xref: /openbmc/linux/drivers/vfio/pci/vfio_pci_core.c (revision 872bfc20)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
4  *     Author: Alex Williamson <alex.williamson@redhat.com>
5  *
6  * Derived from original vfio:
7  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
8  * Author: Tom Lyon, pugs@cisco.com
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/aperture.h>
14 #include <linux/device.h>
15 #include <linux/eventfd.h>
16 #include <linux/file.h>
17 #include <linux/interrupt.h>
18 #include <linux/iommu.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/pci.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/types.h>
26 #include <linux/uaccess.h>
27 #include <linux/vgaarb.h>
28 #include <linux/nospec.h>
29 #include <linux/sched/mm.h>
30 #include <linux/iommufd.h>
31 #if IS_ENABLED(CONFIG_EEH)
32 #include <asm/eeh.h>
33 #endif
34 
35 #include "vfio_pci_priv.h"
36 
37 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
38 #define DRIVER_DESC "core driver for VFIO based PCI devices"
39 
40 static bool nointxmask;
41 static bool disable_vga;
42 static bool disable_idle_d3;
43 
44 /* List of PF's that vfio_pci_core_sriov_configure() has been called on */
45 static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex);
46 static LIST_HEAD(vfio_pci_sriov_pfs);
47 
48 struct vfio_pci_dummy_resource {
49 	struct resource		resource;
50 	int			index;
51 	struct list_head	res_next;
52 };
53 
54 struct vfio_pci_vf_token {
55 	struct mutex		lock;
56 	uuid_t			uuid;
57 	int			users;
58 };
59 
60 struct vfio_pci_mmap_vma {
61 	struct vm_area_struct	*vma;
62 	struct list_head	vma_next;
63 };
64 
65 static inline bool vfio_vga_disabled(void)
66 {
67 #ifdef CONFIG_VFIO_PCI_VGA
68 	return disable_vga;
69 #else
70 	return true;
71 #endif
72 }
73 
74 /*
75  * Our VGA arbiter participation is limited since we don't know anything
76  * about the device itself.  However, if the device is the only VGA device
77  * downstream of a bridge and VFIO VGA support is disabled, then we can
78  * safely return legacy VGA IO and memory as not decoded since the user
79  * has no way to get to it and routing can be disabled externally at the
80  * bridge.
81  */
82 static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga)
83 {
84 	struct pci_dev *tmp = NULL;
85 	unsigned char max_busnr;
86 	unsigned int decodes;
87 
88 	if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus))
89 		return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
90 		       VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
91 
92 	max_busnr = pci_bus_max_busnr(pdev->bus);
93 	decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
94 
95 	while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) {
96 		if (tmp == pdev ||
97 		    pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) ||
98 		    pci_is_root_bus(tmp->bus))
99 			continue;
100 
101 		if (tmp->bus->number >= pdev->bus->number &&
102 		    tmp->bus->number <= max_busnr) {
103 			pci_dev_put(tmp);
104 			decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
105 			break;
106 		}
107 	}
108 
109 	return decodes;
110 }
111 
112 static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev)
113 {
114 	struct resource *res;
115 	int i;
116 	struct vfio_pci_dummy_resource *dummy_res;
117 
118 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
119 		int bar = i + PCI_STD_RESOURCES;
120 
121 		res = &vdev->pdev->resource[bar];
122 
123 		if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP))
124 			goto no_mmap;
125 
126 		if (!(res->flags & IORESOURCE_MEM))
127 			goto no_mmap;
128 
129 		/*
130 		 * The PCI core shouldn't set up a resource with a
131 		 * type but zero size. But there may be bugs that
132 		 * cause us to do that.
133 		 */
134 		if (!resource_size(res))
135 			goto no_mmap;
136 
137 		if (resource_size(res) >= PAGE_SIZE) {
138 			vdev->bar_mmap_supported[bar] = true;
139 			continue;
140 		}
141 
142 		if (!(res->start & ~PAGE_MASK)) {
143 			/*
144 			 * Add a dummy resource to reserve the remainder
145 			 * of the exclusive page in case that hot-add
146 			 * device's bar is assigned into it.
147 			 */
148 			dummy_res =
149 				kzalloc(sizeof(*dummy_res), GFP_KERNEL_ACCOUNT);
150 			if (dummy_res == NULL)
151 				goto no_mmap;
152 
153 			dummy_res->resource.name = "vfio sub-page reserved";
154 			dummy_res->resource.start = res->end + 1;
155 			dummy_res->resource.end = res->start + PAGE_SIZE - 1;
156 			dummy_res->resource.flags = res->flags;
157 			if (request_resource(res->parent,
158 						&dummy_res->resource)) {
159 				kfree(dummy_res);
160 				goto no_mmap;
161 			}
162 			dummy_res->index = bar;
163 			list_add(&dummy_res->res_next,
164 					&vdev->dummy_resources_list);
165 			vdev->bar_mmap_supported[bar] = true;
166 			continue;
167 		}
168 		/*
169 		 * Here we don't handle the case when the BAR is not page
170 		 * aligned because we can't expect the BAR will be
171 		 * assigned into the same location in a page in guest
172 		 * when we passthrough the BAR. And it's hard to access
173 		 * this BAR in userspace because we have no way to get
174 		 * the BAR's location in a page.
175 		 */
176 no_mmap:
177 		vdev->bar_mmap_supported[bar] = false;
178 	}
179 }
180 
181 struct vfio_pci_group_info;
182 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set);
183 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
184 				      struct vfio_pci_group_info *groups,
185 				      struct iommufd_ctx *iommufd_ctx);
186 
187 /*
188  * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND
189  * _and_ the ability detect when the device is asserting INTx via PCI_STATUS.
190  * If a device implements the former but not the latter we would typically
191  * expect broken_intx_masking be set and require an exclusive interrupt.
192  * However since we do have control of the device's ability to assert INTx,
193  * we can instead pretend that the device does not implement INTx, virtualizing
194  * the pin register to report zero and maintaining DisINTx set on the host.
195  */
196 static bool vfio_pci_nointx(struct pci_dev *pdev)
197 {
198 	switch (pdev->vendor) {
199 	case PCI_VENDOR_ID_INTEL:
200 		switch (pdev->device) {
201 		/* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */
202 		case 0x1572:
203 		case 0x1574:
204 		case 0x1580 ... 0x1581:
205 		case 0x1583 ... 0x158b:
206 		case 0x37d0 ... 0x37d2:
207 		/* X550 */
208 		case 0x1563:
209 			return true;
210 		default:
211 			return false;
212 		}
213 	}
214 
215 	return false;
216 }
217 
218 static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev)
219 {
220 	struct pci_dev *pdev = vdev->pdev;
221 	u16 pmcsr;
222 
223 	if (!pdev->pm_cap)
224 		return;
225 
226 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
227 
228 	vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
229 }
230 
231 /*
232  * pci_set_power_state() wrapper handling devices which perform a soft reset on
233  * D3->D0 transition.  Save state prior to D0/1/2->D3, stash it on the vdev,
234  * restore when returned to D0.  Saved separately from pci_saved_state for use
235  * by PM capability emulation and separately from pci_dev internal saved state
236  * to avoid it being overwritten and consumed around other resets.
237  */
238 int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state)
239 {
240 	struct pci_dev *pdev = vdev->pdev;
241 	bool needs_restore = false, needs_save = false;
242 	int ret;
243 
244 	/* Prevent changing power state for PFs with VFs enabled */
245 	if (pci_num_vf(pdev) && state > PCI_D0)
246 		return -EBUSY;
247 
248 	if (vdev->needs_pm_restore) {
249 		if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) {
250 			pci_save_state(pdev);
251 			needs_save = true;
252 		}
253 
254 		if (pdev->current_state >= PCI_D3hot && state <= PCI_D0)
255 			needs_restore = true;
256 	}
257 
258 	ret = pci_set_power_state(pdev, state);
259 
260 	if (!ret) {
261 		/* D3 might be unsupported via quirk, skip unless in D3 */
262 		if (needs_save && pdev->current_state >= PCI_D3hot) {
263 			/*
264 			 * The current PCI state will be saved locally in
265 			 * 'pm_save' during the D3hot transition. When the
266 			 * device state is changed to D0 again with the current
267 			 * function, then pci_store_saved_state() will restore
268 			 * the state and will free the memory pointed by
269 			 * 'pm_save'. There are few cases where the PCI power
270 			 * state can be changed to D0 without the involvement
271 			 * of the driver. For these cases, free the earlier
272 			 * allocated memory first before overwriting 'pm_save'
273 			 * to prevent the memory leak.
274 			 */
275 			kfree(vdev->pm_save);
276 			vdev->pm_save = pci_store_saved_state(pdev);
277 		} else if (needs_restore) {
278 			pci_load_and_free_saved_state(pdev, &vdev->pm_save);
279 			pci_restore_state(pdev);
280 		}
281 	}
282 
283 	return ret;
284 }
285 
286 static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev,
287 				     struct eventfd_ctx *efdctx)
288 {
289 	/*
290 	 * The vdev power related flags are protected with 'memory_lock'
291 	 * semaphore.
292 	 */
293 	vfio_pci_zap_and_down_write_memory_lock(vdev);
294 	if (vdev->pm_runtime_engaged) {
295 		up_write(&vdev->memory_lock);
296 		return -EINVAL;
297 	}
298 
299 	vdev->pm_runtime_engaged = true;
300 	vdev->pm_wake_eventfd_ctx = efdctx;
301 	pm_runtime_put_noidle(&vdev->pdev->dev);
302 	up_write(&vdev->memory_lock);
303 
304 	return 0;
305 }
306 
307 static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags,
308 				  void __user *arg, size_t argsz)
309 {
310 	struct vfio_pci_core_device *vdev =
311 		container_of(device, struct vfio_pci_core_device, vdev);
312 	int ret;
313 
314 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
315 	if (ret != 1)
316 		return ret;
317 
318 	/*
319 	 * Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count
320 	 * will be decremented. The pm_runtime_put() will be invoked again
321 	 * while returning from the ioctl and then the device can go into
322 	 * runtime suspended state.
323 	 */
324 	return vfio_pci_runtime_pm_entry(vdev, NULL);
325 }
326 
327 static int vfio_pci_core_pm_entry_with_wakeup(
328 	struct vfio_device *device, u32 flags,
329 	struct vfio_device_low_power_entry_with_wakeup __user *arg,
330 	size_t argsz)
331 {
332 	struct vfio_pci_core_device *vdev =
333 		container_of(device, struct vfio_pci_core_device, vdev);
334 	struct vfio_device_low_power_entry_with_wakeup entry;
335 	struct eventfd_ctx *efdctx;
336 	int ret;
337 
338 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
339 				 sizeof(entry));
340 	if (ret != 1)
341 		return ret;
342 
343 	if (copy_from_user(&entry, arg, sizeof(entry)))
344 		return -EFAULT;
345 
346 	if (entry.wakeup_eventfd < 0)
347 		return -EINVAL;
348 
349 	efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd);
350 	if (IS_ERR(efdctx))
351 		return PTR_ERR(efdctx);
352 
353 	ret = vfio_pci_runtime_pm_entry(vdev, efdctx);
354 	if (ret)
355 		eventfd_ctx_put(efdctx);
356 
357 	return ret;
358 }
359 
360 static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
361 {
362 	if (vdev->pm_runtime_engaged) {
363 		vdev->pm_runtime_engaged = false;
364 		pm_runtime_get_noresume(&vdev->pdev->dev);
365 
366 		if (vdev->pm_wake_eventfd_ctx) {
367 			eventfd_ctx_put(vdev->pm_wake_eventfd_ctx);
368 			vdev->pm_wake_eventfd_ctx = NULL;
369 		}
370 	}
371 }
372 
373 static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
374 {
375 	/*
376 	 * The vdev power related flags are protected with 'memory_lock'
377 	 * semaphore.
