1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 4 * Author: Alex Williamson <alex.williamson@redhat.com> 5 * 6 * Derived from original vfio: 7 * Copyright 2010 Cisco Systems, Inc. All rights reserved. 8 * Author: Tom Lyon, pugs@cisco.com 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/aperture.h> 14 #include <linux/device.h> 15 #include <linux/eventfd.h> 16 #include <linux/file.h> 17 #include <linux/interrupt.h> 18 #include <linux/iommu.h> 19 #include <linux/module.h> 20 #include <linux/mutex.h> 21 #include <linux/notifier.h> 22 #include <linux/pci.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/slab.h> 25 #include <linux/types.h> 26 #include <linux/uaccess.h> 27 #include <linux/vgaarb.h> 28 #include <linux/nospec.h> 29 #include <linux/sched/mm.h> 30 #include <linux/iommufd.h> 31 #if IS_ENABLED(CONFIG_EEH) 32 #include <asm/eeh.h> 33 #endif 34 35 #include "vfio_pci_priv.h" 36 37 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>" 38 #define DRIVER_DESC "core driver for VFIO based PCI devices" 39 40 static bool nointxmask; 41 static bool disable_vga; 42 static bool disable_idle_d3; 43 44 /* List of PF's that vfio_pci_core_sriov_configure() has been called on */ 45 static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex); 46 static LIST_HEAD(vfio_pci_sriov_pfs); 47 48 struct vfio_pci_dummy_resource { 49 struct resource resource; 50 int index; 51 struct list_head res_next; 52 }; 53 54 struct vfio_pci_vf_token { 55 struct mutex lock; 56 uuid_t uuid; 57 int users; 58 }; 59 60 struct vfio_pci_mmap_vma { 61 struct vm_area_struct *vma; 62 struct list_head vma_next; 63 }; 64 65 static inline bool vfio_vga_disabled(void) 66 { 67 #ifdef CONFIG_VFIO_PCI_VGA 68 return disable_vga; 69 #else 70 return true; 71 #endif 72 } 73 74 /* 75 * Our VGA arbiter participation is limited since we don't know anything 76 * about the device itself. However, if the device is the only VGA device 77 * downstream of a bridge and VFIO VGA support is disabled, then we can 78 * safely return legacy VGA IO and memory as not decoded since the user 79 * has no way to get to it and routing can be disabled externally at the 80 * bridge. 81 */ 82 static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga) 83 { 84 struct pci_dev *tmp = NULL; 85 unsigned char max_busnr; 86 unsigned int decodes; 87 88 if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus)) 89 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM | 90 VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM; 91 92 max_busnr = pci_bus_max_busnr(pdev->bus); 93 decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; 94 95 while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) { 96 if (tmp == pdev || 97 pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) || 98 pci_is_root_bus(tmp->bus)) 99 continue; 100 101 if (tmp->bus->number >= pdev->bus->number && 102 tmp->bus->number <= max_busnr) { 103 pci_dev_put(tmp); 104 decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM; 105 break; 106 } 107 } 108 109 return decodes; 110 } 111 112 static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev) 113 { 114 struct resource *res; 115 int i; 116 struct vfio_pci_dummy_resource *dummy_res; 117 118 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 119 int bar = i + PCI_STD_RESOURCES; 120 121 res = &vdev->pdev->resource[bar]; 122 123 if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP)) 124 goto no_mmap; 125 126 if (!(res->flags & IORESOURCE_MEM)) 127 goto no_mmap; 128 129 /* 130 * The PCI core shouldn't set up a resource with a 131 * type but zero size. But there may be bugs that 132 * cause us to do that. 133 */ 134 if (!resource_size(res)) 135 goto no_mmap; 136 137 if (resource_size(res) >= PAGE_SIZE) { 138 vdev->bar_mmap_supported[bar] = true; 139 continue; 140 } 141 142 if (!(res->start & ~PAGE_MASK)) { 143 /* 144 * Add a dummy resource to reserve the remainder 145 * of the exclusive page in case that hot-add 146 * device's bar is assigned into it. 147 */ 148 dummy_res = 149 kzalloc(sizeof(*dummy_res), GFP_KERNEL_ACCOUNT); 150 if (dummy_res == NULL) 151 goto no_mmap; 152 153 dummy_res->resource.name = "vfio sub-page reserved"; 154 dummy_res->resource.start = res->end + 1; 155 dummy_res->resource.end = res->start + PAGE_SIZE - 1; 156 dummy_res->resource.flags = res->flags; 157 if (request_resource(res->parent, 158 &dummy_res->resource)) { 159 kfree(dummy_res); 160 goto no_mmap; 161 } 162 dummy_res->index = bar; 163 list_add(&dummy_res->res_next, 164 &vdev->dummy_resources_list); 165 vdev->bar_mmap_supported[bar] = true; 166 continue; 167 } 168 /* 169 * Here we don't handle the case when the BAR is not page 170 * aligned because we can't expect the BAR will be 171 * assigned into the same location in a page in guest 172 * when we passthrough the BAR. And it's hard to access 173 * this BAR in userspace because we have no way to get 174 * the BAR's location in a page. 175 */ 176 no_mmap: 177 vdev->bar_mmap_supported[bar] = false; 178 } 179 } 180 181 struct vfio_pci_group_info; 182 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set); 183 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set, 184 struct vfio_pci_group_info *groups, 185 struct iommufd_ctx *iommufd_ctx); 186 187 /* 188 * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND 189 * _and_ the ability detect when the device is asserting INTx via PCI_STATUS. 190 * If a device implements the former but not the latter we would typically 191 * expect broken_intx_masking be set and require an exclusive interrupt. 192 * However since we do have control of the device's ability to assert INTx, 193 * we can instead pretend that the device does not implement INTx, virtualizing 194 * the pin register to report zero and maintaining DisINTx set on the host. 195 */ 196 static bool vfio_pci_nointx(struct pci_dev *pdev) 197 { 198 switch (pdev->vendor) { 199 case PCI_VENDOR_ID_INTEL: 200 switch (pdev->device) { 201 /* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */ 202 case 0x1572: 203 case 0x1574: 204 case 0x1580 ... 0x1581: 205 case 0x1583 ... 0x158b: 206 case 0x37d0 ... 0x37d2: 207 /* X550 */ 208 case 0x1563: 209 return true; 210 default: 211 return false; 212 } 213 } 214 215 return false; 216 } 217 218 static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev) 219 { 220 struct pci_dev *pdev = vdev->pdev; 221 u16 pmcsr; 222 223 if (!pdev->pm_cap) 224 return; 225 226 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 227 228 vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 229 } 230 231 /* 232 * pci_set_power_state() wrapper handling devices which perform a soft reset on 233 * D3->D0 transition. Save state prior to D0/1/2->D3, stash it on the vdev, 234 * restore when returned to D0. Saved separately from pci_saved_state for use 235 * by PM capability emulation and separately from pci_dev internal saved state 236 * to avoid it being overwritten and consumed around other resets. 237 */ 238 int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state) 239 { 240 struct pci_dev *pdev = vdev->pdev; 241 bool needs_restore = false, needs_save = false; 242 int ret; 243 244 /* Prevent changing power state for PFs with VFs enabled */ 245 if (pci_num_vf(pdev) && state > PCI_D0) 246 return -EBUSY; 247 248 if (vdev->needs_pm_restore) { 249 if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) { 250 pci_save_state(pdev); 251 needs_save = true; 252 } 253 254 if (pdev->current_state >= PCI_D3hot && state <= PCI_D0) 255 needs_restore = true; 256 } 257 258 ret = pci_set_power_state(pdev, state); 259 260 if (!ret) { 261 /* D3 might be unsupported via quirk, skip unless in D3 */ 262 if (needs_save && pdev->current_state >= PCI_D3hot) { 263 /* 264 * The current PCI state will be saved locally in 265 * 'pm_save' during the D3hot transition. When the 266 * device state is changed to D0 again with the current 267 * function, then pci_store_saved_state() will restore 268 * the state and will free the memory pointed by 269 * 'pm_save'. There are few cases where the PCI power 270 * state can be changed to D0 without the involvement 271 * of the driver. For these cases, free the earlier 272 * allocated memory first before overwriting 'pm_save' 273 * to prevent the memory leak. 274 */ 275 kfree(vdev->pm_save); 276 vdev->pm_save = pci_store_saved_state(pdev); 277 } else if (needs_restore) { 278 pci_load_and_free_saved_state(pdev, &vdev->pm_save); 279 pci_restore_state(pdev); 280 } 281 } 282 283 return ret; 284 } 285 286 static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev, 287 struct eventfd_ctx *efdctx) 288 { 289 /* 290 * The vdev power related flags are protected with 'memory_lock' 291 * semaphore. 292 */ 293 vfio_pci_zap_and_down_write_memory_lock(vdev); 294 if (vdev->pm_runtime_engaged) { 295 up_write(&vdev->memory_lock); 296 return -EINVAL; 297 } 298 299 vdev->pm_runtime_engaged = true; 300 vdev->pm_wake_eventfd_ctx = efdctx; 301 pm_runtime_put_noidle(&vdev->pdev->dev); 302 up_write(&vdev->memory_lock); 303 304 return 0; 305 } 306 307 static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags, 308 void __user *arg, size_t argsz) 309 { 310 struct vfio_pci_core_device *vdev = 311 container_of(device, struct vfio_pci_core_device, vdev); 312 int ret; 313 314 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0); 315 if (ret != 1) 316 return ret; 317 318 /* 319 * Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count 320 * will be decremented. The pm_runtime_put() will be invoked again 321 * while returning from the ioctl and then the device can go into 322 * runtime suspended state. 