xref: /openbmc/linux/drivers/vfio/pci/vfio_pci_core.c (revision b11e1930)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
4  *     Author: Alex Williamson <alex.williamson@redhat.com>
5  *
6  * Derived from original vfio:
7  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
8  * Author: Tom Lyon, pugs@cisco.com
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/aperture.h>
14 #include <linux/device.h>
15 #include <linux/eventfd.h>
16 #include <linux/file.h>
17 #include <linux/interrupt.h>
18 #include <linux/iommu.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/pci.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/types.h>
26 #include <linux/uaccess.h>
27 #include <linux/vgaarb.h>
28 #include <linux/nospec.h>
29 #include <linux/sched/mm.h>
30 #if IS_ENABLED(CONFIG_EEH)
31 #include <asm/eeh.h>
32 #endif
33 
34 #include "vfio_pci_priv.h"
35 
36 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
37 #define DRIVER_DESC "core driver for VFIO based PCI devices"
38 
39 static bool nointxmask;
40 static bool disable_vga;
41 static bool disable_idle_d3;
42 
43 /* List of PF's that vfio_pci_core_sriov_configure() has been called on */
44 static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex);
45 static LIST_HEAD(vfio_pci_sriov_pfs);
46 
47 struct vfio_pci_dummy_resource {
48 	struct resource		resource;
49 	int			index;
50 	struct list_head	res_next;
51 };
52 
53 struct vfio_pci_vf_token {
54 	struct mutex		lock;
55 	uuid_t			uuid;
56 	int			users;
57 };
58 
59 struct vfio_pci_mmap_vma {
60 	struct vm_area_struct	*vma;
61 	struct list_head	vma_next;
62 };
63 
64 static inline bool vfio_vga_disabled(void)
65 {
66 #ifdef CONFIG_VFIO_PCI_VGA
67 	return disable_vga;
68 #else
69 	return true;
70 #endif
71 }
72 
73 /*
74  * Our VGA arbiter participation is limited since we don't know anything
75  * about the device itself.  However, if the device is the only VGA device
76  * downstream of a bridge and VFIO VGA support is disabled, then we can
77  * safely return legacy VGA IO and memory as not decoded since the user
78  * has no way to get to it and routing can be disabled externally at the
79  * bridge.
80  */
81 static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga)
82 {
83 	struct pci_dev *tmp = NULL;
84 	unsigned char max_busnr;
85 	unsigned int decodes;
86 
87 	if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus))
88 		return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
89 		       VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
90 
91 	max_busnr = pci_bus_max_busnr(pdev->bus);
92 	decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
93 
94 	while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) {
95 		if (tmp == pdev ||
96 		    pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) ||
97 		    pci_is_root_bus(tmp->bus))
98 			continue;
99 
100 		if (tmp->bus->number >= pdev->bus->number &&
101 		    tmp->bus->number <= max_busnr) {
102 			pci_dev_put(tmp);
103 			decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
104 			break;
105 		}
106 	}
107 
108 	return decodes;
109 }
110 
111 static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev)
112 {
113 	struct resource *res;
114 	int i;
115 	struct vfio_pci_dummy_resource *dummy_res;
116 
117 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
118 		int bar = i + PCI_STD_RESOURCES;
119 
120 		res = &vdev->pdev->resource[bar];
121 
122 		if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP))
123 			goto no_mmap;
124 
125 		if (!(res->flags & IORESOURCE_MEM))
126 			goto no_mmap;
127 
128 		/*
129 		 * The PCI core shouldn't set up a resource with a
130 		 * type but zero size. But there may be bugs that
131 		 * cause us to do that.
132 		 */
133 		if (!resource_size(res))
134 			goto no_mmap;
135 
136 		if (resource_size(res) >= PAGE_SIZE) {
137 			vdev->bar_mmap_supported[bar] = true;
138 			continue;
139 		}
140 
141 		if (!(res->start & ~PAGE_MASK)) {
142 			/*
143 			 * Add a dummy resource to reserve the remainder
144 			 * of the exclusive page in case that hot-add
145 			 * device's bar is assigned into it.
146 			 */
147 			dummy_res =
148 				kzalloc(sizeof(*dummy_res), GFP_KERNEL_ACCOUNT);
149 			if (dummy_res == NULL)
150 				goto no_mmap;
151 
152 			dummy_res->resource.name = "vfio sub-page reserved";
153 			dummy_res->resource.start = res->end + 1;
154 			dummy_res->resource.end = res->start + PAGE_SIZE - 1;
155 			dummy_res->resource.flags = res->flags;
156 			if (request_resource(res->parent,
157 						&dummy_res->resource)) {
158 				kfree(dummy_res);
159 				goto no_mmap;
160 			}
161 			dummy_res->index = bar;
162 			list_add(&dummy_res->res_next,
163 					&vdev->dummy_resources_list);
164 			vdev->bar_mmap_supported[bar] = true;
165 			continue;
166 		}
167 		/*
168 		 * Here we don't handle the case when the BAR is not page
169 		 * aligned because we can't expect the BAR will be
170 		 * assigned into the same location in a page in guest
171 		 * when we passthrough the BAR. And it's hard to access
172 		 * this BAR in userspace because we have no way to get
173 		 * the BAR's location in a page.
174 		 */
175 no_mmap:
176 		vdev->bar_mmap_supported[bar] = false;
177 	}
178 }
179 
180 struct vfio_pci_group_info;
181 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set);
182 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
183 				      struct vfio_pci_group_info *groups);
184 
185 /*
186  * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND
187  * _and_ the ability detect when the device is asserting INTx via PCI_STATUS.
188  * If a device implements the former but not the latter we would typically
189  * expect broken_intx_masking be set and require an exclusive interrupt.
190  * However since we do have control of the device's ability to assert INTx,
191  * we can instead pretend that the device does not implement INTx, virtualizing
192  * the pin register to report zero and maintaining DisINTx set on the host.
193  */
194 static bool vfio_pci_nointx(struct pci_dev *pdev)
195 {
196 	switch (pdev->vendor) {
197 	case PCI_VENDOR_ID_INTEL:
198 		switch (pdev->device) {
199 		/* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */
200 		case 0x1572:
201 		case 0x1574:
202 		case 0x1580 ... 0x1581:
203 		case 0x1583 ... 0x158b:
204 		case 0x37d0 ... 0x37d2:
205 		/* X550 */
206 		case 0x1563:
207 			return true;
208 		default:
209 			return false;
210 		}
211 	}
212 
213 	return false;
214 }
215 
216 static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev)
217 {
218 	struct pci_dev *pdev = vdev->pdev;
219 	u16 pmcsr;
220 
221 	if (!pdev->pm_cap)
222 		return;
223 
224 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
225 
226 	vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
227 }
228 
229 /*
230  * pci_set_power_state() wrapper handling devices which perform a soft reset on
231  * D3->D0 transition.  Save state prior to D0/1/2->D3, stash it on the vdev,
232  * restore when returned to D0.  Saved separately from pci_saved_state for use
233  * by PM capability emulation and separately from pci_dev internal saved state
234  * to avoid it being overwritten and consumed around other resets.
235  */
236 int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state)
237 {
238 	struct pci_dev *pdev = vdev->pdev;
239 	bool needs_restore = false, needs_save = false;
240 	int ret;
241 
242 	/* Prevent changing power state for PFs with VFs enabled */
243 	if (pci_num_vf(pdev) && state > PCI_D0)
244 		return -EBUSY;
245 
246 	if (vdev->needs_pm_restore) {
247 		if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) {
248 			pci_save_state(pdev);
249 			needs_save = true;
250 		}
251 
252 		if (pdev->current_state >= PCI_D3hot && state <= PCI_D0)
253 			needs_restore = true;
254 	}
255 
256 	ret = pci_set_power_state(pdev, state);
257 
258 	if (!ret) {
259 		/* D3 might be unsupported via quirk, skip unless in D3 */
260 		if (needs_save && pdev->current_state >= PCI_D3hot) {
261 			/*
262 			 * The current PCI state will be saved locally in
263 			 * 'pm_save' during the D3hot transition. When the
264 			 * device state is changed to D0 again with the current
265 			 * function, then pci_store_saved_state() will restore
266 			 * the state and will free the memory pointed by
267 			 * 'pm_save'. There are few cases where the PCI power
268 			 * state can be changed to D0 without the involvement
269 			 * of the driver. For these cases, free the earlier
270 			 * allocated memory first before overwriting 'pm_save'
271 			 * to prevent the memory leak.
272 			 */
273 			kfree(vdev->pm_save);
274 			vdev->pm_save = pci_store_saved_state(pdev);
275 		} else if (needs_restore) {
276 			pci_load_and_free_saved_state(pdev, &vdev->pm_save);
277 			pci_restore_state(pdev);
278 		}
279 	}
280 
281 	return ret;
282 }
283 
284 static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev,
285 				     struct eventfd_ctx *efdctx)
286 {
287 	/*
288 	 * The vdev power related flags are protected with 'memory_lock'
289 	 * semaphore.
290 	 */
291 	vfio_pci_zap_and_down_write_memory_lock(vdev);
292 	if (vdev->pm_runtime_engaged) {
293 		up_write(&vdev->memory_lock);
294 		return -EINVAL;
295 	}
296 
297 	vdev->pm_runtime_engaged = true;
298 	vdev->pm_wake_eventfd_ctx = efdctx;
299 	pm_runtime_put_noidle(&vdev->pdev->dev);
300 	up_write(&vdev->memory_lock);
301 
302 	return 0;
303 }
304 
305 static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags,
306 				  void __user *arg, size_t argsz)
307 {
308 	struct vfio_pci_core_device *vdev =
309 		container_of(device, struct vfio_pci_core_device, vdev);
310 	int ret;
311 
312 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
313 	if (ret != 1)
314 		return ret;
315 
316 	/*
317 	 * Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count
318 	 * will be decremented. The pm_runtime_put() will be invoked again
319 	 * while returning from the ioctl and then the device can go into
320 	 * runtime suspended state.
321 	 */
322 	return vfio_pci_runtime_pm_entry(vdev, NULL);
323 }
324 
325 static int vfio_pci_core_pm_entry_with_wakeup(
326 	struct vfio_device *device, u32 flags,
327 	struct vfio_device_low_power_entry_with_wakeup __user *arg,
328 	size_t argsz)
329 {
330 	struct vfio_pci_core_device *vdev =
331 		container_of(device, struct vfio_pci_core_device, vdev);
332 	struct vfio_device_low_power_entry_with_wakeup entry;
333 	struct eventfd_ctx *efdctx;
334 	int ret;
335 
336 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
337 				 sizeof(entry));
338 	if (ret != 1)
339 		return ret;
340 
341 	if (copy_from_user(&entry, arg, sizeof(entry)))
342 		return -EFAULT;
343 
344 	if (entry.wakeup_eventfd < 0)
345 		return -EINVAL;
346 
347 	efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd);
348 	if (IS_ERR(efdctx))
349 		return PTR_ERR(efdctx);
350 
351 	ret = vfio_pci_runtime_pm_entry(vdev, efdctx);
352 	if (ret)
353 		eventfd_ctx_put(efdctx);
354 
355 	return ret;
356 }
357 
358 static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
359 {
360 	if (vdev->pm_runtime_engaged) {
361 		vdev->pm_runtime_engaged = false;
362 		pm_runtime_get_noresume(&vdev->pdev->dev);
363 
364 		if (vdev->pm_wake_eventfd_ctx) {
365 			eventfd_ctx_put(vdev->pm_wake_eventfd_ctx);
366 			vdev->pm_wake_eventfd_ctx = NULL;
367 		}
368 	}
369 }
370 
371 static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
372 {
373 	/*
374 	 * The vdev power related flags are protected with 'memory_lock'
375 	 * semaphore.
