1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 4 * Author: Alex Williamson <alex.williamson@redhat.com> 5 * 6 * Derived from original vfio: 7 * Copyright 2010 Cisco Systems, Inc. All rights reserved. 8 * Author: Tom Lyon, pugs@cisco.com 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/aperture.h> 14 #include <linux/device.h> 15 #include <linux/eventfd.h> 16 #include <linux/file.h> 17 #include <linux/interrupt.h> 18 #include <linux/iommu.h> 19 #include <linux/module.h> 20 #include <linux/mutex.h> 21 #include <linux/notifier.h> 22 #include <linux/pci.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/slab.h> 25 #include <linux/types.h> 26 #include <linux/uaccess.h> 27 #include <linux/vgaarb.h> 28 #include <linux/nospec.h> 29 #include <linux/sched/mm.h> 30 #if IS_ENABLED(CONFIG_EEH) 31 #include <asm/eeh.h> 32 #endif 33 34 #include "vfio_pci_priv.h" 35 36 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>" 37 #define DRIVER_DESC "core driver for VFIO based PCI devices" 38 39 static bool nointxmask; 40 static bool disable_vga; 41 static bool disable_idle_d3; 42 43 /* List of PF's that vfio_pci_core_sriov_configure() has been called on */ 44 static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex); 45 static LIST_HEAD(vfio_pci_sriov_pfs); 46 47 struct vfio_pci_dummy_resource { 48 struct resource resource; 49 int index; 50 struct list_head res_next; 51 }; 52 53 struct vfio_pci_vf_token { 54 struct mutex lock; 55 uuid_t uuid; 56 int users; 57 }; 58 59 struct vfio_pci_mmap_vma { 60 struct vm_area_struct *vma; 61 struct list_head vma_next; 62 }; 63 64 static inline bool vfio_vga_disabled(void) 65 { 66 #ifdef CONFIG_VFIO_PCI_VGA 67 return disable_vga; 68 #else 69 return true; 70 #endif 71 } 72 73 /* 74 * Our VGA arbiter participation is limited since we don't know anything 75 * about the device itself. However, if the device is the only VGA device 76 * downstream of a bridge and VFIO VGA support is disabled, then we can 77 * safely return legacy VGA IO and memory as not decoded since the user 78 * has no way to get to it and routing can be disabled externally at the 79 * bridge. 80 */ 81 static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga) 82 { 83 struct pci_dev *tmp = NULL; 84 unsigned char max_busnr; 85 unsigned int decodes; 86 87 if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus)) 88 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM | 89 VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM; 90 91 max_busnr = pci_bus_max_busnr(pdev->bus); 92 decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; 93 94 while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) { 95 if (tmp == pdev || 96 pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) || 97 pci_is_root_bus(tmp->bus)) 98 continue; 99 100 if (tmp->bus->number >= pdev->bus->number && 101 tmp->bus->number <= max_busnr) { 102 pci_dev_put(tmp); 103 decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM; 104 break; 105 } 106 } 107 108 return decodes; 109 } 110 111 static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev) 112 { 113 struct resource *res; 114 int i; 115 struct vfio_pci_dummy_resource *dummy_res; 116 117 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 118 int bar = i + PCI_STD_RESOURCES; 119 120 res = &vdev->pdev->resource[bar]; 121 122 if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP)) 123 goto no_mmap; 124 125 if (!(res->flags & IORESOURCE_MEM)) 126 goto no_mmap; 127 128 /* 129 * The PCI core shouldn't set up a resource with a 130 * type but zero size. But there may be bugs that 131 * cause us to do that. 132 */ 133 if (!resource_size(res)) 134 goto no_mmap; 135 136 if (resource_size(res) >= PAGE_SIZE) { 137 vdev->bar_mmap_supported[bar] = true; 138 continue; 139 } 140 141 if (!(res->start & ~PAGE_MASK)) { 142 /* 143 * Add a dummy resource to reserve the remainder 144 * of the exclusive page in case that hot-add 145 * device's bar is assigned into it. 146 */ 147 dummy_res = 148 kzalloc(sizeof(*dummy_res), GFP_KERNEL_ACCOUNT); 149 if (dummy_res == NULL) 150 goto no_mmap; 151 152 dummy_res->resource.name = "vfio sub-page reserved"; 153 dummy_res->resource.start = res->end + 1; 154 dummy_res->resource.end = res->start + PAGE_SIZE - 1; 155 dummy_res->resource.flags = res->flags; 156 if (request_resource(res->parent, 157 &dummy_res->resource)) { 158 kfree(dummy_res); 159 goto no_mmap; 160 } 161 dummy_res->index = bar; 162 list_add(&dummy_res->res_next, 163 &vdev->dummy_resources_list); 164 vdev->bar_mmap_supported[bar] = true; 165 continue; 166 } 167 /* 168 * Here we don't handle the case when the BAR is not page 169 * aligned because we can't expect the BAR will be 170 * assigned into the same location in a page in guest 171 * when we passthrough the BAR. And it's hard to access 172 * this BAR in userspace because we have no way to get 173 * the BAR's location in a page. 174 */ 175 no_mmap: 176 vdev->bar_mmap_supported[bar] = false; 177 } 178 } 179 180 struct vfio_pci_group_info; 181 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set); 182 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set, 183 struct vfio_pci_group_info *groups); 184 185 /* 186 * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND 187 * _and_ the ability detect when the device is asserting INTx via PCI_STATUS. 188 * If a device implements the former but not the latter we would typically 189 * expect broken_intx_masking be set and require an exclusive interrupt. 190 * However since we do have control of the device's ability to assert INTx, 191 * we can instead pretend that the device does not implement INTx, virtualizing 192 * the pin register to report zero and maintaining DisINTx set on the host. 193 */ 194 static bool vfio_pci_nointx(struct pci_dev *pdev) 195 { 196 switch (pdev->vendor) { 197 case PCI_VENDOR_ID_INTEL: 198 switch (pdev->device) { 199 /* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */ 200 case 0x1572: 201 case 0x1574: 202 case 0x1580 ... 0x1581: 203 case 0x1583 ... 0x158b: 204 case 0x37d0 ... 0x37d2: 205 /* X550 */ 206 case 0x1563: 207 return true; 208 default: 209 return false; 210 } 211 } 212 213 return false; 214 } 215 216 static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev) 217 { 218 struct pci_dev *pdev = vdev->pdev; 219 u16 pmcsr; 220 221 if (!pdev->pm_cap) 222 return; 223 224 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 225 226 vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 227 } 228 229 /* 230 * pci_set_power_state() wrapper handling devices which perform a soft reset on 231 * D3->D0 transition. Save state prior to D0/1/2->D3, stash it on the vdev, 232 * restore when returned to D0. Saved separately from pci_saved_state for use 233 * by PM capability emulation and separately from pci_dev internal saved state 234 * to avoid it being overwritten and consumed around other resets. 235 */ 236 int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state) 237 { 238 struct pci_dev *pdev = vdev->pdev; 239 bool needs_restore = false, needs_save = false; 240 int ret; 241 242 /* Prevent changing power state for PFs with VFs enabled */ 243 if (pci_num_vf(pdev) && state > PCI_D0) 244 return -EBUSY; 245 246 if (vdev->needs_pm_restore) { 247 if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) { 248 pci_save_state(pdev); 249 needs_save = true; 250 } 251 252 if (pdev->current_state >= PCI_D3hot && state <= PCI_D0) 253 needs_restore = true; 254 } 255 256 ret = pci_set_power_state(pdev, state); 257 258 if (!ret) { 259 /* D3 might be unsupported via quirk, skip unless in D3 */ 260 if (needs_save && pdev->current_state >= PCI_D3hot) { 261 /* 262 * The current PCI state will be saved locally in 263 * 'pm_save' during the D3hot transition. When the 264 * device state is changed to D0 again with the current 265 * function, then pci_store_saved_state() will restore 266 * the state and will free the memory pointed by 267 * 'pm_save'. There are few cases where the PCI power 268 * state can be changed to D0 without the involvement 269 * of the driver. For these cases, free the earlier 270 * allocated memory first before overwriting 'pm_save' 271 * to prevent the memory leak. 272 */ 273 kfree(vdev->pm_save); 274 vdev->pm_save = pci_store_saved_state(pdev); 275 } else if (needs_restore) { 276 pci_load_and_free_saved_state(pdev, &vdev->pm_save); 277 pci_restore_state(pdev); 278 } 279 } 280 281 return ret; 282 } 283 284 static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev, 285 struct eventfd_ctx *efdctx) 286 { 287 /* 288 * The vdev power related flags are protected with 'memory_lock' 289 * semaphore. 290 */ 291 vfio_pci_zap_and_down_write_memory_lock(vdev); 292 if (vdev->pm_runtime_engaged) { 293 up_write(&vdev->memory_lock); 294 return -EINVAL; 295 } 296 297 vdev->pm_runtime_engaged = true; 298 vdev->pm_wake_eventfd_ctx = efdctx; 299 pm_runtime_put_noidle(&vdev->pdev->dev); 300 up_write(&vdev->memory_lock); 301 302 return 0; 303 } 304 305 static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags, 306 void __user *arg, size_t argsz) 307 { 308 struct vfio_pci_core_device *vdev = 309 container_of(device, struct vfio_pci_core_device, vdev); 310 int ret; 311 312 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0); 313 if (ret != 1) 314 return ret; 315 316 /* 317 * Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count 318 * will be decremented. The pm_runtime_put() will be invoked again 319 * while returning from the ioctl and then the device can go into 320 * runtime suspended state. 