378 	 */
379 	down_write(&vdev->memory_lock);
380 	__vfio_pci_runtime_pm_exit(vdev);
381 	up_write(&vdev->memory_lock);
382 }
383 
384 static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags,
385 				 void __user *arg, size_t argsz)
386 {
387 	struct vfio_pci_core_device *vdev =
388 		container_of(device, struct vfio_pci_core_device, vdev);
389 	int ret;
390 
391 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
392 	if (ret != 1)
393 		return ret;
394 
395 	/*
396 	 * The device is always in the active state here due to pm wrappers
397 	 * around ioctls. If the device had entered a low power state and
398 	 * pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has
399 	 * already signaled the eventfd and exited low power mode itself.
400 	 * pm_runtime_engaged protects the redundant call here.
401 	 */
402 	vfio_pci_runtime_pm_exit(vdev);
403 	return 0;
404 }
405 
406 #ifdef CONFIG_PM
407 static int vfio_pci_core_runtime_suspend(struct device *dev)
408 {
409 	struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
410 
411 	down_write(&vdev->memory_lock);
412 	/*
413 	 * The user can move the device into D3hot state before invoking
414 	 * power management IOCTL. Move the device into D0 state here and then
415 	 * the pci-driver core runtime PM suspend function will move the device
416 	 * into the low power state. Also, for the devices which have
417 	 * NoSoftRst-, it will help in restoring the original state
418 	 * (saved locally in 'vdev->pm_save').
419 	 */
420 	vfio_pci_set_power_state(vdev, PCI_D0);
421 	up_write(&vdev->memory_lock);
422 
423 	/*
424 	 * If INTx is enabled, then mask INTx before going into the runtime
425 	 * suspended state and unmask the same in the runtime resume.
426 	 * If INTx has already been masked by the user, then
427 	 * vfio_pci_intx_mask() will return false and in that case, INTx
428 	 * should not be unmasked in the runtime resume.
429 	 */
430 	vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) &&
431 				vfio_pci_intx_mask(vdev));
432 
433 	return 0;
434 }
435 
436 static int vfio_pci_core_runtime_resume(struct device *dev)
437 {
438 	struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
439 
440 	/*
441 	 * Resume with a pm_wake_eventfd_ctx signals the eventfd and exit
442 	 * low power mode.
443 	 */
444 	down_write(&vdev->memory_lock);
445 	if (vdev->pm_wake_eventfd_ctx) {
446 		eventfd_signal(vdev->pm_wake_eventfd_ctx, 1);
447 		__vfio_pci_runtime_pm_exit(vdev);
448 	}
449 	up_write(&vdev->memory_lock);
450 
451 	if (vdev->pm_intx_masked)
452 		vfio_pci_intx_unmask(vdev);
453 
454 	return 0;
455 }
456 #endif /* CONFIG_PM */
457 
458 /*
459  * The pci-driver core runtime PM routines always save the device state
460  * before going into suspended state. If the device is going into low power
461  * state with only with runtime PM ops, then no explicit handling is needed
462  * for the devices which have NoSoftRst-.
463  */
464 static const struct dev_pm_ops vfio_pci_core_pm_ops = {
465 	SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend,
466 			   vfio_pci_core_runtime_resume,
467 			   NULL)
468 };
469 
470 int vfio_pci_core_enable(struct vfio_pci_core_device *vdev)
471 {
472 	struct pci_dev *pdev = vdev->pdev;
473 	int ret;
474 	u16 cmd;
475 	u8 msix_pos;
476 
477 	if (!disable_idle_d3) {
478 		ret = pm_runtime_resume_and_get(&pdev->dev);
479 		if (ret < 0)
480 			return ret;
481 	}
482 
483 	/* Don't allow our initial saved state to include busmaster */
484 	pci_clear_master(pdev);
485 
486 	ret = pci_enable_device(pdev);
487 	if (ret)
488 		goto out_power;
489 
490 	/* If reset fails because of the device lock, fail this path entirely */
491 	ret = pci_try_reset_function(pdev);
492 	if (ret == -EAGAIN)
493 		goto out_disable_device;
494 
495 	vdev->reset_works = !ret;
496 	pci_save_state(pdev);
497 	vdev->pci_saved_state = pci_store_saved_state(pdev);
498 	if (!vdev->pci_saved_state)
499 		pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__);
500 
501 	if (likely(!nointxmask)) {
502 		if (vfio_pci_nointx(pdev)) {
503 			pci_info(pdev, "Masking broken INTx support\n");
504 			vdev->nointx = true;
505 			pci_intx(pdev, 0);
506 		} else
507 			vdev->pci_2_3 = pci_intx_mask_supported(pdev);
508 	}
509 
510 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
511 	if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) {
512 		cmd &= ~PCI_COMMAND_INTX_DISABLE;
513 		pci_write_config_word(pdev, PCI_COMMAND, cmd);
514 	}
515 
516 	ret = vfio_pci_zdev_open_device(vdev);
517 	if (ret)
518 		goto out_free_state;
519 
520 	ret = vfio_config_init(vdev);
521 	if (ret)
522 		goto out_free_zdev;
523 
524 	msix_pos = pdev->msix_cap;
525 	if (msix_pos) {
526 		u16 flags;
527 		u32 table;
528 
529 		pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags);
530 		pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table);
531 
532 		vdev->msix_bar = table & PCI_MSIX_TABLE_BIR;
533 		vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET;
534 		vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16;
535 		vdev->has_dyn_msix = pci_msix_can_alloc_dyn(pdev);
536 	} else {
537 		vdev->msix_bar = 0xFF;
538 		vdev->has_dyn_msix = false;
539 	}
540 
541 	if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev))
542 		vdev->has_vga = true;
543 
544 
545 	return 0;
546 
547 out_free_zdev:
548 	vfio_pci_zdev_close_device(vdev);
549 out_free_state:
550 	kfree(vdev->pci_saved_state);
551 	vdev->pci_saved_state = NULL;
552 out_disable_device:
553 	pci_disable_device(pdev);
554 out_power:
555 	if (!disable_idle_d3)
556 		pm_runtime_put(&pdev->dev);
557 	return ret;
558 }
559 EXPORT_SYMBOL_GPL(vfio_pci_core_enable);
560 
561 void vfio_pci_core_disable(struct vfio_pci_core_device *vdev)
562 {
563 	struct pci_dev *pdev = vdev->pdev;
564 	struct vfio_pci_dummy_resource *dummy_res, *tmp;
565 	struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp;
566 	int i, bar;
567 
568 	/* For needs_reset */
569 	lockdep_assert_held(&vdev->vdev.dev_set->lock);
570 
571 	/*
572 	 * This function can be invoked while the power state is non-D0.
573 	 * This non-D0 power state can be with or without runtime PM.
574 	 * vfio_pci_runtime_pm_exit() will internally increment the usage
575 	 * count corresponding to pm_runtime_put() called during low power
576 	 * feature entry and then pm_runtime_resume() will wake up the device,
577 	 * if the device has already gone into the suspended state. Otherwise,
578 	 * the vfio_pci_set_power_state() will change the device power state
579 	 * to D0.
580 	 */
581 	vfio_pci_runtime_pm_exit(vdev);
582 	pm_runtime_resume(&pdev->dev);
583 
584 	/*
585 	 * This function calls __pci_reset_function_locked() which internally
586 	 * can use pci_pm_reset() for the function reset. pci_pm_reset() will
587 	 * fail if the power state is non-D0. Also, for the devices which
588 	 * have NoSoftRst-, the reset function can cause the PCI config space
589 	 * reset without restoring the original state (saved locally in
590 	 * 'vdev->pm_save').
591 	 */
592 	vfio_pci_set_power_state(vdev, PCI_D0);
593 
594 	/* Stop the device from further DMA */
595 	pci_clear_master(pdev);
596 
597 	vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE |
598 				VFIO_IRQ_SET_ACTION_TRIGGER,
599 				vdev->irq_type, 0, 0, NULL);
600 
601 	/* Device closed, don't need mutex here */
602 	list_for_each_entry_safe(ioeventfd, ioeventfd_tmp,
603 				 &vdev->ioeventfds_list, next) {
604 		vfio_virqfd_disable(&ioeventfd->virqfd);
605 		list_del(&ioeventfd->next);
606 		kfree(ioeventfd);
607 	}
608 	vdev->ioeventfds_nr = 0;
609 
610 	vdev->virq_disabled = false;
611 
612 	for (i = 0; i < vdev->num_regions; i++)
613 		vdev->region[i].ops->release(vdev, &vdev->region[i]);
614 
615 	vdev->num_regions = 0;
616 	kfree(vdev->region);
617 	vdev->region = NULL; /* don't krealloc a freed pointer */
618 
619 	vfio_config_free(vdev);
620 
621 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
622 		bar = i + PCI_STD_RESOURCES;
623 		if (!vdev->barmap[bar])
624 			continue;
625 		pci_iounmap(pdev, vdev->barmap[bar]);
626 		pci_release_selected_regions(pdev, 1 << bar);
627 		vdev->barmap[bar] = NULL;
628 	}
629 
630 	list_for_each_entry_safe(dummy_res, tmp,
631 				 &vdev->dummy_resources_list, res_next) {
632 		list_del(&dummy_res->res_next);
633 		release_resource(&dummy_res->resource);
634 		kfree(dummy_res);
635 	}
636 
637 	vdev->needs_reset = true;
638 
639 	vfio_pci_zdev_close_device(vdev);
640 
641 	/*
642 	 * If we have saved state, restore it.  If we can reset the device,
643 	 * even better.  Resetting with current state seems better than
644 	 * nothing, but saving and restoring current state without reset
645 	 * is just busy work.
646 	 */
647 	if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) {
648 		pci_info(pdev, "%s: Couldn't reload saved state\n", __func__);
649 
650 		if (!vdev->reset_works)
651 			goto out;
652 
653 		pci_save_state(pdev);
654 	}
655 
656 	/*
657 	 * Disable INTx and MSI, presumably to avoid spurious interrupts
658 	 * during reset.  Stolen from pci_reset_function()
659 	 */
660 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
661 
662 	/*
663 	 * Try to get the locks ourselves to prevent a deadlock. The
664 	 * success of this is dependent on being able to lock the device,
665 	 * which is not always possible.
666 	 * We can not use the "try" reset interface here, which will
667 	 * overwrite the previously restored configuration information.