376 	 */
377 	down_write(&vdev->memory_lock);
378 	__vfio_pci_runtime_pm_exit(vdev);
379 	up_write(&vdev->memory_lock);
380 }
381 
382 static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags,
383 				 void __user *arg, size_t argsz)
384 {
385 	struct vfio_pci_core_device *vdev =
386 		container_of(device, struct vfio_pci_core_device, vdev);
387 	int ret;
388 
389 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
390 	if (ret != 1)
391 		return ret;
392 
393 	/*
394 	 * The device is always in the active state here due to pm wrappers
395 	 * around ioctls. If the device had entered a low power state and
396 	 * pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has
397 	 * already signaled the eventfd and exited low power mode itself.
398 	 * pm_runtime_engaged protects the redundant call here.
399 	 */
400 	vfio_pci_runtime_pm_exit(vdev);
401 	return 0;
402 }
403 
404 #ifdef CONFIG_PM
405 static int vfio_pci_core_runtime_suspend(struct device *dev)
406 {
407 	struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
408 
409 	down_write(&vdev->memory_lock);
410 	/*
411 	 * The user can move the device into D3hot state before invoking
412 	 * power management IOCTL. Move the device into D0 state here and then
413 	 * the pci-driver core runtime PM suspend function will move the device
414 	 * into the low power state. Also, for the devices which have
415 	 * NoSoftRst-, it will help in restoring the original state
416 	 * (saved locally in 'vdev->pm_save').
417 	 */
418 	vfio_pci_set_power_state(vdev, PCI_D0);
419 	up_write(&vdev->memory_lock);
420 
421 	/*
422 	 * If INTx is enabled, then mask INTx before going into the runtime
423 	 * suspended state and unmask the same in the runtime resume.
424 	 * If INTx has already been masked by the user, then
425 	 * vfio_pci_intx_mask() will return false and in that case, INTx
426 	 * should not be unmasked in the runtime resume.
427 	 */
428 	vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) &&
429 				vfio_pci_intx_mask(vdev));
430 
431 	return 0;
432 }
433 
434 static int vfio_pci_core_runtime_resume(struct device *dev)
435 {
436 	struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
437 
438 	/*
439 	 * Resume with a pm_wake_eventfd_ctx signals the eventfd and exit
440 	 * low power mode.
441 	 */
442 	down_write(&vdev->memory_lock);
443 	if (vdev->pm_wake_eventfd_ctx) {
444 		eventfd_signal(vdev->pm_wake_eventfd_ctx, 1);
445 		__vfio_pci_runtime_pm_exit(vdev);
446 	}
447 	up_write(&vdev->memory_lock);
448 
449 	if (vdev->pm_intx_masked)
450 		vfio_pci_intx_unmask(vdev);
451 
452 	return 0;
453 }
454 #endif /* CONFIG_PM */
455 
456 /*
457  * The pci-driver core runtime PM routines always save the device state
458  * before going into suspended state. If the device is going into low power
459  * state with only with runtime PM ops, then no explicit handling is needed
460  * for the devices which have NoSoftRst-.
461  */
462 static const struct dev_pm_ops vfio_pci_core_pm_ops = {
463 	SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend,
464 			   vfio_pci_core_runtime_resume,
465 			   NULL)
466 };
467 
468 int vfio_pci_core_enable(struct vfio_pci_core_device *vdev)
469 {
470 	struct pci_dev *pdev = vdev->pdev;
471 	int ret;
472 	u16 cmd;
473 	u8 msix_pos;
474 
475 	if (!disable_idle_d3) {
476 		ret = pm_runtime_resume_and_get(&pdev->dev);
477 		if (ret < 0)
478 			return ret;
479 	}
480 
481 	/* Don't allow our initial saved state to include busmaster */
482 	pci_clear_master(pdev);
483 
484 	ret = pci_enable_device(pdev);
485 	if (ret)
486 		goto out_power;
487 
488 	/* If reset fails because of the device lock, fail this path entirely */
489 	ret = pci_try_reset_function(pdev);
490 	if (ret == -EAGAIN)
491 		goto out_disable_device;
492 
493 	vdev->reset_works = !ret;
494 	pci_save_state(pdev);
495 	vdev->pci_saved_state = pci_store_saved_state(pdev);
496 	if (!vdev->pci_saved_state)
497 		pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__);
498 
499 	if (likely(!nointxmask)) {
500 		if (vfio_pci_nointx(pdev)) {
501 			pci_info(pdev, "Masking broken INTx support\n");
502 			vdev->nointx = true;
503 			pci_intx(pdev, 0);
504 		} else
505 			vdev->pci_2_3 = pci_intx_mask_supported(pdev);
506 	}
507 
508 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
509 	if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) {
510 		cmd &= ~PCI_COMMAND_INTX_DISABLE;
511 		pci_write_config_word(pdev, PCI_COMMAND, cmd);
512 	}
513 
514 	ret = vfio_pci_zdev_open_device(vdev);
515 	if (ret)
516 		goto out_free_state;
517 
518 	ret = vfio_config_init(vdev);
519 	if (ret)
520 		goto out_free_zdev;
521 
522 	msix_pos = pdev->msix_cap;
523 	if (msix_pos) {
524 		u16 flags;
525 		u32 table;
526 
527 		pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags);
528 		pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table);
529 
530 		vdev->msix_bar = table & PCI_MSIX_TABLE_BIR;
531 		vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET;
532 		vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16;
533 	} else
534 		vdev->msix_bar = 0xFF;
535 
536 	if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev))
537 		vdev->has_vga = true;
538 
539 
540 	return 0;
541 
542 out_free_zdev:
543 	vfio_pci_zdev_close_device(vdev);
544 out_free_state:
545 	kfree(vdev->pci_saved_state);
546 	vdev->pci_saved_state = NULL;
547 out_disable_device:
548 	pci_disable_device(pdev);
549 out_power:
550 	if (!disable_idle_d3)
551 		pm_runtime_put(&pdev->dev);
552 	return ret;
553 }
554 EXPORT_SYMBOL_GPL(vfio_pci_core_enable);
555 
556 void vfio_pci_core_disable(struct vfio_pci_core_device *vdev)
557 {
558 	struct pci_dev *pdev = vdev->pdev;
559 	struct vfio_pci_dummy_resource *dummy_res, *tmp;
560 	struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp;
561 	int i, bar;
562 
563 	/* For needs_reset */
564 	lockdep_assert_held(&vdev->vdev.dev_set->lock);
565 
566 	/*
567 	 * This function can be invoked while the power state is non-D0.
568 	 * This non-D0 power state can be with or without runtime PM.
569 	 * vfio_pci_runtime_pm_exit() will internally increment the usage
570 	 * count corresponding to pm_runtime_put() called during low power
571 	 * feature entry and then pm_runtime_resume() will wake up the device,
572 	 * if the device has already gone into the suspended state. Otherwise,
573 	 * the vfio_pci_set_power_state() will change the device power state
574 	 * to D0.
575 	 */
576 	vfio_pci_runtime_pm_exit(vdev);
577 	pm_runtime_resume(&pdev->dev);
578 
579 	/*
580 	 * This function calls __pci_reset_function_locked() which internally
581 	 * can use pci_pm_reset() for the function reset. pci_pm_reset() will
582 	 * fail if the power state is non-D0. Also, for the devices which
583 	 * have NoSoftRst-, the reset function can cause the PCI config space
584 	 * reset without restoring the original state (saved locally in
585 	 * 'vdev->pm_save').
586 	 */
587 	vfio_pci_set_power_state(vdev, PCI_D0);
588 
589 	/* Stop the device from further DMA */
590 	pci_clear_master(pdev);
591 
592 	vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE |
593 				VFIO_IRQ_SET_ACTION_TRIGGER,
594 				vdev->irq_type, 0, 0, NULL);
595 
596 	/* Device closed, don't need mutex here */
597 	list_for_each_entry_safe(ioeventfd, ioeventfd_tmp,
598 				 &vdev->ioeventfds_list, next) {
599 		vfio_virqfd_disable(&ioeventfd->virqfd);
600 		list_del(&ioeventfd->next);
601 		kfree(ioeventfd);
602 	}
603 	vdev->ioeventfds_nr = 0;
604 
605 	vdev->virq_disabled = false;
606 
607 	for (i = 0; i < vdev->num_regions; i++)
608 		vdev->region[i].ops->release(vdev, &vdev->region[i]);
609 
610 	vdev->num_regions = 0;
611 	kfree(vdev->region);
612 	vdev->region = NULL; /* don't krealloc a freed pointer */
613 
614 	vfio_config_free(vdev);
615 
616 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
617 		bar = i + PCI_STD_RESOURCES;
618 		if (!vdev->barmap[bar])
619 			continue;
620 		pci_iounmap(pdev, vdev->barmap[bar]);
621 		pci_release_selected_regions(pdev, 1 << bar);
622 		vdev->barmap[bar] = NULL;
623 	}
624 
625 	list_for_each_entry_safe(dummy_res, tmp,
626 				 &vdev->dummy_resources_list, res_next) {
627 		list_del(&dummy_res->res_next);
628 		release_resource(&dummy_res->resource);
629 		kfree(dummy_res);
630 	}
631 
632 	vdev->needs_reset = true;
633 
634 	vfio_pci_zdev_close_device(vdev);
635 
636 	/*
637 	 * If we have saved state, restore it.  If we can reset the device,
638 	 * even better.  Resetting with current state seems better than
639 	 * nothing, but saving and restoring current state without reset
640 	 * is just busy work.
641 	 */
642 	if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) {
643 		pci_info(pdev, "%s: Couldn't reload saved state\n", __func__);
644 
645 		if (!vdev->reset_works)
646 			goto out;
647 
648 		pci_save_state(pdev);
649 	}
650 
651 	/*
652 	 * Disable INTx and MSI, presumably to avoid spurious interrupts
653 	 * during reset.  Stolen from pci_reset_function()
654 	 */
655 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
656 
657 	/*
658 	 * Try to get the locks ourselves to prevent a deadlock. The
659 	 * success of this is dependent on being able to lock the device,
660 	 * which is not always possible.
661 	 * We can not use the "try" reset interface here, which will
662 	 * overwrite the previously restored configuration information.
