xref: /openbmc/linux/drivers/vfio/pci/vfio_pci_core.c (revision 56ea353ea49ad21dd4c14e7baa235493ec27e766)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
4  *     Author: Alex Williamson <alex.williamson@redhat.com>
5  *
6  * Derived from original vfio:
7  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
8  * Author: Tom Lyon, pugs@cisco.com
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/aperture.h>
14 #include <linux/device.h>
15 #include <linux/eventfd.h>
16 #include <linux/file.h>
17 #include <linux/interrupt.h>
18 #include <linux/iommu.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/pci.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/types.h>
26 #include <linux/uaccess.h>
27 #include <linux/vgaarb.h>
28 #include <linux/nospec.h>
29 #include <linux/sched/mm.h>
30 
31 #include "vfio_pci_priv.h"
32 
33 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
34 #define DRIVER_DESC "core driver for VFIO based PCI devices"
35 
36 static bool nointxmask;
37 static bool disable_vga;
38 static bool disable_idle_d3;
39 
40 /* List of PF's that vfio_pci_core_sriov_configure() has been called on */
41 static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex);
42 static LIST_HEAD(vfio_pci_sriov_pfs);
43 
44 struct vfio_pci_dummy_resource {
45 	struct resource		resource;
46 	int			index;
47 	struct list_head	res_next;
48 };
49 
50 struct vfio_pci_vf_token {
51 	struct mutex		lock;
52 	uuid_t			uuid;
53 	int			users;
54 };
55 
56 struct vfio_pci_mmap_vma {
57 	struct vm_area_struct	*vma;
58 	struct list_head	vma_next;
59 };
60 
61 static inline bool vfio_vga_disabled(void)
62 {
63 #ifdef CONFIG_VFIO_PCI_VGA
64 	return disable_vga;
65 #else
66 	return true;
67 #endif
68 }
69 
70 /*
71  * Our VGA arbiter participation is limited since we don't know anything
72  * about the device itself.  However, if the device is the only VGA device
73  * downstream of a bridge and VFIO VGA support is disabled, then we can
74  * safely return legacy VGA IO and memory as not decoded since the user
75  * has no way to get to it and routing can be disabled externally at the
76  * bridge.
77  */
78 static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga)
79 {
80 	struct pci_dev *tmp = NULL;
81 	unsigned char max_busnr;
82 	unsigned int decodes;
83 
84 	if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus))
85 		return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
86 		       VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
87 
88 	max_busnr = pci_bus_max_busnr(pdev->bus);
89 	decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
90 
91 	while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) {
92 		if (tmp == pdev ||
93 		    pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) ||
94 		    pci_is_root_bus(tmp->bus))
95 			continue;
96 
97 		if (tmp->bus->number >= pdev->bus->number &&
98 		    tmp->bus->number <= max_busnr) {
99 			pci_dev_put(tmp);
100 			decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
101 			break;
102 		}
103 	}
104 
105 	return decodes;
106 }
107 
108 static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev)
109 {
110 	struct resource *res;
111 	int i;
112 	struct vfio_pci_dummy_resource *dummy_res;
113 
114 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
115 		int bar = i + PCI_STD_RESOURCES;
116 
117 		res = &vdev->pdev->resource[bar];
118 
119 		if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP))
120 			goto no_mmap;
121 
122 		if (!(res->flags & IORESOURCE_MEM))
123 			goto no_mmap;
124 
125 		/*
126 		 * The PCI core shouldn't set up a resource with a
127 		 * type but zero size. But there may be bugs that
128 		 * cause us to do that.
129 		 */
130 		if (!resource_size(res))
131 			goto no_mmap;
132 
133 		if (resource_size(res) >= PAGE_SIZE) {
134 			vdev->bar_mmap_supported[bar] = true;
135 			continue;
136 		}
137 
138 		if (!(res->start & ~PAGE_MASK)) {
139 			/*
140 			 * Add a dummy resource to reserve the remainder
141 			 * of the exclusive page in case that hot-add
142 			 * device's bar is assigned into it.
143 			 */
144 			dummy_res = kzalloc(sizeof(*dummy_res), GFP_KERNEL);
145 			if (dummy_res == NULL)
146 				goto no_mmap;
147 
148 			dummy_res->resource.name = "vfio sub-page reserved";
149 			dummy_res->resource.start = res->end + 1;
150 			dummy_res->resource.end = res->start + PAGE_SIZE - 1;
151 			dummy_res->resource.flags = res->flags;
152 			if (request_resource(res->parent,
153 						&dummy_res->resource)) {
154 				kfree(dummy_res);
155 				goto no_mmap;
156 			}
157 			dummy_res->index = bar;
158 			list_add(&dummy_res->res_next,
159 					&vdev->dummy_resources_list);
160 			vdev->bar_mmap_supported[bar] = true;
161 			continue;
162 		}
163 		/*
164 		 * Here we don't handle the case when the BAR is not page
165 		 * aligned because we can't expect the BAR will be
166 		 * assigned into the same location in a page in guest
167 		 * when we passthrough the BAR. And it's hard to access
168 		 * this BAR in userspace because we have no way to get
169 		 * the BAR's location in a page.
170 		 */
171 no_mmap:
172 		vdev->bar_mmap_supported[bar] = false;
173 	}
174 }
175 
176 struct vfio_pci_group_info;
177 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set);
178 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
179 				      struct vfio_pci_group_info *groups);
180 
181 /*
182  * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND
183  * _and_ the ability detect when the device is asserting INTx via PCI_STATUS.
184  * If a device implements the former but not the latter we would typically
185  * expect broken_intx_masking be set and require an exclusive interrupt.
186  * However since we do have control of the device's ability to assert INTx,
187  * we can instead pretend that the device does not implement INTx, virtualizing
188  * the pin register to report zero and maintaining DisINTx set on the host.
189  */
190 static bool vfio_pci_nointx(struct pci_dev *pdev)
191 {
192 	switch (pdev->vendor) {
193 	case PCI_VENDOR_ID_INTEL:
194 		switch (pdev->device) {
195 		/* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */
196 		case 0x1572:
197 		case 0x1574:
198 		case 0x1580 ... 0x1581:
199 		case 0x1583 ... 0x158b:
200 		case 0x37d0 ... 0x37d2:
201 		/* X550 */
202 		case 0x1563:
203 			return true;
204 		default:
205 			return false;
206 		}
207 	}
208 
209 	return false;
210 }
211 
212 static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev)
213 {
214 	struct pci_dev *pdev = vdev->pdev;
215 	u16 pmcsr;
216 
217 	if (!pdev->pm_cap)
218 		return;
219 
220 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
221 
222 	vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
223 }
224 
225 /*
226  * pci_set_power_state() wrapper handling devices which perform a soft reset on
227  * D3->D0 transition.  Save state prior to D0/1/2->D3, stash it on the vdev,
228  * restore when returned to D0.  Saved separately from pci_saved_state for use
229  * by PM capability emulation and separately from pci_dev internal saved state
230  * to avoid it being overwritten and consumed around other resets.
231  */
232 int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state)
233 {
234 	struct pci_dev *pdev = vdev->pdev;
235 	bool needs_restore = false, needs_save = false;
236 	int ret;
237 
238 	/* Prevent changing power state for PFs with VFs enabled */
239 	if (pci_num_vf(pdev) && state > PCI_D0)
240 		return -EBUSY;
241 
242 	if (vdev->needs_pm_restore) {
243 		if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) {
244 			pci_save_state(pdev);
245 			needs_save = true;
246 		}
247 
248 		if (pdev->current_state >= PCI_D3hot && state <= PCI_D0)
249 			needs_restore = true;
250 	}
251 
252 	ret = pci_set_power_state(pdev, state);
253 
254 	if (!ret) {
255 		/* D3 might be unsupported via quirk, skip unless in D3 */
256 		if (needs_save && pdev->current_state >= PCI_D3hot) {
257 			/*
258 			 * The current PCI state will be saved locally in
259 			 * 'pm_save' during the D3hot transition. When the
260 			 * device state is changed to D0 again with the current
261 			 * function, then pci_store_saved_state() will restore
262 			 * the state and will free the memory pointed by
263 			 * 'pm_save'. There are few cases where the PCI power
264 			 * state can be changed to D0 without the involvement
265 			 * of the driver. For these cases, free the earlier
266 			 * allocated memory first before overwriting 'pm_save'
267 			 * to prevent the memory leak.
268 			 */
269 			kfree(vdev->pm_save);
270 			vdev->pm_save = pci_store_saved_state(pdev);
271 		} else if (needs_restore) {
272 			pci_load_and_free_saved_state(pdev, &vdev->pm_save);
273 			pci_restore_state(pdev);
274 		}
275 	}
276 
277 	return ret;
278 }
279 
280 static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev,
281 				     struct eventfd_ctx *efdctx)
282 {
283 	/*
284 	 * The vdev power related flags are protected with 'memory_lock'
285 	 * semaphore.
286 	 */
287 	vfio_pci_zap_and_down_write_memory_lock(vdev);
288 	if (vdev->pm_runtime_engaged) {
289 		up_write(&vdev->memory_lock);
290 		return -EINVAL;
291 	}
292 
293 	vdev->pm_runtime_engaged = true;
294 	vdev->pm_wake_eventfd_ctx = efdctx;
295 	pm_runtime_put_noidle(&vdev->pdev->dev);
296 	up_write(&vdev->memory_lock);
297 
298 	return 0;
299 }
300 
301 static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags,
302 				  void __user *arg, size_t argsz)
303 {
304 	struct vfio_pci_core_device *vdev =
305 		container_of(device, struct vfio_pci_core_device, vdev);
306 	int ret;
307 
308 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
309 	if (ret != 1)
310 		return ret;
311 
312 	/*
313 	 * Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count
314 	 * will be decremented. The pm_runtime_put() will be invoked again
315 	 * while returning from the ioctl and then the device can go into
316 	 * runtime suspended state.
317 	 */
318 	return vfio_pci_runtime_pm_entry(vdev, NULL);
319 }
320 
321 static int vfio_pci_core_pm_entry_with_wakeup(
322 	struct vfio_device *device, u32 flags,
323 	struct vfio_device_low_power_entry_with_wakeup __user *arg,
324 	size_t argsz)
325 {
326 	struct vfio_pci_core_device *vdev =
327 		container_of(device, struct vfio_pci_core_device, vdev);
328 	struct vfio_device_low_power_entry_with_wakeup entry;
329 	struct eventfd_ctx *efdctx;
330 	int ret;
331 
332 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
333 				 sizeof(entry));
334 	if (ret != 1)
335 		return ret;
336 
337 	if (copy_from_user(&entry, arg, sizeof(entry)))
338 		return -EFAULT;
339 
340 	if (entry.wakeup_eventfd < 0)
341 		return -EINVAL;
342 
343 	efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd);
344 	if (IS_ERR(efdctx))
345 		return PTR_ERR(efdctx);
346 
347 	ret = vfio_pci_runtime_pm_entry(vdev, efdctx);
348 	if (ret)
349 		eventfd_ctx_put(efdctx);
350 
351 	return ret;
352 }
353 
354 static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
355 {
356 	if (vdev->pm_runtime_engaged) {
357 		vdev->pm_runtime_engaged = false;
358 		pm_runtime_get_noresume(&vdev->pdev->dev);
359 
360 		if (vdev->pm_wake_eventfd_ctx) {
361 			eventfd_ctx_put(vdev->pm_wake_eventfd_ctx);
362 			vdev->pm_wake_eventfd_ctx = NULL;
363 		}
364 	}
365 }
366 
367 static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
368 {
369 	/*
370 	 * The vdev power related flags are protected with 'memory_lock'
371 	 * semaphore.