321 */ 322 return vfio_pci_runtime_pm_entry(vdev, NULL); 323 } 324 325 static int vfio_pci_core_pm_entry_with_wakeup( 326 struct vfio_device *device, u32 flags, 327 struct vfio_device_low_power_entry_with_wakeup __user *arg, 328 size_t argsz) 329 { 330 struct vfio_pci_core_device *vdev = 331 container_of(device, struct vfio_pci_core_device, vdev); 332 struct vfio_device_low_power_entry_with_wakeup entry; 333 struct eventfd_ctx *efdctx; 334 int ret; 335 336 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 337 sizeof(entry)); 338 if (ret != 1) 339 return ret; 340 341 if (copy_from_user(&entry, arg, sizeof(entry))) 342 return -EFAULT; 343 344 if (entry.wakeup_eventfd < 0) 345 return -EINVAL; 346 347 efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd); 348 if (IS_ERR(efdctx)) 349 return PTR_ERR(efdctx); 350 351 ret = vfio_pci_runtime_pm_entry(vdev, efdctx); 352 if (ret) 353 eventfd_ctx_put(efdctx); 354 355 return ret; 356 } 357 358 static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev) 359 { 360 if (vdev->pm_runtime_engaged) { 361 vdev->pm_runtime_engaged = false; 362 pm_runtime_get_noresume(&vdev->pdev->dev); 363 364 if (vdev->pm_wake_eventfd_ctx) { 365 eventfd_ctx_put(vdev->pm_wake_eventfd_ctx); 366 vdev->pm_wake_eventfd_ctx = NULL; 367 } 368 } 369 } 370 371 static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev) 372 { 373 /* 374 * The vdev power related flags are protected with 'memory_lock' 375 * semaphore. 376 */ 377 down_write(&vdev->memory_lock); 378 __vfio_pci_runtime_pm_exit(vdev); 379 up_write(&vdev->memory_lock); 380 } 381 382 static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags, 383 void __user *arg, size_t argsz) 384 { 385 struct vfio_pci_core_device *vdev = 386 container_of(device, struct vfio_pci_core_device, vdev); 387 int ret; 388 389 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0); 390 if (ret != 1) 391 return ret; 392 393 /* 394 * The device is always in the active state here due to pm wrappers 395 * around ioctls. If the device had entered a low power state and 396 * pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has 397 * already signaled the eventfd and exited low power mode itself. 398 * pm_runtime_engaged protects the redundant call here. 399 */ 400 vfio_pci_runtime_pm_exit(vdev); 401 return 0; 402 } 403 404 #ifdef CONFIG_PM 405 static int vfio_pci_core_runtime_suspend(struct device *dev) 406 { 407 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev); 408 409 down_write(&vdev->memory_lock); 410 /* 411 * The user can move the device into D3hot state before invoking 412 * power management IOCTL. Move the device into D0 state here and then 413 * the pci-driver core runtime PM suspend function will move the device 414 * into the low power state. Also, for the devices which have 415 * NoSoftRst-, it will help in restoring the original state 416 * (saved locally in 'vdev->pm_save'). 417 */ 418 vfio_pci_set_power_state(vdev, PCI_D0); 419 up_write(&vdev->memory_lock); 420 421 /* 422 * If INTx is enabled, then mask INTx before going into the runtime 423 * suspended state and unmask the same in the runtime resume. 424 * If INTx has already been masked by the user, then 425 * vfio_pci_intx_mask() will return false and in that case, INTx 426 * should not be unmasked in the runtime resume. 427 */ 428 vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) && 429 vfio_pci_intx_mask(vdev)); 430 431 return 0; 432 } 433 434 static int vfio_pci_core_runtime_resume(struct device *dev) 435 { 436 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev); 437 438 /* 439 * Resume with a pm_wake_eventfd_ctx signals the eventfd and exit 440 * low power mode. 441 */ 442 down_write(&vdev->memory_lock); 443 if (vdev->pm_wake_eventfd_ctx) { 444 eventfd_signal(vdev->pm_wake_eventfd_ctx, 1); 445 __vfio_pci_runtime_pm_exit(vdev); 446 } 447 up_write(&vdev->memory_lock); 448 449 if (vdev->pm_intx_masked) 450 vfio_pci_intx_unmask(vdev); 451 452 return 0; 453 } 454 #endif /* CONFIG_PM */ 455 456 /* 457 * The pci-driver core runtime PM routines always save the device state 458 * before going into suspended state. If the device is going into low power 459 * state with only with runtime PM ops, then no explicit handling is needed 460 * for the devices which have NoSoftRst-. 461 */ 462 static const struct dev_pm_ops vfio_pci_core_pm_ops = { 463 SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend, 464 vfio_pci_core_runtime_resume, 465 NULL) 466 }; 467 468 int vfio_pci_core_enable(struct vfio_pci_core_device *vdev) 469 { 470 struct pci_dev *pdev = vdev->pdev; 471 int ret; 472 u16 cmd; 473 u8 msix_pos; 474 475 if (!disable_idle_d3) { 476 ret = pm_runtime_resume_and_get(&pdev->dev); 477 if (ret < 0) 478 return ret; 479 } 480 481 /* Don't allow our initial saved state to include busmaster */ 482 pci_clear_master(pdev); 483 484 ret = pci_enable_device(pdev); 485 if (ret) 486 goto out_power; 487 488 /* If reset fails because of the device lock, fail this path entirely */ 489 ret = pci_try_reset_function(pdev); 490 if (ret == -EAGAIN) 491 goto out_disable_device; 492 493 vdev->reset_works = !ret; 494 pci_save_state(pdev); 495 vdev->pci_saved_state = pci_store_saved_state(pdev); 496 if (!vdev->pci_saved_state) 497 pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__); 498 499 if (likely(!nointxmask)) { 500 if (vfio_pci_nointx(pdev)) { 501 pci_info(pdev, "Masking broken INTx support\n"); 502 vdev->nointx = true; 503 pci_intx(pdev, 0); 504 } else 505 vdev->pci_2_3 = pci_intx_mask_supported(pdev); 506 } 507 508 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 509 if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) { 510 cmd &= ~PCI_COMMAND_INTX_DISABLE; 511 pci_write_config_word(pdev, PCI_COMMAND, cmd); 512 } 513 514 ret = vfio_pci_zdev_open_device(vdev); 515 if (ret) 516 goto out_free_state; 517 518 ret = vfio_config_init(vdev); 519 if (ret) 520 goto out_free_zdev; 521 522 msix_pos = pdev->msix_cap; 523 if (msix_pos) { 524 u16 flags; 525 u32 table; 526 527 pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags); 528 pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table); 529 530 vdev->msix_bar = table & PCI_MSIX_TABLE_BIR; 531 vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET; 532 vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16; 533 } else 534 vdev->msix_bar = 0xFF; 535 536 if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev)) 537 vdev->has_vga = true; 538 539 540 return 0; 541 542 out_free_zdev: 543 vfio_pci_zdev_close_device(vdev); 544 out_free_state: 545 kfree(vdev->pci_saved_state); 546 vdev->pci_saved_state = NULL; 547 out_disable_device: 548 pci_disable_device(pdev); 549 out_power: 550 if (!disable_idle_d3) 551 pm_runtime_put(&pdev->dev); 552 return ret; 553 } 554 EXPORT_SYMBOL_GPL(vfio_pci_core_enable); 555 556 void vfio_pci_core_disable(struct vfio_pci_core_device *vdev) 557 { 558 struct pci_dev *pdev = vdev->pdev; 559 struct vfio_pci_dummy_resource *dummy_res, *tmp; 560 struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp; 561 int i, bar; 562 563 /* For needs_reset */ 564 lockdep_assert_held(&vdev->vdev.dev_set->lock); 565 566 /* 567 * This function can be invoked while the power state is non-D0. 568 * This non-D0 power state can be with or without runtime PM. 569 * vfio_pci_runtime_pm_exit() will internally increment the usage 570 * count corresponding to pm_runtime_put() called during low power 571 * feature entry and then pm_runtime_resume() will wake up the device, 572 * if the device has already gone into the suspended state. Otherwise, 573 * the vfio_pci_set_power_state() will change the device power state 574 * to D0. 575 */ 576 vfio_pci_runtime_pm_exit(vdev); 577 pm_runtime_resume(&pdev->dev); 578 579 /* 580 * This function calls __pci_reset_function_locked() which internally 581 * can use pci_pm_reset() for the function reset. pci_pm_reset() will 582 * fail if the power state is non-D0. Also, for the devices which 583 * have NoSoftRst-, the reset function can cause the PCI config space 584 * reset without restoring the original state (saved locally in 585 * 'vdev->pm_save'). 586 */ 587 vfio_pci_set_power_state(vdev, PCI_D0); 588 589 /* Stop the device from further DMA */ 590 pci_clear_master(pdev); 591 592 vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE | 593 VFIO_IRQ_SET_ACTION_TRIGGER, 594 vdev->irq_type, 0, 0, NULL); 595 596 /* Device closed, don't need mutex here */ 597 list_for_each_entry_safe(ioeventfd, ioeventfd_tmp, 598 &vdev->ioeventfds_list, next) { 599 vfio_virqfd_disable(&ioeventfd->virqfd); 600 list_del(&ioeventfd->next); 601 kfree(ioeventfd); 602 } 603 vdev->ioeventfds_nr = 0; 604 605 vdev->virq_disabled = false; 606 607 for (i = 0; i < vdev->num_regions; i++) 608 vdev->region[i].ops->release(vdev, &vdev->region[i]); 609 610 vdev->num_regions = 0; 611 kfree(vdev->region); 612 vdev->region = NULL; /* don't krealloc a freed pointer */ 613 614 vfio_config_free(vdev); 615 616 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 617 bar = i + PCI_STD_RESOURCES; 618 if (!vdev->barmap[bar]) 619 continue; 620 pci_iounmap(pdev, vdev->barmap[bar]); 621 pci_release_selected_regions(pdev, 1 << bar); 622 vdev->barmap[bar] = NULL; 623 } 624 625 list_for_each_entry_safe(dummy_res, tmp, 626 &vdev->dummy_resources_list, res_next) { 627 list_del(&dummy_res->res_next); 628 release_resource(&dummy_res->resource); 629 kfree(dummy_res); 630 } 631 632 vdev->needs_reset = true; 633 634 vfio_pci_zdev_close_device(vdev); 635 636 /* 637 * If we have saved state, restore it. If we can reset the device, 638 * even better. Resetting with current state seems better than 639 * nothing, but saving and restoring current state without reset 640 * is just busy work. 641 */ 642 if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) { 643 pci_info(pdev, "%s: Couldn't reload saved state\n", __func__); 644 645 if (!vdev->reset_works) 646 goto out; 647 648 pci_save_state(pdev); 649 } 650 651 /* 652 * Disable INTx and MSI, presumably to avoid spurious interrupts 653 * during reset. Stolen from pci_reset_function() 654 */ 655 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 656 657 /* 658 * Try to get the locks ourselves to prevent a deadlock. The 659 * success of this is dependent on being able to lock the device, 660 * which is not always possible. 