668 	 */
669 	if (vdev->reset_works && pci_dev_trylock(pdev)) {
670 		if (!__pci_reset_function_locked(pdev))
671 			vdev->needs_reset = false;
672 		pci_dev_unlock(pdev);
673 	}
674 
675 	pci_restore_state(pdev);
676 out:
677 	pci_disable_device(pdev);
678 
679 	vfio_pci_dev_set_try_reset(vdev->vdev.dev_set);
680 
681 	/* Put the pm-runtime usage counter acquired during enable */
682 	if (!disable_idle_d3)
683 		pm_runtime_put(&pdev->dev);
684 }
685 EXPORT_SYMBOL_GPL(vfio_pci_core_disable);
686 
687 void vfio_pci_core_close_device(struct vfio_device *core_vdev)
688 {
689 	struct vfio_pci_core_device *vdev =
690 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
691 
692 	if (vdev->sriov_pf_core_dev) {
693 		mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
694 		WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users);
695 		vdev->sriov_pf_core_dev->vf_token->users--;
696 		mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
697 	}
698 #if IS_ENABLED(CONFIG_EEH)
699 	eeh_dev_release(vdev->pdev);
700 #endif
701 	vfio_pci_core_disable(vdev);
702 
703 	mutex_lock(&vdev->igate);
704 	if (vdev->err_trigger) {
705 		eventfd_ctx_put(vdev->err_trigger);
706 		vdev->err_trigger = NULL;
707 	}
708 	if (vdev->req_trigger) {
709 		eventfd_ctx_put(vdev->req_trigger);
710 		vdev->req_trigger = NULL;
711 	}
712 	mutex_unlock(&vdev->igate);
713 }
714 EXPORT_SYMBOL_GPL(vfio_pci_core_close_device);
715 
716 void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev)
717 {
718 	vfio_pci_probe_mmaps(vdev);
719 #if IS_ENABLED(CONFIG_EEH)
720 	eeh_dev_open(vdev->pdev);
721 #endif
722 
723 	if (vdev->sriov_pf_core_dev) {
724 		mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
725 		vdev->sriov_pf_core_dev->vf_token->users++;
726 		mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
727 	}
728 }
729 EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable);
730 
731 static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type)
732 {
733 	if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) {
734 		u8 pin;
735 
736 		if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) ||
737 		    vdev->nointx || vdev->pdev->is_virtfn)
738 			return 0;
739 
740 		pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin);
741 
742 		return pin ? 1 : 0;
743 	} else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) {
744 		u8 pos;
745 		u16 flags;
746 
747 		pos = vdev->pdev->msi_cap;
748 		if (pos) {
749 			pci_read_config_word(vdev->pdev,
750 					     pos + PCI_MSI_FLAGS, &flags);
751 			return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1);
752 		}
753 	} else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) {
754 		u8 pos;
755 		u16 flags;
756 
757 		pos = vdev->pdev->msix_cap;
758 		if (pos) {
759 			pci_read_config_word(vdev->pdev,
760 					     pos + PCI_MSIX_FLAGS, &flags);
761 
762 			return (flags & PCI_MSIX_FLAGS_QSIZE) + 1;
763 		}
764 	} else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) {
765 		if (pci_is_pcie(vdev->pdev))
766 			return 1;
767 	} else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) {
768 		return 1;
769 	}
770 
771 	return 0;
772 }
773 
774 static int vfio_pci_count_devs(struct pci_dev *pdev, void *data)
775 {
776 	(*(int *)data)++;
777 	return 0;
778 }
779 
780 struct vfio_pci_fill_info {
781 	struct vfio_device *vdev;
782 	struct vfio_pci_dependent_device *devices;
783 	int nr_devices;
784 	u32 count;
785 	u32 flags;
786 };
787 
788 static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data)
789 {
790 	struct vfio_pci_dependent_device *info;
791 	struct vfio_pci_fill_info *fill = data;
792 
793 	/* The topology changed since we counted devices */
794 	if (fill->count >= fill->nr_devices)
795 		return -EAGAIN;
796 
797 	info = &fill->devices[fill->count++];
798 	info->segment = pci_domain_nr(pdev->bus);
799 	info->bus = pdev->bus->number;
800 	info->devfn = pdev->devfn;
801 
802 	if (fill->flags & VFIO_PCI_HOT_RESET_FLAG_DEV_ID) {
803 		struct iommufd_ctx *iommufd = vfio_iommufd_device_ictx(fill->vdev);
804 		struct vfio_device_set *dev_set = fill->vdev->dev_set;
805 		struct vfio_device *vdev;
806 
807 		/*
808 		 * hot-reset requires all affected devices be represented in
809 		 * the dev_set.
810 		 */
811 		vdev = vfio_find_device_in_devset(dev_set, &pdev->dev);
812 		if (!vdev) {
813 			info->devid = VFIO_PCI_DEVID_NOT_OWNED;
814 		} else {
815 			int id = vfio_iommufd_get_dev_id(vdev, iommufd);
816 
817 			if (id > 0)
818 				info->devid = id;
819 			else if (id == -ENOENT)
820 				info->devid = VFIO_PCI_DEVID_OWNED;
821 			else
822 				info->devid = VFIO_PCI_DEVID_NOT_OWNED;
823 		}
824 		/* If devid is VFIO_PCI_DEVID_NOT_OWNED, clear owned flag. */
825 		if (info->devid == VFIO_PCI_DEVID_NOT_OWNED)
826 			fill->flags &= ~VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
827 	} else {
828 		struct iommu_group *iommu_group;
829 
830 		iommu_group = iommu_group_get(&pdev->dev);
831 		if (!iommu_group)
832 			return -EPERM; /* Cannot reset non-isolated devices */
833 
834 		info->group_id = iommu_group_id(iommu_group);
835 		iommu_group_put(iommu_group);
836 	}
837 
838 	return 0;
839 }
840 
841 struct vfio_pci_group_info {
842 	int count;
843 	struct file **files;
844 };
845 
846 static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot)
847 {
848 	for (; pdev; pdev = pdev->bus->self)
849 		if (pdev->bus == slot->bus)
850 			return (pdev->slot == slot);
851 	return false;
852 }
853 
854 struct vfio_pci_walk_info {
855 	int (*fn)(struct pci_dev *pdev, void *data);
856 	void *data;
857 	struct pci_dev *pdev;
858 	bool slot;
859 	int ret;
860 };
861 
862 static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data)
863 {
864 	struct vfio_pci_walk_info *walk = data;
865 
866 	if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot))
867 		walk->ret = walk->fn(pdev, walk->data);
868 
869 	return walk->ret;
870 }
871 
872 static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev,
873 					 int (*fn)(struct pci_dev *,
874 						   void *data), void *data,
875 					 bool slot)
876 {
877 	struct vfio_pci_walk_info walk = {
878 		.fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0,
879 	};
880 
881 	pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk);
882 
883 	return walk.ret;
884 }
885 
886 static int msix_mmappable_cap(struct vfio_pci_core_device *vdev,
887 			      struct vfio_info_cap *caps)
888 {
889 	struct vfio_info_cap_header header = {
890 		.id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE,
891 		.version = 1
892 	};
893 
894 	return vfio_info_add_capability(caps, &header, sizeof(header));
895 }
896 
897 int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev,
898 				      unsigned int type, unsigned int subtype,
899 				      const struct vfio_pci_regops *ops,
900 				      size_t size, u32 flags, void *data)
901 {
902 	struct vfio_pci_region *region;
903 
904 	region = krealloc(vdev->region,
905 			  (vdev->num_regions + 1) * sizeof(*region),
906 			  GFP_KERNEL_ACCOUNT);
907 	if (!region)
908 		return -ENOMEM;
909 
910 	vdev->region = region;
911 	vdev->region[vdev->num_regions].type = type;
912 	vdev->region[vdev->num_regions].subtype = subtype;
913 	vdev->region[vdev->num_regions].ops = ops;
914 	vdev->region[vdev->num_regions].size = size;
915 	vdev->region[vdev->num_regions].flags = flags;
916 	vdev->region[vdev->num_regions].data = data;
917 
918 	vdev->num_regions++;
919 
920 	return 0;
921 }
922 EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region);
923 
924 static int vfio_pci_info_atomic_cap(struct vfio_pci_core_device *vdev,
925 				    struct vfio_info_cap *caps)
926 {
927 	struct vfio_device_info_cap_pci_atomic_comp cap = {
928 		.header.id = VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP,
929 		.header.version = 1
930 	};
931 	struct pci_dev *pdev = pci_physfn(vdev->pdev);
932 	u32 devcap2;
933 
934 	pcie_capability_read_dword(pdev, PCI_EXP_DEVCAP2, &devcap2);
935 
936 	if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP32) &&
937 	    !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP32))
938 		cap.flags |= VFIO_PCI_ATOMIC_COMP32;
939 
940 	if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP64) &&
941 	    !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP64))
942 		cap.flags |= VFIO_PCI_ATOMIC_COMP64;
943 
944 	if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP128) &&
945 	    !pci_enable_atomic_ops_to_root(pdev,
946 					   PCI_EXP_DEVCAP2_ATOMIC_COMP128))
947 		cap.flags |= VFIO_PCI_ATOMIC_COMP128;
948 
949 	if (!cap.flags)
950 		return -ENODEV;
951 
952 	return vfio_info_add_capability(caps, &cap.header, sizeof(cap));
953 }
954 
955 static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev,
956 				   struct vfio_device_info __user *arg)
957 {
958 	unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs);
959 	struct vfio_device_info info = {};
960 	struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
961 	int ret;
962 
963 	if (copy_from_user(&info, arg, minsz))
964 		return -EFAULT;
965 
966 	if (info.argsz < minsz)
967 		return -EINVAL;
968 
969 	minsz = min_t(size_t, info.argsz, sizeof(info));
970 
971 	info.flags = VFIO_DEVICE_FLAGS_PCI;
972 
973 	if (vdev->reset_works)
974 		info.flags |= VFIO_DEVICE_FLAGS_RESET;
975 
976 	info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions;
977 	info.num_irqs = VFIO_PCI_NUM_IRQS;
978 
979 	ret = vfio_pci_info_zdev_add_caps(vdev, &caps);
980 	if (ret && ret != -ENODEV) {
981 		pci_warn(vdev->pdev,
982 			 "Failed to setup zPCI info capabilities\n");
983 		return ret;
984 	}
985 
986 	ret = vfio_pci_info_atomic_cap(vdev, &caps);
987 	if (ret && ret != -ENODEV) {
988 		pci_warn(vdev->pdev,
989 			 "Failed to setup AtomicOps info capability\n");
990 		return ret;
991 	}
992 
993 	if (caps.size) {
994 		info.flags |= VFIO_DEVICE_FLAGS_CAPS;
995 		if (info.argsz < sizeof(info) + caps.size) {
996 			info.argsz = sizeof(info) + caps.size;
997 		} else {
998 			vfio_info_cap_shift(&caps, sizeof(info));
999 			if (copy_to_user(arg + 1, caps.buf, caps.size)) {
1000 				kfree(caps.buf);
1001 				return -EFAULT;
1002 			}
1003 			info.cap_offset = sizeof(*arg);
1004 		}
1005 
1006 		kfree(caps.buf);
1007 	}
1008 
1009 	return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1010 }
1011 
1012 static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev,
1013 					  struct vfio_region_info __user *arg)
1014 {
1015 	unsigned long minsz = offsetofend(struct vfio_region_info, offset);
1016 	struct pci_dev *pdev = vdev->pdev;
1017 	struct vfio_region_info info;
1018 	struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
1019 	int i, ret;
1020 
1021 	if (copy_from_user(&info, arg, minsz))
1022 		return -EFAULT;
1023 
1024 	if (info.argsz < minsz)
1025 		return -EINVAL;
1026 
1027 	switch (info.index) {
1028 	case VFIO_PCI_CONFIG_REGION_INDEX:
1029 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1030 		info.size = pdev->cfg_size;
1031 		info.flags = VFIO_REGION_INFO_FLAG_READ |
1032 			     VFIO_REGION_INFO_FLAG_WRITE;
1033 		break;
1034 	case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1035 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1036 		info.size = pci_resource_len(pdev, info.index);
1037 		if (!info.size) {
1038 			info.flags = 0;
1039 			break;
1040 		}
1041 
1042 		info.flags = VFIO_REGION_INFO_FLAG_READ |
1043 			     VFIO_REGION_INFO_FLAG_WRITE;
1044 		if (vdev->bar_mmap_supported[info.index]) {
1045 			info.flags |= VFIO_REGION_INFO_FLAG_MMAP;
1046 			if (info.index == vdev->msix_bar) {
1047 				ret = msix_mmappable_cap(vdev, &caps);
1048 				if (ret)
1049 					return ret;
1050 			}
1051 		}
1052 
1053 		break;
1054 	case VFIO_PCI_ROM_REGION_INDEX: {
1055 		void __iomem *io;
1056 		size_t size;
1057 		u16 cmd;
1058 
1059 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1060 		info.flags = 0;
1061 
1062 		/* Report the BAR size, not the ROM size */
1063 		info.size = pci_resource_len(pdev, info.index);
1064 		if (!info.size) {
1065 			/* Shadow ROMs appear as PCI option ROMs */
1066 			if (pdev->resource[PCI_ROM_RESOURCE].flags &
1067 			    IORESOURCE_ROM_SHADOW)
1068 				info.size = 0x20000;
1069 			else
1070 				break;
1071 		}
1072 
1073 		/*
1074 		 * Is it really there?  Enable memory decode for implicit access
1075 		 * in pci_map_rom().
