case VFIO_IOMMU_MAP_DMA:
3110 		return vfio_iommu_type1_map_dma(iommu, arg);
3111 	case VFIO_IOMMU_UNMAP_DMA:
3112 		return vfio_iommu_type1_unmap_dma(iommu, arg);
3113 	case VFIO_IOMMU_DIRTY_PAGES:
3114 		return vfio_iommu_type1_dirty_pages(iommu, arg);
3115 	default:
3116 		return -ENOTTY;
3117 	}
3118 }
3119 
3120 static int vfio_iommu_type1_register_notifier(void *iommu_data,
3121 					      unsigned long *events,
3122 					      struct notifier_block *nb)
3123 {
3124 	struct vfio_iommu *iommu = iommu_data;
3125 
3126 	/* clear known events */
3127 	*events &= ~VFIO_IOMMU_NOTIFY_DMA_UNMAP;
3128 
3129 	/* refuse to register if still events remaining */
3130 	if (*events)
3131 		return -EINVAL;
3132 
3133 	return blocking_notifier_chain_register(&iommu->notifier, nb);
3134 }
3135 
3136 static int vfio_iommu_type1_unregister_notifier(void *iommu_data,
3137 						struct notifier_block *nb)
3138 {
3139 	struct vfio_iommu *iommu = iommu_data;
3140 
3141 	return blocking_notifier_chain_unregister(&iommu->notifier, nb);
3142 }
3143 
3144 static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
3145 					 dma_addr_t user_iova, void *data,
3146 					 size_t count, bool write,
3147 					 size_t *copied)
3148 {
3149 	struct mm_struct *mm;
3150 	unsigned long vaddr;
3151 	struct vfio_dma *dma;
3152 	bool kthread = current->mm == NULL;
3153 	size_t offset;
3154 	int ret;
3155 
3156 	*copied = 0;
3157 
3158 	ret = vfio_find_dma_valid(iommu, user_iova, 1, &dma);
3159 	if (ret < 0)
3160 		return ret;
3161 
3162 	if ((write && !(dma->prot & IOMMU_WRITE)) ||
3163 			!(dma->prot & IOMMU_READ))
3164 		return -EPERM;
3165 
3166 	mm = get_task_mm(dma->task);
3167 
3168 	if (!mm)
3169 		return -EPERM;
3170 
3171 	if (kthread)
3172 		kthread_use_mm(mm);
3173 	else if (current->mm != mm)
3174 		goto out;
3175 
3176 	offset = user_iova - dma->iova;
3177 
3178 	if (count > dma->size - offset)
3179 		count = dma->size - offset;
3180 
3181 	vaddr = dma->vaddr + offset;
3182 
3183 	if (write) {
3184 		*copied = copy_to_user((void __user *)vaddr, data,
3185 					 count) ? 0 : count;
3186 		if (*copied && iommu->dirty_page_tracking) {
3187 			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
3188 			/*
3189 			 * Bitmap populated with the smallest supported page
3190 			 * size
3191 			 */
3192 			bitmap_set(dma->bitmap, offset >> pgshift,
3193 				   ((offset + *copied - 1) >> pgshift) -
3194 				   (offset >> pgshift) + 1);
3195 		}
3196 	} else
3197 		*copied = copy_from_user(data, (void __user *)vaddr,
3198 					   count) ? 0 : count;
3199 	if (kthread)
3200 		kthread_unuse_mm(mm);
3201 out:
3202 	mmput(mm);
3203 	return *copied ? 0 : -EFAULT;
3204 }
3205 
3206 static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
3207 				   void *data, size_t count, bool write)
3208 {
3209 	struct vfio_iommu *iommu = iommu_data;
3210 	int ret = 0;
3211 	size_t done;
3212 
3213 	mutex_lock(&iommu->lock);
3214 	while (count > 0) {
3215 		ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
3216 						    count, write, &done);
3217 		if (ret)
3218 			break;
3219 
3220 		count -= done;
3221 		data += done;
3222 		user_iova += done;
3223 	}
3224 
3225 	mutex_unlock(&iommu->lock);
3226 	return ret;
3227 }
3228 
3229 static struct iommu_domain *
3230 vfio_iommu_type1_group_iommu_domain(void *iommu_data,
3231 				    struct iommu_group *iommu_group)
3232 {
3233 	struct iommu_domain *domain = ERR_PTR(-ENODEV);
3234 	struct vfio_iommu *iommu = iommu_data;
3235 	struct vfio_domain *d;
3236 
3237 	if (!iommu || !iommu_group)
3238 		return ERR_PTR(-EINVAL);
3239 
3240 	mutex_lock(&iommu->lock);
3241 	list_for_each_entry(d, &iommu->domain_list, next) {
3242 		if (find_iommu_group(d, iommu_group)) {
3243 			domain = d->domain;
3244 			break;
3245 		}
3246 	}
3247 	mutex_unlock(&iommu->lock);
3248 
3249 	return domain;
3250 }
3251 
3252 static void vfio_iommu_type1_notify(void *iommu_data,
3253 				    enum vfio_iommu_notify_type event)
3254 {
3255 	struct vfio_iommu *iommu = iommu_data;
3256 
3257 	if (event != VFIO_IOMMU_CONTAINER_CLOSE)
3258 		return;
3259 	mutex_lock(&iommu->lock);
3260 	iommu->container_open = false;
3261 	mutex_unlock(&iommu->lock);
3262 	wake_up_all(&iommu->vaddr_wait);
3263 }
3264 
3265 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
3266 	.name			= "vfio-iommu-type1",
3267 	.owner			= THIS_MODULE,
3268 	.open			= vfio_iommu_type1_open,
3269 	.release		= vfio_iommu_type1_release,
3270 	.ioctl			= vfio_iommu_type1_ioctl,
3271 	.attach_group		= vfio_iommu_type1_attach_group,
3272 	.detach_group		= vfio_iommu_type1_detach_group,
3273 	.pin_pages		= vfio_iommu_type1_pin_pages,
3274 	.unpin_pages		= vfio_iommu_type1_unpin_pages,
3275 	.register_notifier	= vfio_iommu_type1_register_notifier,
3276 	.unregister_notifier	= vfio_iommu_type1_unregister_notifier,
3277 	.dma_rw			= vfio_iommu_type1_dma_rw,
3278 	.group_iommu_domain	= vfio_iommu_type1_group_iommu_domain,
3279 	.notify			= vfio_iommu_type1_notify,
3280 };
3281 
3282 static int __init vfio_iommu_type1_init(void)
3283 {
3284 	return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
3285 }
3286 
3287 static void __exit vfio_iommu_type1_cleanup(void)
3288 {
3289 	vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
3290 }
3291 
3292 module_init(vfio_iommu_type1_init);
3293 module_exit(vfio_iommu_type1_cleanup);
3294 
3295 MODULE_VERSION(DRIVER_VERSION);
3296 MODULE_LICENSE("GPL v2");
3297 MODULE_AUTHOR(DRIVER_AUTHOR);
3298 MODULE_DESCRIPTION(DRIVER_DESC);
3299