372 	 */
373 	down_write(&vdev->memory_lock);
374 	__vfio_pci_runtime_pm_exit(vdev);
375 	up_write(&vdev->memory_lock);
376 }
377 
378 static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags,
379 				 void __user *arg, size_t argsz)
380 {
381 	struct vfio_pci_core_device *vdev =
382 		container_of(device, struct vfio_pci_core_device, vdev);
383 	int ret;
384 
385 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
386 	if (ret != 1)
387 		return ret;
388 
389 	/*
390 	 * The device is always in the active state here due to pm wrappers
391 	 * around ioctls. If the device had entered a low power state and
392 	 * pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has
393 	 * already signaled the eventfd and exited low power mode itself.
394 	 * pm_runtime_engaged protects the redundant call here.
395 	 */
396 	vfio_pci_runtime_pm_exit(vdev);
397 	return 0;
398 }
399 
400 #ifdef CONFIG_PM
401 static int vfio_pci_core_runtime_suspend(struct device *dev)
402 {
403 	struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
404 
405 	down_write(&vdev->memory_lock);
406 	/*
407 	 * The user can move the device into D3hot state before invoking
408 	 * power management IOCTL. Move the device into D0 state here and then
409 	 * the pci-driver core runtime PM suspend function will move the device
410 	 * into the low power state. Also, for the devices which have
411 	 * NoSoftRst-, it will help in restoring the original state
412 	 * (saved locally in 'vdev->pm_save').
413 	 */
414 	vfio_pci_set_power_state(vdev, PCI_D0);
415 	up_write(&vdev->memory_lock);
416 
417 	/*
418 	 * If INTx is enabled, then mask INTx before going into the runtime
419 	 * suspended state and unmask the same in the runtime resume.
420 	 * If INTx has already been masked by the user, then
421 	 * vfio_pci_intx_mask() will return false and in that case, INTx
422 	 * should not be unmasked in the runtime resume.
423 	 */
424 	vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) &&
425 				vfio_pci_intx_mask(vdev));
426 
427 	return 0;
428 }
429 
430 static int vfio_pci_core_runtime_resume(struct device *dev)
431 {
432 	struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
433 
434 	/*
435 	 * Resume with a pm_wake_eventfd_ctx signals the eventfd and exit
436 	 * low power mode.
437 	 */
438 	down_write(&vdev->memory_lock);
439 	if (vdev->pm_wake_eventfd_ctx) {
440 		eventfd_signal(vdev->pm_wake_eventfd_ctx, 1);
441 		__vfio_pci_runtime_pm_exit(vdev);
442 	}
443 	up_write(&vdev->memory_lock);
444 
445 	if (vdev->pm_intx_masked)
446 		vfio_pci_intx_unmask(vdev);
447 
448 	return 0;
449 }
450 #endif /* CONFIG_PM */
451 
452 /*
453  * The pci-driver core runtime PM routines always save the device state
454  * before going into suspended state. If the device is going into low power
455  * state with only with runtime PM ops, then no explicit handling is needed
456  * for the devices which have NoSoftRst-.
457  */
458 static const struct dev_pm_ops vfio_pci_core_pm_ops = {
459 	SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend,
460 			   vfio_pci_core_runtime_resume,
461 			   NULL)
462 };
463 
464 int vfio_pci_core_enable(struct vfio_pci_core_device *vdev)
465 {
466 	struct pci_dev *pdev = vdev->pdev;
467 	int ret;
468 	u16 cmd;
469 	u8 msix_pos;
470 
471 	if (!disable_idle_d3) {
472 		ret = pm_runtime_resume_and_get(&pdev->dev);
473 		if (ret < 0)
474 			return ret;
475 	}
476 
477 	/* Don't allow our initial saved state to include busmaster */
478 	pci_clear_master(pdev);
479 
480 	ret = pci_enable_device(pdev);
481 	if (ret)
482 		goto out_power;
483 
484 	/* If reset fails because of the device lock, fail this path entirely */
485 	ret = pci_try_reset_function(pdev);
486 	if (ret == -EAGAIN)
487 		goto out_disable_device;
488 
489 	vdev->reset_works = !ret;
490 	pci_save_state(pdev);
491 	vdev->pci_saved_state = pci_store_saved_state(pdev);
492 	if (!vdev->pci_saved_state)
493 		pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__);
494 
495 	if (likely(!nointxmask)) {
496 		if (vfio_pci_nointx(pdev)) {
497 			pci_info(pdev, "Masking broken INTx support\n");
498 			vdev->nointx = true;
499 			pci_intx(pdev, 0);
500 		} else
501 			vdev->pci_2_3 = pci_intx_mask_supported(pdev);
502 	}
503 
504 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
505 	if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) {
506 		cmd &= ~PCI_COMMAND_INTX_DISABLE;
507 		pci_write_config_word(pdev, PCI_COMMAND, cmd);
508 	}
509 
510 	ret = vfio_pci_zdev_open_device(vdev);
511 	if (ret)
512 		goto out_free_state;
513 
514 	ret = vfio_config_init(vdev);
515 	if (ret)
516 		goto out_free_zdev;
517 
518 	msix_pos = pdev->msix_cap;
519 	if (msix_pos) {
520 		u16 flags;
521 		u32 table;
522 
523 		pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags);
524 		pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table);
525 
526 		vdev->msix_bar = table & PCI_MSIX_TABLE_BIR;
527 		vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET;
528 		vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16;
529 	} else
530 		vdev->msix_bar = 0xFF;
531 
532 	if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev))
533 		vdev->has_vga = true;
534 
535 
536 	return 0;
537 
538 out_free_zdev:
539 	vfio_pci_zdev_close_device(vdev);
540 out_free_state:
541 	kfree(vdev->pci_saved_state);
542 	vdev->pci_saved_state = NULL;
543 out_disable_device:
544 	pci_disable_device(pdev);
545 out_power:
546 	if (!disable_idle_d3)
547 		pm_runtime_put(&pdev->dev);
548 	return ret;
549 }
550 EXPORT_SYMBOL_GPL(vfio_pci_core_enable);
551 
552 void vfio_pci_core_disable(struct vfio_pci_core_device *vdev)
553 {
554 	struct pci_dev *pdev = vdev->pdev;
555 	struct vfio_pci_dummy_resource *dummy_res, *tmp;
556 	struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp;
557 	int i, bar;
558 
559 	/* For needs_reset */
560 	lockdep_assert_held(&vdev->vdev.dev_set->lock);
561 
562 	/*
563 	 * This function can be invoked while the power state is non-D0.
564 	 * This non-D0 power state can be with or without runtime PM.
565 	 * vfio_pci_runtime_pm_exit() will internally increment the usage
566 	 * count corresponding to pm_runtime_put() called during low power
567 	 * feature entry and then pm_runtime_resume() will wake up the device,
568 	 * if the device has already gone into the suspended state. Otherwise,
569 	 * the vfio_pci_set_power_state() will change the device power state
570 	 * to D0.
571 	 */
572 	vfio_pci_runtime_pm_exit(vdev);
573 	pm_runtime_resume(&pdev->dev);
574 
575 	/*
576 	 * This function calls __pci_reset_function_locked() which internally
577 	 * can use pci_pm_reset() for the function reset. pci_pm_reset() will
578 	 * fail if the power state is non-D0. Also, for the devices which
579 	 * have NoSoftRst-, the reset function can cause the PCI config space
580 	 * reset without restoring the original state (saved locally in
581 	 * 'vdev->pm_save').
582 	 */
583 	vfio_pci_set_power_state(vdev, PCI_D0);
584 
585 	/* Stop the device from further DMA */
586 	pci_clear_master(pdev);
587 
588 	vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE |
589 				VFIO_IRQ_SET_ACTION_TRIGGER,
590 				vdev->irq_type, 0, 0, NULL);
591 
592 	/* Device closed, don't need mutex here */
593 	list_for_each_entry_safe(ioeventfd, ioeventfd_tmp,
594 				 &vdev->ioeventfds_list, next) {
595 		vfio_virqfd_disable(&ioeventfd->virqfd);
596 		list_del(&ioeventfd->next);
597 		kfree(ioeventfd);
598 	}
599 	vdev->ioeventfds_nr = 0;
600 
601 	vdev->virq_disabled = false;
602 
603 	for (i = 0; i < vdev->num_regions; i++)
604 		vdev->region[i].ops->release(vdev, &vdev->region[i]);
605 
606 	vdev->num_regions = 0;
607 	kfree(vdev->region);
608 	vdev->region = NULL; /* don't krealloc a freed pointer */
609 
610 	vfio_config_free(vdev);
611 
612 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
613 		bar = i + PCI_STD_RESOURCES;
614 		if (!vdev->barmap[bar])
615 			continue;
616 		pci_iounmap(pdev, vdev->barmap[bar]);
617 		pci_release_selected_regions(pdev, 1 << bar);
618 		vdev->barmap[bar] = NULL;
619 	}
620 
621 	list_for_each_entry_safe(dummy_res, tmp,
622 				 &vdev->dummy_resources_list, res_next) {
623 		list_del(&dummy_res->res_next);
624 		release_resource(&dummy_res->resource);
625 		kfree(dummy_res);
626 	}
627 
628 	vdev->needs_reset = true;
629 
630 	vfio_pci_zdev_close_device(vdev);
631 
632 	/*
633 	 * If we have saved state, restore it.  If we can reset the device,
634 	 * even better.  Resetting with current state seems better than
635 	 * nothing, but saving and restoring current state without reset
636 	 * is just busy work.
637 	 */
638 	if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) {
639 		pci_info(pdev, "%s: Couldn't reload saved state\n", __func__);
640 
641 		if (!vdev->reset_works)
642 			goto out;
643 
644 		pci_save_state(pdev);
645 	}
646 
647 	/*
648 	 * Disable INTx and MSI, presumably to avoid spurious interrupts
649 	 * during reset.  Stolen from pci_reset_function()
650 	 */
651 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
652 
653 	/*
654 	 * Try to get the locks ourselves to prevent a deadlock. The
655 	 * success of this is dependent on being able to lock the device,
656 	 * which is not always possible.
657 	 * We can not use the "try" reset interface here, which will
658 	 * overwrite the previously restored configuration information.
