1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VFIO PCI config space virtualization
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * Derived from original vfio:
9  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
10  * Author: Tom Lyon, pugs@cisco.com
11  */
12 
13 /*
14  * This code handles reading and writing of PCI configuration registers.
15  * This is hairy because we want to allow a lot of flexibility to the
16  * user driver, but cannot trust it with all of the config fields.
17  * Tables determine which fields can be read and written, as well as
18  * which fields are 'virtualized' - special actions and translations to
19  * make it appear to the user that he has control, when in fact things
20  * must be negotiated with the underlying OS.
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/pci.h>
25 #include <linux/uaccess.h>
26 #include <linux/vfio.h>
27 #include <linux/slab.h>
28 
29 #include <linux/vfio_pci_core.h>
30 
31 /* Fake capability ID for standard config space */
32 #define PCI_CAP_ID_BASIC	0
33 
34 #define is_bar(offset)	\
35 	((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
36 	 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
37 
38 /*
39  * Lengths of PCI Config Capabilities
40  *   0: Removed from the user visible capability list
41  *   FF: Variable length
42  */
43 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
44 	[PCI_CAP_ID_BASIC]	= PCI_STD_HEADER_SIZEOF, /* pci config header */
45 	[PCI_CAP_ID_PM]		= PCI_PM_SIZEOF,
46 	[PCI_CAP_ID_AGP]	= PCI_AGP_SIZEOF,
47 	[PCI_CAP_ID_VPD]	= PCI_CAP_VPD_SIZEOF,
48 	[PCI_CAP_ID_SLOTID]	= 0,		/* bridge - don't care */
49 	[PCI_CAP_ID_MSI]	= 0xFF,		/* 10, 14, 20, or 24 */
50 	[PCI_CAP_ID_CHSWP]	= 0,		/* cpci - not yet */
51 	[PCI_CAP_ID_PCIX]	= 0xFF,		/* 8 or 24 */
52 	[PCI_CAP_ID_HT]		= 0xFF,		/* hypertransport */
53 	[PCI_CAP_ID_VNDR]	= 0xFF,		/* variable */
54 	[PCI_CAP_ID_DBG]	= 0,		/* debug - don't care */
55 	[PCI_CAP_ID_CCRC]	= 0,		/* cpci - not yet */
56 	[PCI_CAP_ID_SHPC]	= 0,		/* hotswap - not yet */
57 	[PCI_CAP_ID_SSVID]	= 0,		/* bridge - don't care */
58 	[PCI_CAP_ID_AGP3]	= 0,		/* AGP8x - not yet */
59 	[PCI_CAP_ID_SECDEV]	= 0,		/* secure device not yet */
60 	[PCI_CAP_ID_EXP]	= 0xFF,		/* 20 or 44 */
61 	[PCI_CAP_ID_MSIX]	= PCI_CAP_MSIX_SIZEOF,
62 	[PCI_CAP_ID_SATA]	= 0xFF,
63 	[PCI_CAP_ID_AF]		= PCI_CAP_AF_SIZEOF,
64 };
65 
66 /*
67  * Lengths of PCIe/PCI-X Extended Config Capabilities
68  *   0: Removed or masked from the user visible capability list
69  *   FF: Variable length
70  */
71 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
72 	[PCI_EXT_CAP_ID_ERR]	=	PCI_ERR_ROOT_COMMAND,
73 	[PCI_EXT_CAP_ID_VC]	=	0xFF,
74 	[PCI_EXT_CAP_ID_DSN]	=	PCI_EXT_CAP_DSN_SIZEOF,
75 	[PCI_EXT_CAP_ID_PWR]	=	PCI_EXT_CAP_PWR_SIZEOF,
76 	[PCI_EXT_CAP_ID_RCLD]	=	0,	/* root only - don't care */
77 	[PCI_EXT_CAP_ID_RCILC]	=	0,	/* root only - don't care */
78 	[PCI_EXT_CAP_ID_RCEC]	=	0,	/* root only - don't care */
79 	[PCI_EXT_CAP_ID_MFVC]	=	0xFF,
80 	[PCI_EXT_CAP_ID_VC9]	=	0xFF,	/* same as CAP_ID_VC */
81 	[PCI_EXT_CAP_ID_RCRB]	=	0,	/* root only - don't care */
82 	[PCI_EXT_CAP_ID_VNDR]	=	0xFF,
83 	[PCI_EXT_CAP_ID_CAC]	=	0,	/* obsolete */
84 	[PCI_EXT_CAP_ID_ACS]	=	0xFF,
85 	[PCI_EXT_CAP_ID_ARI]	=	PCI_EXT_CAP_ARI_SIZEOF,
86 	[PCI_EXT_CAP_ID_ATS]	=	PCI_EXT_CAP_ATS_SIZEOF,
87 	[PCI_EXT_CAP_ID_SRIOV]	=	PCI_EXT_CAP_SRIOV_SIZEOF,
88 	[PCI_EXT_CAP_ID_MRIOV]	=	0,	/* not yet */