661 * We can not use the "try" reset interface here, which will 662 * overwrite the previously restored configuration information. 663 */ 664 if (vdev->reset_works && pci_dev_trylock(pdev)) { 665 if (!__pci_reset_function_locked(pdev)) 666 vdev->needs_reset = false; 667 pci_dev_unlock(pdev); 668 } 669 670 pci_restore_state(pdev); 671 out: 672 pci_disable_device(pdev); 673 674 vfio_pci_dev_set_try_reset(vdev->vdev.dev_set); 675 676 /* Put the pm-runtime usage counter acquired during enable */ 677 if (!disable_idle_d3) 678 pm_runtime_put(&pdev->dev); 679 } 680 EXPORT_SYMBOL_GPL(vfio_pci_core_disable); 681 682 void vfio_pci_core_close_device(struct vfio_device *core_vdev) 683 { 684 struct vfio_pci_core_device *vdev = 685 container_of(core_vdev, struct vfio_pci_core_device, vdev); 686 687 if (vdev->sriov_pf_core_dev) { 688 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock); 689 WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users); 690 vdev->sriov_pf_core_dev->vf_token->users--; 691 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock); 692 } 693 #if IS_ENABLED(CONFIG_EEH) 694 eeh_dev_release(vdev->pdev); 695 #endif 696 vfio_pci_core_disable(vdev); 697 698 mutex_lock(&vdev->igate); 699 if (vdev->err_trigger) { 700 eventfd_ctx_put(vdev->err_trigger); 701 vdev->err_trigger = NULL; 702 } 703 if (vdev->req_trigger) { 704 eventfd_ctx_put(vdev->req_trigger); 705 vdev->req_trigger = NULL; 706 } 707 mutex_unlock(&vdev->igate); 708 } 709 EXPORT_SYMBOL_GPL(vfio_pci_core_close_device); 710 711 void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev) 712 { 713 vfio_pci_probe_mmaps(vdev); 714 #if IS_ENABLED(CONFIG_EEH) 715 eeh_dev_open(vdev->pdev); 716 #endif 717 718 if (vdev->sriov_pf_core_dev) { 719 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock); 720 vdev->sriov_pf_core_dev->vf_token->users++; 721 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock); 722 } 723 } 724 EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable); 725 726 static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type) 727 { 728 if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) { 729 u8 pin; 730 731 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || 732 vdev->nointx || vdev->pdev->is_virtfn) 733 return 0; 734 735 pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin); 736 737 return pin ? 1 : 0; 738 } else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) { 739 u8 pos; 740 u16 flags; 741 742 pos = vdev->pdev->msi_cap; 743 if (pos) { 744 pci_read_config_word(vdev->pdev, 745 pos + PCI_MSI_FLAGS, &flags); 746 return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1); 747 } 748 } else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) { 749 u8 pos; 750 u16 flags; 751 752 pos = vdev->pdev->msix_cap; 753 if (pos) { 754 pci_read_config_word(vdev->pdev, 755 pos + PCI_MSIX_FLAGS, &flags); 756 757 return (flags & PCI_MSIX_FLAGS_QSIZE) + 1; 758 } 759 } else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) { 760 if (pci_is_pcie(vdev->pdev)) 761 return 1; 762 } else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) { 763 return 1; 764 } 765 766 return 0; 767 } 768 769 static int vfio_pci_count_devs(struct pci_dev *pdev, void *data) 770 { 771 (*(int *)data)++; 772 return 0; 773 } 774 775 struct vfio_pci_fill_info { 776 int max; 777 int cur; 778 struct vfio_pci_dependent_device *devices; 779 }; 780 781 static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data) 782 { 783 struct vfio_pci_fill_info *fill = data; 784 struct iommu_group *iommu_group; 785 786 if (fill->cur == fill->max) 787 return -EAGAIN; /* Something changed, try again */ 788 789 iommu_group = iommu_group_get(&pdev->dev); 790 if (!iommu_group) 791 return -EPERM; /* Cannot reset non-isolated devices */ 792 793 fill->devices[fill->cur].group_id = iommu_group_id(iommu_group); 794 fill->devices[fill->cur].segment = pci_domain_nr(pdev->bus); 795 fill->devices[fill->cur].bus = pdev->bus->number; 796 fill->devices[fill->cur].devfn = pdev->devfn; 797 fill->cur++; 798 iommu_group_put(iommu_group); 799 return 0; 800 } 801 802 struct vfio_pci_group_info { 803 int count; 804 struct file **files; 805 }; 806 807 static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot) 808 { 809 for (; pdev; pdev = pdev->bus->self) 810 if (pdev->bus == slot->bus) 811 return (pdev->slot == slot); 812 return false; 813 } 814 815 struct vfio_pci_walk_info { 816 int (*fn)(struct pci_dev *pdev, void *data); 817 void *data; 818 struct pci_dev *pdev; 819 bool slot; 820 int ret; 821 }; 822 823 static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data) 824 { 825 struct vfio_pci_walk_info *walk = data; 826 827 if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot)) 828 walk->ret = walk->fn(pdev, walk->data); 829 830 return walk->ret; 831 } 832 833 static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev, 834 int (*fn)(struct pci_dev *, 835 void *data), void *data, 836 bool slot) 837 { 838 struct vfio_pci_walk_info walk = { 839 .fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0, 840 }; 841 842 pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk); 843 844 return walk.ret; 845 } 846 847 static int msix_mmappable_cap(struct vfio_pci_core_device *vdev, 848 struct vfio_info_cap *caps) 849 { 850 struct vfio_info_cap_header header = { 851 .id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE, 852 .version = 1 853 }; 854 855 return vfio_info_add_capability(caps, &header, sizeof(header)); 856 } 857 858 int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev, 859 unsigned int type, unsigned int subtype, 860 const struct vfio_pci_regops *ops, 861 size_t size, u32 flags, void *data) 862 { 863 struct vfio_pci_region *region; 864 865 region = krealloc(vdev->region, 866 (vdev->num_regions + 1) * sizeof(*region), 867 GFP_KERNEL_ACCOUNT); 868 if (!region) 869 return -ENOMEM; 870 871 vdev->region = region; 872 vdev->region[vdev->num_regions].type = type; 873 vdev->region[vdev->num_regions].subtype = subtype; 874 vdev->region[vdev->num_regions].ops = ops; 875 vdev->region[vdev->num_regions].size = size; 876 vdev->region[vdev->num_regions].flags = flags; 877 vdev->region[vdev->num_regions].data = data; 878 879 vdev->num_regions++; 880 881 return 0; 882 } 883 EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region); 884 885 static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev, 886 struct vfio_device_info __user *arg) 887 { 888 unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs); 889 struct vfio_device_info info; 890 struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; 891 unsigned long capsz; 892 int ret; 893 894 /* For backward compatibility, cannot require this */ 895 capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset); 896 897 if (copy_from_user(&info, arg, minsz)) 898 return -EFAULT; 899 900 if (info.argsz < minsz) 901 return -EINVAL; 902 903 if (info.argsz >= capsz) { 904 minsz = capsz; 905 info.cap_offset = 0; 906 } 907 908 info.flags = VFIO_DEVICE_FLAGS_PCI; 909 910 if (vdev->reset_works) 911 info.flags |= VFIO_DEVICE_FLAGS_RESET; 912 913 info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions; 914 info.num_irqs = VFIO_PCI_NUM_IRQS; 915 916 ret = vfio_pci_info_zdev_add_caps(vdev, &caps); 917 if (ret && ret != -ENODEV) { 918 pci_warn(vdev->pdev, 919 "Failed to setup zPCI info capabilities\n"); 920 return ret; 921 } 922 923 if (caps.size) { 924 info.flags |= VFIO_DEVICE_FLAGS_CAPS; 925 if (info.argsz < sizeof(info) + caps.size) { 926 info.argsz = sizeof(info) + caps.size; 927 } else { 928 vfio_info_cap_shift(&caps, sizeof(info)); 929 if (copy_to_user(arg + 1, caps.buf, caps.size)) { 930 kfree(caps.buf); 931 return -EFAULT; 932 } 933 info.cap_offset = sizeof(*arg); 934 } 935 936 kfree(caps.buf); 937 } 938 939 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; 940 } 941 942 static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev, 943 struct vfio_region_info __user *arg) 944 { 945 unsigned long minsz = offsetofend(struct vfio_region_info, offset); 946 struct pci_dev *pdev = vdev->pdev; 947 struct vfio_region_info info; 948 struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; 949 int i, ret; 950 951 if (copy_from_user(&info, arg, minsz)) 952 return -EFAULT; 953 954 if (info.argsz < minsz) 955 return -EINVAL; 956 957 switch (info.index) { 958 case VFIO_PCI_CONFIG_REGION_INDEX: 959 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 960 info.size = pdev->cfg_size; 961 info.flags = VFIO_REGION_INFO_FLAG_READ | 962 VFIO_REGION_INFO_FLAG_WRITE; 963 break; 964 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX: 965 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 966 info.size = pci_resource_len(pdev, info.index); 967 if (!info.size) { 968 info.flags = 0; 969 break; 970 } 971 972 info.flags = VFIO_REGION_INFO_FLAG_READ | 973 VFIO_REGION_INFO_FLAG_WRITE; 974 if (vdev->bar_mmap_supported[info.index]) { 975 info.flags |= VFIO_REGION_INFO_FLAG_MMAP; 976 if (info.index == vdev->msix_bar) { 977 ret = msix_mmappable_cap(vdev, &caps); 978 if (ret) 979 return ret; 980 } 981 } 982 983 break; 984 case VFIO_PCI_ROM_REGION_INDEX: { 985 void __iomem *io; 986 size_t size; 987 u16 cmd; 988 989 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 990 info.flags = 0; 991 992 /* Report the BAR size, not the ROM size */ 993 info.size = pci_resource_len(pdev, info.index); 994 if (!info.size) { 995 /* Shadow ROMs appear as PCI option ROMs */ 996 if (pdev->resource[PCI_ROM_RESOURCE].flags & 997 IORESOURCE_ROM_SHADOW) 998 info.size = 0x20000; 999 else 1000 break; 1001 } 1002 1003 /* 1004 * Is it really there? Enable memory decode for implicit access 1005 * in pci_map_rom(). 