663 	 */
664 	if (vdev->reset_works && pci_dev_trylock(pdev)) {
665 		if (!__pci_reset_function_locked(pdev))
666 			vdev->needs_reset = false;
667 		pci_dev_unlock(pdev);
668 	}
669 
670 	pci_restore_state(pdev);
671 out:
672 	pci_disable_device(pdev);
673 
674 	vfio_pci_dev_set_try_reset(vdev->vdev.dev_set);
675 
676 	/* Put the pm-runtime usage counter acquired during enable */
677 	if (!disable_idle_d3)
678 		pm_runtime_put(&pdev->dev);
679 }
680 EXPORT_SYMBOL_GPL(vfio_pci_core_disable);
681 
682 void vfio_pci_core_close_device(struct vfio_device *core_vdev)
683 {
684 	struct vfio_pci_core_device *vdev =
685 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
686 
687 	if (vdev->sriov_pf_core_dev) {
688 		mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
689 		WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users);
690 		vdev->sriov_pf_core_dev->vf_token->users--;
691 		mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
692 	}
693 #if IS_ENABLED(CONFIG_EEH)
694 	eeh_dev_release(vdev->pdev);
695 #endif
696 	vfio_pci_core_disable(vdev);
697 
698 	mutex_lock(&vdev->igate);
699 	if (vdev->err_trigger) {
700 		eventfd_ctx_put(vdev->err_trigger);
701 		vdev->err_trigger = NULL;
702 	}
703 	if (vdev->req_trigger) {
704 		eventfd_ctx_put(vdev->req_trigger);
705 		vdev->req_trigger = NULL;
706 	}
707 	mutex_unlock(&vdev->igate);
708 }
709 EXPORT_SYMBOL_GPL(vfio_pci_core_close_device);
710 
711 void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev)
712 {
713 	vfio_pci_probe_mmaps(vdev);
714 #if IS_ENABLED(CONFIG_EEH)
715 	eeh_dev_open(vdev->pdev);
716 #endif
717 
718 	if (vdev->sriov_pf_core_dev) {
719 		mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
720 		vdev->sriov_pf_core_dev->vf_token->users++;
721 		mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
722 	}
723 }
724 EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable);
725 
726 static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type)
727 {
728 	if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) {
729 		u8 pin;
730 
731 		if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) ||
732 		    vdev->nointx || vdev->pdev->is_virtfn)
733 			return 0;
734 
735 		pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin);
736 
737 		return pin ? 1 : 0;
738 	} else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) {
739 		u8 pos;
740 		u16 flags;
741 
742 		pos = vdev->pdev->msi_cap;
743 		if (pos) {
744 			pci_read_config_word(vdev->pdev,
745 					     pos + PCI_MSI_FLAGS, &flags);
746 			return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1);
747 		}
748 	} else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) {
749 		u8 pos;
750 		u16 flags;
751 
752 		pos = vdev->pdev->msix_cap;
753 		if (pos) {
754 			pci_read_config_word(vdev->pdev,
755 					     pos + PCI_MSIX_FLAGS, &flags);
756 
757 			return (flags & PCI_MSIX_FLAGS_QSIZE) + 1;
758 		}
759 	} else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) {
760 		if (pci_is_pcie(vdev->pdev))
761 			return 1;
762 	} else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) {
763 		return 1;
764 	}
765 
766 	return 0;
767 }
768 
769 static int vfio_pci_count_devs(struct pci_dev *pdev, void *data)
770 {
771 	(*(int *)data)++;
772 	return 0;
773 }
774 
775 struct vfio_pci_fill_info {
776 	int max;
777 	int cur;
778 	struct vfio_pci_dependent_device *devices;
779 };
780 
781 static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data)
782 {
783 	struct vfio_pci_fill_info *fill = data;
784 	struct iommu_group *iommu_group;
785 
786 	if (fill->cur == fill->max)
787 		return -EAGAIN; /* Something changed, try again */
788 
789 	iommu_group = iommu_group_get(&pdev->dev);
790 	if (!iommu_group)
791 		return -EPERM; /* Cannot reset non-isolated devices */
792 
793 	fill->devices[fill->cur].group_id = iommu_group_id(iommu_group);
794 	fill->devices[fill->cur].segment = pci_domain_nr(pdev->bus);
795 	fill->devices[fill->cur].bus = pdev->bus->number;
796 	fill->devices[fill->cur].devfn = pdev->devfn;
797 	fill->cur++;
798 	iommu_group_put(iommu_group);
799 	return 0;
800 }
801 
802 struct vfio_pci_group_info {
803 	int count;
804 	struct file **files;
805 };
806 
807 static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot)
808 {
809 	for (; pdev; pdev = pdev->bus->self)
810 		if (pdev->bus == slot->bus)
811 			return (pdev->slot == slot);
812 	return false;
813 }
814 
815 struct vfio_pci_walk_info {
816 	int (*fn)(struct pci_dev *pdev, void *data);
817 	void *data;
818 	struct pci_dev *pdev;
819 	bool slot;
820 	int ret;
821 };
822 
823 static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data)
824 {
825 	struct vfio_pci_walk_info *walk = data;
826 
827 	if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot))
828 		walk->ret = walk->fn(pdev, walk->data);
829 
830 	return walk->ret;
831 }
832 
833 static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev,
834 					 int (*fn)(struct pci_dev *,
835 						   void *data), void *data,
836 					 bool slot)
837 {
838 	struct vfio_pci_walk_info walk = {
839 		.fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0,
840 	};
841 
842 	pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk);
843 
844 	return walk.ret;
845 }
846 
847 static int msix_mmappable_cap(struct vfio_pci_core_device *vdev,
848 			      struct vfio_info_cap *caps)
849 {
850 	struct vfio_info_cap_header header = {
851 		.id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE,
852 		.version = 1
853 	};
854 
855 	return vfio_info_add_capability(caps, &header, sizeof(header));
856 }
857 
858 int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev,
859 				      unsigned int type, unsigned int subtype,
860 				      const struct vfio_pci_regops *ops,
861 				      size_t size, u32 flags, void *data)
862 {
863 	struct vfio_pci_region *region;
864 
865 	region = krealloc(vdev->region,
866 			  (vdev->num_regions + 1) * sizeof(*region),
867 			  GFP_KERNEL_ACCOUNT);
868 	if (!region)
869 		return -ENOMEM;
870 
871 	vdev->region = region;
872 	vdev->region[vdev->num_regions].type = type;
873 	vdev->region[vdev->num_regions].subtype = subtype;
874 	vdev->region[vdev->num_regions].ops = ops;
875 	vdev->region[vdev->num_regions].size = size;
876 	vdev->region[vdev->num_regions].flags = flags;
877 	vdev->region[vdev->num_regions].data = data;
878 
879 	vdev->num_regions++;
880 
881 	return 0;
882 }
883 EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region);
884 
885 static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev,
886 				   struct vfio_device_info __user *arg)
887 {
888 	unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs);
889 	struct vfio_device_info info;
890 	struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
891 	unsigned long capsz;
892 	int ret;
893 
894 	/* For backward compatibility, cannot require this */
895 	capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset);
896 
897 	if (copy_from_user(&info, arg, minsz))
898 		return -EFAULT;
899 
900 	if (info.argsz < minsz)
901 		return -EINVAL;
902 
903 	if (info.argsz >= capsz) {
904 		minsz = capsz;
905 		info.cap_offset = 0;
906 	}
907 
908 	info.flags = VFIO_DEVICE_FLAGS_PCI;
909 
910 	if (vdev->reset_works)
911 		info.flags |= VFIO_DEVICE_FLAGS_RESET;
912 
913 	info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions;
914 	info.num_irqs = VFIO_PCI_NUM_IRQS;
915 
916 	ret = vfio_pci_info_zdev_add_caps(vdev, &caps);
917 	if (ret && ret != -ENODEV) {
918 		pci_warn(vdev->pdev,
919 			 "Failed to setup zPCI info capabilities\n");
920 		return ret;
921 	}
922 
923 	if (caps.size) {
924 		info.flags |= VFIO_DEVICE_FLAGS_CAPS;
925 		if (info.argsz < sizeof(info) + caps.size) {
926 			info.argsz = sizeof(info) + caps.size;
927 		} else {
928 			vfio_info_cap_shift(&caps, sizeof(info));
929 			if (copy_to_user(arg + 1, caps.buf, caps.size)) {
930 				kfree(caps.buf);
931 				return -EFAULT;
932 			}
933 			info.cap_offset = sizeof(*arg);
934 		}
935 
936 		kfree(caps.buf);
937 	}
938 
939 	return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
940 }
941 
942 static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev,
943 					  struct vfio_region_info __user *arg)
944 {
945 	unsigned long minsz = offsetofend(struct vfio_region_info, offset);
946 	struct pci_dev *pdev = vdev->pdev;
947 	struct vfio_region_info info;
948 	struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
949 	int i, ret;
950 
951 	if (copy_from_user(&info, arg, minsz))
952 		return -EFAULT;
953 
954 	if (info.argsz < minsz)
955 		return -EINVAL;
956 
957 	switch (info.index) {
958 	case VFIO_PCI_CONFIG_REGION_INDEX:
959 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
960 		info.size = pdev->cfg_size;
961 		info.flags = VFIO_REGION_INFO_FLAG_READ |
962 			     VFIO_REGION_INFO_FLAG_WRITE;
963 		break;
964 	case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
965 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
966 		info.size = pci_resource_len(pdev, info.index);
967 		if (!info.size) {
968 			info.flags = 0;
969 			break;
970 		}
971 
972 		info.flags = VFIO_REGION_INFO_FLAG_READ |
973 			     VFIO_REGION_INFO_FLAG_WRITE;
974 		if (vdev->bar_mmap_supported[info.index]) {
975 			info.flags |= VFIO_REGION_INFO_FLAG_MMAP;
976 			if (info.index == vdev->msix_bar) {
977 				ret = msix_mmappable_cap(vdev, &caps);
978 				if (ret)
979 					return ret;
980 			}
981 		}
982 
983 		break;
984 	case VFIO_PCI_ROM_REGION_INDEX: {
985 		void __iomem *io;
986 		size_t size;
987 		u16 cmd;
988 
989 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
990 		info.flags = 0;
991 
992 		/* Report the BAR size, not the ROM size */
993 		info.size = pci_resource_len(pdev, info.index);
994 		if (!info.size) {
995 			/* Shadow ROMs appear as PCI option ROMs */
996 			if (pdev->resource[PCI_ROM_RESOURCE].flags &
997 			    IORESOURCE_ROM_SHADOW)
998 				info.size = 0x20000;
999 			else
1000 				break;
1001 		}
1002 
1003 		/*
1004 		 * Is it really there?  Enable memory decode for implicit access
1005 		 * in pci_map_rom().