323 */ 324 return vfio_pci_runtime_pm_entry(vdev, NULL); 325 } 326 327 static int vfio_pci_core_pm_entry_with_wakeup( 328 struct vfio_device *device, u32 flags, 329 struct vfio_device_low_power_entry_with_wakeup __user *arg, 330 size_t argsz) 331 { 332 struct vfio_pci_core_device *vdev = 333 container_of(device, struct vfio_pci_core_device, vdev); 334 struct vfio_device_low_power_entry_with_wakeup entry; 335 struct eventfd_ctx *efdctx; 336 int ret; 337 338 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 339 sizeof(entry)); 340 if (ret != 1) 341 return ret; 342 343 if (copy_from_user(&entry, arg, sizeof(entry))) 344 return -EFAULT; 345 346 if (entry.wakeup_eventfd < 0) 347 return -EINVAL; 348 349 efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd); 350 if (IS_ERR(efdctx)) 351 return PTR_ERR(efdctx); 352 353 ret = vfio_pci_runtime_pm_entry(vdev, efdctx); 354 if (ret) 355 eventfd_ctx_put(efdctx); 356 357 return ret; 358 } 359 360 static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev) 361 { 362 if (vdev->pm_runtime_engaged) { 363 vdev->pm_runtime_engaged = false; 364 pm_runtime_get_noresume(&vdev->pdev->dev); 365 366 if (vdev->pm_wake_eventfd_ctx) { 367 eventfd_ctx_put(vdev->pm_wake_eventfd_ctx); 368 vdev->pm_wake_eventfd_ctx = NULL; 369 } 370 } 371 } 372 373 static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev) 374 { 375 /* 376 * The vdev power related flags are protected with 'memory_lock' 377 * semaphore. 378 */ 379 down_write(&vdev->memory_lock); 380 __vfio_pci_runtime_pm_exit(vdev); 381 up_write(&vdev->memory_lock); 382 } 383 384 static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags, 385 void __user *arg, size_t argsz) 386 { 387 struct vfio_pci_core_device *vdev = 388 container_of(device, struct vfio_pci_core_device, vdev); 389 int ret; 390 391 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0); 392 if (ret != 1) 393 return ret; 394 395 /* 396 * The device is always in the active state here due to pm wrappers 397 * around ioctls. If the device had entered a low power state and 398 * pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has 399 * already signaled the eventfd and exited low power mode itself. 400 * pm_runtime_engaged protects the redundant call here. 401 */ 402 vfio_pci_runtime_pm_exit(vdev); 403 return 0; 404 } 405 406 #ifdef CONFIG_PM 407 static int vfio_pci_core_runtime_suspend(struct device *dev) 408 { 409 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev); 410 411 down_write(&vdev->memory_lock); 412 /* 413 * The user can move the device into D3hot state before invoking 414 * power management IOCTL. Move the device into D0 state here and then 415 * the pci-driver core runtime PM suspend function will move the device 416 * into the low power state. Also, for the devices which have 417 * NoSoftRst-, it will help in restoring the original state 418 * (saved locally in 'vdev->pm_save'). 419 */ 420 vfio_pci_set_power_state(vdev, PCI_D0); 421 up_write(&vdev->memory_lock); 422 423 /* 424 * If INTx is enabled, then mask INTx before going into the runtime 425 * suspended state and unmask the same in the runtime resume. 426 * If INTx has already been masked by the user, then 427 * vfio_pci_intx_mask() will return false and in that case, INTx 428 * should not be unmasked in the runtime resume. 429 */ 430 vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) && 431 vfio_pci_intx_mask(vdev)); 432 433 return 0; 434 } 435 436 static int vfio_pci_core_runtime_resume(struct device *dev) 437 { 438 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev); 439 440 /* 441 * Resume with a pm_wake_eventfd_ctx signals the eventfd and exit 442 * low power mode. 443 */ 444 down_write(&vdev->memory_lock); 445 if (vdev->pm_wake_eventfd_ctx) { 446 eventfd_signal(vdev->pm_wake_eventfd_ctx, 1); 447 __vfio_pci_runtime_pm_exit(vdev); 448 } 449 up_write(&vdev->memory_lock); 450 451 if (vdev->pm_intx_masked) 452 vfio_pci_intx_unmask(vdev); 453 454 return 0; 455 } 456 #endif /* CONFIG_PM */ 457 458 /* 459 * The pci-driver core runtime PM routines always save the device state 460 * before going into suspended state. If the device is going into low power 461 * state with only with runtime PM ops, then no explicit handling is needed 462 * for the devices which have NoSoftRst-. 463 */ 464 static const struct dev_pm_ops vfio_pci_core_pm_ops = { 465 SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend, 466 vfio_pci_core_runtime_resume, 467 NULL) 468 }; 469 470 int vfio_pci_core_enable(struct vfio_pci_core_device *vdev) 471 { 472 struct pci_dev *pdev = vdev->pdev; 473 int ret; 474 u16 cmd; 475 u8 msix_pos; 476 477 if (!disable_idle_d3) { 478 ret = pm_runtime_resume_and_get(&pdev->dev); 479 if (ret < 0) 480 return ret; 481 } 482 483 /* Don't allow our initial saved state to include busmaster */ 484 pci_clear_master(pdev); 485 486 ret = pci_enable_device(pdev); 487 if (ret) 488 goto out_power; 489 490 /* If reset fails because of the device lock, fail this path entirely */ 491 ret = pci_try_reset_function(pdev); 492 if (ret == -EAGAIN) 493 goto out_disable_device; 494 495 vdev->reset_works = !ret; 496 pci_save_state(pdev); 497 vdev->pci_saved_state = pci_store_saved_state(pdev); 498 if (!vdev->pci_saved_state) 499 pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__); 500 501 if (likely(!nointxmask)) { 502 if (vfio_pci_nointx(pdev)) { 503 pci_info(pdev, "Masking broken INTx support\n"); 504 vdev->nointx = true; 505 pci_intx(pdev, 0); 506 } else 507 vdev->pci_2_3 = pci_intx_mask_supported(pdev); 508 } 509 510 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 511 if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) { 512 cmd &= ~PCI_COMMAND_INTX_DISABLE; 513 pci_write_config_word(pdev, PCI_COMMAND, cmd); 514 } 515 516 ret = vfio_pci_zdev_open_device(vdev); 517 if (ret) 518 goto out_free_state; 519 520 ret = vfio_config_init(vdev); 521 if (ret) 522 goto out_free_zdev; 523 524 msix_pos = pdev->msix_cap; 525 if (msix_pos) { 526 u16 flags; 527 u32 table; 528 529 pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags); 530 pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table); 531 532 vdev->msix_bar = table & PCI_MSIX_TABLE_BIR; 533 vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET; 534 vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16; 535 vdev->has_dyn_msix = pci_msix_can_alloc_dyn(pdev); 536 } else { 537 vdev->msix_bar = 0xFF; 538 vdev->has_dyn_msix = false; 539 } 540 541 if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev)) 542 vdev->has_vga = true; 543 544 545 return 0; 546 547 out_free_zdev: 548 vfio_pci_zdev_close_device(vdev); 549 out_free_state: 550 kfree(vdev->pci_saved_state); 551 vdev->pci_saved_state = NULL; 552 out_disable_device: 553 pci_disable_device(pdev); 554 out_power: 555 if (!disable_idle_d3) 556 pm_runtime_put(&pdev->dev); 557 return ret; 558 } 559 EXPORT_SYMBOL_GPL(vfio_pci_core_enable); 560 561 void vfio_pci_core_disable(struct vfio_pci_core_device *vdev) 562 { 563 struct pci_dev *pdev = vdev->pdev; 564 struct vfio_pci_dummy_resource *dummy_res, *tmp; 565 struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp; 566 int i, bar; 567 568 /* For needs_reset */ 569 lockdep_assert_held(&vdev->vdev.dev_set->lock); 570 571 /* 572 * This function can be invoked while the power state is non-D0. 573 * This non-D0 power state can be with or without runtime PM. 574 * vfio_pci_runtime_pm_exit() will internally increment the usage 575 * count corresponding to pm_runtime_put() called during low power 576 * feature entry and then pm_runtime_resume() will wake up the device, 577 * if the device has already gone into the suspended state. Otherwise, 578 * the vfio_pci_set_power_state() will change the device power state 579 * to D0. 580 */ 581 vfio_pci_runtime_pm_exit(vdev); 582 pm_runtime_resume(&pdev->dev); 583 584 /* 585 * This function calls __pci_reset_function_locked() which internally 586 * can use pci_pm_reset() for the function reset. pci_pm_reset() will 587 * fail if the power state is non-D0. Also, for the devices which 588 * have NoSoftRst-, the reset function can cause the PCI config space 589 * reset without restoring the original state (saved locally in 590 * 'vdev->pm_save'). 591 */ 592 vfio_pci_set_power_state(vdev, PCI_D0); 593 594 /* Stop the device from further DMA */ 595 pci_clear_master(pdev); 596 597 vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE | 598 VFIO_IRQ_SET_ACTION_TRIGGER, 599 vdev->irq_type, 0, 0, NULL); 600 601 /* Device closed, don't need mutex here */ 602 list_for_each_entry_safe(ioeventfd, ioeventfd_tmp, 603 &vdev->ioeventfds_list, next) { 604 vfio_virqfd_disable(&ioeventfd->virqfd); 605 list_del(&ioeventfd->next); 606 kfree(ioeventfd); 607 } 608 vdev->ioeventfds_nr = 0; 609 610 vdev->virq_disabled = false; 611 612 for (i = 0; i < vdev->num_regions; i++) 613 vdev->region[i].ops->release(vdev, &vdev->region[i]); 614 615 vdev->num_regions = 0; 616 kfree(vdev->region); 617 vdev->region = NULL; /* don't krealloc a freed pointer */ 618 619 vfio_config_free(vdev); 620 621 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 622 bar = i + PCI_STD_RESOURCES; 623 if (!vdev->barmap[bar]) 624 continue; 625 pci_iounmap(pdev, vdev->barmap[bar]); 626 pci_release_selected_regions(pdev, 1 << bar); 627 vdev->barmap[bar] = NULL; 628 } 629 630 list_for_each_entry_safe(dummy_res, tmp, 631 &vdev->dummy_resources_list, res_next) { 632 list_del(&dummy_res->res_next); 633 release_resource(&dummy_res->resource); 634 kfree(dummy_res); 635 } 636 637 vdev->needs_reset = true; 638 639 vfio_pci_zdev_close_device(vdev); 640 641 /* 642 * If we have saved state, restore it. If we can reset the device, 643 * even better. Resetting with current state seems better than 644 * nothing, but saving and restoring current state without reset 645 * is just busy work. 646 */ 647 if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) { 648 pci_info(pdev, "%s: Couldn't reload saved state\n", __func__); 649 650 if (!vdev->reset_works) 651 goto out; 652 653 pci_save_state(pdev); 654 } 655 656 /* 657 * Disable INTx and MSI, presumably to avoid spurious interrupts 658 * during reset. Stolen from pci_reset_function() 659 */ 660 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 661 662 /* 663 * Try to get the locks ourselves to prevent a deadlock. The 664 * success of this is dependent on being able to lock the device, 665 * which is not always possible. 