1 /*
2  * VFIO: IOMMU DMA mapping support for Type1 IOMMU
3  *
4  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
5  *     Author: Alex Williamson <alex.williamson@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Derived from original vfio:
12  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
13  * Author: Tom Lyon, pugs@cisco.com
14  *
15  * We arbitrarily define a Type1 IOMMU as one matching the below code.
16  * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
17  * VT-d, but that makes it harder to re-use as theoretically anyone
18  * implementing a similar IOMMU could make use of this.  We expect the
19  * IOMMU to support the IOMMU API and have few to no restrictions around
20  * the IOVA range that can be mapped.  The Type1 IOMMU is currently
21  * optimized for relatively static mappings of a userspace process with
22  * userpsace pages pinned into memory.  We also assume devices and IOMMU
23  * domains are PCI based as the IOMMU API is still centered around a
24  * device/bus interface rather than a group interface.
25  */
26 
27 #include <linux/compat.h>
28 #include <linux/device.h>
29 #include <linux/fs.h>
30 #include <linux/iommu.h>
31 #include <linux/module.h>
32 #include <linux/mm.h>
33 #include <linux/rbtree.h>
34 #include <linux/sched/signal.h>
35 #include <linux/sched/mm.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38 #include <linux/vfio.h>
39 #include <linux/workqueue.h>
40 #include <linux/mdev.h>
41 #include <linux/notifier.h>
42 #include <linux/dma-iommu.h>
43 #include <linux/irqdomain.h>
44 
45 #define DRIVER_VERSION  "0.2"
46 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
47 #define DRIVER_DESC     "Type1 IOMMU driver for VFIO"
48 
49 static bool allow_unsafe_interrupts;
50 module_param_named(allow_unsafe_interrupts,
51 		   allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
52 MODULE_PARM_DESC(allow_unsafe_interrupts,
53 		 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
54 
55 static bool disable_hugepages;
56 module_param_named(disable_hugepages,
57 		   disable_hugepages, bool, S_IRUGO | S_IWUSR);
58 MODULE_PARM_DESC(disable_hugepages,
59 		 "Disable VFIO IOMMU support for IOMMU hugepages.");
60 
61 struct vfio_iommu {
62 	struct list_head	domain_list;
63 	struct vfio_domain	*external_domain; /* domain for external user */
64 	struct mutex		lock;
65 	struct rb_root		dma_list;
66 	struct blocking_notifier_head notifier;
67 	bool			v2;
68 	bool			nesting;
69 };
70 
71 struct vfio_domain {
72 	struct iommu_domain	*domain;
73 	struct list_head	next;
74 	struct list_head	group_list;
75 	int			prot;		/* IOMMU_CACHE */
76 	bool			fgsp;		/* Fine-grained super pages */
77 };
78 
79 struct vfio_dma {
80 	struct rb_node		node;
81 	dma_addr_t		iova;		/* Device address */
82 	unsigned long		vaddr;		/* Process virtual addr */
83 	size_t			size;		/* Map size (bytes) */
84 	int			prot;		/* IOMMU_READ/WRITE */
85 	bool			iommu_mapped;
86 	bool			lock_cap;	/* capable(CAP_IPC_LOCK) */
87 	struct task_struct	*task;
88 	struct rb_root		pfn_list;	/* Ex-user pinned pfn list */
89 };
90 
91 struct vfio_group {
92 	struct iommu_group	*iommu_group;
93 	struct list_head	next;
94 };
95 
96 /*
97  * Guest RAM pinning working set or DMA target
98  */
99 struct vfio_pfn {
100 	struct rb_node		node;
101 	dma_addr_t		iova;		/* Device address */
102 	unsigned long		pfn;		/* Host pfn */
103 	atomic_t		ref_count;
104 };
105 
106 struct vfio_regions {
107 	struct list_head list;
108 	dma_addr_t iova;
109 	phys_addr_t phys;
110 	size_t len;
111 };
112 
113 #define IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu)	\
114 					(!list_empty(&iommu->domain_list))
115 
116 static int put_pfn(unsigned long pfn, int prot);
117 
118 /*
119  * This code handles mapping and unmapping of user data buffers
120  * into DMA'ble space using the IOMMU
121  */
122 
123 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
124 				      dma_addr_t start, size_t size)
125 {
126 	struct rb_node *node = iommu->dma_list.rb_node;
127 
128 	while (node) {
129 		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
130 
131 		if (start + size <= dma->iova)
132 			node = node->rb_left;
133 		else if (start >= dma->iova + dma->size)
134 			node = node->rb_right;
135 		else
136 			return dma;
137 	}
138 
139 	return NULL;
140 }
141 
142 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
143 {
144 	struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
145 	struct vfio_dma *dma;
146 
147 	while (*link) {
148 		parent = *link;
149 		dma = rb_entry(parent, struct vfio_dma, node);
150 
151 		if (new->iova + new->size <= dma->iova)
152 			link = &(*link)->rb_left;
153 		else
154 			link = &(*link)->rb_right;
155 	}
156 
157 	rb_link_node(&new->node, parent, link);
158 	rb_insert_color(&new->node, &iommu->dma_list);
159 }
160 
161 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
162 {
163 	rb_erase(&old->node, &iommu->dma_list);
164 }
165 
166 /*
167  * Helper Functions for host iova-pfn list
168  */
169 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
170 {
171 	struct vfio_pfn *vpfn;
172 	struct rb_node *node = dma->pfn_list.rb_node;
173 
174 	while (node) {
175 		vpfn = rb_entry(node, struct vfio_pfn, node);
176 
177 		if (iova < vpfn->iova)
178 			node = node->rb_left;
179 		else if (iova > vpfn->iova)
180 			node = node->rb_right;
181 		else
182 			return vpfn;
183 	}
184 	return NULL;
185 }
186 
187 static void vfio_link_pfn(struct vfio_dma *dma,
188 			  struct vfio_pfn *new)
189 {
190 	struct rb_node **link, *parent = NULL;
191 	struct vfio_pfn *vpfn;
192 
193 	link = &dma->pfn_list.rb_node;
194 	while (*link) {
195 		parent = *link;
196 		vpfn = rb_entry(parent, struct vfio_pfn, node);
197 
198 		if (new->iova < vpfn->iova)
199 			link = &(*link)->rb_left;
200 		else
201 			link = &(*link)->rb_right;
202 	}
203 
204 	rb_link_node(&new->node, parent, link);
205 	rb_insert_color(&new->node, &dma->pfn_list);
206 }
207 
208 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
209 {
210 	rb_erase(&old->node, &dma->pfn_list);
211 }
212 
213 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
214 				unsigned long pfn)
215 {
216 	struct vfio_pfn *vpfn;
217 
218 	vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
219 	if (!vpfn)
220 		return -ENOMEM;
221 
222 	vpfn->iova = iova;
223 	vpfn->pfn = pfn;
224 	atomic_set(&vpfn->ref_count, 1);
225 	vfio_link_pfn(dma, vpfn);
226 	return 0;
227 }
228 
229 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
230 				      struct vfio_pfn *vpfn)
231 {
232 	vfio_unlink_pfn(dma, vpfn);
233 	kfree(vpfn);
234 }
235 
236 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
237 					       unsigned long iova)
238 {
239 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
240 
241 	if (vpfn)
242 		atomic_inc(&vpfn->ref_count);
243 	return vpfn;
244 }
245 
246 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
247 {
248 	int ret = 0;
249 
250 	if (atomic_dec_and_test(&vpfn->ref_count)) {
251 		ret = put_pfn(vpfn->pfn, dma->prot);
252 		vfio_remove_from_pfn_list(dma, vpfn);
253 	}
254 	return ret;
255 }
256 
257 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
258 {
259 	struct mm_struct *mm;
260 	int ret;
261 
262 	if (!npage)
263 		return 0;
264 
265 	mm = async ? get_task_mm(dma->task) : dma->task->mm;
266 	if (!mm)
267 		return -ESRCH; /* process exited */
268 
269 	ret = down_write_killable(&mm->mmap_sem);
270 	if (!ret) {
271 		if (npage > 0) {
272 			if (!dma->lock_cap) {
273 				unsigned long limit;
274 
275 				limit = task_rlimit(dma->task,
276 						RLIMIT_MEMLOCK) >> PAGE_SHIFT;
277 
278 				if (mm->locked_vm + npage > limit)
279 					ret = -ENOMEM;
280 			}
281 		}
282 
283 		if (!ret)
284 			mm->locked_vm += npage;
285 
286 		up_write(&mm->mmap_sem);
287 	}
288 
289 	if (async)
290 		mmput(mm);
291 
292 	return ret;
293 }
294 
295 /*
296  * Some mappings aren't backed by a struct page, for example an mmap'd
297  * MMIO range for our own or another device.  These use a different
298  * pfn conversion and shouldn't be tracked as locked pages.