1006 */ 1007 cmd = vfio_pci_memory_lock_and_enable(vdev); 1008 io = pci_map_rom(pdev, &size); 1009 if (io) { 1010 info.flags = VFIO_REGION_INFO_FLAG_READ; 1011 pci_unmap_rom(pdev, io); 1012 } else { 1013 info.size = 0; 1014 } 1015 vfio_pci_memory_unlock_and_restore(vdev, cmd); 1016 1017 break; 1018 } 1019 case VFIO_PCI_VGA_REGION_INDEX: 1020 if (!vdev->has_vga) 1021 return -EINVAL; 1022 1023 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1024 info.size = 0xc0000; 1025 info.flags = VFIO_REGION_INFO_FLAG_READ | 1026 VFIO_REGION_INFO_FLAG_WRITE; 1027 1028 break; 1029 default: { 1030 struct vfio_region_info_cap_type cap_type = { 1031 .header.id = VFIO_REGION_INFO_CAP_TYPE, 1032 .header.version = 1 1033 }; 1034 1035 if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) 1036 return -EINVAL; 1037 info.index = array_index_nospec( 1038 info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions); 1039 1040 i = info.index - VFIO_PCI_NUM_REGIONS; 1041 1042 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1043 info.size = vdev->region[i].size; 1044 info.flags = vdev->region[i].flags; 1045 1046 cap_type.type = vdev->region[i].type; 1047 cap_type.subtype = vdev->region[i].subtype; 1048 1049 ret = vfio_info_add_capability(&caps, &cap_type.header, 1050 sizeof(cap_type)); 1051 if (ret) 1052 return ret; 1053 1054 if (vdev->region[i].ops->add_capability) { 1055 ret = vdev->region[i].ops->add_capability( 1056 vdev, &vdev->region[i], &caps); 1057 if (ret) 1058 return ret; 1059 } 1060 } 1061 } 1062 1063 if (caps.size) { 1064 info.flags |= VFIO_REGION_INFO_FLAG_CAPS; 1065 if (info.argsz < sizeof(info) + caps.size) { 1066 info.argsz = sizeof(info) + caps.size; 1067 info.cap_offset = 0; 1068 } else { 1069 vfio_info_cap_shift(&caps, sizeof(info)); 1070 if (copy_to_user(arg + 1, caps.buf, caps.size)) { 1071 kfree(caps.buf); 1072 return -EFAULT; 1073 } 1074 info.cap_offset = sizeof(*arg); 1075 } 1076 1077 kfree(caps.buf); 1078 } 1079 1080 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; 1081 } 1082 1083 static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev, 1084 struct vfio_irq_info __user *arg) 1085 { 1086 unsigned long minsz = offsetofend(struct vfio_irq_info, count); 1087 struct vfio_irq_info info; 1088 1089 if (copy_from_user(&info, arg, minsz)) 1090 return -EFAULT; 1091 1092 if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS) 1093 return -EINVAL; 1094 1095 switch (info.index) { 1096 case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX: 1097 case VFIO_PCI_REQ_IRQ_INDEX: 1098 break; 1099 case VFIO_PCI_ERR_IRQ_INDEX: 1100 if (pci_is_pcie(vdev->pdev)) 1101 break; 1102 fallthrough; 1103 default: 1104 return -EINVAL; 1105 } 1106 1107 info.flags = VFIO_IRQ_INFO_EVENTFD; 1108 1109 info.count = vfio_pci_get_irq_count(vdev, info.index); 1110 1111 if (info.index == VFIO_PCI_INTX_IRQ_INDEX) 1112 info.flags |= 1113 (VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED); 1114 else 1115 info.flags |= VFIO_IRQ_INFO_NORESIZE; 1116 1117 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; 1118 } 1119 1120 static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev, 1121 struct vfio_irq_set __user *arg) 1122 { 1123 unsigned long minsz = offsetofend(struct vfio_irq_set, count); 1124 struct vfio_irq_set hdr; 1125 u8 *data = NULL; 1126 int max, ret = 0; 1127 size_t data_size = 0; 1128 1129 if (copy_from_user(&hdr, arg, minsz)) 1130 return -EFAULT; 1131 1132 max = vfio_pci_get_irq_count(vdev, hdr.index); 1133 1134 ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS, 1135 &data_size); 1136 if (ret) 1137 return ret; 1138 1139 if (data_size) { 1140 data = memdup_user(&arg->data, data_size); 1141 if (IS_ERR(data)) 1142 return PTR_ERR(data); 1143 } 1144 1145 mutex_lock(&vdev->igate); 1146 1147 ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start, 1148 hdr.count, data); 1149 1150 mutex_unlock(&vdev->igate); 1151 kfree(data); 1152 1153 return ret; 1154 } 1155 1156 static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev, 1157 void __user *arg) 1158 { 1159 int ret; 1160 1161 if (!vdev->reset_works) 1162 return -EINVAL; 1163 1164 vfio_pci_zap_and_down_write_memory_lock(vdev); 1165 1166 /* 1167 * This function can be invoked while the power state is non-D0. If 1168 * pci_try_reset_function() has been called while the power state is 1169 * non-D0, then pci_try_reset_function() will internally set the power 1170 * state to D0 without vfio driver involvement. For the devices which 1171 * have NoSoftRst-, the reset function can cause the PCI config space 1172 * reset without restoring the original state (saved locally in 1173 * 'vdev->pm_save'). 1174 */ 1175 vfio_pci_set_power_state(vdev, PCI_D0); 1176 1177 ret = pci_try_reset_function(vdev->pdev); 1178 up_write(&vdev->memory_lock); 1179 1180 return ret; 1181 } 1182 1183 static int vfio_pci_ioctl_get_pci_hot_reset_info( 1184 struct vfio_pci_core_device *vdev, 1185 struct vfio_pci_hot_reset_info __user *arg) 1186 { 1187 unsigned long minsz = 1188 offsetofend(struct vfio_pci_hot_reset_info, count); 1189 struct vfio_pci_hot_reset_info hdr; 1190 struct vfio_pci_fill_info fill = { 0 }; 1191 struct vfio_pci_dependent_device *devices = NULL; 1192 bool slot = false; 1193 int ret = 0; 1194 1195 if (copy_from_user(&hdr, arg, minsz)) 1196 return -EFAULT; 1197 1198 if (hdr.argsz < minsz) 1199 return -EINVAL; 1200 1201 hdr.flags = 0; 1202 1203 /* Can we do a slot or bus reset or neither? */ 1204 if (!pci_probe_reset_slot(vdev->pdev->slot)) 1205 slot = true; 1206 else if (pci_probe_reset_bus(vdev->pdev->bus)) 1207 return -ENODEV; 1208 1209 /* How many devices are affected? */ 1210 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs, 1211 &fill.max, slot); 1212 if (ret) 1213 return ret; 1214 1215 WARN_ON(!fill.max); /* Should always be at least one */ 1216 1217 /* 1218 * If there's enough space, fill it now, otherwise return -ENOSPC and 1219 * the number of devices affected. 1220 */ 1221 if (hdr.argsz < sizeof(hdr) + (fill.max * sizeof(*devices))) { 1222 ret = -ENOSPC; 1223 hdr.count = fill.max; 1224 goto reset_info_exit; 1225 } 1226 1227 devices = kcalloc(fill.max, sizeof(*devices), GFP_KERNEL); 1228 if (!devices) 1229 return -ENOMEM; 1230 1231 fill.devices = devices; 1232 1233 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs, 1234 &fill, slot); 1235 1236 /* 1237 * If a device was removed between counting and filling, we may come up 1238 * short of fill.max. If a device was added, we'll have a return of 1239 * -EAGAIN above. 1240 */ 1241 if (!ret) 1242 hdr.count = fill.cur; 1243 1244 reset_info_exit: 1245 if (copy_to_user(arg, &hdr, minsz)) 1246 ret = -EFAULT; 1247 1248 if (!ret) { 1249 if (copy_to_user(&arg->devices, devices, 1250 hdr.count * sizeof(*devices))) 1251 ret = -EFAULT; 1252 } 1253 1254 kfree(devices); 1255 return ret; 1256 } 1257 1258 static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev, 1259 struct vfio_pci_hot_reset __user *arg) 1260 { 1261 unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count); 1262 struct vfio_pci_hot_reset hdr; 1263 int32_t *group_fds; 1264 struct file **files; 1265 struct vfio_pci_group_info info; 1266 bool slot = false; 1267 int file_idx, count = 0, ret = 0; 1268 1269 if (copy_from_user(&hdr, arg, minsz)) 1270 return -EFAULT; 1271 1272 if (hdr.argsz < minsz || hdr.flags) 1273 return -EINVAL; 1274 1275 /* Can we do a slot or bus reset or neither? */ 1276 if (!pci_probe_reset_slot(vdev->pdev->slot)) 1277 slot = true; 1278 else if (pci_probe_reset_bus(vdev->pdev->bus)) 1279 return -ENODEV; 1280 1281 /* 1282 * We can't let userspace give us an arbitrarily large buffer to copy, 1283 * so verify how many we think there could be. Note groups can have 1284 * multiple devices so one group per device is the max. 1285 */ 1286 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs, 1287 &count, slot); 1288 if (ret) 1289 return ret; 1290 1291 /* Somewhere between 1 and count is OK */ 1292 if (!hdr.count || hdr.count > count) 1293 return -EINVAL; 1294 1295 group_fds = kcalloc(hdr.count, sizeof(*group_fds), GFP_KERNEL); 1296 files = kcalloc(hdr.count, sizeof(*files), GFP_KERNEL); 1297 if (!group_fds || !files) { 1298 kfree(group_fds); 1299 kfree(files); 1300 return -ENOMEM; 1301 } 1302 1303 if (copy_from_user(group_fds, arg->group_fds, 1304 hdr.count * sizeof(*group_fds))) { 1305 kfree(group_fds); 1306 kfree(files); 1307 return -EFAULT; 1308 } 1309 1310 /* 1311 * For each group_fd, get the group through the vfio external user 1312 * interface and store the group and iommu ID. This ensures the group 1313 * is held across the reset. 