666 * We can not use the "try" reset interface here, which will 667 * overwrite the previously restored configuration information. 668 */ 669 if (vdev->reset_works && pci_dev_trylock(pdev)) { 670 if (!__pci_reset_function_locked(pdev)) 671 vdev->needs_reset = false; 672 pci_dev_unlock(pdev); 673 } 674 675 pci_restore_state(pdev); 676 out: 677 pci_disable_device(pdev); 678 679 vfio_pci_dev_set_try_reset(vdev->vdev.dev_set); 680 681 /* Put the pm-runtime usage counter acquired during enable */ 682 if (!disable_idle_d3) 683 pm_runtime_put(&pdev->dev); 684 } 685 EXPORT_SYMBOL_GPL(vfio_pci_core_disable); 686 687 void vfio_pci_core_close_device(struct vfio_device *core_vdev) 688 { 689 struct vfio_pci_core_device *vdev = 690 container_of(core_vdev, struct vfio_pci_core_device, vdev); 691 692 if (vdev->sriov_pf_core_dev) { 693 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock); 694 WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users); 695 vdev->sriov_pf_core_dev->vf_token->users--; 696 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock); 697 } 698 #if IS_ENABLED(CONFIG_EEH) 699 eeh_dev_release(vdev->pdev); 700 #endif 701 vfio_pci_core_disable(vdev); 702 703 mutex_lock(&vdev->igate); 704 if (vdev->err_trigger) { 705 eventfd_ctx_put(vdev->err_trigger); 706 vdev->err_trigger = NULL; 707 } 708 if (vdev->req_trigger) { 709 eventfd_ctx_put(vdev->req_trigger); 710 vdev->req_trigger = NULL; 711 } 712 mutex_unlock(&vdev->igate); 713 } 714 EXPORT_SYMBOL_GPL(vfio_pci_core_close_device); 715 716 void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev) 717 { 718 vfio_pci_probe_mmaps(vdev); 719 #if IS_ENABLED(CONFIG_EEH) 720 eeh_dev_open(vdev->pdev); 721 #endif 722 723 if (vdev->sriov_pf_core_dev) { 724 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock); 725 vdev->sriov_pf_core_dev->vf_token->users++; 726 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock); 727 } 728 } 729 EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable); 730 731 static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type) 732 { 733 if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) { 734 u8 pin; 735 736 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || 737 vdev->nointx || vdev->pdev->is_virtfn) 738 return 0; 739 740 pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin); 741 742 return pin ? 1 : 0; 743 } else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) { 744 u8 pos; 745 u16 flags; 746 747 pos = vdev->pdev->msi_cap; 748 if (pos) { 749 pci_read_config_word(vdev->pdev, 750 pos + PCI_MSI_FLAGS, &flags); 751 return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1); 752 } 753 } else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) { 754 u8 pos; 755 u16 flags; 756 757 pos = vdev->pdev->msix_cap; 758 if (pos) { 759 pci_read_config_word(vdev->pdev, 760 pos + PCI_MSIX_FLAGS, &flags); 761 762 return (flags & PCI_MSIX_FLAGS_QSIZE) + 1; 763 } 764 } else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) { 765 if (pci_is_pcie(vdev->pdev)) 766 return 1; 767 } else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) { 768 return 1; 769 } 770 771 return 0; 772 } 773 774 static int vfio_pci_count_devs(struct pci_dev *pdev, void *data) 775 { 776 (*(int *)data)++; 777 return 0; 778 } 779 780 struct vfio_pci_fill_info { 781 struct vfio_device *vdev; 782 struct vfio_pci_dependent_device *devices; 783 int nr_devices; 784 u32 count; 785 u32 flags; 786 }; 787 788 static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data) 789 { 790 struct vfio_pci_dependent_device *info; 791 struct vfio_pci_fill_info *fill = data; 792 793 /* The topology changed since we counted devices */ 794 if (fill->count >= fill->nr_devices) 795 return -EAGAIN; 796 797 info = &fill->devices[fill->count++]; 798 info->segment = pci_domain_nr(pdev->bus); 799 info->bus = pdev->bus->number; 800 info->devfn = pdev->devfn; 801 802 if (fill->flags & VFIO_PCI_HOT_RESET_FLAG_DEV_ID) { 803 struct iommufd_ctx *iommufd = vfio_iommufd_device_ictx(fill->vdev); 804 struct vfio_device_set *dev_set = fill->vdev->dev_set; 805 struct vfio_device *vdev; 806 807 /* 808 * hot-reset requires all affected devices be represented in 809 * the dev_set. 810 */ 811 vdev = vfio_find_device_in_devset(dev_set, &pdev->dev); 812 if (!vdev) { 813 info->devid = VFIO_PCI_DEVID_NOT_OWNED; 814 } else { 815 int id = vfio_iommufd_get_dev_id(vdev, iommufd); 816 817 if (id > 0) 818 info->devid = id; 819 else if (id == -ENOENT) 820 info->devid = VFIO_PCI_DEVID_OWNED; 821 else 822 info->devid = VFIO_PCI_DEVID_NOT_OWNED; 823 } 824 /* If devid is VFIO_PCI_DEVID_NOT_OWNED, clear owned flag. */ 825 if (info->devid == VFIO_PCI_DEVID_NOT_OWNED) 826 fill->flags &= ~VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED; 827 } else { 828 struct iommu_group *iommu_group; 829 830 iommu_group = iommu_group_get(&pdev->dev); 831 if (!iommu_group) 832 return -EPERM; /* Cannot reset non-isolated devices */ 833 834 info->group_id = iommu_group_id(iommu_group); 835 iommu_group_put(iommu_group); 836 } 837 838 return 0; 839 } 840 841 struct vfio_pci_group_info { 842 int count; 843 struct file **files; 844 }; 845 846 static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot) 847 { 848 for (; pdev; pdev = pdev->bus->self) 849 if (pdev->bus == slot->bus) 850 return (pdev->slot == slot); 851 return false; 852 } 853 854 struct vfio_pci_walk_info { 855 int (*fn)(struct pci_dev *pdev, void *data); 856 void *data; 857 struct pci_dev *pdev; 858 bool slot; 859 int ret; 860 }; 861 862 static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data) 863 { 864 struct vfio_pci_walk_info *walk = data; 865 866 if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot)) 867 walk->ret = walk->fn(pdev, walk->data); 868 869 return walk->ret; 870 } 871 872 static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev, 873 int (*fn)(struct pci_dev *, 874 void *data), void *data, 875 bool slot) 876 { 877 struct vfio_pci_walk_info walk = { 878 .fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0, 879 }; 880 881 pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk); 882 883 return walk.ret; 884 } 885 886 static int msix_mmappable_cap(struct vfio_pci_core_device *vdev, 887 struct vfio_info_cap *caps) 888 { 889 struct vfio_info_cap_header header = { 890 .id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE, 891 .version = 1 892 }; 893 894 return vfio_info_add_capability(caps, &header, sizeof(header)); 895 } 896 897 int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev, 898 unsigned int type, unsigned int subtype, 899 const struct vfio_pci_regops *ops, 900 size_t size, u32 flags, void *data) 901 { 902 struct vfio_pci_region *region; 903 904 region = krealloc(vdev->region, 905 (vdev->num_regions + 1) * sizeof(*region), 906 GFP_KERNEL_ACCOUNT); 907 if (!region) 908 return -ENOMEM; 909 910 vdev->region = region; 911 vdev->region[vdev->num_regions].type = type; 912 vdev->region[vdev->num_regions].subtype = subtype; 913 vdev->region[vdev->num_regions].ops = ops; 914 vdev->region[vdev->num_regions].size = size; 915 vdev->region[vdev->num_regions].flags = flags; 916 vdev->region[vdev->num_regions].data = data; 917 918 vdev->num_regions++; 919 920 return 0; 921 } 922 EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region); 923 924 static int vfio_pci_info_atomic_cap(struct vfio_pci_core_device *vdev, 925 struct vfio_info_cap *caps) 926 { 927 struct vfio_device_info_cap_pci_atomic_comp cap = { 928 .header.id = VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP, 929 .header.version = 1 930 }; 931 struct pci_dev *pdev = pci_physfn(vdev->pdev); 932 u32 devcap2; 933 934 pcie_capability_read_dword(pdev, PCI_EXP_DEVCAP2, &devcap2); 935 936 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP32) && 937 !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP32)) 938 cap.flags |= VFIO_PCI_ATOMIC_COMP32; 939 940 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP64) && 941 !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP64)) 942 cap.flags |= VFIO_PCI_ATOMIC_COMP64; 943 944 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP128) && 945 !pci_enable_atomic_ops_to_root(pdev, 946 PCI_EXP_DEVCAP2_ATOMIC_COMP128)) 947 cap.flags |= VFIO_PCI_ATOMIC_COMP128; 948 949 if (!cap.flags) 950 return -ENODEV; 951 952 return vfio_info_add_capability(caps, &cap.header, sizeof(cap)); 953 } 954 955 static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev, 956 struct vfio_device_info __user *arg) 957 { 958 unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs); 959 struct vfio_device_info info = {}; 960 struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; 961 int ret; 962 963 if (copy_from_user(&info, arg, minsz)) 964 return -EFAULT; 965 966 if (info.argsz < minsz) 967 return -EINVAL; 968 969 minsz = min_t(size_t, info.argsz, sizeof(info)); 970 971 info.flags = VFIO_DEVICE_FLAGS_PCI; 972 973 if (vdev->reset_works) 974 info.flags |= VFIO_DEVICE_FLAGS_RESET; 975 976 info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions; 977 info.num_irqs = VFIO_PCI_NUM_IRQS; 978 979 ret = vfio_pci_info_zdev_add_caps(vdev, &caps); 980 if (ret && ret != -ENODEV) { 981 pci_warn(vdev->pdev, 982 "Failed to setup zPCI info capabilities\n"); 983 return ret; 984 } 985 986 ret = vfio_pci_info_atomic_cap(vdev, &caps); 987 if (ret && ret != -ENODEV) { 988 pci_warn(vdev->pdev, 989 "Failed to setup AtomicOps info capability\n"); 990 return ret; 991 } 992 993 if (caps.size) { 994 info.flags |= VFIO_DEVICE_FLAGS_CAPS; 995 if (info.argsz < sizeof(info) + caps.size) { 996 info.argsz = sizeof(info) + caps.size; 997 } else { 998 vfio_info_cap_shift(&caps, sizeof(info)); 999 if (copy_to_user(arg + 1, caps.buf, caps.size)) { 1000 kfree(caps.buf); 1001 return -EFAULT; 1002 } 1003 info.cap_offset = sizeof(*arg); 1004 } 1005 1006 kfree(caps.buf); 1007 } 1008 1009 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; 1010 } 