299  */
300 static bool is_invalid_reserved_pfn(unsigned long pfn)
301 {
302 	if (pfn_valid(pfn)) {
303 		bool reserved;
304 		struct page *tail = pfn_to_page(pfn);
305 		struct page *head = compound_head(tail);
306 		reserved = !!(PageReserved(head));
307 		if (head != tail) {
308 			/*
309 			 * "head" is not a dangling pointer
310 			 * (compound_head takes care of that)
311 			 * but the hugepage may have been split
312 			 * from under us (and we may not hold a
313 			 * reference count on the head page so it can
314 			 * be reused before we run PageReferenced), so
315 			 * we've to check PageTail before returning
316 			 * what we just read.
317 			 */
318 			smp_rmb();
319 			if (PageTail(tail))
320 				return reserved;
321 		}
322 		return PageReserved(tail);
323 	}
324 
325 	return true;
326 }
327 
328 static int put_pfn(unsigned long pfn, int prot)
329 {
330 	if (!is_invalid_reserved_pfn(pfn)) {
331 		struct page *page = pfn_to_page(pfn);
332 		if (prot & IOMMU_WRITE)
333 			SetPageDirty(page);
334 		put_page(page);
335 		return 1;
336 	}
337 	return 0;
338 }
339 
340 static int vaddr_get_pfn(struct mm_struct *mm, unsigned long vaddr,
341 			 int prot, unsigned long *pfn)
342 {
343 	struct page *page[1];
344 	struct vm_area_struct *vma;
345 	struct vm_area_struct *vmas[1];
346 	unsigned int flags = 0;
347 	int ret;
348 
349 	if (prot & IOMMU_WRITE)
350 		flags |= FOLL_WRITE;
351 
352 	down_read(&mm->mmap_sem);
353 	if (mm == current->mm) {
354 		ret = get_user_pages_longterm(vaddr, 1, flags, page, vmas);
355 	} else {
356 		ret = get_user_pages_remote(NULL, mm, vaddr, 1, flags, page,
357 					    vmas, NULL);
358 		/*
359 		 * The lifetime of a vaddr_get_pfn() page pin is
360 		 * userspace-controlled. In the fs-dax case this could
361 		 * lead to indefinite stalls in filesystem operations.
362 		 * Disallow attempts to pin fs-dax pages via this
363 		 * interface.
364 		 */
365 		if (ret > 0 && vma_is_fsdax(vmas[0])) {
366 			ret = -EOPNOTSUPP;
367 			put_page(page[0]);
368 		}
369 	}
370 	up_read(&mm->mmap_sem);
371 
372 	if (ret == 1) {
373 		*pfn = page_to_pfn(page[0]);
374 		return 0;
375 	}
376 
377 	down_read(&mm->mmap_sem);
378 
379 	vma = find_vma_intersection(mm, vaddr, vaddr + 1);
380 
381 	if (vma && vma->vm_flags & VM_PFNMAP) {
382 		*pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
383 		if (is_invalid_reserved_pfn(*pfn))
384 			ret = 0;
385 	}
386 
387 	up_read(&mm->mmap_sem);
388 	return ret;
389 }
390 
391 /*
392  * Attempt to pin pages.  We really don't want to track all the pfns and
393  * the iommu can only map chunks of consecutive pfns anyway, so get the
394  * first page and all consecutive pages with the same locking.
395  */
396 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
397 				  long npage, unsigned long *pfn_base,
398 				  unsigned long limit)
399 {
400 	unsigned long pfn = 0;
401 	long ret, pinned = 0, lock_acct = 0;
402 	bool rsvd;
403 	dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
404 
405 	/* This code path is only user initiated */
406 	if (!current->mm)
407 		return -ENODEV;
408 
409 	ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, pfn_base);
410 	if (ret)
411 		return ret;
412 
413 	pinned++;
414 	rsvd = is_invalid_reserved_pfn(*pfn_base);
415 
416 	/*
417 	 * Reserved pages aren't counted against the user, externally pinned
418 	 * pages are already counted against the user.