89 	[PCI_EXT_CAP_ID_MCAST]	=	PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
90 	[PCI_EXT_CAP_ID_PRI]	=	PCI_EXT_CAP_PRI_SIZEOF,
91 	[PCI_EXT_CAP_ID_AMD_XXX] =	0,	/* not yet */
92 	[PCI_EXT_CAP_ID_REBAR]	=	0xFF,
93 	[PCI_EXT_CAP_ID_DPA]	=	0xFF,
94 	[PCI_EXT_CAP_ID_TPH]	=	0xFF,
95 	[PCI_EXT_CAP_ID_LTR]	=	PCI_EXT_CAP_LTR_SIZEOF,
96 	[PCI_EXT_CAP_ID_SECPCI]	=	0,	/* not yet */
97 	[PCI_EXT_CAP_ID_PMUX]	=	0,	/* not yet */
98 	[PCI_EXT_CAP_ID_PASID]	=	0,	/* not yet */
99 };
100 
101 /*
102  * Read/Write Permission Bits - one bit for each bit in capability
103  * Any field can be read if it exists, but what is read depends on
104  * whether the field is 'virtualized', or just pass through to the
105  * hardware.  Any virtualized field is also virtualized for writes.
106  * Writes are only permitted if they have a 1 bit here.
107  */
108 struct perm_bits {
109 	u8	*virt;		/* read/write virtual data, not hw */
110 	u8	*write;		/* writeable bits */
111 	int	(*readfn)(struct vfio_pci_core_device *vdev, int pos, int count,
112 			  struct perm_bits *perm, int offset, __le32 *val);
113 	int	(*writefn)(struct vfio_pci_core_device *vdev, int pos, int count,
114 			   struct perm_bits *perm, int offset, __le32 val);
115 };
116 
117 #define	NO_VIRT		0
118 #define	ALL_VIRT	0xFFFFFFFFU
119 #define	NO_WRITE	0
120 #define	ALL_WRITE	0xFFFFFFFFU
121 
122 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
123 				 __le32 *val, int count)
124 {
125 	int ret = -EINVAL;
126 	u32 tmp_val = 0;
127 
128 	switch (count) {
129 	case 1:
130 	{
131 		u8 tmp;
132 		ret = pci_user_read_config_byte(pdev, offset, &tmp);
133 		tmp_val = tmp;
134 		break;
135 	}
136 	case 2:
137 	{
138 		u16 tmp;
139 		ret = pci_user_read_config_word(pdev, offset, &tmp);
140 		tmp_val = tmp;
141 		break;
142 	}
143 	case 4:
144 		ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
145 		break;
146 	}
147 
148 	*val = cpu_to_le32(tmp_val);
149 
150 	return ret;
151 }
152 
153 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
154 				  __le32 val, int count)
155 {
156 	int ret = -EINVAL;
157 	u32 tmp_val = le32_to_cpu(val);
158 
159 	switch (count) {
160 	case 1:
161 		ret = pci_user_write_config_byte(pdev, offset, tmp_val);
162 		break;
163 	case 2:
164 		ret = pci_user_write_config_word(pdev, offset, tmp_val);
165 		break;
166 	case 4:
167 		ret = pci_user_write_config_dword(pdev, offset, tmp_val);
168 		break;
169 	}
170 
171 	return ret;
172 }
173 
174 static int vfio_default_config_read(struct vfio_pci_core_device *vdev, int pos,
175 				    int count, struct perm_bits *perm,
176 				    int offset, __le32 *val)
177 {
178 	__le32 virt = 0;
179 
180 	memcpy(val, vdev->vconfig + pos, count);
181 
182 	memcpy(&virt, perm->virt + offset, count);
183 
184 	/* Any non-virtualized bits? */
185 	if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
186 		struct pci_dev *pdev = vdev->pdev;
187 		__le32 phys_val = 0;
188 		int ret;
189 
190 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
191 		if (ret)
192 			return ret;
193 
194 		*val = (phys_val & ~virt) | (*val & virt);
195 	}
196 
197 	return count;
198 }
199 
200 static int vfio_default_config_write(struct vfio_pci_core_device *vdev, int pos,
201 				     int count, struct perm_bits *perm,
202 				     int offset, __le32 val)
203 {
204 	__le32 virt = 0, write = 0;
205 
206 	memcpy(&write, perm->write + offset, count);
207 
208 	if (!write)
209 		return count; /* drop, no writable bits */
210 