1011 1012 static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev, 1013 struct vfio_region_info __user *arg) 1014 { 1015 unsigned long minsz = offsetofend(struct vfio_region_info, offset); 1016 struct pci_dev *pdev = vdev->pdev; 1017 struct vfio_region_info info; 1018 struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; 1019 int i, ret; 1020 1021 if (copy_from_user(&info, arg, minsz)) 1022 return -EFAULT; 1023 1024 if (info.argsz < minsz) 1025 return -EINVAL; 1026 1027 switch (info.index) { 1028 case VFIO_PCI_CONFIG_REGION_INDEX: 1029 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1030 info.size = pdev->cfg_size; 1031 info.flags = VFIO_REGION_INFO_FLAG_READ | 1032 VFIO_REGION_INFO_FLAG_WRITE; 1033 break; 1034 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX: 1035 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1036 info.size = pci_resource_len(pdev, info.index); 1037 if (!info.size) { 1038 info.flags = 0; 1039 break; 1040 } 1041 1042 info.flags = VFIO_REGION_INFO_FLAG_READ | 1043 VFIO_REGION_INFO_FLAG_WRITE; 1044 if (vdev->bar_mmap_supported[info.index]) { 1045 info.flags |= VFIO_REGION_INFO_FLAG_MMAP; 1046 if (info.index == vdev->msix_bar) { 1047 ret = msix_mmappable_cap(vdev, &caps); 1048 if (ret) 1049 return ret; 1050 } 1051 } 1052 1053 break; 1054 case VFIO_PCI_ROM_REGION_INDEX: { 1055 void __iomem *io; 1056 size_t size; 1057 u16 cmd; 1058 1059 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1060 info.flags = 0; 1061 1062 /* Report the BAR size, not the ROM size */ 1063 info.size = pci_resource_len(pdev, info.index); 1064 if (!info.size) { 1065 /* Shadow ROMs appear as PCI option ROMs */ 1066 if (pdev->resource[PCI_ROM_RESOURCE].flags & 1067 IORESOURCE_ROM_SHADOW) 1068 info.size = 0x20000; 1069 else 1070 break; 1071 } 1072 1073 /* 1074 * Is it really there? Enable memory decode for implicit access 1075 * in pci_map_rom(). 1076 */ 1077 cmd = vfio_pci_memory_lock_and_enable(vdev); 1078 io = pci_map_rom(pdev, &size); 1079 if (io) { 1080 info.flags = VFIO_REGION_INFO_FLAG_READ; 1081 pci_unmap_rom(pdev, io); 1082 } else { 1083 info.size = 0; 1084 } 1085 vfio_pci_memory_unlock_and_restore(vdev, cmd); 1086 1087 break; 1088 } 1089 case VFIO_PCI_VGA_REGION_INDEX: 1090 if (!vdev->has_vga) 1091 return -EINVAL; 1092 1093 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1094 info.size = 0xc0000; 1095 info.flags = VFIO_REGION_INFO_FLAG_READ | 1096 VFIO_REGION_INFO_FLAG_WRITE; 1097 1098 break; 1099 default: { 1100 struct vfio_region_info_cap_type cap_type = { 1101 .header.id = VFIO_REGION_INFO_CAP_TYPE, 1102 .header.version = 1 1103 }; 1104 1105 if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) 1106 return -EINVAL; 1107 info.index = array_index_nospec( 1108 info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions); 1109 1110 i = info.index - VFIO_PCI_NUM_REGIONS; 1111 1112 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1113 info.size = vdev->region[i].size; 1114 info.flags = vdev->region[i].flags; 1115 1116 cap_type.type = vdev->region[i].type; 1117 cap_type.subtype = vdev->region[i].subtype; 1118 1119 ret = vfio_info_add_capability(&caps, &cap_type.header, 1120 sizeof(cap_type)); 1121 if (ret) 1122 return ret; 1123 1124 if (vdev->region[i].ops->add_capability) { 1125 ret = vdev->region[i].ops->add_capability( 1126 vdev, &vdev->region[i], &caps); 1127 if (ret) 1128 return ret; 1129 } 1130 } 1131 } 1132 1133 if (caps.size) { 1134 info.flags |= VFIO_REGION_INFO_FLAG_CAPS; 1135 if (info.argsz < sizeof(info) + caps.size) { 1136 info.argsz = sizeof(info) + caps.size; 1137 info.cap_offset = 0; 1138 } else { 1139 vfio_info_cap_shift(&caps, sizeof(info)); 1140 if (copy_to_user(arg + 1, caps.buf, caps.size)) { 1141 kfree(caps.buf); 1142 return -EFAULT; 1143 } 1144 info.cap_offset = sizeof(*arg); 1145 } 1146 1147 kfree(caps.buf); 1148 } 1149 1150 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; 1151 } 1152 1153 static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev, 1154 struct vfio_irq_info __user *arg) 1155 { 1156 unsigned long minsz = offsetofend(struct vfio_irq_info, count); 1157 struct vfio_irq_info info; 1158 1159 if (copy_from_user(&info, arg, minsz)) 1160 return -EFAULT; 1161 1162 if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS) 1163 return -EINVAL; 1164 1165 switch (info.index) { 1166 case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX: 1167 case VFIO_PCI_REQ_IRQ_INDEX: 1168 break; 1169 case VFIO_PCI_ERR_IRQ_INDEX: 1170 if (pci_is_pcie(vdev->pdev)) 1171 break; 1172 fallthrough; 1173 default: 1174 return -EINVAL; 1175 } 1176 1177 info.flags = VFIO_IRQ_INFO_EVENTFD; 1178 1179 info.count = vfio_pci_get_irq_count(vdev, info.index); 1180 1181 if (info.index == VFIO_PCI_INTX_IRQ_INDEX) 1182 info.flags |= 1183 (VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED); 1184 else if (info.index != VFIO_PCI_MSIX_IRQ_INDEX || !vdev->has_dyn_msix) 1185 info.flags |= VFIO_IRQ_INFO_NORESIZE; 1186 1187 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; 1188 } 1189 1190 static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev, 1191 struct vfio_irq_set __user *arg) 1192 { 1193 unsigned long minsz = offsetofend(struct vfio_irq_set, count); 1194 struct vfio_irq_set hdr; 1195 u8 *data = NULL; 1196 int max, ret = 0; 1197 size_t data_size = 0; 1198 1199 if (copy_from_user(&hdr, arg, minsz)) 1200 return -EFAULT; 1201 1202 max = vfio_pci_get_irq_count(vdev, hdr.index); 1203 1204 ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS, 1205 &data_size); 1206 if (ret) 1207 return ret; 1208 1209 if (data_size) { 1210 data = memdup_user(&arg->data, data_size); 1211 if (IS_ERR(data)) 1212 return PTR_ERR(data); 1213 } 1214 1215 mutex_lock(&vdev->igate); 1216 1217 ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start, 1218 hdr.count, data); 1219 1220 mutex_unlock(&vdev->igate); 1221 kfree(data); 1222 1223 return ret; 1224 } 1225 1226 static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev, 1227 void __user *arg) 1228 { 1229 int ret; 1230 1231 if (!vdev->reset_works) 1232 return -EINVAL; 1233 1234 vfio_pci_zap_and_down_write_memory_lock(vdev); 1235 1236 /* 1237 * This function can be invoked while the power state is non-D0. If 1238 * pci_try_reset_function() has been called while the power state is 1239 * non-D0, then pci_try_reset_function() will internally set the power 1240 * state to D0 without vfio driver involvement. For the devices which 1241 * have NoSoftRst-, the reset function can cause the PCI config space 1242 * reset without restoring the original state (saved locally in 1243 * 'vdev->pm_save'). 1244 */ 1245 vfio_pci_set_power_state(vdev, PCI_D0); 1246 1247 ret = pci_try_reset_function(vdev->pdev); 1248 up_write(&vdev->memory_lock); 1249 1250 return ret; 1251 } 1252 1253 static int vfio_pci_ioctl_get_pci_hot_reset_info( 1254 struct vfio_pci_core_device *vdev, 1255 struct vfio_pci_hot_reset_info __user *arg) 1256 { 1257 unsigned long minsz = 1258 offsetofend(struct vfio_pci_hot_reset_info, count); 1259 struct vfio_pci_dependent_device *devices = NULL; 1260 struct vfio_pci_hot_reset_info hdr; 1261 struct vfio_pci_fill_info fill = {}; 1262 bool slot = false; 1263 int ret, count = 0; 1264 1265 if (copy_from_user(&hdr, arg, minsz)) 1266 return -EFAULT; 1267 1268 if (hdr.argsz < minsz) 1269 return -EINVAL; 1270 1271 hdr.flags = 0; 1272 1273 /* Can we do a slot or bus reset or neither? */ 1274 if (!pci_probe_reset_slot(vdev->pdev->slot)) 1275 slot = true; 1276 else if (pci_probe_reset_bus(vdev->pdev->bus)) 1277 return -ENODEV; 1278 1279 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs, 1280 &count, slot); 1281 if (ret) 1282 return ret; 1283 1284 if (count > (hdr.argsz - sizeof(hdr)) / sizeof(*devices)) { 1285 hdr.count = count; 1286 ret = -ENOSPC; 1287 goto header; 1288 } 1289 1290 devices = kcalloc(count, sizeof(*devices), GFP_KERNEL); 1291 if (!devices) 1292 return -ENOMEM; 1293 1294 fill.devices = devices; 1295 fill.nr_devices = count; 1296 fill.vdev = &vdev->vdev; 1297 1298 if (vfio_device_cdev_opened(&vdev->vdev)) 1299 fill.flags |= VFIO_PCI_HOT_RESET_FLAG_DEV_ID | 1300 VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED; 1301 1302 mutex_lock(&vdev->vdev.dev_set->lock); 1303 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs, 1304 &fill, slot); 1305 mutex_unlock(&vdev->vdev.dev_set->lock); 1306 if (ret) 1307 goto out; 1308 1309 if (copy_to_user(arg->devices, devices, 1310 sizeof(*devices) * fill.count)) { 1311 ret = -EFAULT; 1312 goto out; 1313 } 1314 1315 hdr.count = fill.count; 1316 hdr.flags = fill.flags; 1317 1318 header: 1319 if (copy_to_user(arg, &hdr, minsz)) 1320 ret = -EFAULT; 1321 out: 1322 kfree(devices); 1323 return ret; 1324 } 1325 1326 static int 1327 vfio_pci_ioctl_pci_hot_reset_groups(struct vfio_pci_core_device *vdev, 1328 int array_count, bool slot, 1329 struct vfio_pci_hot_reset __user *arg) 1330 { 1331 int32_t *group_fds; 1332 struct file **files; 1333 struct vfio_pci_group_info info; 1334 int file_idx, count = 0, ret = 0; 1335 1336 /* 1337 * We can't let userspace give us an arbitrarily large buffer to copy, 1338 * so verify how many we think there could be. Note groups can have 1339 * multiple devices so one group per device is the max. 1340 */ 1341 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs, 1342 &count, slot); 1343 if (ret) 1344 return ret; 1345 1346 if (array_count > count) 1347 return -EINVAL; 1348 1349 group_fds = kcalloc(array_count, sizeof(*group_fds), GFP_KERNEL); 1350 files = kcalloc(array_count, sizeof(*files), GFP_KERNEL); 1351 if (!group_fds || !files) { 1352 kfree(group_fds); 1353 kfree(files); 1354 return -ENOMEM; 1355 } 1356 1357 if (copy_from_user(group_fds, arg->group_fds, 1358 array_count * sizeof(*group_fds))) { 1359 kfree(group_fds); 1360 kfree(files); 1361 return -EFAULT; 1362 } 1363 1364 /* 1365 * Get the group file for each fd to ensure the group is held across 1366 * the reset 1367 */ 1368 for (file_idx = 0; file_idx < array_count; file_idx++) { 1369 struct file *file = fget(group_fds[file_idx]); 1370 1371 if (!file) { 1372 ret = -EBADF; 1373 break; 1374 } 1375 1376 /* Ensure the FD is a vfio group FD.