419 	 */
420 	if (!rsvd && !vfio_find_vpfn(dma, iova)) {
421 		if (!dma->lock_cap && current->mm->locked_vm + 1 > limit) {
422 			put_pfn(*pfn_base, dma->prot);
423 			pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
424 					limit << PAGE_SHIFT);
425 			return -ENOMEM;
426 		}
427 		lock_acct++;
428 	}
429 
430 	if (unlikely(disable_hugepages))
431 		goto out;
432 
433 	/* Lock all the consecutive pages from pfn_base */
434 	for (vaddr += PAGE_SIZE, iova += PAGE_SIZE; pinned < npage;
435 	     pinned++, vaddr += PAGE_SIZE, iova += PAGE_SIZE) {
436 		ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, &pfn);
437 		if (ret)
438 			break;
439 
440 		if (pfn != *pfn_base + pinned ||
441 		    rsvd != is_invalid_reserved_pfn(pfn)) {
442 			put_pfn(pfn, dma->prot);
443 			break;
444 		}
445 
446 		if (!rsvd && !vfio_find_vpfn(dma, iova)) {
447 			if (!dma->lock_cap &&
448 			    current->mm->locked_vm + lock_acct + 1 > limit) {
449 				put_pfn(pfn, dma->prot);
450 				pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
451 					__func__, limit << PAGE_SHIFT);
452 				ret = -ENOMEM;
453 				goto unpin_out;
454 			}
455 			lock_acct++;
456 		}
457 	}
458 
459 out:
460 	ret = vfio_lock_acct(dma, lock_acct, false);
461 
462 unpin_out:
463 	if (ret) {
464 		if (!rsvd) {
465 			for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
466 				put_pfn(pfn, dma->prot);
467 		}
468 
469 		return ret;
470 	}
471 
472 	return pinned;
473 }
474 
475 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
476 				    unsigned long pfn, long npage,
477 				    bool do_accounting)
478 {
479 	long unlocked = 0, locked = 0;
480 	long i;
481 
482 	for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
483 		if (put_pfn(pfn++, dma->prot)) {
484 			unlocked++;
485 			if (vfio_find_vpfn(dma, iova))
486 				locked++;
487 		}
488 	}
489 
490 	if (do_accounting)
491 		vfio_lock_acct(dma, locked - unlocked, true);
492 
493 	return unlocked;
494 }
495 
496 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
497 				  unsigned long *pfn_base, bool do_accounting)
498 {
499 	struct mm_struct *mm;
500 	int ret;
501 
502 	mm = get_task_mm(dma->task);
503 	if (!mm)
504 		return -ENODEV;
505 
506 	ret = vaddr_get_pfn(mm, vaddr, dma->prot, pfn_base);
507 	if (!ret && do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
508 		ret = vfio_lock_acct(dma, 1, true);
509 		if (ret) {
510 			put_pfn(*pfn_base, dma->prot);
511 			if (ret == -ENOMEM)
512 				pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
513 					"(%ld) exceeded\n", __func__,
514 					dma->task->comm, task_pid_nr(dma->task),
515 					task_rlimit(dma->task, RLIMIT_MEMLOCK));
516 		}
517 	}
518 
519 	mmput(mm);
520 	return ret;
521 }
522 
523 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
524 				    bool do_accounting)
525 {
526 	int unlocked;
527 	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
528 
529 	if (!vpfn)
530 		return 0;
531 
532 	unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
533 
534 	if (do_accounting)
535 		vfio_lock_acct(dma, -unlocked, true);
536 
537 	return unlocked;
538 }
539 
540 static int vfio_iommu_type1_pin_pages(void *iommu_data,
541 				      unsigned long *user_pfn,
542 				      int npage, int prot,
543 				      unsigned long *phys_pfn)
544 {
545 	struct vfio_iommu *iommu = iommu_data;
546 	int i, j, ret;
547 	unsigned long remote_vaddr;
548 	struct vfio_dma *dma;
549 	bool do_accounting;
550 
551 	if (!iommu || !user_pfn || !phys_pfn)
552 		return -EINVAL;
553 
554 	/* Supported for v2 version only */
555 	if (!iommu->v2)
556 		return -EACCES;
557 
558 	mutex_lock(&iommu->lock);
559 
560 	/* Fail if notifier list is empty */
561 	if ((!iommu->external_domain) || (!iommu->notifier.head)) {
562 		ret = -EINVAL;
563 		goto pin_done;
564 	}
565 
566 	/*
567 	 * If iommu capable domain exist in the container then all pages are
568 	 * already pinned and accounted. Accouting should be done if there is no
569 	 * iommu capable domain in the container.
570 	 */
571 	do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
572 
573 	for (i = 0; i < npage; i++) {
574 		dma_addr_t iova;
575 		struct vfio_pfn *vpfn;
576 
577 		iova = user_pfn[i] << PAGE_SHIFT;
578 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
579 		if (!dma) {
580 			ret = -EINVAL;
581 			goto pin_unwind;
582 		}
583 
584 		if ((dma->prot & prot) != prot) {
585 			ret = -EPERM;
586 			goto pin_unwind;
587 		}
588 
589 		vpfn = vfio_iova_get_vfio_pfn(dma, iova);
590 		if (vpfn) {
591 			phys_pfn[i] = vpfn->pfn;
592 			continue;
593 		}
594 
595 		remote_vaddr = dma->vaddr + iova - dma->iova;
596 		ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn[i],
597 					     do_accounting);
598 		if (ret)
599 			goto pin_unwind;
600 
601 		ret = vfio_add_to_pfn_list(dma, iova, phys_pfn[i]);
602 		if (ret) {
603 			vfio_unpin_page_external(dma, iova, do_accounting);
604 			goto pin_unwind;
605 		}
606 	}
607 
608 	ret = i;
609 	goto pin_done;
610 
611 pin_unwind:
612 	phys_pfn[i] = 0;
613 	for (j = 0; j < i; j++) {
614 		dma_addr_t iova;
615 
616 		iova = user_pfn[j] << PAGE_SHIFT;
617 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
618 		vfio_unpin_page_external(dma, iova, do_accounting);
619 		phys_pfn[j] = 0;
620 	}
621 pin_done:
622 	mutex_unlock(&iommu->lock);
623 	return ret;
624 }
625 
626 static int vfio_iommu_type1_unpin_pages(void *iommu_data,
627 					unsigned long *user_pfn,
628 					int npage)
629 {
630 	struct vfio_iommu *iommu = iommu_data;
631 	bool do_accounting;
632 	int i;
633 
634 	if (!iommu || !user_pfn)
635 		return -EINVAL;
636 
637 	/* Supported for v2 version only */
638 	if (!iommu->v2)
639 		return -EACCES;
640 
641 	mutex_lock(&iommu->lock);
642 
643 	if (!iommu->external_domain) {
644 		mutex_unlock(&iommu->lock);
645 		return -EINVAL;
646 	}
647 
648 	do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
649 	for (i = 0; i < npage; i++) {
650 		struct vfio_dma *dma;
651 		dma_addr_t iova;
652 
653 		iova = user_pfn[i] << PAGE_SHIFT;
654 		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
655 		if (!dma)
656 			goto unpin_exit;
657 		vfio_unpin_page_external(dma, iova, do_accounting);
658 	}
659 
660 unpin_exit:
661 	mutex_unlock(&iommu->lock);
662 	return i > npage ? npage : (i > 0 ? i : -EINVAL);
663 }
664 
665 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
666 				struct list_head *regions)
667 {
668 	long unlocked = 0;
669 	struct vfio_regions *entry, *next;
670 
671 	iommu_tlb_sync(domain->domain);
672 
673 	list_for_each_entry_safe(entry, next, regions, list) {
674 		unlocked += vfio_unpin_pages_remote(dma,
675 						    entry->iova,
676 						    entry->phys >> PAGE_SHIFT,
677 						    entry->len >> PAGE_SHIFT,
678 						    false);
679 		list_del(&entry->list);
680 		kfree(entry);
681 	}
682 
683 	cond_resched();
684 
685 	return unlocked;
686 }
687 
688 /*
689  * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
690  * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
691  * of these regions (currently using a list).
692  *
693  * This value specifies maximum number of regions for each IOTLB flush sync.
694  */
695 #define VFIO_IOMMU_TLB_SYNC_MAX		512
696 
697 static size_t unmap_unpin_fast(struct vfio_domain *domain,
698 			       struct vfio_dma *dma, dma_addr_t *iova,
699 			       size_t len, phys_addr_t phys, long *unlocked,
700 			       struct list_head *unmapped_list,
701 			       int *unmapped_cnt)
702 {
703 	size_t unmapped = 0;
704 	struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
705 
706 	if (entry) {
707 		unmapped = iommu_unmap_fast(domain->domain, *iova, len);
708 
709 		if (!unmapped) {
710 			kfree(entry);
711 		} else {
712 			iommu_tlb_range_add(domain->domain, *iova, unmapped);
713 			entry->iova = *iova;
714 			entry->phys = phys;
715 			entry->len  = unmapped;
716 			list_add_tail(&entry->list, unmapped_list);
717 
718 			*iova += unmapped;
719 			(*unmapped_cnt)++;
720 		}
721 	}
722 
723 	/*
724 	 * Sync if the number of fast-unmap regions hits the limit
725 	 * or in case of errors.