659 	 */
660 	if (vdev->reset_works && pci_dev_trylock(pdev)) {
661 		if (!__pci_reset_function_locked(pdev))
662 			vdev->needs_reset = false;
663 		pci_dev_unlock(pdev);
664 	}
665 
666 	pci_restore_state(pdev);
667 out:
668 	pci_disable_device(pdev);
669 
670 	vfio_pci_dev_set_try_reset(vdev->vdev.dev_set);
671 
672 	/* Put the pm-runtime usage counter acquired during enable */
673 	if (!disable_idle_d3)
674 		pm_runtime_put(&pdev->dev);
675 }
676 EXPORT_SYMBOL_GPL(vfio_pci_core_disable);
677 
678 void vfio_pci_core_close_device(struct vfio_device *core_vdev)
679 {
680 	struct vfio_pci_core_device *vdev =
681 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
682 
683 	if (vdev->sriov_pf_core_dev) {
684 		mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
685 		WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users);
686 		vdev->sriov_pf_core_dev->vf_token->users--;
687 		mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
688 	}
689 	vfio_spapr_pci_eeh_release(vdev->pdev);
690 	vfio_pci_core_disable(vdev);
691 
692 	mutex_lock(&vdev->igate);
693 	if (vdev->err_trigger) {
694 		eventfd_ctx_put(vdev->err_trigger);
695 		vdev->err_trigger = NULL;
696 	}
697 	if (vdev->req_trigger) {
698 		eventfd_ctx_put(vdev->req_trigger);
699 		vdev->req_trigger = NULL;
700 	}
701 	mutex_unlock(&vdev->igate);
702 }
703 EXPORT_SYMBOL_GPL(vfio_pci_core_close_device);
704 
705 void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev)
706 {
707 	vfio_pci_probe_mmaps(vdev);
708 	vfio_spapr_pci_eeh_open(vdev->pdev);
709 
710 	if (vdev->sriov_pf_core_dev) {
711 		mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
712 		vdev->sriov_pf_core_dev->vf_token->users++;
713 		mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
714 	}
715 }
716 EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable);
717 
718 static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type)
719 {
720 	if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) {
721 		u8 pin;
722 
723 		if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) ||
724 		    vdev->nointx || vdev->pdev->is_virtfn)
725 			return 0;
726 
727 		pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin);
728 
729 		return pin ? 1 : 0;
730 	} else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) {
731 		u8 pos;
732 		u16 flags;
733 
734 		pos = vdev->pdev->msi_cap;
735 		if (pos) {
736 			pci_read_config_word(vdev->pdev,
737 					     pos + PCI_MSI_FLAGS, &flags);
738 			return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1);
739 		}
740 	} else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) {
741 		u8 pos;
742 		u16 flags;
743 
744 		pos = vdev->pdev->msix_cap;
745 		if (pos) {
746 			pci_read_config_word(vdev->pdev,
747 					     pos + PCI_MSIX_FLAGS, &flags);
748 
749 			return (flags & PCI_MSIX_FLAGS_QSIZE) + 1;
750 		}
751 	} else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) {
752 		if (pci_is_pcie(vdev->pdev))
753 			return 1;
754 	} else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) {
755 		return 1;
756 	}
757 
758 	return 0;
759 }
760 
761 static int vfio_pci_count_devs(struct pci_dev *pdev, void *data)
762 {
763 	(*(int *)data)++;
764 	return 0;
765 }
766 
767 struct vfio_pci_fill_info {
768 	int max;
769 	int cur;
770 	struct vfio_pci_dependent_device *devices;
771 };
772 
773 static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data)
774 {
775 	struct vfio_pci_fill_info *fill = data;
776 	struct iommu_group *iommu_group;
777 
778 	if (fill->cur == fill->max)
779 		return -EAGAIN; /* Something changed, try again */
780 
781 	iommu_group = iommu_group_get(&pdev->dev);
782 	if (!iommu_group)
783 		return -EPERM; /* Cannot reset non-isolated devices */
784 
785 	fill->devices[fill->cur].group_id = iommu_group_id(iommu_group);
786 	fill->devices[fill->cur].segment = pci_domain_nr(pdev->bus);
787 	fill->devices[fill->cur].bus = pdev->bus->number;
788 	fill->devices[fill->cur].devfn = pdev->devfn;
789 	fill->cur++;
790 	iommu_group_put(iommu_group);
791 	return 0;
792 }
793 
794 struct vfio_pci_group_info {
795 	int count;
796 	struct file **files;
797 };
798 
799 static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot)
800 {
801 	for (; pdev; pdev = pdev->bus->self)
802 		if (pdev->bus == slot->bus)
803 			return (pdev->slot == slot);
804 	return false;
805 }
806 
807 struct vfio_pci_walk_info {
808 	int (*fn)(struct pci_dev *pdev, void *data);
809 	void *data;
810 	struct pci_dev *pdev;
811 	bool slot;
812 	int ret;
813 };
814 
815 static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data)
816 {
817 	struct vfio_pci_walk_info *walk = data;
818 
819 	if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot))
820 		walk->ret = walk->fn(pdev, walk->data);
821 
822 	return walk->ret;
823 }
824 
825 static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev,
826 					 int (*fn)(struct pci_dev *,
827 						   void *data), void *data,
828 					 bool slot)
829 {
830 	struct vfio_pci_walk_info walk = {
831 		.fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0,
832 	};
833 
834 	pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk);
835 
836 	return walk.ret;
837 }
838 
839 static int msix_mmappable_cap(struct vfio_pci_core_device *vdev,
840 			      struct vfio_info_cap *caps)
841 {
842 	struct vfio_info_cap_header header = {
843 		.id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE,
844 		.version = 1
845 	};
846 
847 	return vfio_info_add_capability(caps, &header, sizeof(header));
848 }
849 
850 int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev,
851 				      unsigned int type, unsigned int subtype,
852 				      const struct vfio_pci_regops *ops,
853 				      size_t size, u32 flags, void *data)
854 {
855 	struct vfio_pci_region *region;
856 
857 	region = krealloc(vdev->region,
858 			  (vdev->num_regions + 1) * sizeof(*region),
859 			  GFP_KERNEL);
860 	if (!region)
861 		return -ENOMEM;
862 
863 	vdev->region = region;
864 	vdev->region[vdev->num_regions].type = type;
865 	vdev->region[vdev->num_regions].subtype = subtype;
866 	vdev->region[vdev->num_regions].ops = ops;
867 	vdev->region[vdev->num_regions].size = size;
868 	vdev->region[vdev->num_regions].flags = flags;
869 	vdev->region[vdev->num_regions].data = data;
870 
871 	vdev->num_regions++;
872 
873 	return 0;
874 }
875 EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region);
876 
877 static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev,
878 				   struct vfio_device_info __user *arg)
879 {
880 	unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs);
881 	struct vfio_device_info info;
882 	struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
883 	unsigned long capsz;
884 	int ret;
885 
886 	/* For backward compatibility, cannot require this */
887 	capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset);
888 
889 	if (copy_from_user(&info, arg, minsz))
890 		return -EFAULT;
891 
892 	if (info.argsz < minsz)
893 		return -EINVAL;
894 
895 	if (info.argsz >= capsz) {
896 		minsz = capsz;
897 		info.cap_offset = 0;
898 	}
899 
900 	info.flags = VFIO_DEVICE_FLAGS_PCI;
901 
902 	if (vdev->reset_works)
903 		info.flags |= VFIO_DEVICE_FLAGS_RESET;
904 
905 	info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions;
906 	info.num_irqs = VFIO_PCI_NUM_IRQS;
907 
908 	ret = vfio_pci_info_zdev_add_caps(vdev, &caps);
909 	if (ret && ret != -ENODEV) {
910 		pci_warn(vdev->pdev,
911 			 "Failed to setup zPCI info capabilities\n");
912 		return ret;
913 	}
914 
915 	if (caps.size) {
916 		info.flags |= VFIO_DEVICE_FLAGS_CAPS;
917 		if (info.argsz < sizeof(info) + caps.size) {
918 			info.argsz = sizeof(info) + caps.size;
919 		} else {
920 			vfio_info_cap_shift(&caps, sizeof(info));
921 			if (copy_to_user(arg + 1, caps.buf, caps.size)) {
922 				kfree(caps.buf);
923 				return -EFAULT;
924 			}
925 			info.cap_offset = sizeof(*arg);
926 		}
927 
928 		kfree(caps.buf);
929 	}
930 
931 	return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
932 }
933 
934 static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev,
935 					  struct vfio_region_info __user *arg)
936 {
937 	unsigned long minsz = offsetofend(struct vfio_region_info, offset);
938 	struct pci_dev *pdev = vdev->pdev;
939 	struct vfio_region_info info;
940 	struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
941 	int i, ret;
942 
943 	if (copy_from_user(&info, arg, minsz))
944 		return -EFAULT;
945 
946 	if (info.argsz < minsz)
947 		return -EINVAL;
948 
949 	switch (info.index) {
950 	case VFIO_PCI_CONFIG_REGION_INDEX:
951 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
952 		info.size = pdev->cfg_size;
953 		info.flags = VFIO_REGION_INFO_FLAG_READ |
954 			     VFIO_REGION_INFO_FLAG_WRITE;
955 		break;
956 	case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
957 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
958 		info.size = pci_resource_len(pdev, info.index);
959 		if (!info.size) {
960 			info.flags = 0;
961 			break;
962 		}
963 
964 		info.flags = VFIO_REGION_INFO_FLAG_READ |
965 			     VFIO_REGION_INFO_FLAG_WRITE;
966 		if (vdev->bar_mmap_supported[info.index]) {
967 			info.flags |= VFIO_REGION_INFO_FLAG_MMAP;
968 			if (info.index == vdev->msix_bar) {
969 				ret = msix_mmappable_cap(vdev, &caps);
970 				if (ret)
971 					return ret;
972 			}
973 		}
974 
975 		break;
976 	case VFIO_PCI_ROM_REGION_INDEX: {
977 		void __iomem *io;
978 		size_t size;
979 		u16 cmd;
980 
981 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
982 		info.flags = 0;
983 
984 		/* Report the BAR size, not the ROM size */
985 		info.size = pci_resource_len(pdev, info.index);
986 		if (!info.size) {
987 			/* Shadow ROMs appear as PCI option ROMs */
988 			if (pdev->resource[PCI_ROM_RESOURCE].flags &
989 			    IORESOURCE_ROM_SHADOW)
990 				info.size = 0x20000;
991 			else
992 				break;
993 		}
994 
995 		/*
996 		 * Is it really there?  Enable memory decode for implicit access
997 		 * in pci_map_rom().