1006 		 */
1007 		cmd = vfio_pci_memory_lock_and_enable(vdev);
1008 		io = pci_map_rom(pdev, &size);
1009 		if (io) {
1010 			info.flags = VFIO_REGION_INFO_FLAG_READ;
1011 			pci_unmap_rom(pdev, io);
1012 		} else {
1013 			info.size = 0;
1014 		}
1015 		vfio_pci_memory_unlock_and_restore(vdev, cmd);
1016 
1017 		break;
1018 	}
1019 	case VFIO_PCI_VGA_REGION_INDEX:
1020 		if (!vdev->has_vga)
1021 			return -EINVAL;
1022 
1023 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1024 		info.size = 0xc0000;
1025 		info.flags = VFIO_REGION_INFO_FLAG_READ |
1026 			     VFIO_REGION_INFO_FLAG_WRITE;
1027 
1028 		break;
1029 	default: {
1030 		struct vfio_region_info_cap_type cap_type = {
1031 			.header.id = VFIO_REGION_INFO_CAP_TYPE,
1032 			.header.version = 1
1033 		};
1034 
1035 		if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1036 			return -EINVAL;
1037 		info.index = array_index_nospec(
1038 			info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions);
1039 
1040 		i = info.index - VFIO_PCI_NUM_REGIONS;
1041 
1042 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1043 		info.size = vdev->region[i].size;
1044 		info.flags = vdev->region[i].flags;
1045 
1046 		cap_type.type = vdev->region[i].type;
1047 		cap_type.subtype = vdev->region[i].subtype;
1048 
1049 		ret = vfio_info_add_capability(&caps, &cap_type.header,
1050 					       sizeof(cap_type));
1051 		if (ret)
1052 			return ret;
1053 
1054 		if (vdev->region[i].ops->add_capability) {
1055 			ret = vdev->region[i].ops->add_capability(
1056 				vdev, &vdev->region[i], &caps);
1057 			if (ret)
1058 				return ret;
1059 		}
1060 	}
1061 	}
1062 
1063 	if (caps.size) {
1064 		info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
1065 		if (info.argsz < sizeof(info) + caps.size) {
1066 			info.argsz = sizeof(info) + caps.size;
1067 			info.cap_offset = 0;
1068 		} else {
1069 			vfio_info_cap_shift(&caps, sizeof(info));
1070 			if (copy_to_user(arg + 1, caps.buf, caps.size)) {
1071 				kfree(caps.buf);
1072 				return -EFAULT;
1073 			}
1074 			info.cap_offset = sizeof(*arg);
1075 		}
1076 
1077 		kfree(caps.buf);
1078 	}
1079 
1080 	return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1081 }
1082 
1083 static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev,
1084 				       struct vfio_irq_info __user *arg)
1085 {
1086 	unsigned long minsz = offsetofend(struct vfio_irq_info, count);
1087 	struct vfio_irq_info info;
1088 
1089 	if (copy_from_user(&info, arg, minsz))
1090 		return -EFAULT;
1091 
1092 	if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
1093 		return -EINVAL;
1094 
1095 	switch (info.index) {
1096 	case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX:
1097 	case VFIO_PCI_REQ_IRQ_INDEX:
1098 		break;
1099 	case VFIO_PCI_ERR_IRQ_INDEX:
1100 		if (pci_is_pcie(vdev->pdev))
1101 			break;
1102 		fallthrough;
1103 	default:
1104 		return -EINVAL;
1105 	}
1106 
1107 	info.flags = VFIO_IRQ_INFO_EVENTFD;
1108 
1109 	info.count = vfio_pci_get_irq_count(vdev, info.index);
1110 
1111 	if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
1112 		info.flags |=
1113 			(VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED);
1114 	else
1115 		info.flags |= VFIO_IRQ_INFO_NORESIZE;
1116 
1117 	return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1118 }
1119 
1120 static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev,
1121 				   struct vfio_irq_set __user *arg)
1122 {
1123 	unsigned long minsz = offsetofend(struct vfio_irq_set, count);
1124 	struct vfio_irq_set hdr;
1125 	u8 *data = NULL;
1126 	int max, ret = 0;
1127 	size_t data_size = 0;
1128 
1129 	if (copy_from_user(&hdr, arg, minsz))
1130 		return -EFAULT;
1131 
1132 	max = vfio_pci_get_irq_count(vdev, hdr.index);
1133 
1134 	ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS,
1135 						 &data_size);
1136 	if (ret)
1137 		return ret;
1138 
1139 	if (data_size) {
1140 		data = memdup_user(&arg->data, data_size);
1141 		if (IS_ERR(data))
1142 			return PTR_ERR(data);
1143 	}
1144 
1145 	mutex_lock(&vdev->igate);
1146 
1147 	ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start,
1148 				      hdr.count, data);
1149 
1150 	mutex_unlock(&vdev->igate);
1151 	kfree(data);
1152 
1153 	return ret;
1154 }
1155 
1156 static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev,
1157 				void __user *arg)
1158 {
1159 	int ret;
1160 
1161 	if (!vdev->reset_works)
1162 		return -EINVAL;
1163 
1164 	vfio_pci_zap_and_down_write_memory_lock(vdev);
1165 
1166 	/*
1167 	 * This function can be invoked while the power state is non-D0. If
1168 	 * pci_try_reset_function() has been called while the power state is
1169 	 * non-D0, then pci_try_reset_function() will internally set the power
1170 	 * state to D0 without vfio driver involvement. For the devices which
1171 	 * have NoSoftRst-, the reset function can cause the PCI config space
1172 	 * reset without restoring the original state (saved locally in
1173 	 * 'vdev->pm_save').
1174 	 */
1175 	vfio_pci_set_power_state(vdev, PCI_D0);
1176 
1177 	ret = pci_try_reset_function(vdev->pdev);
1178 	up_write(&vdev->memory_lock);
1179 
1180 	return ret;
1181 }
1182 
1183 static int vfio_pci_ioctl_get_pci_hot_reset_info(
1184 	struct vfio_pci_core_device *vdev,
1185 	struct vfio_pci_hot_reset_info __user *arg)
1186 {
1187 	unsigned long minsz =
1188 		offsetofend(struct vfio_pci_hot_reset_info, count);
1189 	struct vfio_pci_hot_reset_info hdr;
1190 	struct vfio_pci_fill_info fill = { 0 };
1191 	struct vfio_pci_dependent_device *devices = NULL;
1192 	bool slot = false;
1193 	int ret = 0;
1194 
1195 	if (copy_from_user(&hdr, arg, minsz))
1196 		return -EFAULT;
1197 
1198 	if (hdr.argsz < minsz)
1199 		return -EINVAL;
1200 
1201 	hdr.flags = 0;
1202 
1203 	/* Can we do a slot or bus reset or neither? */
1204 	if (!pci_probe_reset_slot(vdev->pdev->slot))
1205 		slot = true;
1206 	else if (pci_probe_reset_bus(vdev->pdev->bus))
1207 		return -ENODEV;
1208 
1209 	/* How many devices are affected? */
1210 	ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
1211 					    &fill.max, slot);
1212 	if (ret)
1213 		return ret;
1214 
1215 	WARN_ON(!fill.max); /* Should always be at least one */
1216 
1217 	/*
1218 	 * If there's enough space, fill it now, otherwise return -ENOSPC and
1219 	 * the number of devices affected.
1220 	 */
1221 	if (hdr.argsz < sizeof(hdr) + (fill.max * sizeof(*devices))) {
1222 		ret = -ENOSPC;
1223 		hdr.count = fill.max;
1224 		goto reset_info_exit;
1225 	}
1226 
1227 	devices = kcalloc(fill.max, sizeof(*devices), GFP_KERNEL);
1228 	if (!devices)
1229 		return -ENOMEM;
1230 
1231 	fill.devices = devices;
1232 
1233 	ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs,
1234 					    &fill, slot);
1235 
1236 	/*
1237 	 * If a device was removed between counting and filling, we may come up
1238 	 * short of fill.max.  If a device was added, we'll have a return of
1239 	 * -EAGAIN above.
1240 	 */
1241 	if (!ret)
1242 		hdr.count = fill.cur;
1243 
1244 reset_info_exit:
1245 	if (copy_to_user(arg, &hdr, minsz))
1246 		ret = -EFAULT;
1247 
1248 	if (!ret) {
1249 		if (copy_to_user(&arg->devices, devices,
1250 				 hdr.count * sizeof(*devices)))
1251 			ret = -EFAULT;
1252 	}
1253 
1254 	kfree(devices);
1255 	return ret;
1256 }
1257 
1258 static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev,
1259 					struct vfio_pci_hot_reset __user *arg)
1260 {
1261 	unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count);
1262 	struct vfio_pci_hot_reset hdr;
1263 	int32_t *group_fds;
1264 	struct file **files;
1265 	struct vfio_pci_group_info info;
1266 	bool slot = false;
1267 	int file_idx, count = 0, ret = 0;
1268 
1269 	if (copy_from_user(&hdr, arg, minsz))
1270 		return -EFAULT;
1271 
1272 	if (hdr.argsz < minsz || hdr.flags)
1273 		return -EINVAL;
1274 
1275 	/* Can we do a slot or bus reset or neither? */
1276 	if (!pci_probe_reset_slot(vdev->pdev->slot))
1277 		slot = true;
1278 	else if (pci_probe_reset_bus(vdev->pdev->bus))
1279 		return -ENODEV;
1280 
1281 	/*
1282 	 * We can't let userspace give us an arbitrarily large buffer to copy,
1283 	 * so verify how many we think there could be.  Note groups can have
1284 	 * multiple devices so one group per device is the max.
1285 	 */
1286 	ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
1287 					    &count, slot);
1288 	if (ret)
1289 		return ret;
1290 
1291 	/* Somewhere between 1 and count is OK */
1292 	if (!hdr.count || hdr.count > count)
1293 		return -EINVAL;
1294 
1295 	group_fds = kcalloc(hdr.count, sizeof(*group_fds), GFP_KERNEL);
1296 	files = kcalloc(hdr.count, sizeof(*files), GFP_KERNEL);
1297 	if (!group_fds || !files) {
1298 		kfree(group_fds);
1299 		kfree(files);
1300 		return -ENOMEM;
1301 	}
1302 
1303 	if (copy_from_user(group_fds, arg->group_fds,
1304 			   hdr.count * sizeof(*group_fds))) {
1305 		kfree(group_fds);
1306 		kfree(files);
1307 		return -EFAULT;
1308 	}
1309 
1310 	/*
1311 	 * For each group_fd, get the group through the vfio external user
1312 	 * interface and store the group and iommu ID.  This ensures the group
1313 	 * is held across the reset.