726 	 */
727 	if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
728 		*unlocked += vfio_sync_unpin(dma, domain,
729 					     unmapped_list);
730 		*unmapped_cnt = 0;
731 	}
732 
733 	return unmapped;
734 }
735 
736 static size_t unmap_unpin_slow(struct vfio_domain *domain,
737 			       struct vfio_dma *dma, dma_addr_t *iova,
738 			       size_t len, phys_addr_t phys,
739 			       long *unlocked)
740 {
741 	size_t unmapped = iommu_unmap(domain->domain, *iova, len);
742 
743 	if (unmapped) {
744 		*unlocked += vfio_unpin_pages_remote(dma, *iova,
745 						     phys >> PAGE_SHIFT,
746 						     unmapped >> PAGE_SHIFT,
747 						     false);
748 		*iova += unmapped;
749 		cond_resched();
750 	}
751 	return unmapped;
752 }
753 
754 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
755 			     bool do_accounting)
756 {
757 	dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
758 	struct vfio_domain *domain, *d;
759 	LIST_HEAD(unmapped_region_list);
760 	int unmapped_region_cnt = 0;
761 	long unlocked = 0;
762 
763 	if (!dma->size)
764 		return 0;
765 
766 	if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
767 		return 0;
768 
769 	/*
770 	 * We use the IOMMU to track the physical addresses, otherwise we'd
771 	 * need a much more complicated tracking system.  Unfortunately that
772 	 * means we need to use one of the iommu domains to figure out the
773 	 * pfns to unpin.  The rest need to be unmapped in advance so we have
774 	 * no iommu translations remaining when the pages are unpinned.
775 	 */
776 	domain = d = list_first_entry(&iommu->domain_list,
777 				      struct vfio_domain, next);
778 
779 	list_for_each_entry_continue(d, &iommu->domain_list, next) {
780 		iommu_unmap(d->domain, dma->iova, dma->size);
781 		cond_resched();
782 	}
783 
784 	while (iova < end) {
785 		size_t unmapped, len;
786 		phys_addr_t phys, next;
787 
788 		phys = iommu_iova_to_phys(domain->domain, iova);
789 		if (WARN_ON(!phys)) {
790 			iova += PAGE_SIZE;
791 			continue;
792 		}
793 
794 		/*
795 		 * To optimize for fewer iommu_unmap() calls, each of which
796 		 * may require hardware cache flushing, try to find the
797 		 * largest contiguous physical memory chunk to unmap.
798 		 */
799 		for (len = PAGE_SIZE;
800 		     !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
801 			next = iommu_iova_to_phys(domain->domain, iova + len);
802 			if (next != phys + len)
803 				break;
804 		}
805 
806 		/*
807 		 * First, try to use fast unmap/unpin. In case of failure,
808 		 * switch to slow unmap/unpin path.
809 		 */
810 		unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
811 					    &unlocked, &unmapped_region_list,
812 					    &unmapped_region_cnt);
813 		if (!unmapped) {
814 			unmapped = unmap_unpin_slow(domain, dma, &iova, len,
815 						    phys, &unlocked);
816 			if (WARN_ON(!unmapped))
817 				break;
818 		}
819 	}
820 
821 	dma->iommu_mapped = false;
822 
823 	if (unmapped_region_cnt)
824 		unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list);
825 
826 	if (do_accounting) {
827 		vfio_lock_acct(dma, -unlocked, true);
828 		return 0;
829 	}
830 	return unlocked;
831 }
832 
833 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
834 {
835 	vfio_unmap_unpin(iommu, dma, true);
836 	vfio_unlink_dma(iommu, dma);
837 	put_task_struct(dma->task);
838 	kfree(dma);
839 }
840 
841 static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
842 {
843 	struct vfio_domain *domain;
844 	unsigned long bitmap = ULONG_MAX;
845 
846 	mutex_lock(&iommu->lock);
847 	list_for_each_entry(domain, &iommu->domain_list, next)
848 		bitmap &= domain->domain->pgsize_bitmap;
849 	mutex_unlock(&iommu->lock);
850 
851 	/*
852 	 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
853 	 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
854 	 * That way the user will be able to map/unmap buffers whose size/
855 	 * start address is aligned with PAGE_SIZE. Pinning code uses that
856 	 * granularity while iommu driver can use the sub-PAGE_SIZE size
857 	 * to map the buffer.
858 	 */
859 	if (bitmap & ~PAGE_MASK) {
860 		bitmap &= PAGE_MASK;
861 		bitmap |= PAGE_SIZE;
862 	}
863 
864 	return bitmap;
865 }
866 
867 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
868 			     struct vfio_iommu_type1_dma_unmap *unmap)
869 {
870 	uint64_t mask;
871 	struct vfio_dma *dma, *dma_last = NULL;
872 	size_t unmapped = 0;
873 	int ret = 0, retries = 0;
874 
875 	mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
876 
877 	if (unmap->iova & mask)
878 		return -EINVAL;
879 	if (!unmap->size || unmap->size & mask)
880 		return -EINVAL;
881 	if (unmap->iova + unmap->size < unmap->iova ||
882 	    unmap->size > SIZE_MAX)
883 		return -EINVAL;
884 
885 	WARN_ON(mask & PAGE_MASK);
886 again:
887 	mutex_lock(&iommu->lock);
888 
889 	/*
890 	 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
891 	 * avoid tracking individual mappings.  This means that the granularity
892 	 * of the original mapping was lost and the user was allowed to attempt
893 	 * to unmap any range.  Depending on the contiguousness of physical
894 	 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
895 	 * or may not have worked.  We only guaranteed unmap granularity
896 	 * matching the original mapping; even though it was untracked here,
897 	 * the original mappings are reflected in IOMMU mappings.  This
898 	 * resulted in a couple unusual behaviors.  First, if a range is not
899 	 * able to be unmapped, ex. a set of 4k pages that was mapped as a
900 	 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
901 	 * a zero sized unmap.  Also, if an unmap request overlaps the first
902 	 * address of a hugepage, the IOMMU will unmap the entire hugepage.
903 	 * This also returns success and the returned unmap size reflects the
904 	 * actual size unmapped.
905 	 *
906 	 * We attempt to maintain compatibility with this "v1" interface, but
907 	 * we take control out of the hands of the IOMMU.  Therefore, an unmap
908 	 * request offset from the beginning of the original mapping will
909 	 * return success with zero sized unmap.  And an unmap request covering
910 	 * the first iova of mapping will unmap the entire range.
911 	 *
912 	 * The v2 version of this interface intends to be more deterministic.
913 	 * Unmap requests must fully cover previous mappings.  Multiple
914 	 * mappings may still be unmaped by specifying large ranges, but there
915 	 * must not be any previous mappings bisected by the range.  An error
916 	 * will be returned if these conditions are not met.  The v2 interface
917 	 * will only return success and a size of zero if there were no
918 	 * mappings within the range.
919 	 */
920 	if (iommu->v2) {
921 		dma = vfio_find_dma(iommu, unmap->iova, 1);
922 		if (dma && dma->iova != unmap->iova) {
923 			ret = -EINVAL;
924 			goto unlock;
925 		}
926 		dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
927 		if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
928 			ret = -EINVAL;
929 			goto unlock;
930 		}
931 	}
932 
933 	while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
934 		if (!iommu->v2 && unmap->iova > dma->iova)
935 			break;
936 		/*
937 		 * Task with same address space who mapped this iova range is
938 		 * allowed to unmap the iova range.
939 		 */
940 		if (dma->task->mm != current->mm)
941 			break;
942 
943 		if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
944 			struct vfio_iommu_type1_dma_unmap nb_unmap;
945 
946 			if (dma_last == dma) {
947 				BUG_ON(++retries > 10);
948 			} else {
949 				dma_last = dma;
950 				retries = 0;
951 			}
952 
953 			nb_unmap.iova = dma->iova;
954 			nb_unmap.size = dma->size;
955 
956 			/*
957 			 * Notify anyone (mdev vendor drivers) to invalidate and
958 			 * unmap iovas within the range we're about to unmap.