1076 		 */
1077 		cmd = vfio_pci_memory_lock_and_enable(vdev);
1078 		io = pci_map_rom(pdev, &size);
1079 		if (io) {
1080 			info.flags = VFIO_REGION_INFO_FLAG_READ;
1081 			pci_unmap_rom(pdev, io);
1082 		} else {
1083 			info.size = 0;
1084 		}
1085 		vfio_pci_memory_unlock_and_restore(vdev, cmd);
1086 
1087 		break;
1088 	}
1089 	case VFIO_PCI_VGA_REGION_INDEX:
1090 		if (!vdev->has_vga)
1091 			return -EINVAL;
1092 
1093 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1094 		info.size = 0xc0000;
1095 		info.flags = VFIO_REGION_INFO_FLAG_READ |
1096 			     VFIO_REGION_INFO_FLAG_WRITE;
1097 
1098 		break;
1099 	default: {
1100 		struct vfio_region_info_cap_type cap_type = {
1101 			.header.id = VFIO_REGION_INFO_CAP_TYPE,
1102 			.header.version = 1
1103 		};
1104 
1105 		if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1106 			return -EINVAL;
1107 		info.index = array_index_nospec(
1108 			info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions);
1109 
1110 		i = info.index - VFIO_PCI_NUM_REGIONS;
1111 
1112 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1113 		info.size = vdev->region[i].size;
1114 		info.flags = vdev->region[i].flags;
1115 
1116 		cap_type.type = vdev->region[i].type;
1117 		cap_type.subtype = vdev->region[i].subtype;
1118 
1119 		ret = vfio_info_add_capability(&caps, &cap_type.header,
1120 					       sizeof(cap_type));
1121 		if (ret)
1122 			return ret;
1123 
1124 		if (vdev->region[i].ops->add_capability) {
1125 			ret = vdev->region[i].ops->add_capability(
1126 				vdev, &vdev->region[i], &caps);
1127 			if (ret)
1128 				return ret;
1129 		}
1130 	}
1131 	}
1132 
1133 	if (caps.size) {
1134 		info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
1135 		if (info.argsz < sizeof(info) + caps.size) {
1136 			info.argsz = sizeof(info) + caps.size;
1137 			info.cap_offset = 0;
1138 		} else {
1139 			vfio_info_cap_shift(&caps, sizeof(info));
1140 			if (copy_to_user(arg + 1, caps.buf, caps.size)) {
1141 				kfree(caps.buf);
1142 				return -EFAULT;
1143 			}
1144 			info.cap_offset = sizeof(*arg);
1145 		}
1146 
1147 		kfree(caps.buf);
1148 	}
1149 
1150 	return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1151 }
1152 
1153 static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev,
1154 				       struct vfio_irq_info __user *arg)
1155 {
1156 	unsigned long minsz = offsetofend(struct vfio_irq_info, count);
1157 	struct vfio_irq_info info;
1158 
1159 	if (copy_from_user(&info, arg, minsz))
1160 		return -EFAULT;
1161 
1162 	if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
1163 		return -EINVAL;
1164 
1165 	switch (info.index) {
1166 	case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX:
1167 	case VFIO_PCI_REQ_IRQ_INDEX:
1168 		break;
1169 	case VFIO_PCI_ERR_IRQ_INDEX:
1170 		if (pci_is_pcie(vdev->pdev))
1171 			break;
1172 		fallthrough;
1173 	default:
1174 		return -EINVAL;
1175 	}
1176 
1177 	info.flags = VFIO_IRQ_INFO_EVENTFD;
1178 
1179 	info.count = vfio_pci_get_irq_count(vdev, info.index);
1180 
1181 	if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
1182 		info.flags |=
1183 			(VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED);
1184 	else if (info.index != VFIO_PCI_MSIX_IRQ_INDEX || !vdev->has_dyn_msix)
1185 		info.flags |= VFIO_IRQ_INFO_NORESIZE;
1186 
1187 	return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1188 }
1189 
1190 static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev,
1191 				   struct vfio_irq_set __user *arg)
1192 {
1193 	unsigned long minsz = offsetofend(struct vfio_irq_set, count);
1194 	struct vfio_irq_set hdr;
1195 	u8 *data = NULL;
1196 	int max, ret = 0;
1197 	size_t data_size = 0;
1198 
1199 	if (copy_from_user(&hdr, arg, minsz))
1200 		return -EFAULT;
1201 
1202 	max = vfio_pci_get_irq_count(vdev, hdr.index);
1203 
1204 	ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS,
1205 						 &data_size);
1206 	if (ret)
1207 		return ret;
1208 
1209 	if (data_size) {
1210 		data = memdup_user(&arg->data, data_size);
1211 		if (IS_ERR(data))
1212 			return PTR_ERR(data);
1213 	}
1214 
1215 	mutex_lock(&vdev->igate);
1216 
1217 	ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start,
1218 				      hdr.count, data);
1219 
1220 	mutex_unlock(&vdev->igate);
1221 	kfree(data);
1222 
1223 	return ret;
1224 }
1225 
1226 static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev,
1227 				void __user *arg)
1228 {
1229 	int ret;
1230 
1231 	if (!vdev->reset_works)
1232 		return -EINVAL;
1233 
1234 	vfio_pci_zap_and_down_write_memory_lock(vdev);
1235 
1236 	/*
1237 	 * This function can be invoked while the power state is non-D0. If
1238 	 * pci_try_reset_function() has been called while the power state is
1239 	 * non-D0, then pci_try_reset_function() will internally set the power
1240 	 * state to D0 without vfio driver involvement. For the devices which
1241 	 * have NoSoftRst-, the reset function can cause the PCI config space
1242 	 * reset without restoring the original state (saved locally in
1243 	 * 'vdev->pm_save').
1244 	 */
1245 	vfio_pci_set_power_state(vdev, PCI_D0);
1246 
1247 	ret = pci_try_reset_function(vdev->pdev);
1248 	up_write(&vdev->memory_lock);
1249 
1250 	return ret;
1251 }
1252 
1253 static int vfio_pci_ioctl_get_pci_hot_reset_info(
1254 	struct vfio_pci_core_device *vdev,
1255 	struct vfio_pci_hot_reset_info __user *arg)
1256 {
1257 	unsigned long minsz =
1258 		offsetofend(struct vfio_pci_hot_reset_info, count);
1259 	struct vfio_pci_dependent_device *devices = NULL;
1260 	struct vfio_pci_hot_reset_info hdr;
1261 	struct vfio_pci_fill_info fill = {};
1262 	bool slot = false;
1263 	int ret, count = 0;
1264 
1265 	if (copy_from_user(&hdr, arg, minsz))
1266 		return -EFAULT;
1267 
1268 	if (hdr.argsz < minsz)
1269 		return -EINVAL;
1270 
1271 	hdr.flags = 0;
1272 
1273 	/* Can we do a slot or bus reset or neither? */
1274 	if (!pci_probe_reset_slot(vdev->pdev->slot))
1275 		slot = true;
1276 	else if (pci_probe_reset_bus(vdev->pdev->bus))
1277 		return -ENODEV;
1278 
1279 	ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
1280 					    &count, slot);
1281 	if (ret)
1282 		return ret;
1283 
1284 	if (count > (hdr.argsz - sizeof(hdr)) / sizeof(*devices)) {
1285 		hdr.count = count;
1286 		ret = -ENOSPC;
1287 		goto header;
1288 	}
1289 
1290 	devices = kcalloc(count, sizeof(*devices), GFP_KERNEL);
1291 	if (!devices)
1292 		return -ENOMEM;
1293 
1294 	fill.devices = devices;
1295 	fill.nr_devices = count;
1296 	fill.vdev = &vdev->vdev;
1297 
1298 	if (vfio_device_cdev_opened(&vdev->vdev))
1299 		fill.flags |= VFIO_PCI_HOT_RESET_FLAG_DEV_ID |
1300 			     VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
1301 
1302 	mutex_lock(&vdev->vdev.dev_set->lock);
1303 	ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs,
1304 					    &fill, slot);
1305 	mutex_unlock(&vdev->vdev.dev_set->lock);
1306 	if (ret)
1307 		goto out;
1308 
1309 	if (copy_to_user(arg->devices, devices,
1310 			 sizeof(*devices) * fill.count)) {
1311 		ret = -EFAULT;
1312 		goto out;
1313 	}
1314 
1315 	hdr.count = fill.count;
1316 	hdr.flags = fill.flags;
1317 
1318 header:
1319 	if (copy_to_user(arg, &hdr, minsz))
1320 		ret = -EFAULT;
1321 out:
1322 	kfree(devices);
1323 	return ret;
1324 }
1325 
1326 static int
1327 vfio_pci_ioctl_pci_hot_reset_groups(struct vfio_pci_core_device *vdev,
1328 				    int array_count, bool slot,
1329 				    struct vfio_pci_hot_reset __user *arg)
1330 {
1331 	int32_t *group_fds;
1332 	struct file **files;
1333 	struct vfio_pci_group_info info;
1334 	int file_idx, count = 0, ret = 0;
1335 
1336 	/*
1337 	 * We can't let userspace give us an arbitrarily large buffer to copy,
1338 	 * so verify how many we think there could be.  Note groups can have
1339 	 * multiple devices so one group per device is the max.