1314 	 */
1315 	for (file_idx = 0; file_idx < hdr.count; file_idx++) {
1316 		struct file *file = fget(group_fds[file_idx]);
1317 
1318 		if (!file) {
1319 			ret = -EBADF;
1320 			break;
1321 		}
1322 
1323 		/* Ensure the FD is a vfio group FD.*/
1324 		if (!vfio_file_is_group(file)) {
1325 			fput(file);
1326 			ret = -EINVAL;
1327 			break;
1328 		}
1329 
1330 		files[file_idx] = file;
1331 	}
1332 
1333 	kfree(group_fds);
1334 
1335 	/* release reference to groups on error */
1336 	if (ret)
1337 		goto hot_reset_release;
1338 
1339 	info.count = hdr.count;
1340 	info.files = files;
1341 
1342 	ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info);
1343 
1344 hot_reset_release:
1345 	for (file_idx--; file_idx >= 0; file_idx--)
1346 		fput(files[file_idx]);
1347 
1348 	kfree(files);
1349 	return ret;
1350 }
1351 
1352 static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev,
1353 				    struct vfio_device_ioeventfd __user *arg)
1354 {
1355 	unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd);
1356 	struct vfio_device_ioeventfd ioeventfd;
1357 	int count;
1358 
1359 	if (copy_from_user(&ioeventfd, arg, minsz))
1360 		return -EFAULT;
1361 
1362 	if (ioeventfd.argsz < minsz)
1363 		return -EINVAL;
1364 
1365 	if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK)
1366 		return -EINVAL;
1367 
1368 	count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK;
1369 
1370 	if (hweight8(count) != 1 || ioeventfd.fd < -1)
1371 		return -EINVAL;
1372 
1373 	return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count,
1374 				  ioeventfd.fd);
1375 }
1376 
1377 long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd,
1378 			 unsigned long arg)
1379 {
1380 	struct vfio_pci_core_device *vdev =
1381 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1382 	void __user *uarg = (void __user *)arg;
1383 
1384 	switch (cmd) {
1385 	case VFIO_DEVICE_GET_INFO:
1386 		return vfio_pci_ioctl_get_info(vdev, uarg);
1387 	case VFIO_DEVICE_GET_IRQ_INFO:
1388 		return vfio_pci_ioctl_get_irq_info(vdev, uarg);
1389 	case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO:
1390 		return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg);
1391 	case VFIO_DEVICE_GET_REGION_INFO:
1392 		return vfio_pci_ioctl_get_region_info(vdev, uarg);
1393 	case VFIO_DEVICE_IOEVENTFD:
1394 		return vfio_pci_ioctl_ioeventfd(vdev, uarg);
1395 	case VFIO_DEVICE_PCI_HOT_RESET:
1396 		return vfio_pci_ioctl_pci_hot_reset(vdev, uarg);
1397 	case VFIO_DEVICE_RESET:
1398 		return vfio_pci_ioctl_reset(vdev, uarg);
1399 	case VFIO_DEVICE_SET_IRQS:
1400 		return vfio_pci_ioctl_set_irqs(vdev, uarg);
1401 	default:
1402 		return -ENOTTY;
1403 	}
1404 }
1405 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl);
1406 
1407 static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags,
1408 				       uuid_t __user *arg, size_t argsz)
1409 {
1410 	struct vfio_pci_core_device *vdev =
1411 		container_of(device, struct vfio_pci_core_device, vdev);
1412 	uuid_t uuid;
1413 	int ret;
1414 
1415 	if (!vdev->vf_token)
1416 		return -ENOTTY;
1417 	/*
1418 	 * We do not support GET of the VF Token UUID as this could
1419 	 * expose the token of the previous device user.
1420 	 */
1421 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
1422 				 sizeof(uuid));
1423 	if (ret != 1)
1424 		return ret;
1425 
1426 	if (copy_from_user(&uuid, arg, sizeof(uuid)))
1427 		return -EFAULT;
1428 
1429 	mutex_lock(&vdev->vf_token->lock);
1430 	uuid_copy(&vdev->vf_token->uuid, &uuid);
1431 	mutex_unlock(&vdev->vf_token->lock);
1432 	return 0;
1433 }
1434 
1435 int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags,
1436 				void __user *arg, size_t argsz)
1437 {
1438 	switch (flags & VFIO_DEVICE_FEATURE_MASK) {
1439 	case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY:
1440 		return vfio_pci_core_pm_entry(device, flags, arg, argsz);
1441 	case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP:
1442 		return vfio_pci_core_pm_entry_with_wakeup(device, flags,
1443 							  arg, argsz);
1444 	case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT:
1445 		return vfio_pci_core_pm_exit(device, flags, arg, argsz);
1446 	case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN:
1447 		return vfio_pci_core_feature_token(device, flags, arg, argsz);
1448 	default:
1449 		return -ENOTTY;
1450 	}
1451 }
1452 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature);
1453 
1454 static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1455 			   size_t count, loff_t *ppos, bool iswrite)
1456 {
1457 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
1458 	int ret;
1459 
1460 	if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1461 		return -EINVAL;
1462 
1463 	ret = pm_runtime_resume_and_get(&vdev->pdev->dev);
1464 	if (ret) {
1465 		pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n",
1466 				     ret);
1467 		return -EIO;
1468 	}
1469 
1470 	switch (index) {
1471 	case VFIO_PCI_CONFIG_REGION_INDEX:
1472 		ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite);
1473 		break;
1474 
1475 	case VFIO_PCI_ROM_REGION_INDEX:
1476 		if (iswrite)
1477 			ret = -EINVAL;
1478 		else
1479 			ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false);
1480 		break;
1481 
1482 	case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1483 		ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite);
1484 		break;
1485 
1486 	case VFIO_PCI_VGA_REGION_INDEX:
1487 		ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite);
1488 		break;
1489 
1490 	default:
1491 		index -= VFIO_PCI_NUM_REGIONS;
1492 		ret = vdev->region[index].ops->rw(vdev, buf,
1493 						   count, ppos, iswrite);
1494 		break;
1495 	}
1496 
1497 	pm_runtime_put(&vdev->pdev->dev);
1498 	return ret;
1499 }
1500 
1501 ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf,
1502 		size_t count, loff_t *ppos)
1503 {
1504 	struct vfio_pci_core_device *vdev =
1505 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1506 
1507 	if (!count)
1508 		return 0;
1509 
1510 	return vfio_pci_rw(vdev, buf, count, ppos, false);
1511 }
1512 EXPORT_SYMBOL_GPL(vfio_pci_core_read);
1513 
1514 ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf,
1515 		size_t count, loff_t *ppos)
1516 {
1517 	struct vfio_pci_core_device *vdev =
1518 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1519 
1520 	if (!count)
1521 		return 0;
1522 
1523 	return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true);
1524 }
1525 EXPORT_SYMBOL_GPL(vfio_pci_core_write);
1526 
1527 /* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */
1528 static int vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device *vdev, bool try)
1529 {
1530 	struct vfio_pci_mmap_vma *mmap_vma, *tmp;
1531 
1532 	/*
1533 	 * Lock ordering:
1534 	 * vma_lock is nested under mmap_lock for vm_ops callback paths.
1535 	 * The memory_lock semaphore is used by both code paths calling
1536 	 * into this function to zap vmas and the vm_ops.fault callback
1537 	 * to protect the memory enable state of the device.
1538 	 *
1539 	 * When zapping vmas we need to maintain the mmap_lock => vma_lock
1540 	 * ordering, which requires using vma_lock to walk vma_list to
1541 	 * acquire an mm, then dropping vma_lock to get the mmap_lock and
1542 	 * reacquiring vma_lock.  This logic is derived from similar
1543 	 * requirements in uverbs_user_mmap_disassociate().
1544 	 *
1545 	 * mmap_lock must always be the top-level lock when it is taken.
1546 	 * Therefore we can only hold the memory_lock write lock when
1547 	 * vma_list is empty, as we'd need to take mmap_lock to clear
1548 	 * entries.  vma_list can only be guaranteed empty when holding
1549 	 * vma_lock, thus memory_lock is nested under vma_lock.
1550 	 *
1551 	 * This enables the vm_ops.fault callback to acquire vma_lock,
1552 	 * followed by memory_lock read lock, while already holding
1553 	 * mmap_lock without risk of deadlock.
1554 	 */
1555 	while (1) {
1556 		struct mm_struct *mm = NULL;
1557 
1558 		if (try) {
1559 			if (!mutex_trylock(&vdev->vma_lock))
1560 				return 0;
1561 		} else {
1562 			mutex_lock(&vdev->vma_lock);
1563 		}
1564 		while (!list_empty(&vdev->vma_list)) {
1565 			mmap_vma = list_first_entry(&vdev->vma_list,
1566 						    struct vfio_pci_mmap_vma,
1567 						    vma_next);
1568 			mm = mmap_vma->vma->vm_mm;
1569 			if (mmget_not_zero(mm))
1570 				break;
1571 
1572 			list_del(&mmap_vma->vma_next);
1573 			kfree(mmap_vma);
1574 			mm = NULL;
1575 		}
1576 		if (!mm)
1577 			return 1;
1578 		mutex_unlock(&vdev->vma_lock);
1579 
1580 		if (try) {
1581 			if (!mmap_read_trylock(mm)) {
1582 				mmput(mm);
1583 				return 0;
1584 			}
1585 		} else {
1586 			mmap_read_lock(mm);
1587 		}
1588 		if (try) {
1589 			if (!mutex_trylock(&vdev->vma_lock)) {
1590 				mmap_read_unlock(mm);
1591 				mmput(mm);
1592 				return 0;
1593 			}
1594 		} else {
1595 			mutex_lock(&vdev->vma_lock);
1596 		}
1597 		list_for_each_entry_safe(mmap_vma, tmp,
1598 					 &vdev->vma_list, vma_next) {
1599 			struct vm_area_struct *vma = mmap_vma->vma;
1600 
1601 			if (vma->vm_mm != mm)
1602 				continue;
1603 
1604 			list_del(&mmap_vma->vma_next);
1605 			kfree(mmap_vma);
1606 
1607 			zap_vma_ptes(vma, vma->vm_start,
1608 				     vma->vm_end - vma->vm_start);
1609 		}
1610 		mutex_unlock(&vdev->vma_lock);
1611 		mmap_read_unlock(mm);
1612 		mmput(mm);
1613 	}
1614 }
1615 
1616 void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev)
1617 {
1618 	vfio_pci_zap_and_vma_lock(vdev, false);
1619 	down_write(&vdev->memory_lock);
1620 	mutex_unlock(&vdev->vma_lock);
1621 }
1622 
1623 u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev)
1624 {
1625 	u16 cmd;
1626 
1627 	down_write(&vdev->memory_lock);
1628 	pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd);
1629 	if (!(cmd & PCI_COMMAND_MEMORY))
1630 		pci_write_config_word(vdev->pdev, PCI_COMMAND,
1631 				      cmd | PCI_COMMAND_MEMORY);
1632 
1633 	return cmd;
1634 }
1635 
1636 void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd)
1637 {
1638 	pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd);
1639 	up_write(&vdev->memory_lock);
1640 }
1641 
1642 /* Caller holds vma_lock */
1643 static int __vfio_pci_add_vma(struct vfio_pci_core_device *vdev,
1644 			      struct vm_area_struct *vma)
1645 {
1646 	struct vfio_pci_mmap_vma *mmap_vma;
1647 
1648 	mmap_vma = kmalloc(sizeof(*mmap_vma), GFP_KERNEL_ACCOUNT);
1649 	if (!mmap_vma)
1650 		return -ENOMEM;
1651 
1652 	mmap_vma->vma = vma;
1653 	list_add(&mmap_vma->vma_next, &vdev->vma_list);
1654 
1655 	return 0;
1656 }
1657 
1658 /*
1659  * Zap mmaps on open so that we can fault them in on access and therefore
1660  * our vma_list only tracks mappings accessed since last zap.