959 			 * Vendor drivers MUST unpin pages in response to an
960 			 * invalidation.
961 			 */
962 			mutex_unlock(&iommu->lock);
963 			blocking_notifier_call_chain(&iommu->notifier,
964 						    VFIO_IOMMU_NOTIFY_DMA_UNMAP,
965 						    &nb_unmap);
966 			goto again;
967 		}
968 		unmapped += dma->size;
969 		vfio_remove_dma(iommu, dma);
970 	}
971 
972 unlock:
973 	mutex_unlock(&iommu->lock);
974 
975 	/* Report how much was unmapped */
976 	unmap->size = unmapped;
977 
978 	return ret;
979 }
980 
981 /*
982  * Turns out AMD IOMMU has a page table bug where it won't map large pages
983  * to a region that previously mapped smaller pages.  This should be fixed
984  * soon, so this is just a temporary workaround to break mappings down into
985  * PAGE_SIZE.  Better to map smaller pages than nothing.
986  */
987 static int map_try_harder(struct vfio_domain *domain, dma_addr_t iova,
988 			  unsigned long pfn, long npage, int prot)
989 {
990 	long i;
991 	int ret = 0;
992 
993 	for (i = 0; i < npage; i++, pfn++, iova += PAGE_SIZE) {
994 		ret = iommu_map(domain->domain, iova,
995 				(phys_addr_t)pfn << PAGE_SHIFT,
996 				PAGE_SIZE, prot | domain->prot);
997 		if (ret)
998 			break;
999 	}
1000 
1001 	for (; i < npage && i > 0; i--, iova -= PAGE_SIZE)
1002 		iommu_unmap(domain->domain, iova, PAGE_SIZE);
1003 
1004 	return ret;
1005 }
1006 
1007 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1008 			  unsigned long pfn, long npage, int prot)
1009 {
1010 	struct vfio_domain *d;
1011 	int ret;
1012 
1013 	list_for_each_entry(d, &iommu->domain_list, next) {
1014 		ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1015 				npage << PAGE_SHIFT, prot | d->prot);
1016 		if (ret) {
1017 			if (ret != -EBUSY ||
1018 			    map_try_harder(d, iova, pfn, npage, prot))
1019 				goto unwind;
1020 		}
1021 
1022 		cond_resched();
1023 	}
1024 
1025 	return 0;
1026 
1027 unwind:
1028 	list_for_each_entry_continue_reverse(d, &iommu->domain_list, next)
1029 		iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1030 
1031 	return ret;
1032 }
1033 
1034 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1035 			    size_t map_size)
1036 {
1037 	dma_addr_t iova = dma->iova;
1038 	unsigned long vaddr = dma->vaddr;
1039 	size_t size = map_size;
1040 	long npage;
1041 	unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1042 	int ret = 0;
1043 
1044 	while (size) {
1045 		/* Pin a contiguous chunk of memory */
1046 		npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1047 					      size >> PAGE_SHIFT, &pfn, limit);
1048 		if (npage <= 0) {
1049 			WARN_ON(!npage);
1050 			ret = (int)npage;
1051 			break;
1052 		}
1053 
1054 		/* Map it! */
1055 		ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1056 				     dma->prot);
1057 		if (ret) {
1058 			vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1059 						npage, true);
1060 			break;
1061 		}
1062 
1063 		size -= npage << PAGE_SHIFT;
1064 		dma->size += npage << PAGE_SHIFT;
1065 	}
1066 
1067 	dma->iommu_mapped = true;
1068 
1069 	if (ret)
1070 		vfio_remove_dma(iommu, dma);
1071 
1072 	return ret;
1073 }
1074 
1075 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1076 			   struct vfio_iommu_type1_dma_map *map)
1077 {
1078 	dma_addr_t iova = map->iova;
1079 	unsigned long vaddr = map->vaddr;
1080 	size_t size = map->size;
1081 	int ret = 0, prot = 0;
1082 	uint64_t mask;
1083 	struct vfio_dma *dma;
1084 
1085 	/* Verify that none of our __u64 fields overflow */
1086 	if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1087 		return -EINVAL;
1088 
1089 	mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
1090 
1091 	WARN_ON(mask & PAGE_MASK);
1092 
1093 	/* READ/WRITE from device perspective */
1094 	if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1095 		prot |= IOMMU_WRITE;
1096 	if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1097 		prot |= IOMMU_READ;
1098 
1099 	if (!prot || !size || (size | iova | vaddr) & mask)
1100 		return -EINVAL;
1101 
1102 	/* Don't allow IOVA or virtual address wrap */
1103 	if (iova + size - 1 < iova || vaddr + size - 1 < vaddr)
1104 		return -EINVAL;
1105 
1106 	mutex_lock(&iommu->lock);
1107 
1108 	if (vfio_find_dma(iommu, iova, size)) {
1109 		ret = -EEXIST;
1110 		goto out_unlock;
1111 	}
1112 
1113 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1114 	if (!dma) {
1115 		ret = -ENOMEM;
1116 		goto out_unlock;
1117 	}
1118 
1119 	dma->iova = iova;
1120 	dma->vaddr = vaddr;
1121 	dma->prot = prot;
1122 
1123 	/*
1124 	 * We need to be able to both add to a task's locked memory and test
1125 	 * against the locked memory limit and we need to be able to do both
1126 	 * outside of this call path as pinning can be asynchronous via the
1127 	 * external interfaces for mdev devices.  RLIMIT_MEMLOCK requires a
1128 	 * task_struct and VM locked pages requires an mm_struct, however
1129 	 * holding an indefinite mm reference is not recommended, therefore we
1130 	 * only hold a reference to a task.  We could hold a reference to
1131 	 * current, however QEMU uses this call path through vCPU threads,
1132 	 * which can be killed resulting in a NULL mm and failure in the unmap
1133 	 * path when called via a different thread.  Avoid this problem by
1134 	 * using the group_leader as threads within the same group require
1135 	 * both CLONE_THREAD and CLONE_VM and will therefore use the same
1136 	 * mm_struct.
1137 	 *
1138 	 * Previously we also used the task for testing CAP_IPC_LOCK at the
1139 	 * time of pinning and accounting, however has_capability() makes use
1140 	 * of real_cred, a copy-on-write field, so we can't guarantee that it
1141 	 * matches group_leader, or in fact that it might not change by the
1142 	 * time it's evaluated.  If a process were to call MAP_DMA with
1143 	 * CAP_IPC_LOCK but later drop it, it doesn't make sense that they
1144 	 * possibly see different results for an iommu_mapped vfio_dma vs
1145 	 * externally mapped.  Therefore track CAP_IPC_LOCK in vfio_dma at the
1146 	 * time of calling MAP_DMA.