*/ 1377 if (!vfio_file_is_group(file)) { 1378 fput(file); 1379 ret = -EINVAL; 1380 break; 1381 } 1382 1383 files[file_idx] = file; 1384 } 1385 1386 kfree(group_fds); 1387 1388 /* release reference to groups on error */ 1389 if (ret) 1390 goto hot_reset_release; 1391 1392 info.count = array_count; 1393 info.files = files; 1394 1395 ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info, NULL); 1396 1397 hot_reset_release: 1398 for (file_idx--; file_idx >= 0; file_idx--) 1399 fput(files[file_idx]); 1400 1401 kfree(files); 1402 return ret; 1403 } 1404 1405 static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev, 1406 struct vfio_pci_hot_reset __user *arg) 1407 { 1408 unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count); 1409 struct vfio_pci_hot_reset hdr; 1410 bool slot = false; 1411 1412 if (copy_from_user(&hdr, arg, minsz)) 1413 return -EFAULT; 1414 1415 if (hdr.argsz < minsz || hdr.flags) 1416 return -EINVAL; 1417 1418 /* zero-length array is only for cdev opened devices */ 1419 if (!!hdr.count == vfio_device_cdev_opened(&vdev->vdev)) 1420 return -EINVAL; 1421 1422 /* Can we do a slot or bus reset or neither? */ 1423 if (!pci_probe_reset_slot(vdev->pdev->slot)) 1424 slot = true; 1425 else if (pci_probe_reset_bus(vdev->pdev->bus)) 1426 return -ENODEV; 1427 1428 if (hdr.count) 1429 return vfio_pci_ioctl_pci_hot_reset_groups(vdev, hdr.count, slot, arg); 1430 1431 return vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, NULL, 1432 vfio_iommufd_device_ictx(&vdev->vdev)); 1433 } 1434 1435 static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev, 1436 struct vfio_device_ioeventfd __user *arg) 1437 { 1438 unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd); 1439 struct vfio_device_ioeventfd ioeventfd; 1440 int count; 1441 1442 if (copy_from_user(&ioeventfd, arg, minsz)) 1443 return -EFAULT; 1444 1445 if (ioeventfd.argsz < minsz) 1446 return -EINVAL; 1447 1448 if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK) 1449 return -EINVAL; 1450 1451 count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK; 1452 1453 if (hweight8(count) != 1 || ioeventfd.fd < -1) 1454 return -EINVAL; 1455 1456 return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count, 1457 ioeventfd.fd); 1458 } 1459 1460 long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd, 1461 unsigned long arg) 1462 { 1463 struct vfio_pci_core_device *vdev = 1464 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1465 void __user *uarg = (void __user *)arg; 1466 1467 switch (cmd) { 1468 case VFIO_DEVICE_GET_INFO: 1469 return vfio_pci_ioctl_get_info(vdev, uarg); 1470 case VFIO_DEVICE_GET_IRQ_INFO: 1471 return vfio_pci_ioctl_get_irq_info(vdev, uarg); 1472 case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO: 1473 return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg); 1474 case VFIO_DEVICE_GET_REGION_INFO: 1475 return vfio_pci_ioctl_get_region_info(vdev, uarg); 1476 case VFIO_DEVICE_IOEVENTFD: 1477 return vfio_pci_ioctl_ioeventfd(vdev, uarg); 1478 case VFIO_DEVICE_PCI_HOT_RESET: 1479 return vfio_pci_ioctl_pci_hot_reset(vdev, uarg); 1480 case VFIO_DEVICE_RESET: 1481 return vfio_pci_ioctl_reset(vdev, uarg); 1482 case VFIO_DEVICE_SET_IRQS: 1483 return vfio_pci_ioctl_set_irqs(vdev, uarg); 1484 default: 1485 return -ENOTTY; 1486 } 1487 } 1488 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl); 1489 1490 static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags, 1491 uuid_t __user *arg, size_t argsz) 1492 { 1493 struct vfio_pci_core_device *vdev = 1494 container_of(device, struct vfio_pci_core_device, vdev); 1495 uuid_t uuid; 1496 int ret; 1497 1498 if (!vdev->vf_token) 1499 return -ENOTTY; 1500 /* 1501 * We do not support GET of the VF Token UUID as this could 1502 * expose the token of the previous device user. 1503 */ 1504 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 1505 sizeof(uuid)); 1506 if (ret != 1) 1507 return ret; 1508 1509 if (copy_from_user(&uuid, arg, sizeof(uuid))) 1510 return -EFAULT; 1511 1512 mutex_lock(&vdev->vf_token->lock); 1513 uuid_copy(&vdev->vf_token->uuid, &uuid); 1514 mutex_unlock(&vdev->vf_token->lock); 1515 return 0; 1516 } 1517 1518 int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags, 1519 void __user *arg, size_t argsz) 1520 { 1521 switch (flags & VFIO_DEVICE_FEATURE_MASK) { 1522 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY: 1523 return vfio_pci_core_pm_entry(device, flags, arg, argsz); 1524 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP: 1525 return vfio_pci_core_pm_entry_with_wakeup(device, flags, 1526 arg, argsz); 1527 case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT: 1528 return vfio_pci_core_pm_exit(device, flags, arg, argsz); 1529 case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN: 1530 return vfio_pci_core_feature_token(device, flags, arg, argsz); 1531 default: 1532 return -ENOTTY; 1533 } 1534 } 1535 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature); 1536 1537 static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf, 1538 size_t count, loff_t *ppos, bool iswrite) 1539 { 1540 unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); 1541 int ret; 1542 1543 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) 1544 return -EINVAL; 1545 1546 ret = pm_runtime_resume_and_get(&vdev->pdev->dev); 1547 if (ret) { 1548 pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n", 1549 ret); 1550 return -EIO; 1551 } 1552 1553 switch (index) { 1554 case VFIO_PCI_CONFIG_REGION_INDEX: 1555 ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite); 1556 break; 1557 1558 case VFIO_PCI_ROM_REGION_INDEX: 1559 if (iswrite) 1560 ret = -EINVAL; 1561 else 1562 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false); 1563 break; 1564 1565 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX: 1566 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite); 1567 break; 1568 1569 case VFIO_PCI_VGA_REGION_INDEX: 1570 ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite); 1571 break; 1572 1573 default: 1574 index -= VFIO_PCI_NUM_REGIONS; 1575 ret = vdev->region[index].ops->rw(vdev, buf, 1576 count, ppos, iswrite); 1577 break; 1578 } 1579 1580 pm_runtime_put(&vdev->pdev->dev); 1581 return ret; 1582 } 1583 1584 ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf, 1585 size_t count, loff_t *ppos) 1586 { 1587 struct vfio_pci_core_device *vdev = 1588 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1589 1590 if (!count) 1591 return 0; 1592 1593 return vfio_pci_rw(vdev, buf, count, ppos, false); 1594 } 1595 EXPORT_SYMBOL_GPL(vfio_pci_core_read); 1596 1597 ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf, 1598 size_t count, loff_t *ppos) 1599 { 1600 struct vfio_pci_core_device *vdev = 1601 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1602 1603 if (!count) 1604 return 0; 1605 1606 return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true); 1607 } 1608 EXPORT_SYMBOL_GPL(vfio_pci_core_write); 1609 1610 /* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */ 1611 static int vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device *vdev, bool try) 1612 { 1613 struct vfio_pci_mmap_vma *mmap_vma, *tmp; 1614 1615 /* 1616 * Lock ordering: 1617 * vma_lock is nested under mmap_lock for vm_ops callback paths. 1618 * The memory_lock semaphore is used by both code paths calling 1619 * into this function to zap vmas and the vm_ops.fault callback 1620 * to protect the memory enable state of the device. 1621 * 1622 * When zapping vmas we need to maintain the mmap_lock => vma_lock 1623 * ordering, which requires using vma_lock to walk vma_list to 1624 * acquire an mm, then dropping vma_lock to get the mmap_lock and 1625 * reacquiring vma_lock. This logic is derived from similar 1626 * requirements in uverbs_user_mmap_disassociate(). 1627 * 1628 * mmap_lock must always be the top-level lock when it is taken. 1629 * Therefore we can only hold the memory_lock write lock when 1630 * vma_list is empty, as we'd need to take mmap_lock to clear 1631 * entries. vma_list can only be guaranteed empty when holding 1632 * vma_lock, thus memory_lock is nested under vma_lock. 1633 * 1634 * This enables the vm_ops.fault callback to acquire vma_lock, 1635 * followed by memory_lock read lock, while already holding 1636 * mmap_lock without risk of deadlock. 1637 */ 1638 while (1) { 1639 struct mm_struct *mm = NULL; 1640 1641 if (try) { 1642 if (!mutex_trylock(&vdev->vma_lock)) 1643 return 0; 1644 } else { 1645 mutex_lock(&vdev->vma_lock); 1646 } 1647 while (!list_empty(&vdev->vma_list)) { 1648 mmap_vma = list_first_entry(&vdev->vma_list, 1649 struct vfio_pci_mmap_vma, 1650 vma_next); 1651 mm = mmap_vma->vma->vm_mm; 1652 if (mmget_not_zero(mm)) 1653 break; 1654 1655 list_del(&mmap_vma->vma_next); 1656 kfree(mmap_vma); 1657 mm = NULL; 1658 } 1659 if (!mm) 1660 return 1; 1661 mutex_unlock(&vdev->vma_lock); 1662 1663 if (try) { 1664 if (!mmap_read_trylock(mm)) { 1665 mmput(mm); 1666 return 0; 1667 } 1668 } else { 1669 mmap_read_lock(mm); 1670 } 1671 if (try) { 1672 if (!mutex_trylock(&vdev->vma_lock)) { 1673 mmap_read_unlock(mm); 1674 mmput(mm); 1675 return 0; 1676 } 1677 } else { 1678 mutex_lock(&vdev->vma_lock); 1679 } 1680 list_for_each_entry_safe(mmap_vma, tmp, 1681 &vdev->vma_list, vma_next) { 1682 struct vm_area_struct *vma = mmap_vma->vma; 1683 1684 if (vma->vm_mm != mm) 1685 continue; 1686 1687 list_del(&mmap_vma->vma_next); 1688 kfree(mmap_vma); 1689 1690 zap_vma_ptes(vma, vma->vm_start, 1691 vma->vm_end - vma->vm_start); 1692 } 1693 mutex_unlock(&vdev->vma_lock); 1694 mmap_read_unlock(mm); 1695 mmput(mm); 1696 } 1697 } 1698 1699 void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev) 1700 { 1701 vfio_pci_zap_and_vma_lock(vdev, false); 1702 down_write(&vdev->memory_lock); 1703 mutex_unlock(&vdev->vma_lock); 1704 } 1705 1706 u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev) 1707 { 1708 u16 cmd; 1709 1710 down_write(&vdev->memory_lock); 1711 pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd); 1712 if (!