1314 */ 1315 for (file_idx = 0; file_idx < hdr.count; file_idx++) { 1316 struct file *file = fget(group_fds[file_idx]); 1317 1318 if (!file) { 1319 ret = -EBADF; 1320 break; 1321 } 1322 1323 /* Ensure the FD is a vfio group FD.*/ 1324 if (!vfio_file_is_group(file)) { 1325 fput(file); 1326 ret = -EINVAL; 1327 break; 1328 } 1329 1330 files[file_idx] = file; 1331 } 1332 1333 kfree(group_fds); 1334 1335 /* release reference to groups on error */ 1336 if (ret) 1337 goto hot_reset_release; 1338 1339 info.count = hdr.count; 1340 info.files = files; 1341 1342 ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info); 1343 1344 hot_reset_release: 1345 for (file_idx--; file_idx >= 0; file_idx--) 1346 fput(files[file_idx]); 1347 1348 kfree(files); 1349 return ret; 1350 } 1351 1352 static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev, 1353 struct vfio_device_ioeventfd __user *arg) 1354 { 1355 unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd); 1356 struct vfio_device_ioeventfd ioeventfd; 1357 int count; 1358 1359 if (copy_from_user(&ioeventfd, arg, minsz)) 1360 return -EFAULT; 1361 1362 if (ioeventfd.argsz < minsz) 1363 return -EINVAL; 1364 1365 if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK) 1366 return -EINVAL; 1367 1368 count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK; 1369 1370 if (hweight8(count) != 1 || ioeventfd.fd < -1) 1371 return -EINVAL; 1372 1373 return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count, 1374 ioeventfd.fd); 1375 } 1376 1377 long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd, 1378 unsigned long arg) 1379 { 1380 struct vfio_pci_core_device *vdev = 1381 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1382 void __user *uarg = (void __user *)arg; 1383 1384 switch (cmd) { 1385 case VFIO_DEVICE_GET_INFO: 1386 return vfio_pci_ioctl_get_info(vdev, uarg); 1387 case VFIO_DEVICE_GET_IRQ_INFO: 1388 return vfio_pci_ioctl_get_irq_info(vdev, uarg); 1389 case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO: 1390 return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg); 1391 case VFIO_DEVICE_GET_REGION_INFO: 1392 return vfio_pci_ioctl_get_region_info(vdev, uarg); 1393 case VFIO_DEVICE_IOEVENTFD: 1394 return vfio_pci_ioctl_ioeventfd(vdev, uarg); 1395 case VFIO_DEVICE_PCI_HOT_RESET: 1396 return vfio_pci_ioctl_pci_hot_reset(vdev, uarg); 1397 case VFIO_DEVICE_RESET: 1398 return vfio_pci_ioctl_reset(vdev, uarg); 1399 case VFIO_DEVICE_SET_IRQS: 1400 return vfio_pci_ioctl_set_irqs(vdev, uarg); 1401 default: 1402 return -ENOTTY; 1403 } 1404 } 1405 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl); 1406 1407 static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags, 1408 uuid_t __user *arg, size_t argsz) 1409 { 1410 struct vfio_pci_core_device *vdev = 1411 container_of(device, struct vfio_pci_core_device, vdev); 1412 uuid_t uuid; 1413 int ret; 1414 1415 if (!vdev->vf_token) 1416 return -ENOTTY; 1417 /* 1418 * We do not support GET of the VF Token UUID as this could 1419 * expose the token of the previous device user. 1420 */ 1421 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 1422 sizeof(uuid)); 1423 if (ret != 1) 1424 return ret; 1425 1426 if (copy_from_user(&uuid, arg, sizeof(uuid))) 1427 return -EFAULT; 1428 1429 mutex_lock(&vdev->vf_token->lock); 1430 uuid_copy(&vdev->vf_token->uuid, &uuid); 1431 mutex_unlock(&vdev->vf_token->lock); 1432 return 0; 1433 } 1434 1435 int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags, 1436 void __user *arg, size_t argsz) 1437 { 1438 switch (flags & VFIO_DEVICE_FEATURE_MASK) { 1439 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY: 1440 return vfio_pci_core_pm_entry(device, flags, arg, argsz); 1441 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP: 1442 return vfio_pci_core_pm_entry_with_wakeup(device, flags, 1443 arg, argsz); 1444 case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT: 1445 return vfio_pci_core_pm_exit(device, flags, arg, argsz); 1446 case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN: 1447 return vfio_pci_core_feature_token(device, flags, arg, argsz); 1448 default: 1449 return -ENOTTY; 1450 } 1451 } 1452 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature); 1453 1454 static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf, 1455 size_t count, loff_t *ppos, bool iswrite) 1456 { 1457 unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); 1458 int ret; 1459 1460 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) 1461 return -EINVAL; 1462 1463 ret = pm_runtime_resume_and_get(&vdev->pdev->dev); 1464 if (ret) { 1465 pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n", 1466 ret); 1467 return -EIO; 1468 } 1469 1470 switch (index) { 1471 case VFIO_PCI_CONFIG_REGION_INDEX: 1472 ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite); 1473 break; 1474 1475 case VFIO_PCI_ROM_REGION_INDEX: 1476 if (iswrite) 1477 ret = -EINVAL; 1478 else 1479 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false); 1480 break; 1481 1482 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX: 1483 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite); 1484 break; 1485 1486 case VFIO_PCI_VGA_REGION_INDEX: 1487 ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite); 1488 break; 1489 1490 default: 1491 index -= VFIO_PCI_NUM_REGIONS; 1492 ret = vdev->region[index].ops->rw(vdev, buf, 1493 count, ppos, iswrite); 1494 break; 1495 } 1496 1497 pm_runtime_put(&vdev->pdev->dev); 1498 return ret; 1499 } 1500 1501 ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf, 1502 size_t count, loff_t *ppos) 1503 { 1504 struct vfio_pci_core_device *vdev = 1505 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1506 1507 if (!count) 1508 return 0; 1509 1510 return vfio_pci_rw(vdev, buf, count, ppos, false); 1511 } 1512 EXPORT_SYMBOL_GPL(vfio_pci_core_read); 1513 1514 ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf, 1515 size_t count, loff_t *ppos) 1516 { 1517 struct vfio_pci_core_device *vdev = 1518 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1519 1520 if (!count) 1521 return 0; 1522 1523 return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true); 1524 } 1525 EXPORT_SYMBOL_GPL(vfio_pci_core_write); 1526 1527 /* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */ 1528 static int vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device *vdev, bool try) 1529 { 1530 struct vfio_pci_mmap_vma *mmap_vma, *tmp; 1531 1532 /* 1533 * Lock ordering: 1534 * vma_lock is nested under mmap_lock for vm_ops callback paths. 1535 * The memory_lock semaphore is used by both code paths calling 1536 * into this function to zap vmas and the vm_ops.fault callback 1537 * to protect the memory enable state of the device. 1538 * 1539 * When zapping vmas we need to maintain the mmap_lock => vma_lock 1540 * ordering, which requires using vma_lock to walk vma_list to 1541 * acquire an mm, then dropping vma_lock to get the mmap_lock and 1542 * reacquiring vma_lock. This logic is derived from similar 1543 * requirements in uverbs_user_mmap_disassociate(). 1544 * 1545 * mmap_lock must always be the top-level lock when it is taken. 1546 * Therefore we can only hold the memory_lock write lock when 1547 * vma_list is empty, as we'd need to take mmap_lock to clear 1548 * entries. vma_list can only be guaranteed empty when holding 1549 * vma_lock, thus memory_lock is nested under vma_lock. 1550 * 1551 * This enables the vm_ops.fault callback to acquire vma_lock, 1552 * followed by memory_lock read lock, while already holding 1553 * mmap_lock without risk of deadlock. 1554 */ 1555 while (1) { 1556 struct mm_struct *mm = NULL; 1557 1558 if (try) { 1559 if (!mutex_trylock(&vdev->vma_lock)) 1560 return 0; 1561 } else { 1562 mutex_lock(&vdev->vma_lock); 1563 } 1564 while (!list_empty(&vdev->vma_list)) { 1565 mmap_vma = list_first_entry(&vdev->vma_list, 1566 struct vfio_pci_mmap_vma, 1567 vma_next); 1568 mm = mmap_vma->vma->vm_mm; 1569 if (mmget_not_zero(mm)) 1570 break; 1571 1572 list_del(&mmap_vma->vma_next); 1573 kfree(mmap_vma); 1574 mm = NULL; 1575 } 1576 if (!mm) 1577 return 1; 1578 mutex_unlock(&vdev->vma_lock); 1579 1580 if (try) { 1581 if (!mmap_read_trylock(mm)) { 1582 mmput(mm); 1583 return 0; 1584 } 1585 } else { 1586 mmap_read_lock(mm); 1587 } 1588 if (try) { 1589 if (!mutex_trylock(&vdev->vma_lock)) { 1590 mmap_read_unlock(mm); 1591 mmput(mm); 1592 return 0; 1593 } 1594 } else { 1595 mutex_lock(&vdev->vma_lock); 1596 } 1597 list_for_each_entry_safe(mmap_vma, tmp, 1598 &vdev->vma_list, vma_next) { 1599 struct vm_area_struct *vma = mmap_vma->vma; 1600 1601 if (vma->vm_mm != mm) 1602 continue; 1603 1604 list_del(&mmap_vma->vma_next); 1605 kfree(mmap_vma); 1606 1607 zap_vma_ptes(vma, vma->vm_start, 1608 vma->vm_end - vma->vm_start); 1609 } 1610 mutex_unlock(&vdev->vma_lock); 1611 mmap_read_unlock(mm); 1612 mmput(mm); 1613 } 1614 } 1615 1616 void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev) 1617 { 1618 vfio_pci_zap_and_vma_lock(vdev, false); 1619 down_write(&vdev->memory_lock); 1620 mutex_unlock(&vdev->vma_lock); 1621 } 1622 1623 u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev) 1624 { 1625 u16 cmd; 1626 1627 down_write(&vdev->memory_lock); 1628 pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd); 1629 if (!