998 		 */
999 		cmd = vfio_pci_memory_lock_and_enable(vdev);
1000 		io = pci_map_rom(pdev, &size);
1001 		if (io) {
1002 			info.flags = VFIO_REGION_INFO_FLAG_READ;
1003 			pci_unmap_rom(pdev, io);
1004 		} else {
1005 			info.size = 0;
1006 		}
1007 		vfio_pci_memory_unlock_and_restore(vdev, cmd);
1008 
1009 		break;
1010 	}
1011 	case VFIO_PCI_VGA_REGION_INDEX:
1012 		if (!vdev->has_vga)
1013 			return -EINVAL;
1014 
1015 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1016 		info.size = 0xc0000;
1017 		info.flags = VFIO_REGION_INFO_FLAG_READ |
1018 			     VFIO_REGION_INFO_FLAG_WRITE;
1019 
1020 		break;
1021 	default: {
1022 		struct vfio_region_info_cap_type cap_type = {
1023 			.header.id = VFIO_REGION_INFO_CAP_TYPE,
1024 			.header.version = 1
1025 		};
1026 
1027 		if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1028 			return -EINVAL;
1029 		info.index = array_index_nospec(
1030 			info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions);
1031 
1032 		i = info.index - VFIO_PCI_NUM_REGIONS;
1033 
1034 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1035 		info.size = vdev->region[i].size;
1036 		info.flags = vdev->region[i].flags;
1037 
1038 		cap_type.type = vdev->region[i].type;
1039 		cap_type.subtype = vdev->region[i].subtype;
1040 
1041 		ret = vfio_info_add_capability(&caps, &cap_type.header,
1042 					       sizeof(cap_type));
1043 		if (ret)
1044 			return ret;
1045 
1046 		if (vdev->region[i].ops->add_capability) {
1047 			ret = vdev->region[i].ops->add_capability(
1048 				vdev, &vdev->region[i], &caps);
1049 			if (ret)
1050 				return ret;
1051 		}
1052 	}
1053 	}
1054 
1055 	if (caps.size) {
1056 		info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
1057 		if (info.argsz < sizeof(info) + caps.size) {
1058 			info.argsz = sizeof(info) + caps.size;
1059 			info.cap_offset = 0;
1060 		} else {
1061 			vfio_info_cap_shift(&caps, sizeof(info));
1062 			if (copy_to_user(arg + 1, caps.buf, caps.size)) {
1063 				kfree(caps.buf);
1064 				return -EFAULT;
1065 			}
1066 			info.cap_offset = sizeof(*arg);
1067 		}
1068 
1069 		kfree(caps.buf);
1070 	}
1071 
1072 	return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1073 }
1074 
1075 static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev,
1076 				       struct vfio_irq_info __user *arg)
1077 {
1078 	unsigned long minsz = offsetofend(struct vfio_irq_info, count);
1079 	struct vfio_irq_info info;
1080 
1081 	if (copy_from_user(&info, arg, minsz))
1082 		return -EFAULT;
1083 
1084 	if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
1085 		return -EINVAL;
1086 
1087 	switch (info.index) {
1088 	case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX:
1089 	case VFIO_PCI_REQ_IRQ_INDEX:
1090 		break;
1091 	case VFIO_PCI_ERR_IRQ_INDEX:
1092 		if (pci_is_pcie(vdev->pdev))
1093 			break;
1094 		fallthrough;
1095 	default:
1096 		return -EINVAL;
1097 	}
1098 
1099 	info.flags = VFIO_IRQ_INFO_EVENTFD;
1100 
1101 	info.count = vfio_pci_get_irq_count(vdev, info.index);
1102 
1103 	if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
1104 		info.flags |=
1105 			(VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED);
1106 	else
1107 		info.flags |= VFIO_IRQ_INFO_NORESIZE;
1108 
1109 	return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1110 }
1111 
1112 static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev,
1113 				   struct vfio_irq_set __user *arg)
1114 {
1115 	unsigned long minsz = offsetofend(struct vfio_irq_set, count);
1116 	struct vfio_irq_set hdr;
1117 	u8 *data = NULL;
1118 	int max, ret = 0;
1119 	size_t data_size = 0;
1120 
1121 	if (copy_from_user(&hdr, arg, minsz))
1122 		return -EFAULT;
1123 
1124 	max = vfio_pci_get_irq_count(vdev, hdr.index);
1125 
1126 	ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS,
1127 						 &data_size);
1128 	if (ret)
1129 		return ret;
1130 
1131 	if (data_size) {
1132 		data = memdup_user(&arg->data, data_size);
1133 		if (IS_ERR(data))
1134 			return PTR_ERR(data);
1135 	}
1136 
1137 	mutex_lock(&vdev->igate);
1138 
1139 	ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start,
1140 				      hdr.count, data);
1141 
1142 	mutex_unlock(&vdev->igate);
1143 	kfree(data);
1144 
1145 	return ret;
1146 }
1147 
1148 static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev,
1149 				void __user *arg)
1150 {
1151 	int ret;
1152 
1153 	if (!vdev->reset_works)
1154 		return -EINVAL;
1155 
1156 	vfio_pci_zap_and_down_write_memory_lock(vdev);
1157 
1158 	/*
1159 	 * This function can be invoked while the power state is non-D0. If
1160 	 * pci_try_reset_function() has been called while the power state is
1161 	 * non-D0, then pci_try_reset_function() will internally set the power
1162 	 * state to D0 without vfio driver involvement. For the devices which
1163 	 * have NoSoftRst-, the reset function can cause the PCI config space
1164 	 * reset without restoring the original state (saved locally in
1165 	 * 'vdev->pm_save').
1166 	 */
1167 	vfio_pci_set_power_state(vdev, PCI_D0);
1168 
1169 	ret = pci_try_reset_function(vdev->pdev);
1170 	up_write(&vdev->memory_lock);
1171 
1172 	return ret;
1173 }
1174 
1175 static int vfio_pci_ioctl_get_pci_hot_reset_info(
1176 	struct vfio_pci_core_device *vdev,
1177 	struct vfio_pci_hot_reset_info __user *arg)
1178 {
1179 	unsigned long minsz =
1180 		offsetofend(struct vfio_pci_hot_reset_info, count);
1181 	struct vfio_pci_hot_reset_info hdr;
1182 	struct vfio_pci_fill_info fill = { 0 };
1183 	struct vfio_pci_dependent_device *devices = NULL;
1184 	bool slot = false;
1185 	int ret = 0;
1186 
1187 	if (copy_from_user(&hdr, arg, minsz))
1188 		return -EFAULT;
1189 
1190 	if (hdr.argsz < minsz)
1191 		return -EINVAL;
1192 
1193 	hdr.flags = 0;
1194 
1195 	/* Can we do a slot or bus reset or neither? */
1196 	if (!pci_probe_reset_slot(vdev->pdev->slot))
1197 		slot = true;
1198 	else if (pci_probe_reset_bus(vdev->pdev->bus))
1199 		return -ENODEV;
1200 
1201 	/* How many devices are affected? */
1202 	ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
1203 					    &fill.max, slot);
1204 	if (ret)
1205 		return ret;
1206 
1207 	WARN_ON(!fill.max); /* Should always be at least one */
1208 
1209 	/*
1210 	 * If there's enough space, fill it now, otherwise return -ENOSPC and
1211 	 * the number of devices affected.
1212 	 */
1213 	if (hdr.argsz < sizeof(hdr) + (fill.max * sizeof(*devices))) {
1214 		ret = -ENOSPC;
1215 		hdr.count = fill.max;
1216 		goto reset_info_exit;
1217 	}
1218 
1219 	devices = kcalloc(fill.max, sizeof(*devices), GFP_KERNEL);
1220 	if (!devices)
1221 		return -ENOMEM;
1222 
1223 	fill.devices = devices;
1224 
1225 	ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs,
1226 					    &fill, slot);
1227 
1228 	/*
1229 	 * If a device was removed between counting and filling, we may come up
1230 	 * short of fill.max.  If a device was added, we'll have a return of
1231 	 * -EAGAIN above.
1232 	 */
1233 	if (!ret)
1234 		hdr.count = fill.cur;
1235 
1236 reset_info_exit:
1237 	if (copy_to_user(arg, &hdr, minsz))
1238 		ret = -EFAULT;
1239 
1240 	if (!ret) {
1241 		if (copy_to_user(&arg->devices, devices,
1242 				 hdr.count * sizeof(*devices)))
1243 			ret = -EFAULT;
1244 	}
1245 
1246 	kfree(devices);
1247 	return ret;
1248 }
1249 
1250 static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev,
1251 					struct vfio_pci_hot_reset __user *arg)
1252 {
1253 	unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count);
1254 	struct vfio_pci_hot_reset hdr;
1255 	int32_t *group_fds;
1256 	struct file **files;
1257 	struct vfio_pci_group_info info;
1258 	bool slot = false;
1259 	int file_idx, count = 0, ret = 0;
1260 
1261 	if (copy_from_user(&hdr, arg, minsz))
1262 		return -EFAULT;
1263 
1264 	if (hdr.argsz < minsz || hdr.flags)
1265 		return -EINVAL;
1266 
1267 	/* Can we do a slot or bus reset or neither? */
1268 	if (!pci_probe_reset_slot(vdev->pdev->slot))
1269 		slot = true;
1270 	else if (pci_probe_reset_bus(vdev->pdev->bus))
1271 		return -ENODEV;
1272 
1273 	/*
1274 	 * We can't let userspace give us an arbitrarily large buffer to copy,
1275 	 * so verify how many we think there could be.  Note groups can have
1276 	 * multiple devices so one group per device is the max.
1277 	 */
1278 	ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
1279 					    &count, slot);
1280 	if (ret)
1281 		return ret;
1282 
1283 	/* Somewhere between 1 and count is OK */
1284 	if (!hdr.count || hdr.count > count)
1285 		return -EINVAL;
1286 
1287 	group_fds = kcalloc(hdr.count, sizeof(*group_fds), GFP_KERNEL);
1288 	files = kcalloc(hdr.count, sizeof(*files), GFP_KERNEL);
1289 	if (!group_fds || !files) {
1290 		kfree(group_fds);
1291 		kfree(files);
1292 		return -ENOMEM;
1293 	}
1294 
1295 	if (copy_from_user(group_fds, arg->group_fds,
1296 			   hdr.count * sizeof(*group_fds))) {
1297 		kfree(group_fds);
1298 		kfree(files);
1299 		return -EFAULT;
1300 	}
1301 
1302 	/*
1303 	 * For each group_fd, get the group through the vfio external user
1304 	 * interface and store the group and iommu ID.  This ensures the group
1305 	 * is held across the reset.