211 	memcpy(&virt, perm->virt + offset, count);
212 
213 	/* Virtualized and writable bits go to vconfig */
214 	if (write & virt) {
215 		__le32 virt_val = 0;
216 
217 		memcpy(&virt_val, vdev->vconfig + pos, count);
218 
219 		virt_val &= ~(write & virt);
220 		virt_val |= (val & (write & virt));
221 
222 		memcpy(vdev->vconfig + pos, &virt_val, count);
223 	}
224 
225 	/* Non-virtualzed and writable bits go to hardware */
226 	if (write & ~virt) {
227 		struct pci_dev *pdev = vdev->pdev;
228 		__le32 phys_val = 0;
229 		int ret;
230 
231 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
232 		if (ret)
233 			return ret;
234 
235 		phys_val &= ~(write & ~virt);
236 		phys_val |= (val & (write & ~virt));
237 
238 		ret = vfio_user_config_write(pdev, pos, phys_val, count);
239 		if (ret)
240 			return ret;
241 	}
242 
243 	return count;
244 }
245 
246 /* Allow direct read from hardware, except for capability next pointer */
247 static int vfio_direct_config_read(struct vfio_pci_core_device *vdev, int pos,
248 				   int count, struct perm_bits *perm,
249 				   int offset, __le32 *val)
250 {
251 	int ret;
252 
253 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
254 	if (ret)
255 		return ret;
256 
257 	if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
258 		if (offset < 4)
259 			memcpy(val, vdev->vconfig + pos, count);
260 	} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
261 		if (offset == PCI_CAP_LIST_ID && count > 1)
262 			memcpy(val, vdev->vconfig + pos,
263 			       min(PCI_CAP_FLAGS, count));
264 		else if (offset == PCI_CAP_LIST_NEXT)
265 			memcpy(val, vdev->vconfig + pos, 1);
266 	}
267 
268 	return count;
269 }
270 
271 /* Raw access skips any kind of virtualization */
272 static int vfio_raw_config_write(struct vfio_pci_core_device *vdev, int pos,
273 				 int count, struct perm_bits *perm,
274 				 int offset, __le32 val)
275 {
276 	int ret;
277 
278 	ret = vfio_user_config_write(vdev->pdev, pos, val, count);
279 	if (ret)
280 		return ret;
281 
282 	return count;
283 }
284 
285 static int vfio_raw_config_read(struct vfio_pci_core_device *vdev, int pos,
286 				int count, struct perm_bits *perm,
287 				int offset, __le32 *val)
288 {
289 	int ret;
290 
291 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
292 	if (ret)
293 		return ret;
294 
295 	return count;
296 }
297 
298 /* Virt access uses only virtualization */
299 static int vfio_virt_config_write(struct vfio_pci_core_device *vdev, int pos,
300 				  int count, struct perm_bits *perm,
301 				  int offset, __le32 val)
302 {
303 	memcpy(vdev->vconfig + pos, &val, count);
304 	return count;
305 }
306 
307 static int vfio_virt_config_read(struct vfio_pci_core_device *vdev, int pos,
308 				 int count, struct perm_bits *perm,
309 				 int offset, __le32 *val)
310 {
311 	memcpy(val, vdev->vconfig + pos, count);
312 	return count;
313 }
314 
315 /* Default capability regions to read-only, no-virtualization */
316 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
317 	[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
318 };
319 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
320 	[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
321 };
322 /*
323  * Default unassigned regions to raw read-write access.  Some devices
324  * require this to function as they hide registers between the gaps in
325  * config space (be2net).  Like MMIO and I/O port registers, we have
326  * to trust the hardware isolation.