1340 	 */
1341 	ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
1342 					    &count, slot);
1343 	if (ret)
1344 		return ret;
1345 
1346 	if (array_count > count)
1347 		return -EINVAL;
1348 
1349 	group_fds = kcalloc(array_count, sizeof(*group_fds), GFP_KERNEL);
1350 	files = kcalloc(array_count, sizeof(*files), GFP_KERNEL);
1351 	if (!group_fds || !files) {
1352 		kfree(group_fds);
1353 		kfree(files);
1354 		return -ENOMEM;
1355 	}
1356 
1357 	if (copy_from_user(group_fds, arg->group_fds,
1358 			   array_count * sizeof(*group_fds))) {
1359 		kfree(group_fds);
1360 		kfree(files);
1361 		return -EFAULT;
1362 	}
1363 
1364 	/*
1365 	 * Get the group file for each fd to ensure the group is held across
1366 	 * the reset
1367 	 */
1368 	for (file_idx = 0; file_idx < array_count; file_idx++) {
1369 		struct file *file = fget(group_fds[file_idx]);
1370 
1371 		if (!file) {
1372 			ret = -EBADF;
1373 			break;
1374 		}
1375 
1376 		/* Ensure the FD is a vfio group FD.*/
1377 		if (!vfio_file_is_group(file)) {
1378 			fput(file);
1379 			ret = -EINVAL;
1380 			break;
1381 		}
1382 
1383 		files[file_idx] = file;
1384 	}
1385 
1386 	kfree(group_fds);
1387 
1388 	/* release reference to groups on error */
1389 	if (ret)
1390 		goto hot_reset_release;
1391 
1392 	info.count = array_count;
1393 	info.files = files;
1394 
1395 	ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info, NULL);
1396 
1397 hot_reset_release:
1398 	for (file_idx--; file_idx >= 0; file_idx--)
1399 		fput(files[file_idx]);
1400 
1401 	kfree(files);
1402 	return ret;
1403 }
1404 
1405 static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev,
1406 					struct vfio_pci_hot_reset __user *arg)
1407 {
1408 	unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count);
1409 	struct vfio_pci_hot_reset hdr;
1410 	bool slot = false;
1411 
1412 	if (copy_from_user(&hdr, arg, minsz))
1413 		return -EFAULT;
1414 
1415 	if (hdr.argsz < minsz || hdr.flags)
1416 		return -EINVAL;
1417 
1418 	/* zero-length array is only for cdev opened devices */
1419 	if (!!hdr.count == vfio_device_cdev_opened(&vdev->vdev))
1420 		return -EINVAL;
1421 
1422 	/* Can we do a slot or bus reset or neither? */
1423 	if (!pci_probe_reset_slot(vdev->pdev->slot))
1424 		slot = true;
1425 	else if (pci_probe_reset_bus(vdev->pdev->bus))
1426 		return -ENODEV;
1427 
1428 	if (hdr.count)
1429 		return vfio_pci_ioctl_pci_hot_reset_groups(vdev, hdr.count, slot, arg);
1430 
1431 	return vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, NULL,
1432 					  vfio_iommufd_device_ictx(&vdev->vdev));
1433 }
1434 
1435 static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev,
1436 				    struct vfio_device_ioeventfd __user *arg)
1437 {
1438 	unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd);
1439 	struct vfio_device_ioeventfd ioeventfd;
1440 	int count;
1441 
1442 	if (copy_from_user(&ioeventfd, arg, minsz))
1443 		return -EFAULT;
1444 
1445 	if (ioeventfd.argsz < minsz)
1446 		return -EINVAL;
1447 
1448 	if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK)
1449 		return -EINVAL;
1450 
1451 	count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK;
1452 
1453 	if (hweight8(count) != 1 || ioeventfd.fd < -1)
1454 		return -EINVAL;
1455 
1456 	return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count,
1457 				  ioeventfd.fd);
1458 }
1459 
1460 long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd,
1461 			 unsigned long arg)
1462 {
1463 	struct vfio_pci_core_device *vdev =
1464 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1465 	void __user *uarg = (void __user *)arg;
1466 
1467 	switch (cmd) {
1468 	case VFIO_DEVICE_GET_INFO:
1469 		return vfio_pci_ioctl_get_info(vdev, uarg);
1470 	case VFIO_DEVICE_GET_IRQ_INFO:
1471 		return vfio_pci_ioctl_get_irq_info(vdev, uarg);
1472 	case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO:
1473 		return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg);
1474 	case VFIO_DEVICE_GET_REGION_INFO:
1475 		return vfio_pci_ioctl_get_region_info(vdev, uarg);
1476 	case VFIO_DEVICE_IOEVENTFD:
1477 		return vfio_pci_ioctl_ioeventfd(vdev, uarg);
1478 	case VFIO_DEVICE_PCI_HOT_RESET:
1479 		return vfio_pci_ioctl_pci_hot_reset(vdev, uarg);
1480 	case VFIO_DEVICE_RESET:
1481 		return vfio_pci_ioctl_reset(vdev, uarg);
1482 	case VFIO_DEVICE_SET_IRQS:
1483 		return vfio_pci_ioctl_set_irqs(vdev, uarg);
1484 	default:
1485 		return -ENOTTY;
1486 	}
1487 }
1488 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl);
1489 
1490 static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags,
1491 				       uuid_t __user *arg, size_t argsz)
1492 {
1493 	struct vfio_pci_core_device *vdev =
1494 		container_of(device, struct vfio_pci_core_device, vdev);
1495 	uuid_t uuid;
1496 	int ret;
1497 
1498 	if (!vdev->vf_token)
1499 		return -ENOTTY;
1500 	/*
1501 	 * We do not support GET of the VF Token UUID as this could
1502 	 * expose the token of the previous device user.
1503 	 */
1504 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
1505 				 sizeof(uuid));
1506 	if (ret != 1)
1507 		return ret;
1508 
1509 	if (copy_from_user(&uuid, arg, sizeof(uuid)))
1510 		return -EFAULT;
1511 
1512 	mutex_lock(&vdev->vf_token->lock);
1513 	uuid_copy(&vdev->vf_token->uuid, &uuid);
1514 	mutex_unlock(&vdev->vf_token->lock);
1515 	return 0;
1516 }
1517 
1518 int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags,
1519 				void __user *arg, size_t argsz)
1520 {
1521 	switch (flags & VFIO_DEVICE_FEATURE_MASK) {
1522 	case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY:
1523 		return vfio_pci_core_pm_entry(device, flags, arg, argsz);
1524 	case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP:
1525 		return vfio_pci_core_pm_entry_with_wakeup(device, flags,
1526 							  arg, argsz);
1527 	case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT:
1528 		return vfio_pci_core_pm_exit(device, flags, arg, argsz);
1529 	case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN:
1530 		return vfio_pci_core_feature_token(device, flags, arg, argsz);
1531 	default:
1532 		return -ENOTTY;
1533 	}
1534 }
1535 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature);
1536 
1537 static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1538 			   size_t count, loff_t *ppos, bool iswrite)
1539 {
1540 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
1541 	int ret;
1542 
1543 	if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1544 		return -EINVAL;
1545 
1546 	ret = pm_runtime_resume_and_get(&vdev->pdev->dev);
1547 	if (ret) {
1548 		pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n",
1549 				     ret);
1550 		return -EIO;
1551 	}
1552 
1553 	switch (index) {
1554 	case VFIO_PCI_CONFIG_REGION_INDEX:
1555 		ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite);
1556 		break;
1557 
1558 	case VFIO_PCI_ROM_REGION_INDEX:
1559 		if (iswrite)
1560 			ret = -EINVAL;
1561 		else
1562 			ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false);
1563 		break;
1564 
1565 	case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1566 		ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite);
1567 		break;
1568 
1569 	case VFIO_PCI_VGA_REGION_INDEX:
1570 		ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite);
1571 		break;
1572 
1573 	default:
1574 		index -= VFIO_PCI_NUM_REGIONS;
1575 		ret = vdev->region[index].ops->rw(vdev, buf,
1576 						   count, ppos, iswrite);
1577 		break;
1578 	}
1579 
1580 	pm_runtime_put(&vdev->pdev->dev);
1581 	return ret;
1582 }
1583 
1584 ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf,
1585 		size_t count, loff_t *ppos)
1586 {
1587 	struct vfio_pci_core_device *vdev =
1588 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1589 
1590 	if (!count)
1591 		return 0;
1592 
1593 	return vfio_pci_rw(vdev, buf, count, ppos, false);
1594 }
1595 EXPORT_SYMBOL_GPL(vfio_pci_core_read);
1596 
1597 ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf,
1598 		size_t count, loff_t *ppos)
1599 {
1600 	struct vfio_pci_core_device *vdev =
1601 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1602 
1603 	if (!count)
1604 		return 0;
1605 
1606 	return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true);
1607 }
1608 EXPORT_SYMBOL_GPL(vfio_pci_core_write);
1609 
1610 /* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */
1611 static int vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device *vdev, bool try)
1612 {
1613 	struct vfio_pci_mmap_vma *mmap_vma, *tmp;
1614 
1615 	/*
1616 	 * Lock ordering:
1617 	 * vma_lock is nested under mmap_lock for vm_ops callback paths.
1618 	 * The memory_lock semaphore is used by both code paths calling
1619 	 * into this function to zap vmas and the vm_ops.fault callback
1620 	 * to protect the memory enable state of the device.
1621 	 *
1622 	 * When zapping vmas we need to maintain the mmap_lock => vma_lock
1623 	 * ordering, which requires using vma_lock to walk vma_list to
1624 	 * acquire an mm, then dropping vma_lock to get the mmap_lock and
1625 	 * reacquiring vma_lock.  This logic is derived from similar
1626 	 * requirements in uverbs_user_mmap_disassociate().
1627 	 *
1628 	 * mmap_lock must always be the top-level lock when it is taken.
1629 	 * Therefore we can only hold the memory_lock write lock when
1630 	 * vma_list is empty, as we'd need to take mmap_lock to clear
1631 	 * entries.  vma_list can only be guaranteed empty when holding
1632 	 * vma_lock, thus memory_lock is nested under vma_lock.
1633 	 *
1634 	 * This enables the vm_ops.fault callback to acquire vma_lock,
1635 	 * followed by memory_lock read lock, while already holding
1636 	 * mmap_lock without risk of deadlock.
1637 	 */
1638 	while (1) {
1639 		struct mm_struct *mm = NULL;
1640 
1641 		if (try) {
1642 			if (!mutex_trylock(&vdev->vma_lock))
1643 				return 0;
1644 		} else {
1645 			mutex_lock(&vdev->vma_lock);
1646 		}
1647 		while (!list_empty(&vdev->vma_list)) {
1648 			mmap_vma = list_first_entry(&vdev->vma_list,
1649 						    struct vfio_pci_mmap_vma,
1650 						    vma_next);
1651 			mm = mmap_vma->vma->vm_mm;
1652 			if (mmget_not_zero(mm))
1653 				break;
1654 
1655 			list_del(&mmap_vma->vma_next);
1656 			kfree(mmap_vma);
1657 			mm = NULL;
1658 		}
1659 		if (!mm)
1660 			return 1;
1661 		mutex_unlock(&vdev->vma_lock);
1662 
1663 		if (try) {
1664 			if (!mmap_read_trylock(mm)) {
1665 				mmput(mm);
1666 				return 0;
1667 			}
1668 		} else {
1669 			mmap_read_lock(mm);
1670 		}
1671 		if (try) {
1672 			if (!mutex_trylock(&vdev->vma_lock)) {
1673 				mmap_read_unlock(mm);
1674 				mmput(mm);
1675 				return 0;
1676 			}
1677 		} else {
1678 			mutex_lock(&vdev->vma_lock);
1679 		}
1680 		list_for_each_entry_safe(mmap_vma, tmp,
1681 					 &vdev->vma_list, vma_next) {
1682 			struct vm_area_struct *vma = mmap_vma->vma;
1683 
1684 			if (vma->vm_mm != mm)
1685 				continue;
1686 
1687 			list_del(&mmap_vma->vma_next);
1688 			kfree(mmap_vma);
1689 
1690 			zap_vma_ptes(vma, vma->vm_start,
1691 				     vma->vm_end - vma->vm_start);
1692 		}
1693 		mutex_unlock(&vdev->vma_lock);
1694 		mmap_read_unlock(mm);
1695 		mmput(mm);
1696 	}
1697 }
1698 
1699 void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev)
1700 {
1701 	vfio_pci_zap_and_vma_lock(vdev, false);
1702 	down_write(&vdev->memory_lock);
1703 	mutex_unlock(&vdev->vma_lock);
1704 }
1705 
1706 u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev)
1707 {
1708 	u16 cmd;
1709 
1710 	down_write(&vdev->memory_lock);
1711 	pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd);
1712 	if (!(cmd & PCI_COMMAND_MEMORY))
1713 		pci_write_config_word(vdev->pdev, PCI_COMMAND,
1714 				      cmd | PCI_COMMAND_MEMORY);
1715 
1716 	return cmd;
1717 }
1718 
1719 void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd)
1720 {
1721 	pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd);
1722 	up_write(&vdev->memory_lock);
1723 }
1724 
1725 /* Caller holds vma_lock */
1726 static int __vfio_pci_add_vma(struct vfio_pci_core_device *vdev,
1727 			      struct vm_area_struct *vma)
1728 {
1729 	struct vfio_pci_mmap_vma *mmap_vma;
1730 
1731 	mmap_vma = kmalloc(sizeof(*mmap_vma), GFP_KERNEL_ACCOUNT);
1732 	if (!mmap_vma)
1733 		return -ENOMEM;
1734 
1735 	mmap_vma->vma = vma;
1736 	list_add(&mmap_vma->vma_next, &vdev->vma_list);
1737 
1738 	return 0;
1739 }
1740 
1741 /*
1742  * Zap mmaps on open so that we can fault them in on access and therefore
1743  * our vma_list only tracks mappings accessed since last zap.