1147 	 */
1148 	get_task_struct(current->group_leader);
1149 	dma->task = current->group_leader;
1150 	dma->lock_cap = capable(CAP_IPC_LOCK);
1151 
1152 	dma->pfn_list = RB_ROOT;
1153 
1154 	/* Insert zero-sized and grow as we map chunks of it */
1155 	vfio_link_dma(iommu, dma);
1156 
1157 	/* Don't pin and map if container doesn't contain IOMMU capable domain*/
1158 	if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1159 		dma->size = size;
1160 	else
1161 		ret = vfio_pin_map_dma(iommu, dma, size);
1162 
1163 out_unlock:
1164 	mutex_unlock(&iommu->lock);
1165 	return ret;
1166 }
1167 
1168 static int vfio_bus_type(struct device *dev, void *data)
1169 {
1170 	struct bus_type **bus = data;
1171 
1172 	if (*bus && *bus != dev->bus)
1173 		return -EINVAL;
1174 
1175 	*bus = dev->bus;
1176 
1177 	return 0;
1178 }
1179 
1180 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1181 			     struct vfio_domain *domain)
1182 {
1183 	struct vfio_domain *d;
1184 	struct rb_node *n;
1185 	unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1186 	int ret;
1187 
1188 	/* Arbitrarily pick the first domain in the list for lookups */
1189 	d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
1190 	n = rb_first(&iommu->dma_list);
1191 
1192 	for (; n; n = rb_next(n)) {
1193 		struct vfio_dma *dma;
1194 		dma_addr_t iova;
1195 
1196 		dma = rb_entry(n, struct vfio_dma, node);
1197 		iova = dma->iova;
1198 
1199 		while (iova < dma->iova + dma->size) {
1200 			phys_addr_t phys;
1201 			size_t size;
1202 
1203 			if (dma->iommu_mapped) {
1204 				phys_addr_t p;
1205 				dma_addr_t i;
1206 
1207 				phys = iommu_iova_to_phys(d->domain, iova);
1208 
1209 				if (WARN_ON(!phys)) {
1210 					iova += PAGE_SIZE;
1211 					continue;
1212 				}
1213 
1214 				size = PAGE_SIZE;
1215 				p = phys + size;
1216 				i = iova + size;
1217 				while (i < dma->iova + dma->size &&
1218 				       p == iommu_iova_to_phys(d->domain, i)) {
1219 					size += PAGE_SIZE;
1220 					p += PAGE_SIZE;
1221 					i += PAGE_SIZE;
1222 				}
1223 			} else {
1224 				unsigned long pfn;
1225 				unsigned long vaddr = dma->vaddr +
1226 						     (iova - dma->iova);
1227 				size_t n = dma->iova + dma->size - iova;
1228 				long npage;
1229 
1230 				npage = vfio_pin_pages_remote(dma, vaddr,
1231 							      n >> PAGE_SHIFT,
1232 							      &pfn, limit);
1233 				if (npage <= 0) {
1234 					WARN_ON(!npage);
1235 					ret = (int)npage;
1236 					return ret;
1237 				}
1238 
1239 				phys = pfn << PAGE_SHIFT;
1240 				size = npage << PAGE_SHIFT;
1241 			}
1242 
1243 			ret = iommu_map(domain->domain, iova, phys,
1244 					size, dma->prot | domain->prot);
1245 			if (ret)
1246 				return ret;
1247 
1248 			iova += size;
1249 		}
1250 		dma->iommu_mapped = true;
1251 	}
1252 	return 0;
1253 }
1254 
1255 /*
1256  * We change our unmap behavior slightly depending on whether the IOMMU
1257  * supports fine-grained superpages.  IOMMUs like AMD-Vi will use a superpage
1258  * for practically any contiguous power-of-two mapping we give it.  This means
1259  * we don't need to look for contiguous chunks ourselves to make unmapping
1260  * more efficient.  On IOMMUs with coarse-grained super pages, like Intel VT-d
1261  * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1262  * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1263  * hugetlbfs is in use.
1264  */
1265 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
1266 {
1267 	struct page *pages;
1268 	int ret, order = get_order(PAGE_SIZE * 2);
1269 
1270 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1271 	if (!pages)
1272 		return;
1273 
1274 	ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
1275 			IOMMU_READ | IOMMU_WRITE | domain->prot);
1276 	if (!ret) {
1277 		size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
1278 
1279 		if (unmapped == PAGE_SIZE)
1280 			iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
1281 		else
1282 			domain->fgsp = true;
1283 	}
1284 
1285 	__free_pages(pages, order);
1286 }
1287 
1288 static struct vfio_group *find_iommu_group(struct vfio_domain *domain,
1289 					   struct iommu_group *iommu_group)
1290 {
1291 	struct vfio_group *g;
1292 
1293 	list_for_each_entry(g, &domain->group_list, next) {
1294 		if (g->iommu_group == iommu_group)
1295 			return g;
1296 	}
1297 
1298 	return NULL;
1299 }
1300 
1301 static bool vfio_iommu_has_sw_msi(struct iommu_group *group, phys_addr_t *base)
1302 {
1303 	struct list_head group_resv_regions;
1304 	struct iommu_resv_region *region, *next;
1305 	bool ret = false;
1306 
1307 	INIT_LIST_HEAD(&group_resv_regions);
1308 	iommu_get_group_resv_regions(group, &group_resv_regions);
1309 	list_for_each_entry(region, &group_resv_regions, list) {
1310 		/*
1311 		 * The presence of any 'real' MSI regions should take
1312 		 * precedence over the software-managed one if the
1313 		 * IOMMU driver happens to advertise both types.
1314 		 */
1315 		if (region->type == IOMMU_RESV_MSI) {
1316 			ret = false;
1317 			break;
1318 		}
1319 
1320 		if (region->type == IOMMU_RESV_SW_MSI) {
1321 			*base = region->start;
1322 			ret = true;
1323 		}
1324 	}
1325 	list_for_each_entry_safe(region, next, &group_resv_regions, list)
1326 		kfree(region);
1327 	return ret;
1328 }
1329 
1330 static int vfio_iommu_type1_attach_group(void *iommu_data,
1331 					 struct iommu_group *iommu_group)
1332 {
1333 	struct vfio_iommu *iommu = iommu_data;
1334 	struct vfio_group *group;
1335 	struct vfio_domain *domain, *d;
1336 	struct bus_type *bus = NULL, *mdev_bus;
1337 	int ret;
1338 	bool resv_msi, msi_remap;
1339 	phys_addr_t resv_msi_base;
1340 
1341 	mutex_lock(&iommu->lock);
1342 
1343 	list_for_each_entry(d, &iommu->domain_list, next) {
1344 		if (find_iommu_group(d, iommu_group)) {
1345 			mutex_unlock(&iommu->lock);
1346 			return -EINVAL;
1347 		}
1348 	}
1349 
1350 	if (iommu->external_domain) {
1351 		if (find_iommu_group(iommu->external_domain, iommu_group)) {
1352 			mutex_unlock(&iommu->lock);
1353 			return -EINVAL;
1354 		}
1355 	}
1356 
1357 	group = kzalloc(sizeof(*group), GFP_KERNEL);
1358 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1359 	if (!group || !domain) {
1360 		ret = -ENOMEM;
1361 		goto out_free;
1362 	}
1363 
1364 	group->iommu_group = iommu_group;
1365 
1366 	/* Determine bus_type in order to allocate a domain */
1367 	ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
1368 	if (ret)
1369 		goto out_free;
1370 
1371 	mdev_bus = symbol_get(mdev_bus_type);
1372 
1373 	if (mdev_bus) {
1374 		if ((bus == mdev_bus) && !iommu_present(bus)) {
1375 			symbol_put(mdev_bus_type);
1376 			if (!iommu->external_domain) {
1377 				INIT_LIST_HEAD(&domain->group_list);
1378 				iommu->external_domain = domain;
1379 			} else
1380 				kfree(domain);
1381 
1382 			list_add(&group->next,
1383 				 &iommu->external_domain->group_list);
1384 			mutex_unlock(&iommu->lock);
1385 			return 0;
1386 		}
1387 		symbol_put(mdev_bus_type);
1388 	}
1389 
1390 	domain->domain = iommu_domain_alloc(bus);
1391 	if (!domain->domain) {
1392 		ret = -EIO;
1393 		goto out_free;
1394 	}
1395 
1396 	if (iommu->nesting) {
1397 		int attr = 1;
1398 
1399 		ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
1400 					    &attr);
1401 		if (ret)
1402 			goto out_domain;
1403 	}
1404 
1405 	ret = iommu_attach_group(domain->domain, iommu_group);
1406 	if (ret)
1407 		goto out_domain;
1408 
1409 	resv_msi = vfio_iommu_has_sw_msi(iommu_group, &resv_msi_base);
1410 
1411 	INIT_LIST_HEAD(&domain->group_list);
1412 	list_add(&group->next, &domain->group_list);
1413 
1414 	msi_remap = irq_domain_check_msi_remap() ||
1415 		    iommu_capable(bus, IOMMU_CAP_INTR_REMAP);
1416 
1417 	if (!allow_unsafe_interrupts && !msi_remap) {
1418 		pr_warn("%s: No interrupt remapping support.  Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
1419 		       __func__);
1420 		ret = -EPERM;
1421 		goto out_detach;
1422 	}
1423 
1424 	if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
1425 		domain->prot |= IOMMU_CACHE;
1426 
1427 	/*
1428 	 * Try to match an existing compatible domain.  We don't want to
1429 	 * preclude an IOMMU driver supporting multiple bus_types and being
1430 	 * able to include different bus_types in the same IOMMU domain, so
1431 	 * we test whether the domains use the same iommu_ops rather than
1432 	 * testing if they're on the same bus_type.