(cmd & PCI_COMMAND_MEMORY)) 1713 pci_write_config_word(vdev->pdev, PCI_COMMAND, 1714 cmd | PCI_COMMAND_MEMORY); 1715 1716 return cmd; 1717 } 1718 1719 void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd) 1720 { 1721 pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd); 1722 up_write(&vdev->memory_lock); 1723 } 1724 1725 /* Caller holds vma_lock */ 1726 static int __vfio_pci_add_vma(struct vfio_pci_core_device *vdev, 1727 struct vm_area_struct *vma) 1728 { 1729 struct vfio_pci_mmap_vma *mmap_vma; 1730 1731 mmap_vma = kmalloc(sizeof(*mmap_vma), GFP_KERNEL_ACCOUNT); 1732 if (!mmap_vma) 1733 return -ENOMEM; 1734 1735 mmap_vma->vma = vma; 1736 list_add(&mmap_vma->vma_next, &vdev->vma_list); 1737 1738 return 0; 1739 } 1740 1741 /* 1742 * Zap mmaps on open so that we can fault them in on access and therefore 1743 * our vma_list only tracks mappings accessed since last zap. 1744 */ 1745 static void vfio_pci_mmap_open(struct vm_area_struct *vma) 1746 { 1747 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); 1748 } 1749 1750 static void vfio_pci_mmap_close(struct vm_area_struct *vma) 1751 { 1752 struct vfio_pci_core_device *vdev = vma->vm_private_data; 1753 struct vfio_pci_mmap_vma *mmap_vma; 1754 1755 mutex_lock(&vdev->vma_lock); 1756 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) { 1757 if (mmap_vma->vma == vma) { 1758 list_del(&mmap_vma->vma_next); 1759 kfree(mmap_vma); 1760 break; 1761 } 1762 } 1763 mutex_unlock(&vdev->vma_lock); 1764 } 1765 1766 static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf) 1767 { 1768 struct vm_area_struct *vma = vmf->vma; 1769 struct vfio_pci_core_device *vdev = vma->vm_private_data; 1770 struct vfio_pci_mmap_vma *mmap_vma; 1771 vm_fault_t ret = VM_FAULT_NOPAGE; 1772 1773 mutex_lock(&vdev->vma_lock); 1774 down_read(&vdev->memory_lock); 1775 1776 /* 1777 * Memory region cannot be accessed if the low power feature is engaged 1778 * or memory access is disabled. 1779 */ 1780 if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) { 1781 ret = VM_FAULT_SIGBUS; 1782 goto up_out; 1783 } 1784 1785 /* 1786 * We populate the whole vma on fault, so we need to test whether 1787 * the vma has already been mapped, such as for concurrent faults 1788 * to the same vma. io_remap_pfn_range() will trigger a BUG_ON if 1789 * we ask it to fill the same range again. 1790 */ 1791 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) { 1792 if (mmap_vma->vma == vma) 1793 goto up_out; 1794 } 1795 1796 if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 1797 vma->vm_end - vma->vm_start, 1798 vma->vm_page_prot)) { 1799 ret = VM_FAULT_SIGBUS; 1800 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); 1801 goto up_out; 1802 } 1803 1804 if (__vfio_pci_add_vma(vdev, vma)) { 1805 ret = VM_FAULT_OOM; 1806 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); 1807 } 1808 1809 up_out: 1810 up_read(&vdev->memory_lock); 1811 mutex_unlock(&vdev->vma_lock); 1812 return ret; 1813 } 1814 1815 static const struct vm_operations_struct vfio_pci_mmap_ops = { 1816 .open = vfio_pci_mmap_open, 1817 .close = vfio_pci_mmap_close, 1818 .fault = vfio_pci_mmap_fault, 1819 }; 1820 1821 int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma) 1822 { 1823 struct vfio_pci_core_device *vdev = 1824 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1825 struct pci_dev *pdev = vdev->pdev; 1826 unsigned int index; 1827 u64 phys_len, req_len, pgoff, req_start; 1828 int ret; 1829 1830 index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT); 1831 1832 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) 1833 return -EINVAL; 1834 if (vma->vm_end < vma->vm_start) 1835 return -EINVAL; 1836 if ((vma->vm_flags & VM_SHARED) == 0) 1837 return -EINVAL; 1838 if (index >= VFIO_PCI_NUM_REGIONS) { 1839 int regnum = index - VFIO_PCI_NUM_REGIONS; 1840 struct vfio_pci_region *region = vdev->region + regnum; 1841 1842 if (region->ops && region->ops->mmap && 1843 (region->flags & VFIO_REGION_INFO_FLAG_MMAP)) 1844 return region->ops->mmap(vdev, region, vma); 1845 return -EINVAL; 1846 } 1847 if (index >= VFIO_PCI_ROM_REGION_INDEX) 1848 return -EINVAL; 1849 if (!vdev->bar_mmap_supported[index]) 1850 return -EINVAL; 1851 1852 phys_len = PAGE_ALIGN(pci_resource_len(pdev, index)); 1853 req_len = vma->vm_end - vma->vm_start; 1854 pgoff = vma->vm_pgoff & 1855 ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1); 1856 req_start = pgoff << PAGE_SHIFT; 1857 1858 if (req_start + req_len > phys_len) 1859 return -EINVAL; 1860 1861 /* 1862 * Even though we don't make use of the barmap for the mmap, 1863 * we need to request the region and the barmap tracks that. 1864 */ 1865 if (!vdev->barmap[index]) { 1866 ret = pci_request_selected_regions(pdev, 1867 1 << index, "vfio-pci"); 1868 if (ret) 1869 return ret; 1870 1871 vdev->barmap[index] = pci_iomap(pdev, index, 0); 1872 if (!vdev->barmap[index]) { 1873 pci_release_selected_regions(pdev, 1 << index); 1874 return -ENOMEM; 1875 } 1876 } 1877 1878 vma->vm_private_data = vdev; 1879 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1880 vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff; 1881 1882 /* 1883 * See remap_pfn_range(), called from vfio_pci_fault() but we can't 1884 * change vm_flags within the fault handler. Set them now. 1885 */ 1886 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 1887 vma->vm_ops = &vfio_pci_mmap_ops; 1888 1889 return 0; 1890 } 1891 EXPORT_SYMBOL_GPL(vfio_pci_core_mmap); 1892 1893 void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count) 1894 { 1895 struct vfio_pci_core_device *vdev = 1896 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1897 struct pci_dev *pdev = vdev->pdev; 1898 1899 mutex_lock(&vdev->igate); 1900 1901 if (vdev->req_trigger) { 1902 if (!(count % 10)) 1903 pci_notice_ratelimited(pdev, 1904 "Relaying device request to user (#%u)\n", 1905 count); 1906 eventfd_signal(vdev->req_trigger, 1); 1907 } else if (count == 0) { 1908 pci_warn(pdev, 1909 "No device request channel registered, blocked until released by user\n"); 1910 } 1911 1912 mutex_unlock(&vdev->igate); 1913 } 1914 EXPORT_SYMBOL_GPL(vfio_pci_core_request); 1915 1916 static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev, 1917 bool vf_token, uuid_t *uuid) 1918 { 1919 /* 1920 * There's always some degree of trust or collaboration between SR-IOV 1921 * PF and VFs, even if just that the PF hosts the SR-IOV capability and 1922 * can disrupt VFs with a reset, but often the PF has more explicit 1923 * access to deny service to the VF or access data passed through the 1924 * VF. We therefore require an opt-in via a shared VF token (UUID) to 1925 * represent this trust. This both prevents that a VF driver might 1926 * assume the PF driver is a trusted, in-kernel driver, and also that 1927 * a PF driver might be replaced with a rogue driver, unknown to in-use 1928 * VF drivers. 1929 * 1930 * Therefore when presented with a VF, if the PF is a vfio device and 1931 * it is bound to the vfio-pci driver, the user needs to provide a VF 1932 * token to access the device, in the form of appending a vf_token to 1933 * the device name, for example: 1934 * 1935 * "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3" 1936 * 1937 * When presented with a PF which has VFs in use, the user must also 1938 * provide the current VF token to prove collaboration with existing 1939 * VF users. If VFs are not in use, the VF token provided for the PF 1940 * device will act to set the VF token. 1941 * 1942 * If the VF token is provided but unused, an error is generated. 1943 */ 1944 if (vdev->pdev->is_virtfn) { 1945 struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev; 1946 bool match; 1947 1948 if (!pf_vdev) { 1949 if (!vf_token) 1950 return 0; /* PF is not vfio-pci, no VF token */ 1951 1952 pci_info_ratelimited(vdev->pdev, 1953 "VF token incorrectly provided, PF not bound to vfio-pci\n"); 1954 return -EINVAL; 1955 } 1956 1957 if (!vf_token) { 1958 pci_info_ratelimited(vdev->pdev, 1959 "VF token required to access device\n"); 1960 return -EACCES; 1961 } 1962 1963 mutex_lock(&pf_vdev->vf_token->lock); 1964 match = uuid_equal(uuid, &pf_vdev->vf_token->uuid); 1965 mutex_unlock(&pf_vdev->vf_token->lock); 1966 1967 if (!match) { 1968 pci_info_ratelimited(vdev->pdev, 1969 "Incorrect VF token provided for device\n"); 1970 return -EACCES; 1971 } 1972 } else if (vdev->vf_token) { 1973 mutex_lock(&vdev->vf_token->lock); 1974 if (vdev->vf_token->users) { 1975 if (!vf_token) { 1976 mutex_unlock(&vdev->vf_token->lock); 1977 pci_info_ratelimited(vdev->pdev, 1978 "VF token required to access device\n"); 1979 return -EACCES; 1980 } 1981 1982 if (!uuid_equal(uuid, &vdev->vf_token->uuid)) { 1983 mutex_unlock(&vdev->vf_token->lock); 1984 pci_info_ratelimited(vdev->pdev, 1985 "Incorrect VF token provided for device\n"); 1986 return -EACCES; 1987 } 1988 } else if (vf_token) { 1989 uuid_copy(&vdev->vf_token->uuid, uuid); 1990 } 1991 1992 mutex_unlock(&vdev->vf_token->lock); 1993 } else if (vf_token) { 1994 pci_info_ratelimited(vdev->pdev, 1995 "VF token incorrectly provided, not a PF or VF\n"); 1996 return -EINVAL; 1997 } 1998 1999 return 0; 2000 } 2001 2002 #define VF_TOKEN_ARG "vf_token=" 2003 2004 int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf) 2005 { 2006 struct vfio_pci_core_device *vdev = 2007 container_of(core_vdev, struct vfio_pci_core_device, vdev); 2008 bool vf_token = false; 2009 uuid_t uuid; 2010 int ret; 2011 2012 if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev)))) 2013 return 0; /* No match */ 2014 2015 if (strlen(buf) > strlen(pci_name(vdev->pdev))) { 2016 buf += strlen(pci_name(vdev->pdev)); 2017 2018 if (*buf != ' ') 2019 return 0; /* No match: non-whitespace after name */ 2020 2021 while (*buf) { 2022 if (*buf == ' ') { 2023 buf++; 2024 continue; 