1744  */
1745 static void vfio_pci_mmap_open(struct vm_area_struct *vma)
1746 {
1747 	zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1748 }
1749 
1750 static void vfio_pci_mmap_close(struct vm_area_struct *vma)
1751 {
1752 	struct vfio_pci_core_device *vdev = vma->vm_private_data;
1753 	struct vfio_pci_mmap_vma *mmap_vma;
1754 
1755 	mutex_lock(&vdev->vma_lock);
1756 	list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1757 		if (mmap_vma->vma == vma) {
1758 			list_del(&mmap_vma->vma_next);
1759 			kfree(mmap_vma);
1760 			break;
1761 		}
1762 	}
1763 	mutex_unlock(&vdev->vma_lock);
1764 }
1765 
1766 static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf)
1767 {
1768 	struct vm_area_struct *vma = vmf->vma;
1769 	struct vfio_pci_core_device *vdev = vma->vm_private_data;
1770 	struct vfio_pci_mmap_vma *mmap_vma;
1771 	vm_fault_t ret = VM_FAULT_NOPAGE;
1772 
1773 	mutex_lock(&vdev->vma_lock);
1774 	down_read(&vdev->memory_lock);
1775 
1776 	/*
1777 	 * Memory region cannot be accessed if the low power feature is engaged
1778 	 * or memory access is disabled.
1779 	 */
1780 	if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) {
1781 		ret = VM_FAULT_SIGBUS;
1782 		goto up_out;
1783 	}
1784 
1785 	/*
1786 	 * We populate the whole vma on fault, so we need to test whether
1787 	 * the vma has already been mapped, such as for concurrent faults
1788 	 * to the same vma.  io_remap_pfn_range() will trigger a BUG_ON if
1789 	 * we ask it to fill the same range again.
1790 	 */
1791 	list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1792 		if (mmap_vma->vma == vma)
1793 			goto up_out;
1794 	}
1795 
1796 	if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
1797 			       vma->vm_end - vma->vm_start,
1798 			       vma->vm_page_prot)) {
1799 		ret = VM_FAULT_SIGBUS;
1800 		zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1801 		goto up_out;
1802 	}
1803 
1804 	if (__vfio_pci_add_vma(vdev, vma)) {
1805 		ret = VM_FAULT_OOM;
1806 		zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1807 	}
1808 
1809 up_out:
1810 	up_read(&vdev->memory_lock);
1811 	mutex_unlock(&vdev->vma_lock);
1812 	return ret;
1813 }
1814 
1815 static const struct vm_operations_struct vfio_pci_mmap_ops = {
1816 	.open = vfio_pci_mmap_open,
1817 	.close = vfio_pci_mmap_close,
1818 	.fault = vfio_pci_mmap_fault,
1819 };
1820 
1821 int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma)
1822 {
1823 	struct vfio_pci_core_device *vdev =
1824 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1825 	struct pci_dev *pdev = vdev->pdev;
1826 	unsigned int index;
1827 	u64 phys_len, req_len, pgoff, req_start;
1828 	int ret;
1829 
1830 	index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1831 
1832 	if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1833 		return -EINVAL;
1834 	if (vma->vm_end < vma->vm_start)
1835 		return -EINVAL;
1836 	if ((vma->vm_flags & VM_SHARED) == 0)
1837 		return -EINVAL;
1838 	if (index >= VFIO_PCI_NUM_REGIONS) {
1839 		int regnum = index - VFIO_PCI_NUM_REGIONS;
1840 		struct vfio_pci_region *region = vdev->region + regnum;
1841 
1842 		if (region->ops && region->ops->mmap &&
1843 		    (region->flags & VFIO_REGION_INFO_FLAG_MMAP))
1844 			return region->ops->mmap(vdev, region, vma);
1845 		return -EINVAL;
1846 	}
1847 	if (index >= VFIO_PCI_ROM_REGION_INDEX)
1848 		return -EINVAL;
1849 	if (!vdev->bar_mmap_supported[index])
1850 		return -EINVAL;
1851 
1852 	phys_len = PAGE_ALIGN(pci_resource_len(pdev, index));
1853 	req_len = vma->vm_end - vma->vm_start;
1854 	pgoff = vma->vm_pgoff &
1855 		((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1856 	req_start = pgoff << PAGE_SHIFT;
1857 
1858 	if (req_start + req_len > phys_len)
1859 		return -EINVAL;
1860 
1861 	/*
1862 	 * Even though we don't make use of the barmap for the mmap,
1863 	 * we need to request the region and the barmap tracks that.
1864 	 */
1865 	if (!vdev->barmap[index]) {
1866 		ret = pci_request_selected_regions(pdev,
1867 						   1 << index, "vfio-pci");
1868 		if (ret)
1869 			return ret;
1870 
1871 		vdev->barmap[index] = pci_iomap(pdev, index, 0);
1872 		if (!vdev->barmap[index]) {
1873 			pci_release_selected_regions(pdev, 1 << index);
1874 			return -ENOMEM;
1875 		}
1876 	}
1877 
1878 	vma->vm_private_data = vdev;
1879 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1880 	vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff;
1881 
1882 	/*
1883 	 * See remap_pfn_range(), called from vfio_pci_fault() but we can't
1884 	 * change vm_flags within the fault handler.  Set them now.
1885 	 */
1886 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1887 	vma->vm_ops = &vfio_pci_mmap_ops;
1888 
1889 	return 0;
1890 }
1891 EXPORT_SYMBOL_GPL(vfio_pci_core_mmap);
1892 
1893 void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count)
1894 {
1895 	struct vfio_pci_core_device *vdev =
1896 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1897 	struct pci_dev *pdev = vdev->pdev;
1898 
1899 	mutex_lock(&vdev->igate);
1900 
1901 	if (vdev->req_trigger) {
1902 		if (!(count % 10))
1903 			pci_notice_ratelimited(pdev,
1904 				"Relaying device request to user (#%u)\n",
1905 				count);
1906 		eventfd_signal(vdev->req_trigger, 1);
1907 	} else if (count == 0) {
1908 		pci_warn(pdev,
1909 			"No device request channel registered, blocked until released by user\n");
1910 	}
1911 
1912 	mutex_unlock(&vdev->igate);
1913 }
1914 EXPORT_SYMBOL_GPL(vfio_pci_core_request);
1915 
1916 static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev,
1917 				      bool vf_token, uuid_t *uuid)
1918 {
1919 	/*
1920 	 * There's always some degree of trust or collaboration between SR-IOV
1921 	 * PF and VFs, even if just that the PF hosts the SR-IOV capability and
1922 	 * can disrupt VFs with a reset, but often the PF has more explicit
1923 	 * access to deny service to the VF or access data passed through the
1924 	 * VF.  We therefore require an opt-in via a shared VF token (UUID) to
1925 	 * represent this trust.  This both prevents that a VF driver might
1926 	 * assume the PF driver is a trusted, in-kernel driver, and also that
1927 	 * a PF driver might be replaced with a rogue driver, unknown to in-use
1928 	 * VF drivers.
1929 	 *
1930 	 * Therefore when presented with a VF, if the PF is a vfio device and
1931 	 * it is bound to the vfio-pci driver, the user needs to provide a VF
1932 	 * token to access the device, in the form of appending a vf_token to
1933 	 * the device name, for example:
1934 	 *
1935 	 * "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3"
1936 	 *
1937 	 * When presented with a PF which has VFs in use, the user must also
1938 	 * provide the current VF token to prove collaboration with existing
1939 	 * VF users.  If VFs are not in use, the VF token provided for the PF
1940 	 * device will act to set the VF token.
1941 	 *
1942 	 * If the VF token is provided but unused, an error is generated.
1943 	 */
1944 	if (vdev->pdev->is_virtfn) {
1945 		struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev;
1946 		bool match;
1947 
1948 		if (!pf_vdev) {
1949 			if (!vf_token)
1950 				return 0; /* PF is not vfio-pci, no VF token */
1951 
1952 			pci_info_ratelimited(vdev->pdev,
1953 				"VF token incorrectly provided, PF not bound to vfio-pci\n");
1954 			return -EINVAL;
1955 		}
1956 
1957 		if (!vf_token) {
1958 			pci_info_ratelimited(vdev->pdev,
1959 				"VF token required to access device\n");
1960 			return -EACCES;
1961 		}
1962 
1963 		mutex_lock(&pf_vdev->vf_token->lock);
1964 		match = uuid_equal(uuid, &pf_vdev->vf_token->uuid);
1965 		mutex_unlock(&pf_vdev->vf_token->lock);
1966 
1967 		if (!match) {
1968 			pci_info_ratelimited(vdev->pdev,
1969 				"Incorrect VF token provided for device\n");
1970 			return -EACCES;
1971 		}
1972 	} else if (vdev->vf_token) {
1973 		mutex_lock(&vdev->vf_token->lock);
1974 		if (vdev->vf_token->users) {
1975 			if (!vf_token) {
1976 				mutex_unlock(&vdev->vf_token->lock);
1977 				pci_info_ratelimited(vdev->pdev,
1978 					"VF token required to access device\n");
1979 				return -EACCES;
1980 			}
1981 
1982 			if (!uuid_equal(uuid, &vdev->vf_token->uuid)) {
1983 				mutex_unlock(&vdev->vf_token->lock);
1984 				pci_info_ratelimited(vdev->pdev,
1985 					"Incorrect VF token provided for device\n");
1986 				return -EACCES;
1987 			}
1988 		} else if (vf_token) {
1989 			uuid_copy(&vdev->vf_token->uuid, uuid);
1990 		}
1991 
1992 		mutex_unlock(&vdev->vf_token->lock);
1993 	} else if (vf_token) {
1994 		pci_info_ratelimited(vdev->pdev,
1995 			"VF token incorrectly provided, not a PF or VF\n");
1996 		return -EINVAL;
1997 	}
1998 
1999 	return 0;
2000 }
2001 
2002 #define VF_TOKEN_ARG "vf_token="
2003 
2004 int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf)
2005 {
2006 	struct vfio_pci_core_device *vdev =
2007 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
2008 	bool vf_token = false;
2009 	uuid_t uuid;
2010 	int ret;
2011 
2012 	if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev))))
2013 		return 0; /* No match */
2014 
2015 	if (strlen(buf) > strlen(pci_name(vdev->pdev))) {
2016 		buf += strlen(pci_name(vdev->pdev));
2017 
2018 		if (*buf != ' ')
2019 			return 0; /* No match: non-whitespace after name */
2020 
2021 		while (*buf) {
2022 			if (*buf == ' ') {
2023 				buf++;
2024 				continue;
2025 			}
2026 
2027 			if (!vf_token && !strncmp(buf, VF_TOKEN_ARG,
2028 						  strlen(VF_TOKEN_ARG))) {
2029 				buf += strlen(VF_TOKEN_ARG);
2030 
2031 				if (strlen(buf) < UUID_STRING_LEN)
2032 					return -EINVAL;
2033 
2034 				ret = uuid_parse(buf, &uuid);
2035 				if (ret)
2036 					return ret;
2037 
2038 				vf_token = true;
2039 				buf += UUID_STRING_LEN;
2040 			} else {
2041 				/* Unknown/duplicate option */
2042 				return -EINVAL;
2043 			}
2044 		}
2045 	}
2046 
2047 	ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid);
2048 	if (ret)
2049 		return ret;
2050 
2051 	return 1; /* Match */
2052 }
2053 EXPORT_SYMBOL_GPL(vfio_pci_core_match);
2054 
2055 static int vfio_pci_bus_notifier(struct notifier_block *nb,
2056 				 unsigned long action, void *data)
2057 {
2058 	struct vfio_pci_core_device *vdev = container_of(nb,
2059 						    struct vfio_pci_core_device, nb);
2060 	struct device *dev = data;
2061 	struct pci_dev *pdev = to_pci_dev(dev);
2062 	struct pci_dev *physfn = pci_physfn(pdev);
2063 
2064 	if (action == BUS_NOTIFY_ADD_DEVICE &&
2065 	    pdev->is_virtfn && physfn == vdev->pdev) {
2066 		pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n",
2067 			 pci_name(pdev));
2068 		pdev->driver_override = kasprintf(GFP_KERNEL, "%s",
2069 						  vdev->vdev.ops->name);
2070 	} else if (action == BUS_NOTIFY_BOUND_DRIVER &&
2071 		   pdev->is_virtfn && physfn == vdev->pdev) {
2072 		struct pci_driver *drv = pci_dev_driver(pdev);
2073 
2074 		if (drv && drv != pci_dev_driver(vdev->pdev))
2075 			pci_warn(vdev->pdev,
2076 				 "VF %s bound to driver %s while PF bound to driver %s\n",
2077 				 pci_name(pdev), drv->name,
2078 				 pci_dev_driver(vdev->pdev)->name);
2079 	}
2080 
2081 	return 0;
2082 }
2083 
2084 static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev)
2085 {
2086 	struct pci_dev *pdev = vdev->pdev;
2087 	struct vfio_pci_core_device *cur;
2088 	struct pci_dev *physfn;
2089 	int ret;
2090 
2091 	if (pdev->is_virtfn) {
2092 		/*
2093 		 * If this VF was created by our vfio_pci_core_sriov_configure()
2094 		 * then we can find the PF vfio_pci_core_device now, and due to
2095 		 * the locking in pci_disable_sriov() it cannot change until
2096 		 * this VF device driver is removed.