1433 	 */
1434 	list_for_each_entry(d, &iommu->domain_list, next) {
1435 		if (d->domain->ops == domain->domain->ops &&
1436 		    d->prot == domain->prot) {
1437 			iommu_detach_group(domain->domain, iommu_group);
1438 			if (!iommu_attach_group(d->domain, iommu_group)) {
1439 				list_add(&group->next, &d->group_list);
1440 				iommu_domain_free(domain->domain);
1441 				kfree(domain);
1442 				mutex_unlock(&iommu->lock);
1443 				return 0;
1444 			}
1445 
1446 			ret = iommu_attach_group(domain->domain, iommu_group);
1447 			if (ret)
1448 				goto out_domain;
1449 		}
1450 	}
1451 
1452 	vfio_test_domain_fgsp(domain);
1453 
1454 	/* replay mappings on new domains */
1455 	ret = vfio_iommu_replay(iommu, domain);
1456 	if (ret)
1457 		goto out_detach;
1458 
1459 	if (resv_msi) {
1460 		ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
1461 		if (ret)
1462 			goto out_detach;
1463 	}
1464 
1465 	list_add(&domain->next, &iommu->domain_list);
1466 
1467 	mutex_unlock(&iommu->lock);
1468 
1469 	return 0;
1470 
1471 out_detach:
1472 	iommu_detach_group(domain->domain, iommu_group);
1473 out_domain:
1474 	iommu_domain_free(domain->domain);
1475 out_free:
1476 	kfree(domain);
1477 	kfree(group);
1478 	mutex_unlock(&iommu->lock);
1479 	return ret;
1480 }
1481 
1482 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
1483 {
1484 	struct rb_node *node;
1485 
1486 	while ((node = rb_first(&iommu->dma_list)))
1487 		vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
1488 }
1489 
1490 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
1491 {
1492 	struct rb_node *n, *p;
1493 
1494 	n = rb_first(&iommu->dma_list);
1495 	for (; n; n = rb_next(n)) {
1496 		struct vfio_dma *dma;
1497 		long locked = 0, unlocked = 0;
1498 
1499 		dma = rb_entry(n, struct vfio_dma, node);
1500 		unlocked += vfio_unmap_unpin(iommu, dma, false);
1501 		p = rb_first(&dma->pfn_list);
1502 		for (; p; p = rb_next(p)) {
1503 			struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
1504 							 node);
1505 
1506 			if (!is_invalid_reserved_pfn(vpfn->pfn))
1507 				locked++;
1508 		}
1509 		vfio_lock_acct(dma, locked - unlocked, true);
1510 	}
1511 }
1512 
1513 static void vfio_sanity_check_pfn_list(struct vfio_iommu *iommu)
1514 {
1515 	struct rb_node *n;
1516 
1517 	n = rb_first(&iommu->dma_list);
1518 	for (; n; n = rb_next(n)) {
1519 		struct vfio_dma *dma;
1520 
1521 		dma = rb_entry(n, struct vfio_dma, node);
1522 
1523 		if (WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list)))
1524 			break;
1525 	}
1526 	/* mdev vendor driver must unregister notifier */
1527 	WARN_ON(iommu->notifier.head);
1528 }
1529 
1530 static void vfio_iommu_type1_detach_group(void *iommu_data,
1531 					  struct iommu_group *iommu_group)
1532 {
1533 	struct vfio_iommu *iommu = iommu_data;
1534 	struct vfio_domain *domain;
1535 	struct vfio_group *group;
1536 
1537 	mutex_lock(&iommu->lock);
1538 
1539 	if (iommu->external_domain) {
1540 		group = find_iommu_group(iommu->external_domain, iommu_group);
1541 		if (group) {
1542 			list_del(&group->next);
1543 			kfree(group);
1544 
1545 			if (list_empty(&iommu->external_domain->group_list)) {
1546 				vfio_sanity_check_pfn_list(iommu);
1547 
1548 				if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1549 					vfio_iommu_unmap_unpin_all(iommu);
1550 
1551 				kfree(iommu->external_domain);
1552 				iommu->external_domain = NULL;
1553 			}
1554 			goto detach_group_done;
1555 		}
1556 	}
1557 
1558 	list_for_each_entry(domain, &iommu->domain_list, next) {
1559 		group = find_iommu_group(domain, iommu_group);
1560 		if (!group)
1561 			continue;
1562 
1563 		iommu_detach_group(domain->domain, iommu_group);
1564 		list_del(&group->next);
1565 		kfree(group);
1566 		/*
1567 		 * Group ownership provides privilege, if the group list is
1568 		 * empty, the domain goes away. If it's the last domain with
1569 		 * iommu and external domain doesn't exist, then all the
1570 		 * mappings go away too. If it's the last domain with iommu and
1571 		 * external domain exist, update accounting
1572 		 */
1573 		if (list_empty(&domain->group_list)) {
1574 			if (list_is_singular(&iommu->domain_list)) {
1575 				if (!iommu->external_domain)
1576 					vfio_iommu_unmap_unpin_all(iommu);
1577 				else
1578 					vfio_iommu_unmap_unpin_reaccount(iommu);
1579 			}
1580 			iommu_domain_free(domain->domain);
1581 			list_del(&domain->next);
1582 			kfree(domain);
1583 		}
1584 		break;
1585 	}
1586 
1587 detach_group_done:
1588 	mutex_unlock(&iommu->lock);
1589 }
1590 
1591 static void *vfio_iommu_type1_open(unsigned long arg)
1592 {
1593 	struct vfio_iommu *iommu;
1594 
1595 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1596 	if (!iommu)
1597 		return ERR_PTR(-ENOMEM);
1598 
1599 	switch (arg) {
1600 	case VFIO_TYPE1_IOMMU:
1601 		break;
1602 	case VFIO_TYPE1_NESTING_IOMMU:
1603 		iommu->nesting = true;
1604 		/* fall through */
1605 	case VFIO_TYPE1v2_IOMMU:
1606 		iommu->v2 = true;
1607 		break;
1608 	default:
1609 		kfree(iommu);
1610 		return ERR_PTR(-EINVAL);
1611 	}
1612 
1613 	INIT_LIST_HEAD(&iommu->domain_list);
1614 	iommu->dma_list = RB_ROOT;
1615 	mutex_init(&iommu->lock);
1616 	BLOCKING_INIT_NOTIFIER_HEAD(&iommu->notifier);
1617 
1618 	return iommu;
1619 }
1620 
1621 static void vfio_release_domain(struct vfio_domain *domain, bool external)
1622 {