1306 	 */
1307 	for (file_idx = 0; file_idx < hdr.count; file_idx++) {
1308 		struct file *file = fget(group_fds[file_idx]);
1309 
1310 		if (!file) {
1311 			ret = -EBADF;
1312 			break;
1313 		}
1314 
1315 		/* Ensure the FD is a vfio group FD.*/
1316 		if (!vfio_file_is_group(file)) {
1317 			fput(file);
1318 			ret = -EINVAL;
1319 			break;
1320 		}
1321 
1322 		files[file_idx] = file;
1323 	}
1324 
1325 	kfree(group_fds);
1326 
1327 	/* release reference to groups on error */
1328 	if (ret)
1329 		goto hot_reset_release;
1330 
1331 	info.count = hdr.count;
1332 	info.files = files;
1333 
1334 	ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info);
1335 
1336 hot_reset_release:
1337 	for (file_idx--; file_idx >= 0; file_idx--)
1338 		fput(files[file_idx]);
1339 
1340 	kfree(files);
1341 	return ret;
1342 }
1343 
1344 static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev,
1345 				    struct vfio_device_ioeventfd __user *arg)
1346 {
1347 	unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd);
1348 	struct vfio_device_ioeventfd ioeventfd;
1349 	int count;
1350 
1351 	if (copy_from_user(&ioeventfd, arg, minsz))
1352 		return -EFAULT;
1353 
1354 	if (ioeventfd.argsz < minsz)
1355 		return -EINVAL;
1356 
1357 	if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK)
1358 		return -EINVAL;
1359 
1360 	count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK;
1361 
1362 	if (hweight8(count) != 1 || ioeventfd.fd < -1)
1363 		return -EINVAL;
1364 
1365 	return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count,
1366 				  ioeventfd.fd);
1367 }
1368 
1369 long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd,
1370 			 unsigned long arg)
1371 {
1372 	struct vfio_pci_core_device *vdev =
1373 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1374 	void __user *uarg = (void __user *)arg;
1375 
1376 	switch (cmd) {
1377 	case VFIO_DEVICE_GET_INFO:
1378 		return vfio_pci_ioctl_get_info(vdev, uarg);
1379 	case VFIO_DEVICE_GET_IRQ_INFO:
1380 		return vfio_pci_ioctl_get_irq_info(vdev, uarg);
1381 	case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO:
1382 		return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg);
1383 	case VFIO_DEVICE_GET_REGION_INFO:
1384 		return vfio_pci_ioctl_get_region_info(vdev, uarg);
1385 	case VFIO_DEVICE_IOEVENTFD:
1386 		return vfio_pci_ioctl_ioeventfd(vdev, uarg);
1387 	case VFIO_DEVICE_PCI_HOT_RESET:
1388 		return vfio_pci_ioctl_pci_hot_reset(vdev, uarg);
1389 	case VFIO_DEVICE_RESET:
1390 		return vfio_pci_ioctl_reset(vdev, uarg);
1391 	case VFIO_DEVICE_SET_IRQS:
1392 		return vfio_pci_ioctl_set_irqs(vdev, uarg);
1393 	default:
1394 		return -ENOTTY;
1395 	}
1396 }
1397 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl);
1398 
1399 static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags,
1400 				       uuid_t __user *arg, size_t argsz)
1401 {
1402 	struct vfio_pci_core_device *vdev =
1403 		container_of(device, struct vfio_pci_core_device, vdev);
1404 	uuid_t uuid;
1405 	int ret;
1406 
1407 	if (!vdev->vf_token)
1408 		return -ENOTTY;
1409 	/*
1410 	 * We do not support GET of the VF Token UUID as this could
1411 	 * expose the token of the previous device user.
1412 	 */
1413 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
1414 				 sizeof(uuid));
1415 	if (ret != 1)
1416 		return ret;
1417 
1418 	if (copy_from_user(&uuid, arg, sizeof(uuid)))
1419 		return -EFAULT;
1420 
1421 	mutex_lock(&vdev->vf_token->lock);
1422 	uuid_copy(&vdev->vf_token->uuid, &uuid);
1423 	mutex_unlock(&vdev->vf_token->lock);
1424 	return 0;
1425 }
1426 
1427 int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags,
1428 				void __user *arg, size_t argsz)
1429 {
1430 	switch (flags & VFIO_DEVICE_FEATURE_MASK) {
1431 	case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY:
1432 		return vfio_pci_core_pm_entry(device, flags, arg, argsz);
1433 	case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP:
1434 		return vfio_pci_core_pm_entry_with_wakeup(device, flags,
1435 							  arg, argsz);
1436 	case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT:
1437 		return vfio_pci_core_pm_exit(device, flags, arg, argsz);
1438 	case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN:
1439 		return vfio_pci_core_feature_token(device, flags, arg, argsz);
1440 	default:
1441 		return -ENOTTY;
1442 	}
1443 }
1444 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature);
1445 
1446 static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1447 			   size_t count, loff_t *ppos, bool iswrite)
1448 {
1449 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
1450 	int ret;
1451 
1452 	if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1453 		return -EINVAL;
1454 
1455 	ret = pm_runtime_resume_and_get(&vdev->pdev->dev);
1456 	if (ret) {
1457 		pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n",
1458 				     ret);
1459 		return -EIO;
1460 	}
1461 
1462 	switch (index) {
1463 	case VFIO_PCI_CONFIG_REGION_INDEX:
1464 		ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite);
1465 		break;
1466 
1467 	case VFIO_PCI_ROM_REGION_INDEX:
1468 		if (iswrite)
1469 			ret = -EINVAL;
1470 		else
1471 			ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false);
1472 		break;
1473 
1474 	case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1475 		ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite);
1476 		break;
1477 
1478 	case VFIO_PCI_VGA_REGION_INDEX:
1479 		ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite);
1480 		break;
1481 
1482 	default:
1483 		index -= VFIO_PCI_NUM_REGIONS;
1484 		ret = vdev->region[index].ops->rw(vdev, buf,
1485 						   count, ppos, iswrite);
1486 		break;
1487 	}
1488 
1489 	pm_runtime_put(&vdev->pdev->dev);
1490 	return ret;
1491 }
1492 
1493 ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf,
1494 		size_t count, loff_t *ppos)
1495 {
1496 	struct vfio_pci_core_device *vdev =
1497 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1498 
1499 	if (!count)
1500 		return 0;
1501 
1502 	return vfio_pci_rw(vdev, buf, count, ppos, false);
1503 }
1504 EXPORT_SYMBOL_GPL(vfio_pci_core_read);
1505 
1506 ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf,
1507 		size_t count, loff_t *ppos)
1508 {
1509 	struct vfio_pci_core_device *vdev =
1510 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1511 
1512 	if (!count)
1513 		return 0;
1514 
1515 	return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true);
1516 }
1517 EXPORT_SYMBOL_GPL(vfio_pci_core_write);
1518 
1519 /* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */
1520 static int vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device *vdev, bool try)
1521 {
1522 	struct vfio_pci_mmap_vma *mmap_vma, *tmp;
1523 
1524 	/*
1525 	 * Lock ordering:
1526 	 * vma_lock is nested under mmap_lock for vm_ops callback paths.
1527 	 * The memory_lock semaphore is used by both code paths calling
1528 	 * into this function to zap vmas and the vm_ops.fault callback
1529 	 * to protect the memory enable state of the device.
1530 	 *
1531 	 * When zapping vmas we need to maintain the mmap_lock => vma_lock
1532 	 * ordering, which requires using vma_lock to walk vma_list to
1533 	 * acquire an mm, then dropping vma_lock to get the mmap_lock and
1534 	 * reacquiring vma_lock.  This logic is derived from similar
1535 	 * requirements in uverbs_user_mmap_disassociate().
1536 	 *
1537 	 * mmap_lock must always be the top-level lock when it is taken.
1538 	 * Therefore we can only hold the memory_lock write lock when
1539 	 * vma_list is empty, as we'd need to take mmap_lock to clear
1540 	 * entries.  vma_list can only be guaranteed empty when holding
1541 	 * vma_lock, thus memory_lock is nested under vma_lock.
1542 	 *
1543 	 * This enables the vm_ops.fault callback to acquire vma_lock,
1544 	 * followed by memory_lock read lock, while already holding
1545 	 * mmap_lock without risk of deadlock.
1546 	 */
1547 	while (1) {
1548 		struct mm_struct *mm = NULL;
1549 
1550 		if (try) {
1551 			if (!mutex_trylock(&vdev->vma_lock))
1552 				return 0;
1553 		} else {
1554 			mutex_lock(&vdev->vma_lock);
1555 		}
1556 		while (!list_empty(&vdev->vma_list)) {
1557 			mmap_vma = list_first_entry(&vdev->vma_list,
1558 						    struct vfio_pci_mmap_vma,
1559 						    vma_next);
1560 			mm = mmap_vma->vma->vm_mm;
1561 			if (mmget_not_zero(mm))
1562 				break;
1563 
1564 			list_del(&mmap_vma->vma_next);
1565 			kfree(mmap_vma);
1566 			mm = NULL;
1567 		}
1568 		if (!mm)
1569 			return 1;
1570 		mutex_unlock(&vdev->vma_lock);
1571 
1572 		if (try) {
1573 			if (!mmap_read_trylock(mm)) {
1574 				mmput(mm);
1575 				return 0;
1576 			}
1577 		} else {
1578 			mmap_read_lock(mm);
1579 		}
1580 		if (try) {
1581 			if (!mutex_trylock(&vdev->vma_lock)) {
1582 				mmap_read_unlock(mm);
1583 				mmput(mm);
1584 				return 0;
1585 			}
1586 		} else {
1587 			mutex_lock(&vdev->vma_lock);
1588 		}
1589 		list_for_each_entry_safe(mmap_vma, tmp,
1590 					 &vdev->vma_list, vma_next) {
1591 			struct vm_area_struct *vma = mmap_vma->vma;
1592 
1593 			if (vma->vm_mm != mm)
1594 				continue;
1595 
1596 			list_del(&mmap_vma->vma_next);
1597 			kfree(mmap_vma);
1598 
1599 			zap_vma_ptes(vma, vma->vm_start,
1600 				     vma->vm_end - vma->vm_start);
1601 		}
1602 		mutex_unlock(&vdev->vma_lock);
1603 		mmap_read_unlock(mm);
1604 		mmput(mm);
1605 	}
1606 }
1607 
1608 void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev)
1609 {
1610 	vfio_pci_zap_and_vma_lock(vdev, false);
1611 	down_write(&vdev->memory_lock);
1612 	mutex_unlock(&vdev->vma_lock);
1613 }
1614 
1615 u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev)
1616 {
1617 	u16 cmd;
1618 
1619 	down_write(&vdev->memory_lock);
1620 	pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd);
1621 	if (!(cmd & PCI_COMMAND_MEMORY))
1622 		pci_write_config_word(vdev->pdev, PCI_COMMAND,
1623 				      cmd | PCI_COMMAND_MEMORY);
1624 
1625 	return cmd;
1626 }
1627 
1628 void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd)
1629 {
1630 	pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd);
1631 	up_write(&vdev->memory_lock);
1632 }
1633 
1634 /* Caller holds vma_lock */
1635 static int __vfio_pci_add_vma(struct vfio_pci_core_device *vdev,
1636 			      struct vm_area_struct *vma)
1637 {
1638 	struct vfio_pci_mmap_vma *mmap_vma;
1639 
1640 	mmap_vma = kmalloc(sizeof(*mmap_vma), GFP_KERNEL);
1641 	if (!mmap_vma)
1642 		return -ENOMEM;
1643 
1644 	mmap_vma->vma = vma;
1645 	list_add(&mmap_vma->vma_next, &vdev->vma_list);
1646 
1647 	return 0;
1648 }
1649 
1650 /*
1651  * Zap mmaps on open so that we can fault them in on access and therefore
1652  * our vma_list only tracks mappings accessed since last zap.