2097 		 */
2098 		physfn = pci_physfn(vdev->pdev);
2099 		mutex_lock(&vfio_pci_sriov_pfs_mutex);
2100 		list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) {
2101 			if (cur->pdev == physfn) {
2102 				vdev->sriov_pf_core_dev = cur;
2103 				break;
2104 			}
2105 		}
2106 		mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2107 		return 0;
2108 	}
2109 
2110 	/* Not a SRIOV PF */
2111 	if (!pdev->is_physfn)
2112 		return 0;
2113 
2114 	vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL);
2115 	if (!vdev->vf_token)
2116 		return -ENOMEM;
2117 
2118 	mutex_init(&vdev->vf_token->lock);
2119 	uuid_gen(&vdev->vf_token->uuid);
2120 
2121 	vdev->nb.notifier_call = vfio_pci_bus_notifier;
2122 	ret = bus_register_notifier(&pci_bus_type, &vdev->nb);
2123 	if (ret) {
2124 		kfree(vdev->vf_token);
2125 		return ret;
2126 	}
2127 	return 0;
2128 }
2129 
2130 static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev)
2131 {
2132 	if (!vdev->vf_token)
2133 		return;
2134 
2135 	bus_unregister_notifier(&pci_bus_type, &vdev->nb);
2136 	WARN_ON(vdev->vf_token->users);
2137 	mutex_destroy(&vdev->vf_token->lock);
2138 	kfree(vdev->vf_token);
2139 }
2140 
2141 static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev)
2142 {
2143 	struct pci_dev *pdev = vdev->pdev;
2144 	int ret;
2145 
2146 	if (!vfio_pci_is_vga(pdev))
2147 		return 0;
2148 
2149 	ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name);
2150 	if (ret)
2151 		return ret;
2152 
2153 	ret = vga_client_register(pdev, vfio_pci_set_decode);
2154 	if (ret)
2155 		return ret;
2156 	vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false));
2157 	return 0;
2158 }
2159 
2160 static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev)
2161 {
2162 	struct pci_dev *pdev = vdev->pdev;
2163 
2164 	if (!vfio_pci_is_vga(pdev))
2165 		return;
2166 	vga_client_unregister(pdev);
2167 	vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
2168 					      VGA_RSRC_LEGACY_IO |
2169 					      VGA_RSRC_LEGACY_MEM);
2170 }
2171 
2172 int vfio_pci_core_init_dev(struct vfio_device *core_vdev)
2173 {
2174 	struct vfio_pci_core_device *vdev =
2175 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
2176 
2177 	vdev->pdev = to_pci_dev(core_vdev->dev);
2178 	vdev->irq_type = VFIO_PCI_NUM_IRQS;
2179 	mutex_init(&vdev->igate);
2180 	spin_lock_init(&vdev->irqlock);
2181 	mutex_init(&vdev->ioeventfds_lock);
2182 	INIT_LIST_HEAD(&vdev->dummy_resources_list);
2183 	INIT_LIST_HEAD(&vdev->ioeventfds_list);
2184 	mutex_init(&vdev->vma_lock);
2185 	INIT_LIST_HEAD(&vdev->vma_list);
2186 	INIT_LIST_HEAD(&vdev->sriov_pfs_item);
2187 	init_rwsem(&vdev->memory_lock);
2188 	xa_init(&vdev->ctx);
2189 
2190 	return 0;
2191 }
2192 EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev);
2193 
2194 void vfio_pci_core_release_dev(struct vfio_device *core_vdev)
2195 {
2196 	struct vfio_pci_core_device *vdev =
2197 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
2198 
2199 	mutex_destroy(&vdev->igate);
2200 	mutex_destroy(&vdev->ioeventfds_lock);
2201 	mutex_destroy(&vdev->vma_lock);
2202 	kfree(vdev->region);
2203 	kfree(vdev->pm_save);
2204 }
2205 EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev);
2206 
2207 int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev)
2208 {
2209 	struct pci_dev *pdev = vdev->pdev;
2210 	struct device *dev = &pdev->dev;
2211 	int ret;
2212 
2213 	/* Drivers must set the vfio_pci_core_device to their drvdata */
2214 	if (WARN_ON(vdev != dev_get_drvdata(dev)))
2215 		return -EINVAL;
2216 
2217 	if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2218 		return -EINVAL;
2219 
2220 	if (vdev->vdev.mig_ops) {
2221 		if (!(vdev->vdev.mig_ops->migration_get_state &&
2222 		      vdev->vdev.mig_ops->migration_set_state &&
2223 		      vdev->vdev.mig_ops->migration_get_data_size) ||
2224 		    !(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY))
2225 			return -EINVAL;
2226 	}
2227 
2228 	if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start &&
2229 	    vdev->vdev.log_ops->log_stop &&
2230 	    vdev->vdev.log_ops->log_read_and_clear))
2231 		return -EINVAL;
2232 
2233 	/*
2234 	 * Prevent binding to PFs with VFs enabled, the VFs might be in use
2235 	 * by the host or other users.  We cannot capture the VFs if they
2236 	 * already exist, nor can we track VF users.  Disabling SR-IOV here
2237 	 * would initiate removing the VFs, which would unbind the driver,
2238 	 * which is prone to blocking if that VF is also in use by vfio-pci.
2239 	 * Just reject these PFs and let the user sort it out.
2240 	 */
2241 	if (pci_num_vf(pdev)) {
2242 		pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n");
2243 		return -EBUSY;
2244 	}
2245 
2246 	if (pci_is_root_bus(pdev->bus)) {
2247 		ret = vfio_assign_device_set(&vdev->vdev, vdev);
2248 	} else if (!pci_probe_reset_slot(pdev->slot)) {
2249 		ret = vfio_assign_device_set(&vdev->vdev, pdev->slot);
2250 	} else {
2251 		/*
2252 		 * If there is no slot reset support for this device, the whole
2253 		 * bus needs to be grouped together to support bus-wide resets.
2254 		 */
2255 		ret = vfio_assign_device_set(&vdev->vdev, pdev->bus);
2256 	}
2257 
2258 	if (ret)
2259 		return ret;
2260 	ret = vfio_pci_vf_init(vdev);
2261 	if (ret)
2262 		return ret;
2263 	ret = vfio_pci_vga_init(vdev);
2264 	if (ret)
2265 		goto out_vf;
2266 
2267 	vfio_pci_probe_power_state(vdev);
2268 
2269 	/*
2270 	 * pci-core sets the device power state to an unknown value at
2271 	 * bootup and after being removed from a driver.  The only
2272 	 * transition it allows from this unknown state is to D0, which
2273 	 * typically happens when a driver calls pci_enable_device().
2274 	 * We're not ready to enable the device yet, but we do want to
2275 	 * be able to get to D3.  Therefore first do a D0 transition
2276 	 * before enabling runtime PM.
2277 	 */
2278 	vfio_pci_set_power_state(vdev, PCI_D0);
2279 
2280 	dev->driver->pm = &vfio_pci_core_pm_ops;
2281 	pm_runtime_allow(dev);
2282 	if (!disable_idle_d3)
2283 		pm_runtime_put(dev);
2284 
2285 	ret = vfio_register_group_dev(&vdev->vdev);
2286 	if (ret)
2287 		goto out_power;
2288 	return 0;
2289 
2290 out_power:
2291 	if (!disable_idle_d3)
2292 		pm_runtime_get_noresume(dev);
2293 
2294 	pm_runtime_forbid(dev);
2295 out_vf:
2296 	vfio_pci_vf_uninit(vdev);
2297 	return ret;
2298 }
2299 EXPORT_SYMBOL_GPL(vfio_pci_core_register_device);
2300 
2301 void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev)
2302 {
2303 	vfio_pci_core_sriov_configure(vdev, 0);
2304 
2305 	vfio_unregister_group_dev(&vdev->vdev);
2306 
2307 	vfio_pci_vf_uninit(vdev);
2308 	vfio_pci_vga_uninit(vdev);
2309 
2310 	if (!disable_idle_d3)
2311 		pm_runtime_get_noresume(&vdev->pdev->dev);
2312 
2313 	pm_runtime_forbid(&vdev->pdev->dev);
2314 }
2315 EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device);
2316 
2317 pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev,
2318 						pci_channel_state_t state)
2319 {
2320 	struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev);
2321 
2322 	mutex_lock(&vdev->igate);
2323 
2324 	if (vdev->err_trigger)
2325 		eventfd_signal(vdev->err_trigger, 1);
2326 
2327 	mutex_unlock(&vdev->igate);
2328 
2329 	return PCI_ERS_RESULT_CAN_RECOVER;
2330 }
2331 EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected);
2332 
2333 int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev,
2334 				  int nr_virtfn)
2335 {
2336 	struct pci_dev *pdev = vdev->pdev;
2337 	int ret = 0;
2338 
2339 	device_lock_assert(&pdev->dev);
2340 
2341 	if (nr_virtfn) {
2342 		mutex_lock(&vfio_pci_sriov_pfs_mutex);
2343 		/*
2344 		 * The thread that adds the vdev to the list is the only thread
2345 		 * that gets to call pci_enable_sriov() and we will only allow
2346 		 * it to be called once without going through
2347 		 * pci_disable_sriov()
2348 		 */
2349 		if (!list_empty(&vdev->sriov_pfs_item)) {
2350 			ret = -EINVAL;
2351 			goto out_unlock;
2352 		}
2353 		list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs);
2354 		mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2355 
2356 		/*
2357 		 * The PF power state should always be higher than the VF power
2358 		 * state. The PF can be in low power state either with runtime
2359 		 * power management (when there is no user) or PCI_PM_CTRL
2360 		 * register write by the user. If PF is in the low power state,
2361 		 * then change the power state to D0 first before enabling
2362 		 * SR-IOV. Also, this function can be called at any time, and
2363 		 * userspace PCI_PM_CTRL write can race against this code path,
2364 		 * so protect the same with 'memory_lock'.