1623 	struct vfio_group *group, *group_tmp;
1624 
1625 	list_for_each_entry_safe(group, group_tmp,
1626 				 &domain->group_list, next) {
1627 		if (!external)
1628 			iommu_detach_group(domain->domain, group->iommu_group);
1629 		list_del(&group->next);
1630 		kfree(group);
1631 	}
1632 
1633 	if (!external)
1634 		iommu_domain_free(domain->domain);
1635 }
1636 
1637 static void vfio_iommu_type1_release(void *iommu_data)
1638 {
1639 	struct vfio_iommu *iommu = iommu_data;
1640 	struct vfio_domain *domain, *domain_tmp;
1641 
1642 	if (iommu->external_domain) {
1643 		vfio_release_domain(iommu->external_domain, true);
1644 		vfio_sanity_check_pfn_list(iommu);
1645 		kfree(iommu->external_domain);
1646 	}
1647 
1648 	vfio_iommu_unmap_unpin_all(iommu);
1649 
1650 	list_for_each_entry_safe(domain, domain_tmp,
1651 				 &iommu->domain_list, next) {
1652 		vfio_release_domain(domain, false);
1653 		list_del(&domain->next);
1654 		kfree(domain);
1655 	}
1656 	kfree(iommu);
1657 }
1658 
1659 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
1660 {
1661 	struct vfio_domain *domain;
1662 	int ret = 1;
1663 
1664 	mutex_lock(&iommu->lock);
1665 	list_for_each_entry(domain, &iommu->domain_list, next) {
1666 		if (!(domain->prot & IOMMU_CACHE)) {
1667 			ret = 0;
1668 			break;
1669 		}
1670 	}
1671 	mutex_unlock(&iommu->lock);
1672 
1673 	return ret;
1674 }
1675 
1676 static long vfio_iommu_type1_ioctl(void *iommu_data,
1677 				   unsigned int cmd, unsigned long arg)
1678 {
1679 	struct vfio_iommu *iommu = iommu_data;
1680 	unsigned long minsz;
1681 
1682 	if (cmd == VFIO_CHECK_EXTENSION) {
1683 		switch (arg) {
1684 		case VFIO_TYPE1_IOMMU:
1685 		case VFIO_TYPE1v2_IOMMU:
1686 		case VFIO_TYPE1_NESTING_IOMMU:
1687 			return 1;
1688 		case VFIO_DMA_CC_IOMMU:
1689 			if (!iommu)
1690 				return 0;
1691 			return vfio_domains_have_iommu_cache(iommu);
1692 		default:
1693 			return 0;
1694 		}
1695 	} else if (cmd == VFIO_IOMMU_GET_INFO) {
1696 		struct vfio_iommu_type1_info info;
1697 
1698 		minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
1699 
1700 		if (copy_from_user(&info, (void __user *)arg, minsz))
1701 			return -EFAULT;
1702 
1703 		if (info.argsz < minsz)
1704 			return -EINVAL;
1705 
1706 		info.flags = VFIO_IOMMU_INFO_PGSIZES;
1707 
1708 		info.iova_pgsizes = vfio_pgsize_bitmap(iommu);
1709 
1710 		return copy_to_user((void __user *)arg, &info, minsz) ?
1711 			-EFAULT : 0;
1712 
1713 	} else if (cmd == VFIO_IOMMU_MAP_DMA) {
1714 		struct vfio_iommu_type1_dma_map map;
1715 		uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
1716 				VFIO_DMA_MAP_FLAG_WRITE;
1717 
1718 		minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
1719 
1720 		if (copy_from_user(&map, (void __user *)arg, minsz))
1721 			return -EFAULT;
1722 
1723 		if (map.argsz < minsz || map.flags & ~mask)
1724 			return -EINVAL;
1725 
1726 		return vfio_dma_do_map(iommu, &map);
1727 
1728 	} else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
1729 		struct vfio_iommu_type1_dma_unmap unmap;
1730 		long ret;
1731 
1732 		minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
1733 
1734 		if (copy_from_user(&unmap, (void __user *)arg, minsz))
1735 			return -EFAULT;
1736 
1737 		if (unmap.argsz < minsz || unmap.flags)
1738 			return -EINVAL;
1739 
1740 		ret = vfio_dma_do_unmap(iommu, &unmap);
1741 		if (ret)
1742 			return ret;
1743 
1744 		return copy_to_user((void __user *)arg, &unmap, minsz) ?
1745 			-EFAULT : 0;
1746 	}
1747 
1748 	return -ENOTTY;
1749 }
1750 
1751 static int vfio_iommu_type1_register_notifier(void *iommu_data,
1752 					      unsigned long *events,
1753 					      struct notifier_block *nb)
1754 {
1755 	struct vfio_iommu *iommu = iommu_data;
1756 
1757 	/* clear known events */
1758 	*events &= ~VFIO_IOMMU_NOTIFY_DMA_UNMAP;
1759 
1760 	/* refuse to register if still events remaining */
1761 	if (*events)
1762 		return -EINVAL;
1763 
1764 	return blocking_notifier_chain_register(&iommu->notifier, nb);
1765 }
1766 
1767 static int vfio_iommu_type1_unregister_notifier(void *iommu_data,
1768 						struct notifier_block *nb)
1769 {
1770 	struct vfio_iommu *iommu = iommu_data;
1771 
1772 	return blocking_notifier_chain_unregister(&iommu->notifier, nb);
1773 }
1774 
1775 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
1776 	.name			= "vfio-iommu-type1",
1777 	.owner			= THIS_MODULE,
1778 	.open			= vfio_iommu_type1_open,
1779 	.release		= vfio_iommu_type1_release,
1780 	.ioctl			= vfio_iommu_type1_ioctl,
1781 	.attach_group		= vfio_iommu_type1_attach_group,
1782 	.detach_group		= vfio_iommu_type1_detach_group,
1783 	.pin_pages		= vfio_iommu_type1_pin_pages,
1784 	.unpin_pages		= vfio_iommu_type1_unpin_pages,
1785 	.register_notifier	= vfio_iommu_type1_register_notifier,
1786 	.unregister_notifier	= vfio_iommu_type1_unregister_notifier,
1787 };
1788 
1789 static int __init vfio_iommu_type1_init(void)
1790 {
1791 	return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
1792 }
1793 
1794 static void __exit vfio_iommu_type1_cleanup(void)
1795 {
1796 	vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
1797 }
1798 
1799 module_init(vfio_iommu_type1_init);
1800 module_exit(vfio_iommu_type1_cleanup);
1801 
1802 MODULE_VERSION(DRIVER_VERSION);
1803 MODULE_LICENSE("GPL v2");
1804 MODULE_AUTHOR(DRIVER_AUTHOR);
1805 MODULE_DESCRIPTION(DRIVER_DESC);
1806