1653  */
1654 static void vfio_pci_mmap_open(struct vm_area_struct *vma)
1655 {
1656 	zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1657 }
1658 
1659 static void vfio_pci_mmap_close(struct vm_area_struct *vma)
1660 {
1661 	struct vfio_pci_core_device *vdev = vma->vm_private_data;
1662 	struct vfio_pci_mmap_vma *mmap_vma;
1663 
1664 	mutex_lock(&vdev->vma_lock);
1665 	list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1666 		if (mmap_vma->vma == vma) {
1667 			list_del(&mmap_vma->vma_next);
1668 			kfree(mmap_vma);
1669 			break;
1670 		}
1671 	}
1672 	mutex_unlock(&vdev->vma_lock);
1673 }
1674 
1675 static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf)
1676 {
1677 	struct vm_area_struct *vma = vmf->vma;
1678 	struct vfio_pci_core_device *vdev = vma->vm_private_data;
1679 	struct vfio_pci_mmap_vma *mmap_vma;
1680 	vm_fault_t ret = VM_FAULT_NOPAGE;
1681 
1682 	mutex_lock(&vdev->vma_lock);
1683 	down_read(&vdev->memory_lock);
1684 
1685 	/*
1686 	 * Memory region cannot be accessed if the low power feature is engaged
1687 	 * or memory access is disabled.
1688 	 */
1689 	if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) {
1690 		ret = VM_FAULT_SIGBUS;
1691 		goto up_out;
1692 	}
1693 
1694 	/*
1695 	 * We populate the whole vma on fault, so we need to test whether
1696 	 * the vma has already been mapped, such as for concurrent faults
1697 	 * to the same vma.  io_remap_pfn_range() will trigger a BUG_ON if
1698 	 * we ask it to fill the same range again.
1699 	 */
1700 	list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1701 		if (mmap_vma->vma == vma)
1702 			goto up_out;
1703 	}
1704 
1705 	if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
1706 			       vma->vm_end - vma->vm_start,
1707 			       vma->vm_page_prot)) {
1708 		ret = VM_FAULT_SIGBUS;
1709 		zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1710 		goto up_out;
1711 	}
1712 
1713 	if (__vfio_pci_add_vma(vdev, vma)) {
1714 		ret = VM_FAULT_OOM;
1715 		zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1716 	}
1717 
1718 up_out:
1719 	up_read(&vdev->memory_lock);
1720 	mutex_unlock(&vdev->vma_lock);
1721 	return ret;
1722 }
1723 
1724 static const struct vm_operations_struct vfio_pci_mmap_ops = {
1725 	.open = vfio_pci_mmap_open,
1726 	.close = vfio_pci_mmap_close,
1727 	.fault = vfio_pci_mmap_fault,
1728 };
1729 
1730 int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma)
1731 {
1732 	struct vfio_pci_core_device *vdev =
1733 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1734 	struct pci_dev *pdev = vdev->pdev;
1735 	unsigned int index;
1736 	u64 phys_len, req_len, pgoff, req_start;
1737 	int ret;
1738 
1739 	index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1740 
1741 	if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1742 		return -EINVAL;
1743 	if (vma->vm_end < vma->vm_start)
1744 		return -EINVAL;
1745 	if ((vma->vm_flags & VM_SHARED) == 0)
1746 		return -EINVAL;
1747 	if (index >= VFIO_PCI_NUM_REGIONS) {
1748 		int regnum = index - VFIO_PCI_NUM_REGIONS;
1749 		struct vfio_pci_region *region = vdev->region + regnum;
1750 
1751 		if (region->ops && region->ops->mmap &&
1752 		    (region->flags & VFIO_REGION_INFO_FLAG_MMAP))
1753 			return region->ops->mmap(vdev, region, vma);
1754 		return -EINVAL;
1755 	}
1756 	if (index >= VFIO_PCI_ROM_REGION_INDEX)
1757 		return -EINVAL;
1758 	if (!vdev->bar_mmap_supported[index])
1759 		return -EINVAL;
1760 
1761 	phys_len = PAGE_ALIGN(pci_resource_len(pdev, index));
1762 	req_len = vma->vm_end - vma->vm_start;
1763 	pgoff = vma->vm_pgoff &
1764 		((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1765 	req_start = pgoff << PAGE_SHIFT;
1766 
1767 	if (req_start + req_len > phys_len)
1768 		return -EINVAL;
1769 
1770 	/*
1771 	 * Even though we don't make use of the barmap for the mmap,
1772 	 * we need to request the region and the barmap tracks that.
1773 	 */
1774 	if (!vdev->barmap[index]) {
1775 		ret = pci_request_selected_regions(pdev,
1776 						   1 << index, "vfio-pci");
1777 		if (ret)
1778 			return ret;
1779 
1780 		vdev->barmap[index] = pci_iomap(pdev, index, 0);
1781 		if (!vdev->barmap[index]) {
1782 			pci_release_selected_regions(pdev, 1 << index);
1783 			return -ENOMEM;
1784 		}
1785 	}
1786 
1787 	vma->vm_private_data = vdev;
1788 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1789 	vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff;
1790 
1791 	/*
1792 	 * See remap_pfn_range(), called from vfio_pci_fault() but we can't
1793 	 * change vm_flags within the fault handler.  Set them now.
1794 	 */
1795 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1796 	vma->vm_ops = &vfio_pci_mmap_ops;
1797 
1798 	return 0;
1799 }
1800 EXPORT_SYMBOL_GPL(vfio_pci_core_mmap);
1801 
1802 void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count)
1803 {
1804 	struct vfio_pci_core_device *vdev =
1805 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1806 	struct pci_dev *pdev = vdev->pdev;
1807 
1808 	mutex_lock(&vdev->igate);
1809 
1810 	if (vdev->req_trigger) {
1811 		if (!(count % 10))
1812 			pci_notice_ratelimited(pdev,
1813 				"Relaying device request to user (#%u)\n",
1814 				count);
1815 		eventfd_signal(vdev->req_trigger, 1);
1816 	} else if (count == 0) {
1817 		pci_warn(pdev,
1818 			"No device request channel registered, blocked until released by user\n");
1819 	}
1820 
1821 	mutex_unlock(&vdev->igate);
1822 }
1823 EXPORT_SYMBOL_GPL(vfio_pci_core_request);
1824 
1825 static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev,
1826 				      bool vf_token, uuid_t *uuid)
1827 {
1828 	/*
1829 	 * There's always some degree of trust or collaboration between SR-IOV
1830 	 * PF and VFs, even if just that the PF hosts the SR-IOV capability and
1831 	 * can disrupt VFs with a reset, but often the PF has more explicit
1832 	 * access to deny service to the VF or access data passed through the
1833 	 * VF.  We therefore require an opt-in via a shared VF token (UUID) to
1834 	 * represent this trust.  This both prevents that a VF driver might
1835 	 * assume the PF driver is a trusted, in-kernel driver, and also that
1836 	 * a PF driver might be replaced with a rogue driver, unknown to in-use
1837 	 * VF drivers.
1838 	 *
1839 	 * Therefore when presented with a VF, if the PF is a vfio device and
1840 	 * it is bound to the vfio-pci driver, the user needs to provide a VF
1841 	 * token to access the device, in the form of appending a vf_token to
1842 	 * the device name, for example:
1843 	 *
1844 	 * "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3"
1845 	 *
1846 	 * When presented with a PF which has VFs in use, the user must also
1847 	 * provide the current VF token to prove collaboration with existing
1848 	 * VF users.  If VFs are not in use, the VF token provided for the PF
1849 	 * device will act to set the VF token.
1850 	 *
1851 	 * If the VF token is provided but unused, an error is generated.
1852 	 */
1853 	if (vdev->pdev->is_virtfn) {
1854 		struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev;
1855 		bool match;
1856 
1857 		if (!pf_vdev) {
1858 			if (!vf_token)
1859 				return 0; /* PF is not vfio-pci, no VF token */
1860 
1861 			pci_info_ratelimited(vdev->pdev,
1862 				"VF token incorrectly provided, PF not bound to vfio-pci\n");
1863 			return -EINVAL;
1864 		}
1865 
1866 		if (!vf_token) {
1867 			pci_info_ratelimited(vdev->pdev,
1868 				"VF token required to access device\n");
1869 			return -EACCES;
1870 		}
1871 
1872 		mutex_lock(&pf_vdev->vf_token->lock);
1873 		match = uuid_equal(uuid, &pf_vdev->vf_token->uuid);
1874 		mutex_unlock(&pf_vdev->vf_token->lock);
1875 
1876 		if (!match) {
1877 			pci_info_ratelimited(vdev->pdev,
1878 				"Incorrect VF token provided for device\n");
1879 			return -EACCES;
1880 		}
1881 	} else if (vdev->vf_token) {
1882 		mutex_lock(&vdev->vf_token->lock);
1883 		if (vdev->vf_token->users) {
1884 			if (!vf_token) {
1885 				mutex_unlock(&vdev->vf_token->lock);
1886 				pci_info_ratelimited(vdev->pdev,
1887 					"VF token required to access device\n");
1888 				return -EACCES;
1889 			}
1890 
1891 			if (!uuid_equal(uuid, &vdev->vf_token->uuid)) {
1892 				mutex_unlock(&vdev->vf_token->lock);
1893 				pci_info_ratelimited(vdev->pdev,
1894 					"Incorrect VF token provided for device\n");
1895 				return -EACCES;
1896 			}
1897 		} else if (vf_token) {
1898 			uuid_copy(&vdev->vf_token->uuid, uuid);
1899 		}
1900 
1901 		mutex_unlock(&vdev->vf_token->lock);
1902 	} else if (vf_token) {
1903 		pci_info_ratelimited(vdev->pdev,
1904 			"VF token incorrectly provided, not a PF or VF\n");
1905 		return -EINVAL;
1906 	}
1907 
1908 	return 0;
1909 }
1910 
1911 #define VF_TOKEN_ARG "vf_token="
1912 
1913 int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf)
1914 {
1915 	struct vfio_pci_core_device *vdev =
1916 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1917 	bool vf_token = false;
1918 	uuid_t uuid;
1919 	int ret;
1920 
1921 	if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev))))
1922 		return 0; /* No match */
1923 
1924 	if (strlen(buf) > strlen(pci_name(vdev->pdev))) {
1925 		buf += strlen(pci_name(vdev->pdev));
1926 
1927 		if (*buf != ' ')
1928 			return 0; /* No match: non-whitespace after name */
1929 
1930 		while (*buf) {
1931 			if (*buf == ' ') {
1932 				buf++;
1933 				continue;
1934 			}
1935 
1936 			if (!vf_token && !strncmp(buf, VF_TOKEN_ARG,
1937 						  strlen(VF_TOKEN_ARG))) {
1938 				buf += strlen(VF_TOKEN_ARG);
1939 
1940 				if (strlen(buf) < UUID_STRING_LEN)
1941 					return -EINVAL;
1942 
1943 				ret = uuid_parse(buf, &uuid);
1944 				if (ret)
1945 					return ret;
1946 
1947 				vf_token = true;
1948 				buf += UUID_STRING_LEN;
1949 			} else {
1950 				/* Unknown/duplicate option */
1951 				return -EINVAL;
1952 			}
1953 		}
1954 	}
1955 
1956 	ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid);
1957 	if (ret)
1958 		return ret;
1959 
1960 	return 1; /* Match */
1961 }
1962 EXPORT_SYMBOL_GPL(vfio_pci_core_match);
1963 
1964 static int vfio_pci_bus_notifier(struct notifier_block *nb,
1965 				 unsigned long action, void *data)
1966 {
1967 	struct vfio_pci_core_device *vdev = container_of(nb,
1968 						    struct vfio_pci_core_device, nb);
1969 	struct device *dev = data;
1970 	struct pci_dev *pdev = to_pci_dev(dev);
1971 	struct pci_dev *physfn = pci_physfn(pdev);
1972 
1973 	if (action == BUS_NOTIFY_ADD_DEVICE &&
1974 	    pdev->is_virtfn && physfn == vdev->pdev) {
1975 		pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n",
1976 			 pci_name(pdev));
1977 		pdev->driver_override = kasprintf(GFP_KERNEL, "%s",
1978 						  vdev->vdev.ops->name);
1979 	} else if (action == BUS_NOTIFY_BOUND_DRIVER &&
1980 		   pdev->is_virtfn && physfn == vdev->pdev) {
1981 		struct pci_driver *drv = pci_dev_driver(pdev);
1982 
1983 		if (drv && drv != pci_dev_driver(vdev->pdev))
1984 			pci_warn(vdev->pdev,
1985 				 "VF %s bound to driver %s while PF bound to driver %s\n",
1986 				 pci_name(pdev), drv->name,
1987 				 pci_dev_driver(vdev->pdev)->name);
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev)
1994 {
1995 	struct pci_dev *pdev = vdev->pdev;
1996 	struct vfio_pci_core_device *cur;
1997 	struct pci_dev *physfn;
1998 	int ret;
1999 
2000 	if (pdev->is_virtfn) {
2001 		/*
2002 		 * If this VF was created by our vfio_pci_core_sriov_configure()
2003 		 * then we can find the PF vfio_pci_core_device now, and due to
2004 		 * the locking in pci_disable_sriov() it cannot change until
2005 		 * this VF device driver is removed.