327  */
328 static struct perm_bits unassigned_perms = {
329 	.readfn = vfio_raw_config_read,
330 	.writefn = vfio_raw_config_write
331 };
332 
333 static struct perm_bits virt_perms = {
334 	.readfn = vfio_virt_config_read,
335 	.writefn = vfio_virt_config_write
336 };
337 
338 static void free_perm_bits(struct perm_bits *perm)
339 {
340 	kfree(perm->virt);
341 	kfree(perm->write);
342 	perm->virt = NULL;
343 	perm->write = NULL;
344 }
345 
346 static int alloc_perm_bits(struct perm_bits *perm, int size)
347 {
348 	/*
349 	 * Round up all permission bits to the next dword, this lets us
350 	 * ignore whether a read/write exceeds the defined capability
351 	 * structure.  We can do this because:
352 	 *  - Standard config space is already dword aligned
353 	 *  - Capabilities are all dword aligned (bits 0:1 of next reserved)
354 	 *  - Express capabilities defined as dword aligned
355 	 */
356 	size = round_up(size, 4);
357 
358 	/*
359 	 * Zero state is
360 	 * - All Readable, None Writeable, None Virtualized
361 	 */
362 	perm->virt = kzalloc(size, GFP_KERNEL);
363 	perm->write = kzalloc(size, GFP_KERNEL);
364 	if (!perm->virt || !perm->write) {
365 		free_perm_bits(perm);
366 		return -ENOMEM;
367 	}
368 
369 	perm->readfn = vfio_default_config_read;
370 	perm->writefn = vfio_default_config_write;
371 
372 	return 0;
373 }
374 
375 /*
376  * Helper functions for filling in permission tables
377  */
378 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
379 {
380 	p->virt[off] = virt;
381 	p->write[off] = write;
382 }
383 
384 /* Handle endian-ness - pci and tables are little-endian */
385 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
386 {
387 	*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
388 	*(__le16 *)(&p->write[off]) = cpu_to_le16(write);
389 }
390 
391 /* Handle endian-ness - pci and tables are little-endian */
392 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
393 {
394 	*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
395 	*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
396 }
397 
398 /* Caller should hold memory_lock semaphore */
399 bool __vfio_pci_memory_enabled(struct vfio_pci_core_device *vdev)
400 {
401 	struct pci_dev *pdev = vdev->pdev;
402 	u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
403 
404 	/*
405 	 * SR-IOV VF memory enable is handled by the MSE bit in the
406 	 * PF SR-IOV capability, there's therefore no need to trigger
407 	 * faults based on the virtual value.
408 	 */
409 	return pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY);
410 }
411 
412 /*
413  * Restore the *real* BARs after we detect a FLR or backdoor reset.