(cmd & PCI_COMMAND_MEMORY)) 1630 pci_write_config_word(vdev->pdev, PCI_COMMAND, 1631 cmd | PCI_COMMAND_MEMORY); 1632 1633 return cmd; 1634 } 1635 1636 void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd) 1637 { 1638 pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd); 1639 up_write(&vdev->memory_lock); 1640 } 1641 1642 /* Caller holds vma_lock */ 1643 static int __vfio_pci_add_vma(struct vfio_pci_core_device *vdev, 1644 struct vm_area_struct *vma) 1645 { 1646 struct vfio_pci_mmap_vma *mmap_vma; 1647 1648 mmap_vma = kmalloc(sizeof(*mmap_vma), GFP_KERNEL_ACCOUNT); 1649 if (!mmap_vma) 1650 return -ENOMEM; 1651 1652 mmap_vma->vma = vma; 1653 list_add(&mmap_vma->vma_next, &vdev->vma_list); 1654 1655 return 0; 1656 } 1657 1658 /* 1659 * Zap mmaps on open so that we can fault them in on access and therefore 1660 * our vma_list only tracks mappings accessed since last zap. 1661 */ 1662 static void vfio_pci_mmap_open(struct vm_area_struct *vma) 1663 { 1664 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); 1665 } 1666 1667 static void vfio_pci_mmap_close(struct vm_area_struct *vma) 1668 { 1669 struct vfio_pci_core_device *vdev = vma->vm_private_data; 1670 struct vfio_pci_mmap_vma *mmap_vma; 1671 1672 mutex_lock(&vdev->vma_lock); 1673 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) { 1674 if (mmap_vma->vma == vma) { 1675 list_del(&mmap_vma->vma_next); 1676 kfree(mmap_vma); 1677 break; 1678 } 1679 } 1680 mutex_unlock(&vdev->vma_lock); 1681 } 1682 1683 static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf) 1684 { 1685 struct vm_area_struct *vma = vmf->vma; 1686 struct vfio_pci_core_device *vdev = vma->vm_private_data; 1687 struct vfio_pci_mmap_vma *mmap_vma; 1688 vm_fault_t ret = VM_FAULT_NOPAGE; 1689 1690 mutex_lock(&vdev->vma_lock); 1691 down_read(&vdev->memory_lock); 1692 1693 /* 1694 * Memory region cannot be accessed if the low power feature is engaged 1695 * or memory access is disabled. 1696 */ 1697 if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) { 1698 ret = VM_FAULT_SIGBUS; 1699 goto up_out; 1700 } 1701 1702 /* 1703 * We populate the whole vma on fault, so we need to test whether 1704 * the vma has already been mapped, such as for concurrent faults 1705 * to the same vma. io_remap_pfn_range() will trigger a BUG_ON if 1706 * we ask it to fill the same range again. 1707 */ 1708 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) { 1709 if (mmap_vma->vma == vma) 1710 goto up_out; 1711 } 1712 1713 if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 1714 vma->vm_end - vma->vm_start, 1715 vma->vm_page_prot)) { 1716 ret = VM_FAULT_SIGBUS; 1717 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); 1718 goto up_out; 1719 } 1720 1721 if (__vfio_pci_add_vma(vdev, vma)) { 1722 ret = VM_FAULT_OOM; 1723 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); 1724 } 1725 1726 up_out: 1727 up_read(&vdev->memory_lock); 1728 mutex_unlock(&vdev->vma_lock); 1729 return ret; 1730 } 1731 1732 static const struct vm_operations_struct vfio_pci_mmap_ops = { 1733 .open = vfio_pci_mmap_open, 1734 .close = vfio_pci_mmap_close, 1735 .fault = vfio_pci_mmap_fault, 1736 }; 1737 1738 int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma) 1739 { 1740 struct vfio_pci_core_device *vdev = 1741 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1742 struct pci_dev *pdev = vdev->pdev; 1743 unsigned int index; 1744 u64 phys_len, req_len, pgoff, req_start; 1745 int ret; 1746 1747 index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT); 1748 1749 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) 1750 return -EINVAL; 1751 if (vma->vm_end < vma->vm_start) 1752 return -EINVAL; 1753 if ((vma->vm_flags & VM_SHARED) == 0) 1754 return -EINVAL; 1755 if (index >= VFIO_PCI_NUM_REGIONS) { 1756 int regnum = index - VFIO_PCI_NUM_REGIONS; 1757 struct vfio_pci_region *region = vdev->region + regnum; 1758 1759 if (region->ops && region->ops->mmap && 1760 (region->flags & VFIO_REGION_INFO_FLAG_MMAP)) 1761 return region->ops->mmap(vdev, region, vma); 1762 return -EINVAL; 1763 } 1764 if (index >= VFIO_PCI_ROM_REGION_INDEX) 1765 return -EINVAL; 1766 if (!vdev->bar_mmap_supported[index]) 1767 return -EINVAL; 1768 1769 phys_len = PAGE_ALIGN(pci_resource_len(pdev, index)); 1770 req_len = vma->vm_end - vma->vm_start; 1771 pgoff = vma->vm_pgoff & 1772 ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1); 1773 req_start = pgoff << PAGE_SHIFT; 1774 1775 if (req_start + req_len > phys_len) 1776 return -EINVAL; 1777 1778 /* 1779 * Even though we don't make use of the barmap for the mmap, 1780 * we need to request the region and the barmap tracks that. 1781 */ 1782 if (!vdev->barmap[index]) { 1783 ret = pci_request_selected_regions(pdev, 1784 1 << index, "vfio-pci"); 1785 if (ret) 1786 return ret; 1787 1788 vdev->barmap[index] = pci_iomap(pdev, index, 0); 1789 if (!vdev->barmap[index]) { 1790 pci_release_selected_regions(pdev, 1 << index); 1791 return -ENOMEM; 1792 } 1793 } 1794 1795 vma->vm_private_data = vdev; 1796 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1797 vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff; 1798 1799 /* 1800 * See remap_pfn_range(), called from vfio_pci_fault() but we can't 1801 * change vm_flags within the fault handler. Set them now. 1802 */ 1803 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 1804 vma->vm_ops = &vfio_pci_mmap_ops; 1805 1806 return 0; 1807 } 1808 EXPORT_SYMBOL_GPL(vfio_pci_core_mmap); 1809 1810 void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count) 1811 { 1812 struct vfio_pci_core_device *vdev = 1813 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1814 struct pci_dev *pdev = vdev->pdev; 1815 1816 mutex_lock(&vdev->igate); 1817 1818 if (vdev->req_trigger) { 1819 if (!(count % 10)) 1820 pci_notice_ratelimited(pdev, 1821 "Relaying device request to user (#%u)\n", 1822 count); 1823 eventfd_signal(vdev->req_trigger, 1); 1824 } else if (count == 0) { 1825 pci_warn(pdev, 1826 "No device request channel registered, blocked until released by user\n"); 1827 } 1828 1829 mutex_unlock(&vdev->igate); 1830 } 1831 EXPORT_SYMBOL_GPL(vfio_pci_core_request); 1832 1833 static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev, 1834 bool vf_token, uuid_t *uuid) 1835 { 1836 /* 1837 * There's always some degree of trust or collaboration between SR-IOV 1838 * PF and VFs, even if just that the PF hosts the SR-IOV capability and 1839 * can disrupt VFs with a reset, but often the PF has more explicit 1840 * access to deny service to the VF or access data passed through the 1841 * VF. We therefore require an opt-in via a shared VF token (UUID) to 1842 * represent this trust. This both prevents that a VF driver might 1843 * assume the PF driver is a trusted, in-kernel driver, and also that 1844 * a PF driver might be replaced with a rogue driver, unknown to in-use 1845 * VF drivers. 1846 * 1847 * Therefore when presented with a VF, if the PF is a vfio device and 1848 * it is bound to the vfio-pci driver, the user needs to provide a VF 1849 * token to access the device, in the form of appending a vf_token to 1850 * the device name, for example: 1851 * 1852 * "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3" 1853 * 1854 * When presented with a PF which has VFs in use, the user must also 1855 * provide the current VF token to prove collaboration with existing 1856 * VF users. If VFs are not in use, the VF token provided for the PF 1857 * device will act to set the VF token. 1858 * 1859 * If the VF token is provided but unused, an error is generated. 1860 */ 1861 if (vdev->pdev->is_virtfn) { 1862 struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev; 1863 bool match; 1864 1865 if (!pf_vdev) { 1866 if (!vf_token) 1867 return 0; /* PF is not vfio-pci, no VF token */ 1868 1869 pci_info_ratelimited(vdev->pdev, 1870 "VF token incorrectly provided, PF not bound to vfio-pci\n"); 1871 return -EINVAL; 1872 } 1873 1874 if (!vf_token) { 1875 pci_info_ratelimited(vdev->pdev, 1876 "VF token required to access device\n"); 1877 return -EACCES; 1878 } 1879 1880 mutex_lock(&pf_vdev->vf_token->lock); 1881 match = uuid_equal(uuid, &pf_vdev->vf_token->uuid); 1882 mutex_unlock(&pf_vdev->vf_token->lock); 1883 1884 if (!match) { 1885 pci_info_ratelimited(vdev->pdev, 1886 "Incorrect VF token provided for device\n"); 1887 return -EACCES; 1888 } 1889 } else if (vdev->vf_token) { 1890 mutex_lock(&vdev->vf_token->lock); 1891 if (vdev->vf_token->users) { 1892 if (!vf_token) { 1893 mutex_unlock(&vdev->vf_token->lock); 1894 pci_info_ratelimited(vdev->pdev, 1895 "VF token required to access device\n"); 1896 return -EACCES; 1897 } 1898 1899 if (!uuid_equal(uuid, &vdev->vf_token->uuid)) { 1900 mutex_unlock(&vdev->vf_token->lock); 1901 pci_info_ratelimited(vdev->pdev, 1902 "Incorrect VF token provided for device\n"); 1903 return -EACCES; 1904 } 1905 } else if (vf_token) { 1906 uuid_copy(&vdev->vf_token->uuid, uuid); 1907 } 1908 1909 mutex_unlock(&vdev->vf_token->lock); 1910 } else if (vf_token) { 1911 pci_info_ratelimited(vdev->pdev, 1912 "VF token incorrectly provided, not a PF or VF\n"); 1913 return -EINVAL; 1914 } 1915 1916 return 0; 1917 } 1918 1919 #define VF_TOKEN_ARG "vf_token=" 1920 1921 int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf) 1922 { 1923 struct vfio_pci_core_device *vdev = 1924 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1925 bool vf_token = false; 1926 uuid_t uuid; 1927 int ret; 1928 1929 if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev)))) 1930 return 0; /* No match */ 1931 1932 if (strlen(buf) > strlen(pci_name(vdev->pdev))) { 1933 buf += strlen(pci_name(vdev->pdev)); 1934 1935 if (*buf != ' ') 1936 return 0; /* No match: non-whitespace after name */ 1937 1938 while (*buf) { 