2006 		 */
2007 		physfn = pci_physfn(vdev->pdev);
2008 		mutex_lock(&vfio_pci_sriov_pfs_mutex);
2009 		list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) {
2010 			if (cur->pdev == physfn) {
2011 				vdev->sriov_pf_core_dev = cur;
2012 				break;
2013 			}
2014 		}
2015 		mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2016 		return 0;
2017 	}
2018 
2019 	/* Not a SRIOV PF */
2020 	if (!pdev->is_physfn)
2021 		return 0;
2022 
2023 	vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL);
2024 	if (!vdev->vf_token)
2025 		return -ENOMEM;
2026 
2027 	mutex_init(&vdev->vf_token->lock);
2028 	uuid_gen(&vdev->vf_token->uuid);
2029 
2030 	vdev->nb.notifier_call = vfio_pci_bus_notifier;
2031 	ret = bus_register_notifier(&pci_bus_type, &vdev->nb);
2032 	if (ret) {
2033 		kfree(vdev->vf_token);
2034 		return ret;
2035 	}
2036 	return 0;
2037 }
2038 
2039 static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev)
2040 {
2041 	if (!vdev->vf_token)
2042 		return;
2043 
2044 	bus_unregister_notifier(&pci_bus_type, &vdev->nb);
2045 	WARN_ON(vdev->vf_token->users);
2046 	mutex_destroy(&vdev->vf_token->lock);
2047 	kfree(vdev->vf_token);
2048 }
2049 
2050 static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev)
2051 {
2052 	struct pci_dev *pdev = vdev->pdev;
2053 	int ret;
2054 
2055 	if (!vfio_pci_is_vga(pdev))
2056 		return 0;
2057 
2058 	ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name);
2059 	if (ret)
2060 		return ret;
2061 
2062 	ret = vga_client_register(pdev, vfio_pci_set_decode);
2063 	if (ret)
2064 		return ret;
2065 	vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false));
2066 	return 0;
2067 }
2068 
2069 static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev)
2070 {
2071 	struct pci_dev *pdev = vdev->pdev;
2072 
2073 	if (!vfio_pci_is_vga(pdev))
2074 		return;
2075 	vga_client_unregister(pdev);
2076 	vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
2077 					      VGA_RSRC_LEGACY_IO |
2078 					      VGA_RSRC_LEGACY_MEM);
2079 }
2080 
2081 int vfio_pci_core_init_dev(struct vfio_device *core_vdev)
2082 {
2083 	struct vfio_pci_core_device *vdev =
2084 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
2085 
2086 	vdev->pdev = to_pci_dev(core_vdev->dev);
2087 	vdev->irq_type = VFIO_PCI_NUM_IRQS;
2088 	mutex_init(&vdev->igate);
2089 	spin_lock_init(&vdev->irqlock);
2090 	mutex_init(&vdev->ioeventfds_lock);
2091 	INIT_LIST_HEAD(&vdev->dummy_resources_list);
2092 	INIT_LIST_HEAD(&vdev->ioeventfds_list);
2093 	mutex_init(&vdev->vma_lock);
2094 	INIT_LIST_HEAD(&vdev->vma_list);
2095 	INIT_LIST_HEAD(&vdev->sriov_pfs_item);
2096 	init_rwsem(&vdev->memory_lock);
2097 
2098 	return 0;
2099 }
2100 EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev);
2101 
2102 void vfio_pci_core_release_dev(struct vfio_device *core_vdev)
2103 {
2104 	struct vfio_pci_core_device *vdev =
2105 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
2106 
2107 	mutex_destroy(&vdev->igate);
2108 	mutex_destroy(&vdev->ioeventfds_lock);
2109 	mutex_destroy(&vdev->vma_lock);
2110 	kfree(vdev->region);
2111 	kfree(vdev->pm_save);
2112 	vfio_free_device(core_vdev);
2113 }
2114 EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev);
2115 
2116 int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev)
2117 {
2118 	struct pci_dev *pdev = vdev->pdev;
2119 	struct device *dev = &pdev->dev;
2120 	int ret;
2121 
2122 	/* Drivers must set the vfio_pci_core_device to their drvdata */
2123 	if (WARN_ON(vdev != dev_get_drvdata(dev)))
2124 		return -EINVAL;
2125 
2126 	if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2127 		return -EINVAL;
2128 
2129 	if (vdev->vdev.mig_ops) {
2130 		if (!(vdev->vdev.mig_ops->migration_get_state &&
2131 		      vdev->vdev.mig_ops->migration_set_state) ||
2132 		    !(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY))
2133 			return -EINVAL;
2134 	}
2135 
2136 	if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start &&
2137 	    vdev->vdev.log_ops->log_stop &&
2138 	    vdev->vdev.log_ops->log_read_and_clear))
2139 		return -EINVAL;
2140 
2141 	/*
2142 	 * Prevent binding to PFs with VFs enabled, the VFs might be in use
2143 	 * by the host or other users.  We cannot capture the VFs if they
2144 	 * already exist, nor can we track VF users.  Disabling SR-IOV here
2145 	 * would initiate removing the VFs, which would unbind the driver,
2146 	 * which is prone to blocking if that VF is also in use by vfio-pci.
2147 	 * Just reject these PFs and let the user sort it out.
2148 	 */
2149 	if (pci_num_vf(pdev)) {
2150 		pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n");
2151 		return -EBUSY;
2152 	}
2153 
2154 	if (pci_is_root_bus(pdev->bus)) {
2155 		ret = vfio_assign_device_set(&vdev->vdev, vdev);
2156 	} else if (!pci_probe_reset_slot(pdev->slot)) {
2157 		ret = vfio_assign_device_set(&vdev->vdev, pdev->slot);
2158 	} else {
2159 		/*
2160 		 * If there is no slot reset support for this device, the whole
2161 		 * bus needs to be grouped together to support bus-wide resets.
2162 		 */
2163 		ret = vfio_assign_device_set(&vdev->vdev, pdev->bus);
2164 	}
2165 
2166 	if (ret)
2167 		return ret;
2168 	ret = vfio_pci_vf_init(vdev);
2169 	if (ret)
2170 		return ret;
2171 	ret = vfio_pci_vga_init(vdev);
2172 	if (ret)
2173 		goto out_vf;
2174 
2175 	vfio_pci_probe_power_state(vdev);
2176 
2177 	/*
2178 	 * pci-core sets the device power state to an unknown value at
2179 	 * bootup and after being removed from a driver.  The only
2180 	 * transition it allows from this unknown state is to D0, which
2181 	 * typically happens when a driver calls pci_enable_device().
2182 	 * We're not ready to enable the device yet, but we do want to
2183 	 * be able to get to D3.  Therefore first do a D0 transition
2184 	 * before enabling runtime PM.
2185 	 */
2186 	vfio_pci_set_power_state(vdev, PCI_D0);
2187 
2188 	dev->driver->pm = &vfio_pci_core_pm_ops;
2189 	pm_runtime_allow(dev);
2190 	if (!disable_idle_d3)
2191 		pm_runtime_put(dev);
2192 
2193 	ret = vfio_register_group_dev(&vdev->vdev);
2194 	if (ret)
2195 		goto out_power;
2196 	return 0;
2197 
2198 out_power:
2199 	if (!disable_idle_d3)
2200 		pm_runtime_get_noresume(dev);
2201 
2202 	pm_runtime_forbid(dev);
2203 out_vf:
2204 	vfio_pci_vf_uninit(vdev);
2205 	return ret;
2206 }
2207 EXPORT_SYMBOL_GPL(vfio_pci_core_register_device);
2208 
2209 void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev)
2210 {
2211 	vfio_pci_core_sriov_configure(vdev, 0);
2212 
2213 	vfio_unregister_group_dev(&vdev->vdev);
2214 
2215 	vfio_pci_vf_uninit(vdev);
2216 	vfio_pci_vga_uninit(vdev);
2217 
2218 	if (!disable_idle_d3)
2219 		pm_runtime_get_noresume(&vdev->pdev->dev);
2220 
2221 	pm_runtime_forbid(&vdev->pdev->dev);
2222 }
2223 EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device);
2224 
2225 pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev,
2226 						pci_channel_state_t state)
2227 {
2228 	struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev);
2229 
2230 	mutex_lock(&vdev->igate);
2231 
2232 	if (vdev->err_trigger)
2233 		eventfd_signal(vdev->err_trigger, 1);
2234 
2235 	mutex_unlock(&vdev->igate);
2236 
2237 	return PCI_ERS_RESULT_CAN_RECOVER;
2238 }
2239 EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected);
2240 
2241 int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev,
2242 				  int nr_virtfn)
2243 {
2244 	struct pci_dev *pdev = vdev->pdev;
2245 	int ret = 0;
2246 
2247 	device_lock_assert(&pdev->dev);
2248 
2249 	if (nr_virtfn) {
2250 		mutex_lock(&vfio_pci_sriov_pfs_mutex);
2251 		/*
2252 		 * The thread that adds the vdev to the list is the only thread
2253 		 * that gets to call pci_enable_sriov() and we will only allow
2254 		 * it to be called once without going through
2255 		 * pci_disable_sriov()
2256 		 */
2257 		if (!list_empty(&vdev->sriov_pfs_item)) {
2258 			ret = -EINVAL;
2259 			goto out_unlock;
2260 		}
2261 		list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs);
2262 		mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2263 
2264 		/*
2265 		 * The PF power state should always be higher than the VF power
2266 		 * state. The PF can be in low power state either with runtime
2267 		 * power management (when there is no user) or PCI_PM_CTRL
2268 		 * register write by the user. If PF is in the low power state,
2269 		 * then change the power state to D0 first before enabling
2270 		 * SR-IOV. Also, this function can be called at any time, and
2271 		 * userspace PCI_PM_CTRL write can race against this code path,
2272 		 * so protect the same with 'memory_lock'.