2025 } 2026 2027 if (!vf_token && !strncmp(buf, VF_TOKEN_ARG, 2028 strlen(VF_TOKEN_ARG))) { 2029 buf += strlen(VF_TOKEN_ARG); 2030 2031 if (strlen(buf) < UUID_STRING_LEN) 2032 return -EINVAL; 2033 2034 ret = uuid_parse(buf, &uuid); 2035 if (ret) 2036 return ret; 2037 2038 vf_token = true; 2039 buf += UUID_STRING_LEN; 2040 } else { 2041 /* Unknown/duplicate option */ 2042 return -EINVAL; 2043 } 2044 } 2045 } 2046 2047 ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid); 2048 if (ret) 2049 return ret; 2050 2051 return 1; /* Match */ 2052 } 2053 EXPORT_SYMBOL_GPL(vfio_pci_core_match); 2054 2055 static int vfio_pci_bus_notifier(struct notifier_block *nb, 2056 unsigned long action, void *data) 2057 { 2058 struct vfio_pci_core_device *vdev = container_of(nb, 2059 struct vfio_pci_core_device, nb); 2060 struct device *dev = data; 2061 struct pci_dev *pdev = to_pci_dev(dev); 2062 struct pci_dev *physfn = pci_physfn(pdev); 2063 2064 if (action == BUS_NOTIFY_ADD_DEVICE && 2065 pdev->is_virtfn && physfn == vdev->pdev) { 2066 pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n", 2067 pci_name(pdev)); 2068 pdev->driver_override = kasprintf(GFP_KERNEL, "%s", 2069 vdev->vdev.ops->name); 2070 } else if (action == BUS_NOTIFY_BOUND_DRIVER && 2071 pdev->is_virtfn && physfn == vdev->pdev) { 2072 struct pci_driver *drv = pci_dev_driver(pdev); 2073 2074 if (drv && drv != pci_dev_driver(vdev->pdev)) 2075 pci_warn(vdev->pdev, 2076 "VF %s bound to driver %s while PF bound to driver %s\n", 2077 pci_name(pdev), drv->name, 2078 pci_dev_driver(vdev->pdev)->name); 2079 } 2080 2081 return 0; 2082 } 2083 2084 static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev) 2085 { 2086 struct pci_dev *pdev = vdev->pdev; 2087 struct vfio_pci_core_device *cur; 2088 struct pci_dev *physfn; 2089 int ret; 2090 2091 if (pdev->is_virtfn) { 2092 /* 2093 * If this VF was created by our vfio_pci_core_sriov_configure() 2094 * then we can find the PF vfio_pci_core_device now, and due to 2095 * the locking in pci_disable_sriov() it cannot change until 2096 * this VF device driver is removed. 2097 */ 2098 physfn = pci_physfn(vdev->pdev); 2099 mutex_lock(&vfio_pci_sriov_pfs_mutex); 2100 list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) { 2101 if (cur->pdev == physfn) { 2102 vdev->sriov_pf_core_dev = cur; 2103 break; 2104 } 2105 } 2106 mutex_unlock(&vfio_pci_sriov_pfs_mutex); 2107 return 0; 2108 } 2109 2110 /* Not a SRIOV PF */ 2111 if (!pdev->is_physfn) 2112 return 0; 2113 2114 vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL); 2115 if (!vdev->vf_token) 2116 return -ENOMEM; 2117 2118 mutex_init(&vdev->vf_token->lock); 2119 uuid_gen(&vdev->vf_token->uuid); 2120 2121 vdev->nb.notifier_call = vfio_pci_bus_notifier; 2122 ret = bus_register_notifier(&pci_bus_type, &vdev->nb); 2123 if (ret) { 2124 kfree(vdev->vf_token); 2125 return ret; 2126 } 2127 return 0; 2128 } 2129 2130 static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev) 2131 { 2132 if (!vdev->vf_token) 2133 return; 2134 2135 bus_unregister_notifier(&pci_bus_type, &vdev->nb); 2136 WARN_ON(vdev->vf_token->users); 2137 mutex_destroy(&vdev->vf_token->lock); 2138 kfree(vdev->vf_token); 2139 } 2140 2141 static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev) 2142 { 2143 struct pci_dev *pdev = vdev->pdev; 2144 int ret; 2145 2146 if (!vfio_pci_is_vga(pdev)) 2147 return 0; 2148 2149 ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name); 2150 if (ret) 2151 return ret; 2152 2153 ret = vga_client_register(pdev, vfio_pci_set_decode); 2154 if (ret) 2155 return ret; 2156 vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false)); 2157 return 0; 2158 } 2159 2160 static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev) 2161 { 2162 struct pci_dev *pdev = vdev->pdev; 2163 2164 if (!vfio_pci_is_vga(pdev)) 2165 return; 2166 vga_client_unregister(pdev); 2167 vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM | 2168 VGA_RSRC_LEGACY_IO | 2169 VGA_RSRC_LEGACY_MEM); 2170 } 2171 2172 int vfio_pci_core_init_dev(struct vfio_device *core_vdev) 2173 { 2174 struct vfio_pci_core_device *vdev = 2175 container_of(core_vdev, struct vfio_pci_core_device, vdev); 2176 2177 vdev->pdev = to_pci_dev(core_vdev->dev); 2178 vdev->irq_type = VFIO_PCI_NUM_IRQS; 2179 mutex_init(&vdev->igate); 2180 spin_lock_init(&vdev->irqlock); 2181 mutex_init(&vdev->ioeventfds_lock); 2182 INIT_LIST_HEAD(&vdev->dummy_resources_list); 2183 INIT_LIST_HEAD(&vdev->ioeventfds_list); 2184 mutex_init(&vdev->vma_lock); 2185 INIT_LIST_HEAD(&vdev->vma_list); 2186 INIT_LIST_HEAD(&vdev->sriov_pfs_item); 2187 init_rwsem(&vdev->memory_lock); 2188 xa_init(&vdev->ctx); 2189 2190 return 0; 2191 } 2192 EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev); 2193 2194 void vfio_pci_core_release_dev(struct vfio_device *core_vdev) 2195 { 2196 struct vfio_pci_core_device *vdev = 2197 container_of(core_vdev, struct vfio_pci_core_device, vdev); 2198 2199 mutex_destroy(&vdev->igate); 2200 mutex_destroy(&vdev->ioeventfds_lock); 2201 mutex_destroy(&vdev->vma_lock); 2202 kfree(vdev->region); 2203 kfree(vdev->pm_save); 2204 } 2205 EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev); 2206 2207 int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev) 2208 { 2209 struct pci_dev *pdev = vdev->pdev; 2210 struct device *dev = &pdev->dev; 2211 int ret; 2212 2213 /* Drivers must set the vfio_pci_core_device to their drvdata */ 2214 if (WARN_ON(vdev != dev_get_drvdata(dev))) 2215 return -EINVAL; 2216 2217 if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL) 2218 return -EINVAL; 2219 2220 if (vdev->vdev.mig_ops) { 2221 if (!(vdev->vdev.mig_ops->migration_get_state && 2222 vdev->vdev.mig_ops->migration_set_state && 2223 vdev->vdev.mig_ops->migration_get_data_size) || 2224 !(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY)) 2225 return -EINVAL; 2226 } 2227 2228 if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start && 2229 vdev->vdev.log_ops->log_stop && 2230 vdev->vdev.log_ops->log_read_and_clear)) 2231 return -EINVAL; 2232 2233 /* 2234 * Prevent binding to PFs with VFs enabled, the VFs might be in use 2235 * by the host or other users. We cannot capture the VFs if they 2236 * already exist, nor can we track VF users. Disabling SR-IOV here 2237 * would initiate removing the VFs, which would unbind the driver, 2238 * which is prone to blocking if that VF is also in use by vfio-pci. 2239 * Just reject these PFs and let the user sort it out. 2240 */ 2241 if (pci_num_vf(pdev)) { 2242 pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n"); 2243 return -EBUSY; 2244 } 2245 2246 if (pci_is_root_bus(pdev->bus)) { 2247 ret = vfio_assign_device_set(&vdev->vdev, vdev); 2248 } else if (!pci_probe_reset_slot(pdev->slot)) { 2249 ret = vfio_assign_device_set(&vdev->vdev, pdev->slot); 2250 } else { 2251 /* 2252 * If there is no slot reset support for this device, the whole 2253 * bus needs to be grouped together to support bus-wide resets. 2254 */ 2255 ret = vfio_assign_device_set(&vdev->vdev, pdev->bus); 2256 } 2257 2258 if (ret) 2259 return ret; 2260 ret = vfio_pci_vf_init(vdev); 2261 if (ret) 2262 return ret; 2263 ret = vfio_pci_vga_init(vdev); 2264 if (ret) 2265 goto out_vf; 2266 2267 vfio_pci_probe_power_state(vdev); 2268 2269 /* 2270 * pci-core sets the device power state to an unknown value at 2271 * bootup and after being removed from a driver. The only 2272 * transition it allows from this unknown state is to D0, which 2273 * typically happens when a driver calls pci_enable_device(). 2274 * We're not ready to enable the device yet, but we do want to 2275 * be able to get to D3. Therefore first do a D0 transition 2276 * before enabling runtime PM. 2277 */ 2278 vfio_pci_set_power_state(vdev, PCI_D0); 2279 2280 dev->driver->pm = &vfio_pci_core_pm_ops; 2281 pm_runtime_allow(dev); 2282 if (!disable_idle_d3) 2283 pm_runtime_put(dev); 2284 2285 ret = vfio_register_group_dev(&vdev->vdev); 2286 if (ret) 2287 goto out_power; 2288 return 0; 2289 2290 out_power: 2291 if (!disable_idle_d3) 2292 pm_runtime_get_noresume(dev); 2293 2294 pm_runtime_forbid(dev); 2295 out_vf: 2296 vfio_pci_vf_uninit(vdev); 2297 return ret; 2298 } 2299 EXPORT_SYMBOL_GPL(vfio_pci_core_register_device); 2300 2301 void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev) 2302 { 2303 vfio_pci_core_sriov_configure(vdev, 0); 2304 2305 vfio_unregister_group_dev(&vdev->vdev); 2306 2307 vfio_pci_vf_uninit(vdev); 2308 vfio_pci_vga_uninit(vdev); 2309 2310 if (!disable_idle_d3) 2311 pm_runtime_get_noresume(&vdev->pdev->dev); 2312 2313 pm_runtime_forbid(&vdev->pdev->dev); 2314 } 2315 EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device); 2316 2317 pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev, 2318 pci_channel_state_t state) 2319 { 2320 struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev); 2321 2322 mutex_lock(&vdev->igate); 2323 2324 if (vdev->err_trigger) 2325 eventfd_signal(vdev->err_trigger, 1); 2326 2327 mutex_unlock(&vdev->igate); 2328 2329 return PCI_ERS_RESULT_CAN_RECOVER; 2330 } 2331 EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected); 2332 2333 int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev, 2334 int nr_virtfn) 2335 { 2336 struct pci_dev *pdev = vdev->pdev; 2337 int ret = 0; 2338 2339 device_lock_assert(&pdev->dev); 2340 2341 if (nr_virtfn) { 2342 mutex_lock(&vfio_pci_sriov_pfs_mutex); 2343 /* 2344 * The thread that adds the vdev to the list is the only thread 2345 * that gets to call pci_enable_sriov() and we will only allow 2346 * it to be called once without going through 2347 * pci_disable_sriov() 2348 */ 2349 if (!list_empty(&vdev->sriov_pfs_item)) { 2350 ret = -EINVAL; 2351 goto out_unlock; 2352 } 2353 list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs); 2354 mutex_unlock(&vfio_pci_sriov_pfs_mutex); 2355 2356 /* 2357 * The PF power state should always be higher than the VF power 2358 * state. The PF can be in low power state either with runtime 2359 * power management (when there is no user) or PCI_PM_CTRL 2360 * register write by the user. If PF is in the low power state, 2361 * then change the power state to D0 first before enabling 2362 * SR-IOV. Also, this function can be called at any time, and 2363 * userspace PCI_PM_CTRL write can race against this code path, 2364 * so protect the same with 'memory_lock'. 