1661  */
1662 static void vfio_pci_mmap_open(struct vm_area_struct *vma)
1663 {
1664 	zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1665 }
1666 
1667 static void vfio_pci_mmap_close(struct vm_area_struct *vma)
1668 {
1669 	struct vfio_pci_core_device *vdev = vma->vm_private_data;
1670 	struct vfio_pci_mmap_vma *mmap_vma;
1671 
1672 	mutex_lock(&vdev->vma_lock);
1673 	list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1674 		if (mmap_vma->vma == vma) {
1675 			list_del(&mmap_vma->vma_next);
1676 			kfree(mmap_vma);
1677 			break;
1678 		}
1679 	}
1680 	mutex_unlock(&vdev->vma_lock);
1681 }
1682 
1683 static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf)
1684 {
1685 	struct vm_area_struct *vma = vmf->vma;
1686 	struct vfio_pci_core_device *vdev = vma->vm_private_data;
1687 	struct vfio_pci_mmap_vma *mmap_vma;
1688 	vm_fault_t ret = VM_FAULT_NOPAGE;
1689 
1690 	mutex_lock(&vdev->vma_lock);
1691 	down_read(&vdev->memory_lock);
1692 
1693 	/*
1694 	 * Memory region cannot be accessed if the low power feature is engaged
1695 	 * or memory access is disabled.
1696 	 */
1697 	if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) {
1698 		ret = VM_FAULT_SIGBUS;
1699 		goto up_out;
1700 	}
1701 
1702 	/*
1703 	 * We populate the whole vma on fault, so we need to test whether
1704 	 * the vma has already been mapped, such as for concurrent faults
1705 	 * to the same vma.  io_remap_pfn_range() will trigger a BUG_ON if
1706 	 * we ask it to fill the same range again.
1707 	 */
1708 	list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1709 		if (mmap_vma->vma == vma)
1710 			goto up_out;
1711 	}
1712 
1713 	if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
1714 			       vma->vm_end - vma->vm_start,
1715 			       vma->vm_page_prot)) {
1716 		ret = VM_FAULT_SIGBUS;
1717 		zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1718 		goto up_out;
1719 	}
1720 
1721 	if (__vfio_pci_add_vma(vdev, vma)) {
1722 		ret = VM_FAULT_OOM;
1723 		zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1724 	}
1725 
1726 up_out:
1727 	up_read(&vdev->memory_lock);
1728 	mutex_unlock(&vdev->vma_lock);
1729 	return ret;
1730 }
1731 
1732 static const struct vm_operations_struct vfio_pci_mmap_ops = {
1733 	.open = vfio_pci_mmap_open,
1734 	.close = vfio_pci_mmap_close,
1735 	.fault = vfio_pci_mmap_fault,
1736 };
1737 
1738 int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma)
1739 {
1740 	struct vfio_pci_core_device *vdev =
1741 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1742 	struct pci_dev *pdev = vdev->pdev;
1743 	unsigned int index;
1744 	u64 phys_len, req_len, pgoff, req_start;
1745 	int ret;
1746 
1747 	index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1748 
1749 	if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1750 		return -EINVAL;
1751 	if (vma->vm_end < vma->vm_start)
1752 		return -EINVAL;
1753 	if ((vma->vm_flags & VM_SHARED) == 0)
1754 		return -EINVAL;
1755 	if (index >= VFIO_PCI_NUM_REGIONS) {
1756 		int regnum = index - VFIO_PCI_NUM_REGIONS;
1757 		struct vfio_pci_region *region = vdev->region + regnum;
1758 
1759 		if (region->ops && region->ops->mmap &&
1760 		    (region->flags & VFIO_REGION_INFO_FLAG_MMAP))
1761 			return region->ops->mmap(vdev, region, vma);
1762 		return -EINVAL;
1763 	}
1764 	if (index >= VFIO_PCI_ROM_REGION_INDEX)
1765 		return -EINVAL;
1766 	if (!vdev->bar_mmap_supported[index])
1767 		return -EINVAL;
1768 
1769 	phys_len = PAGE_ALIGN(pci_resource_len(pdev, index));
1770 	req_len = vma->vm_end - vma->vm_start;
1771 	pgoff = vma->vm_pgoff &
1772 		((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1773 	req_start = pgoff << PAGE_SHIFT;
1774 
1775 	if (req_start + req_len > phys_len)
1776 		return -EINVAL;
1777 
1778 	/*
1779 	 * Even though we don't make use of the barmap for the mmap,
1780 	 * we need to request the region and the barmap tracks that.
1781 	 */
1782 	if (!vdev->barmap[index]) {
1783 		ret = pci_request_selected_regions(pdev,
1784 						   1 << index, "vfio-pci");
1785 		if (ret)
1786 			return ret;
1787 
1788 		vdev->barmap[index] = pci_iomap(pdev, index, 0);
1789 		if (!vdev->barmap[index]) {
1790 			pci_release_selected_regions(pdev, 1 << index);
1791 			return -ENOMEM;
1792 		}
1793 	}
1794 
1795 	vma->vm_private_data = vdev;
1796 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1797 	vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff;
1798 
1799 	/*
1800 	 * See remap_pfn_range(), called from vfio_pci_fault() but we can't
1801 	 * change vm_flags within the fault handler.  Set them now.
1802 	 */
1803 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1804 	vma->vm_ops = &vfio_pci_mmap_ops;
1805 
1806 	return 0;
1807 }
1808 EXPORT_SYMBOL_GPL(vfio_pci_core_mmap);
1809 
1810 void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count)
1811 {
1812 	struct vfio_pci_core_device *vdev =
1813 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1814 	struct pci_dev *pdev = vdev->pdev;
1815 
1816 	mutex_lock(&vdev->igate);
1817 
1818 	if (vdev->req_trigger) {
1819 		if (!(count % 10))
1820 			pci_notice_ratelimited(pdev,
1821 				"Relaying device request to user (#%u)\n",
1822 				count);
1823 		eventfd_signal(vdev->req_trigger, 1);
1824 	} else if (count == 0) {
1825 		pci_warn(pdev,
1826 			"No device request channel registered, blocked until released by user\n");
1827 	}
1828 
1829 	mutex_unlock(&vdev->igate);
1830 }
1831 EXPORT_SYMBOL_GPL(vfio_pci_core_request);
1832 
1833 static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev,
1834 				      bool vf_token, uuid_t *uuid)
1835 {
1836 	/*
1837 	 * There's always some degree of trust or collaboration between SR-IOV
1838 	 * PF and VFs, even if just that the PF hosts the SR-IOV capability and
1839 	 * can disrupt VFs with a reset, but often the PF has more explicit
1840 	 * access to deny service to the VF or access data passed through the
1841 	 * VF.  We therefore require an opt-in via a shared VF token (UUID) to
1842 	 * represent this trust.  This both prevents that a VF driver might
1843 	 * assume the PF driver is a trusted, in-kernel driver, and also that
1844 	 * a PF driver might be replaced with a rogue driver, unknown to in-use
1845 	 * VF drivers.
1846 	 *
1847 	 * Therefore when presented with a VF, if the PF is a vfio device and
1848 	 * it is bound to the vfio-pci driver, the user needs to provide a VF
1849 	 * token to access the device, in the form of appending a vf_token to
1850 	 * the device name, for example:
1851 	 *
1852 	 * "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3"
1853 	 *
1854 	 * When presented with a PF which has VFs in use, the user must also
1855 	 * provide the current VF token to prove collaboration with existing
1856 	 * VF users.  If VFs are not in use, the VF token provided for the PF
1857 	 * device will act to set the VF token.
1858 	 *
1859 	 * If the VF token is provided but unused, an error is generated.
1860 	 */
1861 	if (vdev->pdev->is_virtfn) {
1862 		struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev;
1863 		bool match;
1864 
1865 		if (!pf_vdev) {
1866 			if (!vf_token)
1867 				return 0; /* PF is not vfio-pci, no VF token */
1868 
1869 			pci_info_ratelimited(vdev->pdev,
1870 				"VF token incorrectly provided, PF not bound to vfio-pci\n");
1871 			return -EINVAL;
1872 		}
1873 
1874 		if (!vf_token) {
1875 			pci_info_ratelimited(vdev->pdev,
1876 				"VF token required to access device\n");
1877 			return -EACCES;
1878 		}
1879 
1880 		mutex_lock(&pf_vdev->vf_token->lock);
1881 		match = uuid_equal(uuid, &pf_vdev->vf_token->uuid);
1882 		mutex_unlock(&pf_vdev->vf_token->lock);
1883 
1884 		if (!match) {
1885 			pci_info_ratelimited(vdev->pdev,
1886 				"Incorrect VF token provided for device\n");
1887 			return -EACCES;
1888 		}
1889 	} else if (vdev->vf_token) {
1890 		mutex_lock(&vdev->vf_token->lock);
1891 		if (vdev->vf_token->users) {
1892 			if (!vf_token) {
1893 				mutex_unlock(&vdev->vf_token->lock);
1894 				pci_info_ratelimited(vdev->pdev,
1895 					"VF token required to access device\n");
1896 				return -EACCES;
1897 			}
1898 
1899 			if (!uuid_equal(uuid, &vdev->vf_token->uuid)) {
1900 				mutex_unlock(&vdev->vf_token->lock);
1901 				pci_info_ratelimited(vdev->pdev,
1902 					"Incorrect VF token provided for device\n");
1903 				return -EACCES;
1904 			}
1905 		} else if (vf_token) {
1906 			uuid_copy(&vdev->vf_token->uuid, uuid);
1907 		}
1908 
1909 		mutex_unlock(&vdev->vf_token->lock);
1910 	} else if (vf_token) {
1911 		pci_info_ratelimited(vdev->pdev,
1912 			"VF token incorrectly provided, not a PF or VF\n");
1913 		return -EINVAL;
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 #define VF_TOKEN_ARG "vf_token="
1920 
1921 int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf)
1922 {
1923 	struct vfio_pci_core_device *vdev =
1924 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1925 	bool vf_token = false;
1926 	uuid_t uuid;
1927 	int ret;
1928 
1929 	if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev))))
1930 		return 0; /* No match */
1931 
1932 	if (strlen(buf) > strlen(pci_name(vdev->pdev))) {
1933 		buf += strlen(pci_name(vdev->pdev));
1934 
1935 		if (*buf != ' ')
1936 			return 0; /* No match: non-whitespace after name */
1937 
1938 		while (*buf) {
1939 			if (*buf == ' ') {
1940 				buf++;
1941 				continue;
1942 			}
1943 
1944 			if (!vf_token && !strncmp(buf, VF_TOKEN_ARG,
1945 						  strlen(VF_TOKEN_ARG))) {
1946 				buf += strlen(VF_TOKEN_ARG);
1947 
1948 				if (strlen(buf) < UUID_STRING_LEN)
1949 					return -EINVAL;
1950 
1951 				ret = uuid_parse(buf, &uuid);
1952 				if (ret)
1953 					return ret;
1954 
1955 				vf_token = true;
1956 				buf += UUID_STRING_LEN;
1957 			} else {
1958 				/* Unknown/duplicate option */
1959 				return -EINVAL;
1960 			}
1961 		}
1962 	}
1963 
1964 	ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid);
1965 	if (ret)
1966 		return ret;
1967 
1968 	return 1; /* Match */
1969 }
1970 EXPORT_SYMBOL_GPL(vfio_pci_core_match);
1971 
1972 static int vfio_pci_bus_notifier(struct notifier_block *nb,
1973 				 unsigned long action, void *data)
1974 {
1975 	struct vfio_pci_core_device *vdev = container_of(nb,
1976 						    struct vfio_pci_core_device, nb);
1977 	struct device *dev = data;
1978 	struct pci_dev *pdev = to_pci_dev(dev);
1979 	struct pci_dev *physfn = pci_physfn(pdev);
1980 
1981 	if (action == BUS_NOTIFY_ADD_DEVICE &&
1982 	    pdev->is_virtfn && physfn == vdev->pdev) {
1983 		pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n",
1984 			 pci_name(pdev));
1985 		pdev->driver_override = kasprintf(GFP_KERNEL, "%s",
1986 						  vdev->vdev.ops->name);
1987 	} else if (action == BUS_NOTIFY_BOUND_DRIVER &&
1988 		   pdev->is_virtfn && physfn == vdev->pdev) {
1989 		struct pci_driver *drv = pci_dev_driver(pdev);
1990 
1991 		if (drv && drv != pci_dev_driver(vdev->pdev))
1992 			pci_warn(vdev->pdev,
1993 				 "VF %s bound to driver %s while PF bound to driver %s\n",
1994 				 pci_name(pdev), drv->name,
1995 				 pci_dev_driver(vdev->pdev)->name);
1996 	}
1997 
1998 	return 0;
1999 }
2000 
2001 static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev)
2002 {
2003 	struct pci_dev *pdev = vdev->pdev;
2004 	struct vfio_pci_core_device *cur;
2005 	struct pci_dev *physfn;
2006 	int ret;
2007 
2008 	if (pdev->is_virtfn) {
2009 		/*
2010 		 * If this VF was created by our vfio_pci_core_sriov_configure()
2011 		 * then we can find the PF vfio_pci_core_device now, and due to
2012 		 * the locking in pci_disable_sriov() it cannot change until
2013 		 * this VF device driver is removed.