2273 		 */
2274 		ret = pm_runtime_resume_and_get(&pdev->dev);
2275 		if (ret)
2276 			goto out_del;
2277 
2278 		down_write(&vdev->memory_lock);
2279 		vfio_pci_set_power_state(vdev, PCI_D0);
2280 		ret = pci_enable_sriov(pdev, nr_virtfn);
2281 		up_write(&vdev->memory_lock);
2282 		if (ret) {
2283 			pm_runtime_put(&pdev->dev);
2284 			goto out_del;
2285 		}
2286 		return nr_virtfn;
2287 	}
2288 
2289 	if (pci_num_vf(pdev)) {
2290 		pci_disable_sriov(pdev);
2291 		pm_runtime_put(&pdev->dev);
2292 	}
2293 
2294 out_del:
2295 	mutex_lock(&vfio_pci_sriov_pfs_mutex);
2296 	list_del_init(&vdev->sriov_pfs_item);
2297 out_unlock:
2298 	mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2299 	return ret;
2300 }
2301 EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure);
2302 
2303 const struct pci_error_handlers vfio_pci_core_err_handlers = {
2304 	.error_detected = vfio_pci_core_aer_err_detected,
2305 };
2306 EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers);
2307 
2308 static bool vfio_dev_in_groups(struct vfio_pci_core_device *vdev,
2309 			       struct vfio_pci_group_info *groups)
2310 {
2311 	unsigned int i;
2312 
2313 	for (i = 0; i < groups->count; i++)
2314 		if (vfio_file_has_dev(groups->files[i], &vdev->vdev))
2315 			return true;
2316 	return false;
2317 }
2318 
2319 static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data)
2320 {
2321 	struct vfio_device_set *dev_set = data;
2322 	struct vfio_device *cur;
2323 
2324 	list_for_each_entry(cur, &dev_set->device_list, dev_set_list)
2325 		if (cur->dev == &pdev->dev)
2326 			return 0;
2327 	return -EBUSY;
2328 }
2329 
2330 /*
2331  * vfio-core considers a group to be viable and will create a vfio_device even
2332  * if some devices are bound to drivers like pci-stub or pcieport. Here we
2333  * require all PCI devices to be inside our dev_set since that ensures they stay
2334  * put and that every driver controlling the device can co-ordinate with the
2335  * device reset.
2336  *
2337  * Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be
2338  * reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise.
2339  */
2340 static struct pci_dev *
2341 vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set)
2342 {
2343 	struct pci_dev *pdev;
2344 
2345 	lockdep_assert_held(&dev_set->lock);
2346 
2347 	/*
2348 	 * By definition all PCI devices in the dev_set share the same PCI
2349 	 * reset, so any pci_dev will have the same outcomes for
2350 	 * pci_probe_reset_*() and pci_reset_bus().
2351 	 */
2352 	pdev = list_first_entry(&dev_set->device_list,
2353 				struct vfio_pci_core_device,
2354 				vdev.dev_set_list)->pdev;
2355 
2356 	/* pci_reset_bus() is supported */
2357 	if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus))
2358 		return NULL;
2359 
2360 	if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set,
2361 					  dev_set,
2362 					  !pci_probe_reset_slot(pdev->slot)))
2363 		return NULL;
2364 	return pdev;
2365 }
2366 
2367 static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set)
2368 {
2369 	struct vfio_pci_core_device *cur;
2370 	int ret;
2371 
2372 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2373 		ret = pm_runtime_resume_and_get(&cur->pdev->dev);
2374 		if (ret)
2375 			goto unwind;
2376 	}
2377 
2378 	return 0;
2379 
2380 unwind:
2381 	list_for_each_entry_continue_reverse(cur, &dev_set->device_list,
2382 					     vdev.dev_set_list)
2383 		pm_runtime_put(&cur->pdev->dev);
2384 
2385 	return ret;
2386 }
2387 
2388 /*
2389  * We need to get memory_lock for each device, but devices can share mmap_lock,
2390  * therefore we need to zap and hold the vma_lock for each device, and only then
2391  * get each memory_lock.
2392  */
2393 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
2394 				      struct vfio_pci_group_info *groups)
2395 {
2396 	struct vfio_pci_core_device *cur_mem;
2397 	struct vfio_pci_core_device *cur_vma;
2398 	struct vfio_pci_core_device *cur;
2399 	struct pci_dev *pdev;
2400 	bool is_mem = true;
2401 	int ret;
2402 
2403 	mutex_lock(&dev_set->lock);
2404 	cur_mem = list_first_entry(&dev_set->device_list,
2405 				   struct vfio_pci_core_device,
2406 				   vdev.dev_set_list);
2407 
2408 	pdev = vfio_pci_dev_set_resettable(dev_set);
2409 	if (!pdev) {
2410 		ret = -EINVAL;
2411 		goto err_unlock;
2412 	}
2413 
2414 	/*
2415 	 * Some of the devices in the dev_set can be in the runtime suspended
2416 	 * state. Increment the usage count for all the devices in the dev_set
2417 	 * before reset and decrement the same after reset.
2418 	 */
2419 	ret = vfio_pci_dev_set_pm_runtime_get(dev_set);
2420 	if (ret)
2421 		goto err_unlock;
2422 
2423 	list_for_each_entry(cur_vma, &dev_set->device_list, vdev.dev_set_list) {
2424 		/*
2425 		 * Test whether all the affected devices are contained by the
2426 		 * set of groups provided by the user.
2427 		 */
2428 		if (!vfio_dev_in_groups(cur_vma, groups)) {
2429 			ret = -EINVAL;
2430 			goto err_undo;
2431 		}
2432 
2433 		/*
2434 		 * Locking multiple devices is prone to deadlock, runaway and
2435 		 * unwind if we hit contention.
2436 		 */
2437 		if (!vfio_pci_zap_and_vma_lock(cur_vma, true)) {
2438 			ret = -EBUSY;
2439 			goto err_undo;
2440 		}
2441 	}
2442 	cur_vma = NULL;
2443 
2444 	list_for_each_entry(cur_mem, &dev_set->device_list, vdev.dev_set_list) {
2445 		if (!down_write_trylock(&cur_mem->memory_lock)) {
2446 			ret = -EBUSY;
2447 			goto err_undo;
2448 		}
2449 		mutex_unlock(&cur_mem->vma_lock);
2450 	}
2451 	cur_mem = NULL;
2452 
2453 	/*
2454 	 * The pci_reset_bus() will reset all the devices in the bus.
2455 	 * The power state can be non-D0 for some of the devices in the bus.
2456 	 * For these devices, the pci_reset_bus() will internally set
2457 	 * the power state to D0 without vfio driver involvement.
2458 	 * For the devices which have NoSoftRst-, the reset function can
2459 	 * cause the PCI config space reset without restoring the original
2460 	 * state (saved locally in 'vdev->pm_save').
2461 	 */
2462 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2463 		vfio_pci_set_power_state(cur, PCI_D0);
2464 
2465 	ret = pci_reset_bus(pdev);
2466 
2467 err_undo:
2468 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2469 		if (cur == cur_mem)
2470 			is_mem = false;
2471 		if (cur == cur_vma)
2472 			break;
2473 		if (is_mem)
2474 			up_write(&cur->memory_lock);
2475 		else
2476 			mutex_unlock(&cur->vma_lock);
2477 	}
2478 
2479 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2480 		pm_runtime_put(&cur->pdev->dev);
2481 err_unlock:
2482 	mutex_unlock(&dev_set->lock);
2483 	return ret;
2484 }
2485 
2486 static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set)
2487 {
2488 	struct vfio_pci_core_device *cur;
2489 	bool needs_reset = false;
2490 
2491 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2492 		/* No VFIO device in the set can have an open device FD */
2493 		if (cur->vdev.open_count)
2494 			return false;
2495 		needs_reset |= cur->needs_reset;
2496 	}
2497 	return needs_reset;
2498 }
2499 
2500 /*
2501  * If a bus or slot reset is available for the provided dev_set and:
2502  *  - All of the devices affected by that bus or slot reset are unused
2503  *  - At least one of the affected devices is marked dirty via
2504  *    needs_reset (such as by lack of FLR support)
2505  * Then attempt to perform that bus or slot reset.
2506  */
2507 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set)
2508 {
2509 	struct vfio_pci_core_device *cur;
2510 	struct pci_dev *pdev;
2511 	bool reset_done = false;
2512 
2513 	if (!vfio_pci_dev_set_needs_reset(dev_set))
2514 		return;
2515 
2516 	pdev = vfio_pci_dev_set_resettable(dev_set);
2517 	if (!pdev)
2518 		return;
2519 
2520 	/*
2521 	 * Some of the devices in the bus can be in the runtime suspended
2522 	 * state. Increment the usage count for all the devices in the dev_set
2523 	 * before reset and decrement the same after reset.
2524 	 */
2525 	if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set))
2526 		return;
2527 
2528 	if (!pci_reset_bus(pdev))
2529 		reset_done = true;
2530 
2531 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2532 		if (reset_done)
2533 			cur->needs_reset = false;
2534 
2535 		if (!disable_idle_d3)
2536 			pm_runtime_put(&cur->pdev->dev);
2537 	}
2538 }
2539 
2540 void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga,
2541 			      bool is_disable_idle_d3)
2542 {
2543 	nointxmask = is_nointxmask;
2544 	disable_vga = is_disable_vga;
2545 	disable_idle_d3 = is_disable_idle_d3;
2546 }
2547 EXPORT_SYMBOL_GPL(vfio_pci_core_set_params);
2548 
2549 static void vfio_pci_core_cleanup(void)
2550 {
2551 	vfio_pci_uninit_perm_bits();
2552 }
2553 
2554 static int __init vfio_pci_core_init(void)
2555 {
2556 	/* Allocate shared config space permission data used by all devices */
2557 	return vfio_pci_init_perm_bits();
2558 }
2559 
2560 module_init(vfio_pci_core_init);
2561 module_exit(vfio_pci_core_cleanup);
2562 
2563 MODULE_LICENSE("GPL v2");
2564 MODULE_AUTHOR(DRIVER_AUTHOR);
2565 MODULE_DESCRIPTION(DRIVER_DESC);
2566