2365 		 */
2366 		ret = pm_runtime_resume_and_get(&pdev->dev);
2367 		if (ret)
2368 			goto out_del;
2369 
2370 		down_write(&vdev->memory_lock);
2371 		vfio_pci_set_power_state(vdev, PCI_D0);
2372 		ret = pci_enable_sriov(pdev, nr_virtfn);
2373 		up_write(&vdev->memory_lock);
2374 		if (ret) {
2375 			pm_runtime_put(&pdev->dev);
2376 			goto out_del;
2377 		}
2378 		return nr_virtfn;
2379 	}
2380 
2381 	if (pci_num_vf(pdev)) {
2382 		pci_disable_sriov(pdev);
2383 		pm_runtime_put(&pdev->dev);
2384 	}
2385 
2386 out_del:
2387 	mutex_lock(&vfio_pci_sriov_pfs_mutex);
2388 	list_del_init(&vdev->sriov_pfs_item);
2389 out_unlock:
2390 	mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2391 	return ret;
2392 }
2393 EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure);
2394 
2395 const struct pci_error_handlers vfio_pci_core_err_handlers = {
2396 	.error_detected = vfio_pci_core_aer_err_detected,
2397 };
2398 EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers);
2399 
2400 static bool vfio_dev_in_groups(struct vfio_device *vdev,
2401 			       struct vfio_pci_group_info *groups)
2402 {
2403 	unsigned int i;
2404 
2405 	if (!groups)
2406 		return false;
2407 
2408 	for (i = 0; i < groups->count; i++)
2409 		if (vfio_file_has_dev(groups->files[i], vdev))
2410 			return true;
2411 	return false;
2412 }
2413 
2414 static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data)
2415 {
2416 	struct vfio_device_set *dev_set = data;
2417 
2418 	return vfio_find_device_in_devset(dev_set, &pdev->dev) ? 0 : -ENODEV;
2419 }
2420 
2421 /*
2422  * vfio-core considers a group to be viable and will create a vfio_device even
2423  * if some devices are bound to drivers like pci-stub or pcieport. Here we
2424  * require all PCI devices to be inside our dev_set since that ensures they stay
2425  * put and that every driver controlling the device can co-ordinate with the
2426  * device reset.
2427  *
2428  * Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be
2429  * reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise.
2430  */
2431 static struct pci_dev *
2432 vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set)
2433 {
2434 	struct pci_dev *pdev;
2435 
2436 	lockdep_assert_held(&dev_set->lock);
2437 
2438 	/*
2439 	 * By definition all PCI devices in the dev_set share the same PCI
2440 	 * reset, so any pci_dev will have the same outcomes for
2441 	 * pci_probe_reset_*() and pci_reset_bus().
2442 	 */
2443 	pdev = list_first_entry(&dev_set->device_list,
2444 				struct vfio_pci_core_device,
2445 				vdev.dev_set_list)->pdev;
2446 
2447 	/* pci_reset_bus() is supported */
2448 	if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus))
2449 		return NULL;
2450 
2451 	if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set,
2452 					  dev_set,
2453 					  !pci_probe_reset_slot(pdev->slot)))
2454 		return NULL;
2455 	return pdev;
2456 }
2457 
2458 static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set)
2459 {
2460 	struct vfio_pci_core_device *cur;
2461 	int ret;
2462 
2463 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2464 		ret = pm_runtime_resume_and_get(&cur->pdev->dev);
2465 		if (ret)
2466 			goto unwind;
2467 	}
2468 
2469 	return 0;
2470 
2471 unwind:
2472 	list_for_each_entry_continue_reverse(cur, &dev_set->device_list,
2473 					     vdev.dev_set_list)
2474 		pm_runtime_put(&cur->pdev->dev);
2475 
2476 	return ret;
2477 }
2478 
2479 /*
2480  * We need to get memory_lock for each device, but devices can share mmap_lock,
2481  * therefore we need to zap and hold the vma_lock for each device, and only then
2482  * get each memory_lock.
2483  */
2484 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
2485 				      struct vfio_pci_group_info *groups,
2486 				      struct iommufd_ctx *iommufd_ctx)
2487 {
2488 	struct vfio_pci_core_device *cur_mem;
2489 	struct vfio_pci_core_device *cur_vma;
2490 	struct vfio_pci_core_device *cur;
2491 	struct pci_dev *pdev;
2492 	bool is_mem = true;
2493 	int ret;
2494 
2495 	mutex_lock(&dev_set->lock);
2496 	cur_mem = list_first_entry(&dev_set->device_list,
2497 				   struct vfio_pci_core_device,
2498 				   vdev.dev_set_list);
2499 
2500 	pdev = vfio_pci_dev_set_resettable(dev_set);
2501 	if (!pdev) {
2502 		ret = -EINVAL;
2503 		goto err_unlock;
2504 	}
2505 
2506 	/*
2507 	 * Some of the devices in the dev_set can be in the runtime suspended
2508 	 * state. Increment the usage count for all the devices in the dev_set
2509 	 * before reset and decrement the same after reset.
2510 	 */
2511 	ret = vfio_pci_dev_set_pm_runtime_get(dev_set);
2512 	if (ret)
2513 		goto err_unlock;
2514 
2515 	list_for_each_entry(cur_vma, &dev_set->device_list, vdev.dev_set_list) {
2516 		bool owned;
2517 
2518 		/*
2519 		 * Test whether all the affected devices can be reset by the
2520 		 * user.
2521 		 *
2522 		 * If called from a group opened device and the user provides
2523 		 * a set of groups, all the devices in the dev_set should be
2524 		 * contained by the set of groups provided by the user.
2525 		 *
2526 		 * If called from a cdev opened device and the user provides
2527 		 * a zero-length array, all the devices in the dev_set must
2528 		 * be bound to the same iommufd_ctx as the input iommufd_ctx.
2529 		 * If there is any device that has not been bound to any
2530 		 * iommufd_ctx yet, check if its iommu_group has any device
2531 		 * bound to the input iommufd_ctx.  Such devices can be
2532 		 * considered owned by the input iommufd_ctx as the device
2533 		 * cannot be owned by another iommufd_ctx when its iommu_group
2534 		 * is owned.
2535 		 *
2536 		 * Otherwise, reset is not allowed.
2537 		 */
2538 		if (iommufd_ctx) {
2539 			int devid = vfio_iommufd_get_dev_id(&cur_vma->vdev,
2540 							    iommufd_ctx);
2541 
2542 			owned = (devid > 0 || devid == -ENOENT);
2543 		} else {
2544 			owned = vfio_dev_in_groups(&cur_vma->vdev, groups);
2545 		}
2546 
2547 		if (!owned) {
2548 			ret = -EINVAL;
2549 			goto err_undo;
2550 		}
2551 
2552 		/*
2553 		 * Locking multiple devices is prone to deadlock, runaway and
2554 		 * unwind if we hit contention.
2555 		 */
2556 		if (!vfio_pci_zap_and_vma_lock(cur_vma, true)) {
2557 			ret = -EBUSY;
2558 			goto err_undo;
2559 		}
2560 	}
2561 	cur_vma = NULL;
2562 
2563 	list_for_each_entry(cur_mem, &dev_set->device_list, vdev.dev_set_list) {
2564 		if (!down_write_trylock(&cur_mem->memory_lock)) {
2565 			ret = -EBUSY;
2566 			goto err_undo;
2567 		}
2568 		mutex_unlock(&cur_mem->vma_lock);
2569 	}
2570 	cur_mem = NULL;
2571 
2572 	/*
2573 	 * The pci_reset_bus() will reset all the devices in the bus.
2574 	 * The power state can be non-D0 for some of the devices in the bus.
2575 	 * For these devices, the pci_reset_bus() will internally set
2576 	 * the power state to D0 without vfio driver involvement.
2577 	 * For the devices which have NoSoftRst-, the reset function can
2578 	 * cause the PCI config space reset without restoring the original
2579 	 * state (saved locally in 'vdev->pm_save').
2580 	 */
2581 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2582 		vfio_pci_set_power_state(cur, PCI_D0);
2583 
2584 	ret = pci_reset_bus(pdev);
2585 
2586 err_undo:
2587 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2588 		if (cur == cur_mem)
2589 			is_mem = false;
2590 		if (cur == cur_vma)
2591 			break;
2592 		if (is_mem)
2593 			up_write(&cur->memory_lock);
2594 		else
2595 			mutex_unlock(&cur->vma_lock);
2596 	}
2597 
2598 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2599 		pm_runtime_put(&cur->pdev->dev);
2600 err_unlock:
2601 	mutex_unlock(&dev_set->lock);
2602 	return ret;
2603 }
2604 
2605 static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set)
2606 {
2607 	struct vfio_pci_core_device *cur;
2608 	bool needs_reset = false;
2609 
2610 	/* No other VFIO device in the set can be open. */
2611 	if (vfio_device_set_open_count(dev_set) > 1)
2612 		return false;
2613 
2614 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2615 		needs_reset |= cur->needs_reset;
2616 	return needs_reset;
2617 }
2618 
2619 /*
2620  * If a bus or slot reset is available for the provided dev_set and:
2621  *  - All of the devices affected by that bus or slot reset are unused
2622  *  - At least one of the affected devices is marked dirty via
2623  *    needs_reset (such as by lack of FLR support)
2624  * Then attempt to perform that bus or slot reset.
2625  */
2626 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set)
2627 {
2628 	struct vfio_pci_core_device *cur;
2629 	struct pci_dev *pdev;
2630 	bool reset_done = false;
2631 
2632 	if (!vfio_pci_dev_set_needs_reset(dev_set))
2633 		return;
2634 
2635 	pdev = vfio_pci_dev_set_resettable(dev_set);
2636 	if (!pdev)
2637 		return;
2638 
2639 	/*
2640 	 * Some of the devices in the bus can be in the runtime suspended
2641 	 * state. Increment the usage count for all the devices in the dev_set
2642 	 * before reset and decrement the same after reset.
2643 	 */
2644 	if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set))
2645 		return;
2646 
2647 	if (!pci_reset_bus(pdev))
2648 		reset_done = true;
2649 
2650 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2651 		if (reset_done)
2652 			cur->needs_reset = false;
2653 
2654 		if (!disable_idle_d3)
2655 			pm_runtime_put(&cur->pdev->dev);
2656 	}
2657 }
2658 
2659 void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga,
2660 			      bool is_disable_idle_d3)
2661 {
2662 	nointxmask = is_nointxmask;
2663 	disable_vga = is_disable_vga;
2664 	disable_idle_d3 = is_disable_idle_d3;
2665 }
2666 EXPORT_SYMBOL_GPL(vfio_pci_core_set_params);
2667 
2668 static void vfio_pci_core_cleanup(void)
2669 {
2670 	vfio_pci_uninit_perm_bits();
2671 }
2672 
2673 static int __init vfio_pci_core_init(void)
2674 {
2675 	/* Allocate shared config space permission data used by all devices */
2676 	return vfio_pci_init_perm_bits();
2677 }
2678 
2679 module_init(vfio_pci_core_init);
2680 module_exit(vfio_pci_core_cleanup);
2681 
2682 MODULE_LICENSE("GPL v2");
2683 MODULE_AUTHOR(DRIVER_AUTHOR);
2684 MODULE_DESCRIPTION(DRIVER_DESC);
2685