1939 if (*buf == ' ') { 1940 buf++; 1941 continue; 1942 } 1943 1944 if (!vf_token && !strncmp(buf, VF_TOKEN_ARG, 1945 strlen(VF_TOKEN_ARG))) { 1946 buf += strlen(VF_TOKEN_ARG); 1947 1948 if (strlen(buf) < UUID_STRING_LEN) 1949 return -EINVAL; 1950 1951 ret = uuid_parse(buf, &uuid); 1952 if (ret) 1953 return ret; 1954 1955 vf_token = true; 1956 buf += UUID_STRING_LEN; 1957 } else { 1958 /* Unknown/duplicate option */ 1959 return -EINVAL; 1960 } 1961 } 1962 } 1963 1964 ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid); 1965 if (ret) 1966 return ret; 1967 1968 return 1; /* Match */ 1969 } 1970 EXPORT_SYMBOL_GPL(vfio_pci_core_match); 1971 1972 static int vfio_pci_bus_notifier(struct notifier_block *nb, 1973 unsigned long action, void *data) 1974 { 1975 struct vfio_pci_core_device *vdev = container_of(nb, 1976 struct vfio_pci_core_device, nb); 1977 struct device *dev = data; 1978 struct pci_dev *pdev = to_pci_dev(dev); 1979 struct pci_dev *physfn = pci_physfn(pdev); 1980 1981 if (action == BUS_NOTIFY_ADD_DEVICE && 1982 pdev->is_virtfn && physfn == vdev->pdev) { 1983 pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n", 1984 pci_name(pdev)); 1985 pdev->driver_override = kasprintf(GFP_KERNEL, "%s", 1986 vdev->vdev.ops->name); 1987 } else if (action == BUS_NOTIFY_BOUND_DRIVER && 1988 pdev->is_virtfn && physfn == vdev->pdev) { 1989 struct pci_driver *drv = pci_dev_driver(pdev); 1990 1991 if (drv && drv != pci_dev_driver(vdev->pdev)) 1992 pci_warn(vdev->pdev, 1993 "VF %s bound to driver %s while PF bound to driver %s\n", 1994 pci_name(pdev), drv->name, 1995 pci_dev_driver(vdev->pdev)->name); 1996 } 1997 1998 return 0; 1999 } 2000 2001 static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev) 2002 { 2003 struct pci_dev *pdev = vdev->pdev; 2004 struct vfio_pci_core_device *cur; 2005 struct pci_dev *physfn; 2006 int ret; 2007 2008 if (pdev->is_virtfn) { 2009 /* 2010 * If this VF was created by our vfio_pci_core_sriov_configure() 2011 * then we can find the PF vfio_pci_core_device now, and due to 2012 * the locking in pci_disable_sriov() it cannot change until 2013 * this VF device driver is removed. 2014 */ 2015 physfn = pci_physfn(vdev->pdev); 2016 mutex_lock(&vfio_pci_sriov_pfs_mutex); 2017 list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) { 2018 if (cur->pdev == physfn) { 2019 vdev->sriov_pf_core_dev = cur; 2020 break; 2021 } 2022 } 2023 mutex_unlock(&vfio_pci_sriov_pfs_mutex); 2024 return 0; 2025 } 2026 2027 /* Not a SRIOV PF */ 2028 if (!pdev->is_physfn) 2029 return 0; 2030 2031 vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL); 2032 if (!vdev->vf_token) 2033 return -ENOMEM; 2034 2035 mutex_init(&vdev->vf_token->lock); 2036 uuid_gen(&vdev->vf_token->uuid); 2037 2038 vdev->nb.notifier_call = vfio_pci_bus_notifier; 2039 ret = bus_register_notifier(&pci_bus_type, &vdev->nb); 2040 if (ret) { 2041 kfree(vdev->vf_token); 2042 return ret; 2043 } 2044 return 0; 2045 } 2046 2047 static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev) 2048 { 2049 if (!vdev->vf_token) 2050 return; 2051 2052 bus_unregister_notifier(&pci_bus_type, &vdev->nb); 2053 WARN_ON(vdev->vf_token->users); 2054 mutex_destroy(&vdev->vf_token->lock); 2055 kfree(vdev->vf_token); 2056 } 2057 2058 static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev) 2059 { 2060 struct pci_dev *pdev = vdev->pdev; 2061 int ret; 2062 2063 if (!vfio_pci_is_vga(pdev)) 2064 return 0; 2065 2066 ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name); 2067 if (ret) 2068 return ret; 2069 2070 ret = vga_client_register(pdev, vfio_pci_set_decode); 2071 if (ret) 2072 return ret; 2073 vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false)); 2074 return 0; 2075 } 2076 2077 static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev) 2078 { 2079 struct pci_dev *pdev = vdev->pdev; 2080 2081 if (!vfio_pci_is_vga(pdev)) 2082 return; 2083 vga_client_unregister(pdev); 2084 vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM | 2085 VGA_RSRC_LEGACY_IO | 2086 VGA_RSRC_LEGACY_MEM); 2087 } 2088 2089 int vfio_pci_core_init_dev(struct vfio_device *core_vdev) 2090 { 2091 struct vfio_pci_core_device *vdev = 2092 container_of(core_vdev, struct vfio_pci_core_device, vdev); 2093 2094 vdev->pdev = to_pci_dev(core_vdev->dev); 2095 vdev->irq_type = VFIO_PCI_NUM_IRQS; 2096 mutex_init(&vdev->igate); 2097 spin_lock_init(&vdev->irqlock); 2098 mutex_init(&vdev->ioeventfds_lock); 2099 INIT_LIST_HEAD(&vdev->dummy_resources_list); 2100 INIT_LIST_HEAD(&vdev->ioeventfds_list); 2101 mutex_init(&vdev->vma_lock); 2102 INIT_LIST_HEAD(&vdev->vma_list); 2103 INIT_LIST_HEAD(&vdev->sriov_pfs_item); 2104 init_rwsem(&vdev->memory_lock); 2105 2106 return 0; 2107 } 2108 EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev); 2109 2110 void vfio_pci_core_release_dev(struct vfio_device *core_vdev) 2111 { 2112 struct vfio_pci_core_device *vdev = 2113 container_of(core_vdev, struct vfio_pci_core_device, vdev); 2114 2115 mutex_destroy(&vdev->igate); 2116 mutex_destroy(&vdev->ioeventfds_lock); 2117 mutex_destroy(&vdev->vma_lock); 2118 kfree(vdev->region); 2119 kfree(vdev->pm_save); 2120 } 2121 EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev); 2122 2123 int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev) 2124 { 2125 struct pci_dev *pdev = vdev->pdev; 2126 struct device *dev = &pdev->dev; 2127 int ret; 2128 2129 /* Drivers must set the vfio_pci_core_device to their drvdata */ 2130 if (WARN_ON(vdev != dev_get_drvdata(dev))) 2131 return -EINVAL; 2132 2133 if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL) 2134 return -EINVAL; 2135 2136 if (vdev->vdev.mig_ops) { 2137 if (!(vdev->vdev.mig_ops->migration_get_state && 2138 vdev->vdev.mig_ops->migration_set_state && 2139 vdev->vdev.mig_ops->migration_get_data_size) || 2140 !(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY)) 2141 return -EINVAL; 2142 } 2143 2144 if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start && 2145 vdev->vdev.log_ops->log_stop && 2146 vdev->vdev.log_ops->log_read_and_clear)) 2147 return -EINVAL; 2148 2149 /* 2150 * Prevent binding to PFs with VFs enabled, the VFs might be in use 2151 * by the host or other users. We cannot capture the VFs if they 2152 * already exist, nor can we track VF users. Disabling SR-IOV here 2153 * would initiate removing the VFs, which would unbind the driver, 2154 * which is prone to blocking if that VF is also in use by vfio-pci. 2155 * Just reject these PFs and let the user sort it out. 2156 */ 2157 if (pci_num_vf(pdev)) { 2158 pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n"); 2159 return -EBUSY; 2160 } 2161 2162 if (pci_is_root_bus(pdev->bus)) { 2163 ret = vfio_assign_device_set(&vdev->vdev, vdev); 2164 } else if (!pci_probe_reset_slot(pdev->slot)) { 2165 ret = vfio_assign_device_set(&vdev->vdev, pdev->slot); 2166 } else { 2167 /* 2168 * If there is no slot reset support for this device, the whole 2169 * bus needs to be grouped together to support bus-wide resets. 2170 */ 2171 ret = vfio_assign_device_set(&vdev->vdev, pdev->bus); 2172 } 2173 2174 if (ret) 2175 return ret; 2176 ret = vfio_pci_vf_init(vdev); 2177 if (ret) 2178 return ret; 2179 ret = vfio_pci_vga_init(vdev); 2180 if (ret) 2181 goto out_vf; 2182 2183 vfio_pci_probe_power_state(vdev); 2184 2185 /* 2186 * pci-core sets the device power state to an unknown value at 2187 * bootup and after being removed from a driver. The only 2188 * transition it allows from this unknown state is to D0, which 2189 * typically happens when a driver calls pci_enable_device(). 2190 * We're not ready to enable the device yet, but we do want to 2191 * be able to get to D3. Therefore first do a D0 transition 2192 * before enabling runtime PM. 2193 */ 2194 vfio_pci_set_power_state(vdev, PCI_D0); 2195 2196 dev->driver->pm = &vfio_pci_core_pm_ops; 2197 pm_runtime_allow(dev); 2198 if (!disable_idle_d3) 2199 pm_runtime_put(dev); 2200 2201 ret = vfio_register_group_dev(&vdev->vdev); 2202 if (ret) 2203 goto out_power; 2204 return 0; 2205 2206 out_power: 2207 if (!disable_idle_d3) 2208 pm_runtime_get_noresume(dev); 2209 2210 pm_runtime_forbid(dev); 2211 out_vf: 2212 vfio_pci_vf_uninit(vdev); 2213 return ret; 2214 } 2215 EXPORT_SYMBOL_GPL(vfio_pci_core_register_device); 2216 2217 void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev) 2218 { 2219 vfio_pci_core_sriov_configure(vdev, 0); 2220 2221 vfio_unregister_group_dev(&vdev->vdev); 2222 2223 vfio_pci_vf_uninit(vdev); 2224 vfio_pci_vga_uninit(vdev); 2225 2226 if (!disable_idle_d3) 2227 pm_runtime_get_noresume(&vdev->pdev->dev); 2228 2229 pm_runtime_forbid(&vdev->pdev->dev); 2230 } 2231 EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device); 2232 2233 pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev, 2234 pci_channel_state_t state) 2235 { 2236 struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev); 2237 2238 mutex_lock(&vdev->igate); 2239 2240 if (vdev->err_trigger) 2241 eventfd_signal(vdev->err_trigger, 1); 2242 2243 mutex_unlock(&vdev->igate); 2244 2245 return PCI_ERS_RESULT_CAN_RECOVER; 2246 } 2247 EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected); 2248 2249 int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev, 2250 int nr_virtfn) 2251 { 2252 struct pci_dev *pdev = vdev->pdev; 2253 int ret = 0; 2254 2255 device_lock_assert(&pdev->dev); 2256 2257 if (nr_virtfn) { 2258 mutex_lock(&vfio_pci_sriov_pfs_mutex); 2259 /* 2260 * The thread that adds the vdev to the list is the only thread 2261 * that gets to call pci_enable_sriov() and we will only allow 2262 * it to be called once without going through 2263 * pci_disable_sriov() 2264 */ 2265 if (!list_empty(&vdev->sriov_pfs_item)) { 2266 ret = -EINVAL; 2267 goto out_unlock; 2268 } 2269 list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs); 2270 mutex_unlock(&vfio_pci_sriov_pfs_mutex); 2271 2272 /* 2273 * The PF power state should always be higher than the VF power 2274 * state. The PF can be in low power state either with runtime 2275 * power management (when there is no user) or PCI_PM_CTRL 2276 * register write by the user. If PF is in the low power state, 2277 * then change the power state to D0 first before enabling 2278 * SR-IOV. Also, this function can be called at any time, and 2279 * userspace PCI_PM_CTRL write can race against this code path, 2280 * so protect the same with 'memory_lock'. 