2365 */ 2366 ret = pm_runtime_resume_and_get(&pdev->dev); 2367 if (ret) 2368 goto out_del; 2369 2370 down_write(&vdev->memory_lock); 2371 vfio_pci_set_power_state(vdev, PCI_D0); 2372 ret = pci_enable_sriov(pdev, nr_virtfn); 2373 up_write(&vdev->memory_lock); 2374 if (ret) { 2375 pm_runtime_put(&pdev->dev); 2376 goto out_del; 2377 } 2378 return nr_virtfn; 2379 } 2380 2381 if (pci_num_vf(pdev)) { 2382 pci_disable_sriov(pdev); 2383 pm_runtime_put(&pdev->dev); 2384 } 2385 2386 out_del: 2387 mutex_lock(&vfio_pci_sriov_pfs_mutex); 2388 list_del_init(&vdev->sriov_pfs_item); 2389 out_unlock: 2390 mutex_unlock(&vfio_pci_sriov_pfs_mutex); 2391 return ret; 2392 } 2393 EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure); 2394 2395 const struct pci_error_handlers vfio_pci_core_err_handlers = { 2396 .error_detected = vfio_pci_core_aer_err_detected, 2397 }; 2398 EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers); 2399 2400 static bool vfio_dev_in_groups(struct vfio_device *vdev, 2401 struct vfio_pci_group_info *groups) 2402 { 2403 unsigned int i; 2404 2405 if (!groups) 2406 return false; 2407 2408 for (i = 0; i < groups->count; i++) 2409 if (vfio_file_has_dev(groups->files[i], vdev)) 2410 return true; 2411 return false; 2412 } 2413 2414 static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data) 2415 { 2416 struct vfio_device_set *dev_set = data; 2417 2418 return vfio_find_device_in_devset(dev_set, &pdev->dev) ? 0 : -ENODEV; 2419 } 2420 2421 /* 2422 * vfio-core considers a group to be viable and will create a vfio_device even 2423 * if some devices are bound to drivers like pci-stub or pcieport. Here we 2424 * require all PCI devices to be inside our dev_set since that ensures they stay 2425 * put and that every driver controlling the device can co-ordinate with the 2426 * device reset. 2427 * 2428 * Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be 2429 * reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise. 2430 */ 2431 static struct pci_dev * 2432 vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set) 2433 { 2434 struct pci_dev *pdev; 2435 2436 lockdep_assert_held(&dev_set->lock); 2437 2438 /* 2439 * By definition all PCI devices in the dev_set share the same PCI 2440 * reset, so any pci_dev will have the same outcomes for 2441 * pci_probe_reset_*() and pci_reset_bus(). 2442 */ 2443 pdev = list_first_entry(&dev_set->device_list, 2444 struct vfio_pci_core_device, 2445 vdev.dev_set_list)->pdev; 2446 2447 /* pci_reset_bus() is supported */ 2448 if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus)) 2449 return NULL; 2450 2451 if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set, 2452 dev_set, 2453 !pci_probe_reset_slot(pdev->slot))) 2454 return NULL; 2455 return pdev; 2456 } 2457 2458 static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set) 2459 { 2460 struct vfio_pci_core_device *cur; 2461 int ret; 2462 2463 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { 2464 ret = pm_runtime_resume_and_get(&cur->pdev->dev); 2465 if (ret) 2466 goto unwind; 2467 } 2468 2469 return 0; 2470 2471 unwind: 2472 list_for_each_entry_continue_reverse(cur, &dev_set->device_list, 2473 vdev.dev_set_list) 2474 pm_runtime_put(&cur->pdev->dev); 2475 2476 return ret; 2477 } 2478 2479 /* 2480 * We need to get memory_lock for each device, but devices can share mmap_lock, 2481 * therefore we need to zap and hold the vma_lock for each device, and only then 2482 * get each memory_lock. 2483 */ 2484 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set, 2485 struct vfio_pci_group_info *groups, 2486 struct iommufd_ctx *iommufd_ctx) 2487 { 2488 struct vfio_pci_core_device *cur_mem; 2489 struct vfio_pci_core_device *cur_vma; 2490 struct vfio_pci_core_device *cur; 2491 struct pci_dev *pdev; 2492 bool is_mem = true; 2493 int ret; 2494 2495 mutex_lock(&dev_set->lock); 2496 cur_mem = list_first_entry(&dev_set->device_list, 2497 struct vfio_pci_core_device, 2498 vdev.dev_set_list); 2499 2500 pdev = vfio_pci_dev_set_resettable(dev_set); 2501 if (!pdev) { 2502 ret = -EINVAL; 2503 goto err_unlock; 2504 } 2505 2506 /* 2507 * Some of the devices in the dev_set can be in the runtime suspended 2508 * state. Increment the usage count for all the devices in the dev_set 2509 * before reset and decrement the same after reset. 2510 */ 2511 ret = vfio_pci_dev_set_pm_runtime_get(dev_set); 2512 if (ret) 2513 goto err_unlock; 2514 2515 list_for_each_entry(cur_vma, &dev_set->device_list, vdev.dev_set_list) { 2516 bool owned; 2517 2518 /* 2519 * Test whether all the affected devices can be reset by the 2520 * user. 2521 * 2522 * If called from a group opened device and the user provides 2523 * a set of groups, all the devices in the dev_set should be 2524 * contained by the set of groups provided by the user. 2525 * 2526 * If called from a cdev opened device and the user provides 2527 * a zero-length array, all the devices in the dev_set must 2528 * be bound to the same iommufd_ctx as the input iommufd_ctx. 2529 * If there is any device that has not been bound to any 2530 * iommufd_ctx yet, check if its iommu_group has any device 2531 * bound to the input iommufd_ctx. Such devices can be 2532 * considered owned by the input iommufd_ctx as the device 2533 * cannot be owned by another iommufd_ctx when its iommu_group 2534 * is owned. 2535 * 2536 * Otherwise, reset is not allowed. 2537 */ 2538 if (iommufd_ctx) { 2539 int devid = vfio_iommufd_get_dev_id(&cur_vma->vdev, 2540 iommufd_ctx); 2541 2542 owned = (devid > 0 || devid == -ENOENT); 2543 } else { 2544 owned = vfio_dev_in_groups(&cur_vma->vdev, groups); 2545 } 2546 2547 if (!owned) { 2548 ret = -EINVAL; 2549 goto err_undo; 2550 } 2551 2552 /* 2553 * Locking multiple devices is prone to deadlock, runaway and 2554 * unwind if we hit contention. 2555 */ 2556 if (!vfio_pci_zap_and_vma_lock(cur_vma, true)) { 2557 ret = -EBUSY; 2558 goto err_undo; 2559 } 2560 } 2561 cur_vma = NULL; 2562 2563 list_for_each_entry(cur_mem, &dev_set->device_list, vdev.dev_set_list) { 2564 if (!down_write_trylock(&cur_mem->memory_lock)) { 2565 ret = -EBUSY; 2566 goto err_undo; 2567 } 2568 mutex_unlock(&cur_mem->vma_lock); 2569 } 2570 cur_mem = NULL; 2571 2572 /* 2573 * The pci_reset_bus() will reset all the devices in the bus. 2574 * The power state can be non-D0 for some of the devices in the bus. 2575 * For these devices, the pci_reset_bus() will internally set 2576 * the power state to D0 without vfio driver involvement. 2577 * For the devices which have NoSoftRst-, the reset function can 2578 * cause the PCI config space reset without restoring the original 2579 * state (saved locally in 'vdev->pm_save'). 2580 */ 2581 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) 2582 vfio_pci_set_power_state(cur, PCI_D0); 2583 2584 ret = pci_reset_bus(pdev); 2585 2586 err_undo: 2587 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { 2588 if (cur == cur_mem) 2589 is_mem = false; 2590 if (cur == cur_vma) 2591 break; 2592 if (is_mem) 2593 up_write(&cur->memory_lock); 2594 else 2595 mutex_unlock(&cur->vma_lock); 2596 } 2597 2598 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) 2599 pm_runtime_put(&cur->pdev->dev); 2600 err_unlock: 2601 mutex_unlock(&dev_set->lock); 2602 return ret; 2603 } 2604 2605 static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set) 2606 { 2607 struct vfio_pci_core_device *cur; 2608 bool needs_reset = false; 2609 2610 /* No other VFIO device in the set can be open. */ 2611 if (vfio_device_set_open_count(dev_set) > 1) 2612 return false; 2613 2614 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) 2615 needs_reset |= cur->needs_reset; 2616 return needs_reset; 2617 } 2618 2619 /* 2620 * If a bus or slot reset is available for the provided dev_set and: 2621 * - All of the devices affected by that bus or slot reset are unused 2622 * - At least one of the affected devices is marked dirty via 2623 * needs_reset (such as by lack of FLR support) 2624 * Then attempt to perform that bus or slot reset. 2625 */ 2626 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set) 2627 { 2628 struct vfio_pci_core_device *cur; 2629 struct pci_dev *pdev; 2630 bool reset_done = false; 2631 2632 if (!vfio_pci_dev_set_needs_reset(dev_set)) 2633 return; 2634 2635 pdev = vfio_pci_dev_set_resettable(dev_set); 2636 if (!pdev) 2637 return; 2638 2639 /* 2640 * Some of the devices in the bus can be in the runtime suspended 2641 * state. Increment the usage count for all the devices in the dev_set 2642 * before reset and decrement the same after reset. 2643 */ 2644 if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set)) 2645 return; 2646 2647 if (!pci_reset_bus(pdev)) 2648 reset_done = true; 2649 2650 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { 2651 if (reset_done) 2652 cur->needs_reset = false; 2653 2654 if (!disable_idle_d3) 2655 pm_runtime_put(&cur->pdev->dev); 2656 } 2657 } 2658 2659 void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga, 2660 bool is_disable_idle_d3) 2661 { 2662 nointxmask = is_nointxmask; 2663 disable_vga = is_disable_vga; 2664 disable_idle_d3 = is_disable_idle_d3; 2665 } 2666 EXPORT_SYMBOL_GPL(vfio_pci_core_set_params); 2667 2668 static void vfio_pci_core_cleanup(void) 2669 { 2670 vfio_pci_uninit_perm_bits(); 2671 } 2672 2673 static int __init vfio_pci_core_init(void) 2674 { 2675 /* Allocate shared config space permission data used by all devices */ 2676 return vfio_pci_init_perm_bits(); 2677 } 2678 2679 module_init(vfio_pci_core_init); 2680 module_exit(vfio_pci_core_cleanup); 2681 2682 MODULE_LICENSE("GPL v2"); 2683 MODULE_AUTHOR(DRIVER_AUTHOR); 2684 MODULE_DESCRIPTION(DRIVER_DESC); 2685