2014 		 */
2015 		physfn = pci_physfn(vdev->pdev);
2016 		mutex_lock(&vfio_pci_sriov_pfs_mutex);
2017 		list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) {
2018 			if (cur->pdev == physfn) {
2019 				vdev->sriov_pf_core_dev = cur;
2020 				break;
2021 			}
2022 		}
2023 		mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2024 		return 0;
2025 	}
2026 
2027 	/* Not a SRIOV PF */
2028 	if (!pdev->is_physfn)
2029 		return 0;
2030 
2031 	vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL);
2032 	if (!vdev->vf_token)
2033 		return -ENOMEM;
2034 
2035 	mutex_init(&vdev->vf_token->lock);
2036 	uuid_gen(&vdev->vf_token->uuid);
2037 
2038 	vdev->nb.notifier_call = vfio_pci_bus_notifier;
2039 	ret = bus_register_notifier(&pci_bus_type, &vdev->nb);
2040 	if (ret) {
2041 		kfree(vdev->vf_token);
2042 		return ret;
2043 	}
2044 	return 0;
2045 }
2046 
2047 static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev)
2048 {
2049 	if (!vdev->vf_token)
2050 		return;
2051 
2052 	bus_unregister_notifier(&pci_bus_type, &vdev->nb);
2053 	WARN_ON(vdev->vf_token->users);
2054 	mutex_destroy(&vdev->vf_token->lock);
2055 	kfree(vdev->vf_token);
2056 }
2057 
2058 static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev)
2059 {
2060 	struct pci_dev *pdev = vdev->pdev;
2061 	int ret;
2062 
2063 	if (!vfio_pci_is_vga(pdev))
2064 		return 0;
2065 
2066 	ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name);
2067 	if (ret)
2068 		return ret;
2069 
2070 	ret = vga_client_register(pdev, vfio_pci_set_decode);
2071 	if (ret)
2072 		return ret;
2073 	vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false));
2074 	return 0;
2075 }
2076 
2077 static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev)
2078 {
2079 	struct pci_dev *pdev = vdev->pdev;
2080 
2081 	if (!vfio_pci_is_vga(pdev))
2082 		return;
2083 	vga_client_unregister(pdev);
2084 	vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
2085 					      VGA_RSRC_LEGACY_IO |
2086 					      VGA_RSRC_LEGACY_MEM);
2087 }
2088 
2089 int vfio_pci_core_init_dev(struct vfio_device *core_vdev)
2090 {
2091 	struct vfio_pci_core_device *vdev =
2092 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
2093 
2094 	vdev->pdev = to_pci_dev(core_vdev->dev);
2095 	vdev->irq_type = VFIO_PCI_NUM_IRQS;
2096 	mutex_init(&vdev->igate);
2097 	spin_lock_init(&vdev->irqlock);
2098 	mutex_init(&vdev->ioeventfds_lock);
2099 	INIT_LIST_HEAD(&vdev->dummy_resources_list);
2100 	INIT_LIST_HEAD(&vdev->ioeventfds_list);
2101 	mutex_init(&vdev->vma_lock);
2102 	INIT_LIST_HEAD(&vdev->vma_list);
2103 	INIT_LIST_HEAD(&vdev->sriov_pfs_item);
2104 	init_rwsem(&vdev->memory_lock);
2105 
2106 	return 0;
2107 }
2108 EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev);
2109 
2110 void vfio_pci_core_release_dev(struct vfio_device *core_vdev)
2111 {
2112 	struct vfio_pci_core_device *vdev =
2113 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
2114 
2115 	mutex_destroy(&vdev->igate);
2116 	mutex_destroy(&vdev->ioeventfds_lock);
2117 	mutex_destroy(&vdev->vma_lock);
2118 	kfree(vdev->region);
2119 	kfree(vdev->pm_save);
2120 }
2121 EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev);
2122 
2123 int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev)
2124 {
2125 	struct pci_dev *pdev = vdev->pdev;
2126 	struct device *dev = &pdev->dev;
2127 	int ret;
2128 
2129 	/* Drivers must set the vfio_pci_core_device to their drvdata */
2130 	if (WARN_ON(vdev != dev_get_drvdata(dev)))
2131 		return -EINVAL;
2132 
2133 	if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2134 		return -EINVAL;
2135 
2136 	if (vdev->vdev.mig_ops) {
2137 		if (!(vdev->vdev.mig_ops->migration_get_state &&
2138 		      vdev->vdev.mig_ops->migration_set_state &&
2139 		      vdev->vdev.mig_ops->migration_get_data_size) ||
2140 		    !(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY))
2141 			return -EINVAL;
2142 	}
2143 
2144 	if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start &&
2145 	    vdev->vdev.log_ops->log_stop &&
2146 	    vdev->vdev.log_ops->log_read_and_clear))
2147 		return -EINVAL;
2148 
2149 	/*
2150 	 * Prevent binding to PFs with VFs enabled, the VFs might be in use
2151 	 * by the host or other users.  We cannot capture the VFs if they
2152 	 * already exist, nor can we track VF users.  Disabling SR-IOV here
2153 	 * would initiate removing the VFs, which would unbind the driver,
2154 	 * which is prone to blocking if that VF is also in use by vfio-pci.
2155 	 * Just reject these PFs and let the user sort it out.
2156 	 */
2157 	if (pci_num_vf(pdev)) {
2158 		pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n");
2159 		return -EBUSY;
2160 	}
2161 
2162 	if (pci_is_root_bus(pdev->bus)) {
2163 		ret = vfio_assign_device_set(&vdev->vdev, vdev);
2164 	} else if (!pci_probe_reset_slot(pdev->slot)) {
2165 		ret = vfio_assign_device_set(&vdev->vdev, pdev->slot);
2166 	} else {
2167 		/*
2168 		 * If there is no slot reset support for this device, the whole
2169 		 * bus needs to be grouped together to support bus-wide resets.
2170 		 */
2171 		ret = vfio_assign_device_set(&vdev->vdev, pdev->bus);
2172 	}
2173 
2174 	if (ret)
2175 		return ret;
2176 	ret = vfio_pci_vf_init(vdev);
2177 	if (ret)
2178 		return ret;
2179 	ret = vfio_pci_vga_init(vdev);
2180 	if (ret)
2181 		goto out_vf;
2182 
2183 	vfio_pci_probe_power_state(vdev);
2184 
2185 	/*
2186 	 * pci-core sets the device power state to an unknown value at
2187 	 * bootup and after being removed from a driver.  The only
2188 	 * transition it allows from this unknown state is to D0, which
2189 	 * typically happens when a driver calls pci_enable_device().
2190 	 * We're not ready to enable the device yet, but we do want to
2191 	 * be able to get to D3.  Therefore first do a D0 transition
2192 	 * before enabling runtime PM.
2193 	 */
2194 	vfio_pci_set_power_state(vdev, PCI_D0);
2195 
2196 	dev->driver->pm = &vfio_pci_core_pm_ops;
2197 	pm_runtime_allow(dev);
2198 	if (!disable_idle_d3)
2199 		pm_runtime_put(dev);
2200 
2201 	ret = vfio_register_group_dev(&vdev->vdev);
2202 	if (ret)
2203 		goto out_power;
2204 	return 0;
2205 
2206 out_power:
2207 	if (!disable_idle_d3)
2208 		pm_runtime_get_noresume(dev);
2209 
2210 	pm_runtime_forbid(dev);
2211 out_vf:
2212 	vfio_pci_vf_uninit(vdev);
2213 	return ret;
2214 }
2215 EXPORT_SYMBOL_GPL(vfio_pci_core_register_device);
2216 
2217 void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev)
2218 {
2219 	vfio_pci_core_sriov_configure(vdev, 0);
2220 
2221 	vfio_unregister_group_dev(&vdev->vdev);
2222 
2223 	vfio_pci_vf_uninit(vdev);
2224 	vfio_pci_vga_uninit(vdev);
2225 
2226 	if (!disable_idle_d3)
2227 		pm_runtime_get_noresume(&vdev->pdev->dev);
2228 
2229 	pm_runtime_forbid(&vdev->pdev->dev);
2230 }
2231 EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device);
2232 
2233 pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev,
2234 						pci_channel_state_t state)
2235 {
2236 	struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev);
2237 
2238 	mutex_lock(&vdev->igate);
2239 
2240 	if (vdev->err_trigger)
2241 		eventfd_signal(vdev->err_trigger, 1);
2242 
2243 	mutex_unlock(&vdev->igate);
2244 
2245 	return PCI_ERS_RESULT_CAN_RECOVER;
2246 }
2247 EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected);
2248 
2249 int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev,
2250 				  int nr_virtfn)
2251 {
2252 	struct pci_dev *pdev = vdev->pdev;
2253 	int ret = 0;
2254 
2255 	device_lock_assert(&pdev->dev);
2256 
2257 	if (nr_virtfn) {
2258 		mutex_lock(&vfio_pci_sriov_pfs_mutex);
2259 		/*
2260 		 * The thread that adds the vdev to the list is the only thread
2261 		 * that gets to call pci_enable_sriov() and we will only allow
2262 		 * it to be called once without going through
2263 		 * pci_disable_sriov()
2264 		 */
2265 		if (!list_empty(&vdev->sriov_pfs_item)) {
2266 			ret = -EINVAL;
2267 			goto out_unlock;
2268 		}
2269 		list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs);
2270 		mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2271 
2272 		/*
2273 		 * The PF power state should always be higher than the VF power
2274 		 * state. The PF can be in low power state either with runtime
2275 		 * power management (when there is no user) or PCI_PM_CTRL
2276 		 * register write by the user. If PF is in the low power state,
2277 		 * then change the power state to D0 first before enabling
2278 		 * SR-IOV. Also, this function can be called at any time, and
2279 		 * userspace PCI_PM_CTRL write can race against this code path,
2280 		 * so protect the same with 'memory_lock'.