2281 */ 2282 ret = pm_runtime_resume_and_get(&pdev->dev); 2283 if (ret) 2284 goto out_del; 2285 2286 down_write(&vdev->memory_lock); 2287 vfio_pci_set_power_state(vdev, PCI_D0); 2288 ret = pci_enable_sriov(pdev, nr_virtfn); 2289 up_write(&vdev->memory_lock); 2290 if (ret) { 2291 pm_runtime_put(&pdev->dev); 2292 goto out_del; 2293 } 2294 return nr_virtfn; 2295 } 2296 2297 if (pci_num_vf(pdev)) { 2298 pci_disable_sriov(pdev); 2299 pm_runtime_put(&pdev->dev); 2300 } 2301 2302 out_del: 2303 mutex_lock(&vfio_pci_sriov_pfs_mutex); 2304 list_del_init(&vdev->sriov_pfs_item); 2305 out_unlock: 2306 mutex_unlock(&vfio_pci_sriov_pfs_mutex); 2307 return ret; 2308 } 2309 EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure); 2310 2311 const struct pci_error_handlers vfio_pci_core_err_handlers = { 2312 .error_detected = vfio_pci_core_aer_err_detected, 2313 }; 2314 EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers); 2315 2316 static bool vfio_dev_in_groups(struct vfio_pci_core_device *vdev, 2317 struct vfio_pci_group_info *groups) 2318 { 2319 unsigned int i; 2320 2321 for (i = 0; i < groups->count; i++) 2322 if (vfio_file_has_dev(groups->files[i], &vdev->vdev)) 2323 return true; 2324 return false; 2325 } 2326 2327 static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data) 2328 { 2329 struct vfio_device_set *dev_set = data; 2330 struct vfio_device *cur; 2331 2332 list_for_each_entry(cur, &dev_set->device_list, dev_set_list) 2333 if (cur->dev == &pdev->dev) 2334 return 0; 2335 return -EBUSY; 2336 } 2337 2338 /* 2339 * vfio-core considers a group to be viable and will create a vfio_device even 2340 * if some devices are bound to drivers like pci-stub or pcieport. Here we 2341 * require all PCI devices to be inside our dev_set since that ensures they stay 2342 * put and that every driver controlling the device can co-ordinate with the 2343 * device reset. 2344 * 2345 * Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be 2346 * reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise. 2347 */ 2348 static struct pci_dev * 2349 vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set) 2350 { 2351 struct pci_dev *pdev; 2352 2353 lockdep_assert_held(&dev_set->lock); 2354 2355 /* 2356 * By definition all PCI devices in the dev_set share the same PCI 2357 * reset, so any pci_dev will have the same outcomes for 2358 * pci_probe_reset_*() and pci_reset_bus(). 2359 */ 2360 pdev = list_first_entry(&dev_set->device_list, 2361 struct vfio_pci_core_device, 2362 vdev.dev_set_list)->pdev; 2363 2364 /* pci_reset_bus() is supported */ 2365 if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus)) 2366 return NULL; 2367 2368 if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set, 2369 dev_set, 2370 !pci_probe_reset_slot(pdev->slot))) 2371 return NULL; 2372 return pdev; 2373 } 2374 2375 static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set) 2376 { 2377 struct vfio_pci_core_device *cur; 2378 int ret; 2379 2380 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { 2381 ret = pm_runtime_resume_and_get(&cur->pdev->dev); 2382 if (ret) 2383 goto unwind; 2384 } 2385 2386 return 0; 2387 2388 unwind: 2389 list_for_each_entry_continue_reverse(cur, &dev_set->device_list, 2390 vdev.dev_set_list) 2391 pm_runtime_put(&cur->pdev->dev); 2392 2393 return ret; 2394 } 2395 2396 /* 2397 * We need to get memory_lock for each device, but devices can share mmap_lock, 2398 * therefore we need to zap and hold the vma_lock for each device, and only then 2399 * get each memory_lock. 2400 */ 2401 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set, 2402 struct vfio_pci_group_info *groups) 2403 { 2404 struct vfio_pci_core_device *cur_mem; 2405 struct vfio_pci_core_device *cur_vma; 2406 struct vfio_pci_core_device *cur; 2407 struct pci_dev *pdev; 2408 bool is_mem = true; 2409 int ret; 2410 2411 mutex_lock(&dev_set->lock); 2412 cur_mem = list_first_entry(&dev_set->device_list, 2413 struct vfio_pci_core_device, 2414 vdev.dev_set_list); 2415 2416 pdev = vfio_pci_dev_set_resettable(dev_set); 2417 if (!pdev) { 2418 ret = -EINVAL; 2419 goto err_unlock; 2420 } 2421 2422 /* 2423 * Some of the devices in the dev_set can be in the runtime suspended 2424 * state. Increment the usage count for all the devices in the dev_set 2425 * before reset and decrement the same after reset. 2426 */ 2427 ret = vfio_pci_dev_set_pm_runtime_get(dev_set); 2428 if (ret) 2429 goto err_unlock; 2430 2431 list_for_each_entry(cur_vma, &dev_set->device_list, vdev.dev_set_list) { 2432 /* 2433 * Test whether all the affected devices are contained by the 2434 * set of groups provided by the user. 2435 */ 2436 if (!vfio_dev_in_groups(cur_vma, groups)) { 2437 ret = -EINVAL; 2438 goto err_undo; 2439 } 2440 2441 /* 2442 * Locking multiple devices is prone to deadlock, runaway and 2443 * unwind if we hit contention. 2444 */ 2445 if (!vfio_pci_zap_and_vma_lock(cur_vma, true)) { 2446 ret = -EBUSY; 2447 goto err_undo; 2448 } 2449 } 2450 cur_vma = NULL; 2451 2452 list_for_each_entry(cur_mem, &dev_set->device_list, vdev.dev_set_list) { 2453 if (!down_write_trylock(&cur_mem->memory_lock)) { 2454 ret = -EBUSY; 2455 goto err_undo; 2456 } 2457 mutex_unlock(&cur_mem->vma_lock); 2458 } 2459 cur_mem = NULL; 2460 2461 /* 2462 * The pci_reset_bus() will reset all the devices in the bus. 2463 * The power state can be non-D0 for some of the devices in the bus. 2464 * For these devices, the pci_reset_bus() will internally set 2465 * the power state to D0 without vfio driver involvement. 2466 * For the devices which have NoSoftRst-, the reset function can 2467 * cause the PCI config space reset without restoring the original 2468 * state (saved locally in 'vdev->pm_save'). 2469 */ 2470 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) 2471 vfio_pci_set_power_state(cur, PCI_D0); 2472 2473 ret = pci_reset_bus(pdev); 2474 2475 err_undo: 2476 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { 2477 if (cur == cur_mem) 2478 is_mem = false; 2479 if (cur == cur_vma) 2480 break; 2481 if (is_mem) 2482 up_write(&cur->memory_lock); 2483 else 2484 mutex_unlock(&cur->vma_lock); 2485 } 2486 2487 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) 2488 pm_runtime_put(&cur->pdev->dev); 2489 err_unlock: 2490 mutex_unlock(&dev_set->lock); 2491 return ret; 2492 } 2493 2494 static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set) 2495 { 2496 struct vfio_pci_core_device *cur; 2497 bool needs_reset = false; 2498 2499 /* No other VFIO device in the set can be open. */ 2500 if (vfio_device_set_open_count(dev_set) > 1) 2501 return false; 2502 2503 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) 2504 needs_reset |= cur->needs_reset; 2505 return needs_reset; 2506 } 2507 2508 /* 2509 * If a bus or slot reset is available for the provided dev_set and: 2510 * - All of the devices affected by that bus or slot reset are unused 2511 * - At least one of the affected devices is marked dirty via 2512 * needs_reset (such as by lack of FLR support) 2513 * Then attempt to perform that bus or slot reset. 2514 */ 2515 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set) 2516 { 2517 struct vfio_pci_core_device *cur; 2518 struct pci_dev *pdev; 2519 bool reset_done = false; 2520 2521 if (!vfio_pci_dev_set_needs_reset(dev_set)) 2522 return; 2523 2524 pdev = vfio_pci_dev_set_resettable(dev_set); 2525 if (!pdev) 2526 return; 2527 2528 /* 2529 * Some of the devices in the bus can be in the runtime suspended 2530 * state. Increment the usage count for all the devices in the dev_set 2531 * before reset and decrement the same after reset. 2532 */ 2533 if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set)) 2534 return; 2535 2536 if (!pci_reset_bus(pdev)) 2537 reset_done = true; 2538 2539 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { 2540 if (reset_done) 2541 cur->needs_reset = false; 2542 2543 if (!disable_idle_d3) 2544 pm_runtime_put(&cur->pdev->dev); 2545 } 2546 } 2547 2548 void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga, 2549 bool is_disable_idle_d3) 2550 { 2551 nointxmask = is_nointxmask; 2552 disable_vga = is_disable_vga; 2553 disable_idle_d3 = is_disable_idle_d3; 2554 } 2555 EXPORT_SYMBOL_GPL(vfio_pci_core_set_params); 2556 2557 static void vfio_pci_core_cleanup(void) 2558 { 2559 vfio_pci_uninit_perm_bits(); 2560 } 2561 2562 static int __init vfio_pci_core_init(void) 2563 { 2564 /* Allocate shared config space permission data used by all devices */ 2565 return vfio_pci_init_perm_bits(); 2566 } 2567 2568 module_init(vfio_pci_core_init); 2569 module_exit(vfio_pci_core_cleanup); 2570 2571 MODULE_LICENSE("GPL v2"); 2572 MODULE_AUTHOR(DRIVER_AUTHOR); 2573 MODULE_DESCRIPTION(DRIVER_DESC); 2574