2281 		 */
2282 		ret = pm_runtime_resume_and_get(&pdev->dev);
2283 		if (ret)
2284 			goto out_del;
2285 
2286 		down_write(&vdev->memory_lock);
2287 		vfio_pci_set_power_state(vdev, PCI_D0);
2288 		ret = pci_enable_sriov(pdev, nr_virtfn);
2289 		up_write(&vdev->memory_lock);
2290 		if (ret) {
2291 			pm_runtime_put(&pdev->dev);
2292 			goto out_del;
2293 		}
2294 		return nr_virtfn;
2295 	}
2296 
2297 	if (pci_num_vf(pdev)) {
2298 		pci_disable_sriov(pdev);
2299 		pm_runtime_put(&pdev->dev);
2300 	}
2301 
2302 out_del:
2303 	mutex_lock(&vfio_pci_sriov_pfs_mutex);
2304 	list_del_init(&vdev->sriov_pfs_item);
2305 out_unlock:
2306 	mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2307 	return ret;
2308 }
2309 EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure);
2310 
2311 const struct pci_error_handlers vfio_pci_core_err_handlers = {
2312 	.error_detected = vfio_pci_core_aer_err_detected,
2313 };
2314 EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers);
2315 
2316 static bool vfio_dev_in_groups(struct vfio_pci_core_device *vdev,
2317 			       struct vfio_pci_group_info *groups)
2318 {
2319 	unsigned int i;
2320 
2321 	for (i = 0; i < groups->count; i++)
2322 		if (vfio_file_has_dev(groups->files[i], &vdev->vdev))
2323 			return true;
2324 	return false;
2325 }
2326 
2327 static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data)
2328 {
2329 	struct vfio_device_set *dev_set = data;
2330 	struct vfio_device *cur;
2331 
2332 	list_for_each_entry(cur, &dev_set->device_list, dev_set_list)
2333 		if (cur->dev == &pdev->dev)
2334 			return 0;
2335 	return -EBUSY;
2336 }
2337 
2338 /*
2339  * vfio-core considers a group to be viable and will create a vfio_device even
2340  * if some devices are bound to drivers like pci-stub or pcieport. Here we
2341  * require all PCI devices to be inside our dev_set since that ensures they stay
2342  * put and that every driver controlling the device can co-ordinate with the
2343  * device reset.
2344  *
2345  * Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be
2346  * reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise.
2347  */
2348 static struct pci_dev *
2349 vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set)
2350 {
2351 	struct pci_dev *pdev;
2352 
2353 	lockdep_assert_held(&dev_set->lock);
2354 
2355 	/*
2356 	 * By definition all PCI devices in the dev_set share the same PCI
2357 	 * reset, so any pci_dev will have the same outcomes for
2358 	 * pci_probe_reset_*() and pci_reset_bus().
2359 	 */
2360 	pdev = list_first_entry(&dev_set->device_list,
2361 				struct vfio_pci_core_device,
2362 				vdev.dev_set_list)->pdev;
2363 
2364 	/* pci_reset_bus() is supported */
2365 	if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus))
2366 		return NULL;
2367 
2368 	if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set,
2369 					  dev_set,
2370 					  !pci_probe_reset_slot(pdev->slot)))
2371 		return NULL;
2372 	return pdev;
2373 }
2374 
2375 static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set)
2376 {
2377 	struct vfio_pci_core_device *cur;
2378 	int ret;
2379 
2380 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2381 		ret = pm_runtime_resume_and_get(&cur->pdev->dev);
2382 		if (ret)
2383 			goto unwind;
2384 	}
2385 
2386 	return 0;
2387 
2388 unwind:
2389 	list_for_each_entry_continue_reverse(cur, &dev_set->device_list,
2390 					     vdev.dev_set_list)
2391 		pm_runtime_put(&cur->pdev->dev);
2392 
2393 	return ret;
2394 }
2395 
2396 /*
2397  * We need to get memory_lock for each device, but devices can share mmap_lock,
2398  * therefore we need to zap and hold the vma_lock for each device, and only then
2399  * get each memory_lock.
2400  */
2401 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
2402 				      struct vfio_pci_group_info *groups)
2403 {
2404 	struct vfio_pci_core_device *cur_mem;
2405 	struct vfio_pci_core_device *cur_vma;
2406 	struct vfio_pci_core_device *cur;
2407 	struct pci_dev *pdev;
2408 	bool is_mem = true;
2409 	int ret;
2410 
2411 	mutex_lock(&dev_set->lock);
2412 	cur_mem = list_first_entry(&dev_set->device_list,
2413 				   struct vfio_pci_core_device,
2414 				   vdev.dev_set_list);
2415 
2416 	pdev = vfio_pci_dev_set_resettable(dev_set);
2417 	if (!pdev) {
2418 		ret = -EINVAL;
2419 		goto err_unlock;
2420 	}
2421 
2422 	/*
2423 	 * Some of the devices in the dev_set can be in the runtime suspended
2424 	 * state. Increment the usage count for all the devices in the dev_set
2425 	 * before reset and decrement the same after reset.
2426 	 */
2427 	ret = vfio_pci_dev_set_pm_runtime_get(dev_set);
2428 	if (ret)
2429 		goto err_unlock;
2430 
2431 	list_for_each_entry(cur_vma, &dev_set->device_list, vdev.dev_set_list) {
2432 		/*
2433 		 * Test whether all the affected devices are contained by the
2434 		 * set of groups provided by the user.
2435 		 */
2436 		if (!vfio_dev_in_groups(cur_vma, groups)) {
2437 			ret = -EINVAL;
2438 			goto err_undo;
2439 		}
2440 
2441 		/*
2442 		 * Locking multiple devices is prone to deadlock, runaway and
2443 		 * unwind if we hit contention.
2444 		 */
2445 		if (!vfio_pci_zap_and_vma_lock(cur_vma, true)) {
2446 			ret = -EBUSY;
2447 			goto err_undo;
2448 		}
2449 	}
2450 	cur_vma = NULL;
2451 
2452 	list_for_each_entry(cur_mem, &dev_set->device_list, vdev.dev_set_list) {
2453 		if (!down_write_trylock(&cur_mem->memory_lock)) {
2454 			ret = -EBUSY;
2455 			goto err_undo;
2456 		}
2457 		mutex_unlock(&cur_mem->vma_lock);
2458 	}
2459 	cur_mem = NULL;
2460 
2461 	/*
2462 	 * The pci_reset_bus() will reset all the devices in the bus.
2463 	 * The power state can be non-D0 for some of the devices in the bus.
2464 	 * For these devices, the pci_reset_bus() will internally set
2465 	 * the power state to D0 without vfio driver involvement.
2466 	 * For the devices which have NoSoftRst-, the reset function can
2467 	 * cause the PCI config space reset without restoring the original
2468 	 * state (saved locally in 'vdev->pm_save').
2469 	 */
2470 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2471 		vfio_pci_set_power_state(cur, PCI_D0);
2472 
2473 	ret = pci_reset_bus(pdev);
2474 
2475 err_undo:
2476 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2477 		if (cur == cur_mem)
2478 			is_mem = false;
2479 		if (cur == cur_vma)
2480 			break;
2481 		if (is_mem)
2482 			up_write(&cur->memory_lock);
2483 		else
2484 			mutex_unlock(&cur->vma_lock);
2485 	}
2486 
2487 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2488 		pm_runtime_put(&cur->pdev->dev);
2489 err_unlock:
2490 	mutex_unlock(&dev_set->lock);
2491 	return ret;
2492 }
2493 
2494 static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set)
2495 {
2496 	struct vfio_pci_core_device *cur;
2497 	bool needs_reset = false;
2498 
2499 	/* No other VFIO device in the set can be open. */
2500 	if (vfio_device_set_open_count(dev_set) > 1)
2501 		return false;
2502 
2503 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2504 		needs_reset |= cur->needs_reset;
2505 	return needs_reset;
2506 }
2507 
2508 /*
2509  * If a bus or slot reset is available for the provided dev_set and:
2510  *  - All of the devices affected by that bus or slot reset are unused
2511  *  - At least one of the affected devices is marked dirty via
2512  *    needs_reset (such as by lack of FLR support)
2513  * Then attempt to perform that bus or slot reset.
2514  */
2515 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set)
2516 {
2517 	struct vfio_pci_core_device *cur;
2518 	struct pci_dev *pdev;
2519 	bool reset_done = false;
2520 
2521 	if (!vfio_pci_dev_set_needs_reset(dev_set))
2522 		return;
2523 
2524 	pdev = vfio_pci_dev_set_resettable(dev_set);
2525 	if (!pdev)
2526 		return;
2527 
2528 	/*
2529 	 * Some of the devices in the bus can be in the runtime suspended
2530 	 * state. Increment the usage count for all the devices in the dev_set
2531 	 * before reset and decrement the same after reset.
2532 	 */
2533 	if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set))
2534 		return;
2535 
2536 	if (!pci_reset_bus(pdev))
2537 		reset_done = true;
2538 
2539 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2540 		if (reset_done)
2541 			cur->needs_reset = false;
2542 
2543 		if (!disable_idle_d3)
2544 			pm_runtime_put(&cur->pdev->dev);
2545 	}
2546 }
2547 
2548 void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga,
2549 			      bool is_disable_idle_d3)
2550 {
2551 	nointxmask = is_nointxmask;
2552 	disable_vga = is_disable_vga;
2553 	disable_idle_d3 = is_disable_idle_d3;
2554 }
2555 EXPORT_SYMBOL_GPL(vfio_pci_core_set_params);
2556 
2557 static void vfio_pci_core_cleanup(void)
2558 {
2559 	vfio_pci_uninit_perm_bits();
2560 }
2561 
2562 static int __init vfio_pci_core_init(void)
2563 {
2564 	/* Allocate shared config space permission data used by all devices */
2565 	return vfio_pci_init_perm_bits();
2566 }
2567 
2568 module_init(vfio_pci_core_init);
2569 module_exit(vfio_pci_core_cleanup);
2570 
2571 MODULE_LICENSE("GPL v2");
2572 MODULE_AUTHOR(DRIVER_AUTHOR);
2573 MODULE_DESCRIPTION(DRIVER_DESC);
2574