414  * (backdoor = some device specific technique that we didn't catch)
415  */
416 static void vfio_bar_restore(struct vfio_pci_core_device *vdev)
417 {
418 	struct pci_dev *pdev = vdev->pdev;
419 	u32 *rbar = vdev->rbar;
420 	u16 cmd;
421 	int i;
422 
423 	if (pdev->is_virtfn)
424 		return;
425 
426 	pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__);
427 
428 	for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
429 		pci_user_write_config_dword(pdev, i, *rbar);
430 
431 	pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
432 
433 	if (vdev->nointx) {
434 		pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
435 		cmd |= PCI_COMMAND_INTX_DISABLE;
436 		pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
437 	}
438 }
439 
440 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
441 {
442 	unsigned long flags = pci_resource_flags(pdev, bar);
443 	u32 val;
444 
445 	if (flags & IORESOURCE_IO)
446 		return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
447 
448 	val = PCI_BASE_ADDRESS_SPACE_MEMORY;
449 
450 	if (flags & IORESOURCE_PREFETCH)
451 		val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
452 
453 	if (flags & IORESOURCE_MEM_64)
454 		val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
455 
456 	return cpu_to_le32(val);
457 }
458 
459 /*
460  * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
461  * to reflect the hardware capabilities.  This implements BAR sizing.
462  */
463 static void vfio_bar_fixup(struct vfio_pci_core_device *vdev)
464 {
465 	struct pci_dev *pdev = vdev->pdev;
466 	int i;
467 	__le32 *vbar;
468 	u64 mask;
469 
470 	if (!vdev->bardirty)
471 		return;
472 
473 	vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
474 
475 	for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) {
476 		int bar = i + PCI_STD_RESOURCES;
477 
478 		if (!pci_resource_start(pdev, bar)) {
479 			*vbar = 0; /* Unmapped by host = unimplemented to user */
480 			continue;
481 		}
482 
483 		mask = ~(pci_resource_len(pdev, bar) - 1);
484 
485 		*vbar &= cpu_to_le32((u32)mask);
486 		*vbar |= vfio_generate_bar_flags(pdev, bar);
487 
488 		if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
489 			vbar++;
490 			*vbar &= cpu_to_le32((u32)(mask >> 32));
491 			i++;
492 		}
493 	}
494 
495 	vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
496 
497 	/*
498 	 * NB. REGION_INFO will have reported zero size if we weren't able
499 	 * to read the ROM, but we still return the actual BAR size here if
500 	 * it exists (or the shadow ROM space).
501 	 */
502 	if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
503 		mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
504 		mask |= PCI_ROM_ADDRESS_ENABLE;
505 		*vbar &= cpu_to_le32((u32)mask);
506 	} else if (pdev->resource[PCI_ROM_RESOURCE].flags &
507 					IORESOURCE_ROM_SHADOW) {
508 		mask = ~(0x20000 - 1);
509 		mask |= PCI_ROM_ADDRESS_ENABLE;
510 		*vbar &= cpu_to_le32((u32)mask);
511 	} else
512 		*vbar = 0;
513 
514 	vdev->bardirty = false;
515 }
516 
517 static int vfio_basic_config_read(struct vfio_pci_core_device *vdev, int pos,
518 				  int count, struct perm_bits *perm,
519 				  int offset, __le32 *val)
520 {
521 	if (is_bar(offset)) /* pos == offset for basic config */
522 		vfio_bar_fixup(vdev);
523 
524 	count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
525 
526 	/* Mask in virtual memory enable */
527 	if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) {
528 		u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
529 		u32 tmp_val = le32_to_cpu(*val);
530 
531 		tmp_val |= cmd & PCI_COMMAND_MEMORY;
532 		*val = cpu_to_le32(tmp_val);
533 	}
534 
535 	return count;
536 }
537 
538 /* Test whether BARs match the value we think they should contain */
539 static bool vfio_need_bar_restore(struct vfio_pci_core_device *vdev)
540 {
541 	int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
542 	u32 bar;
543 
544 	for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
545 		if (vdev->rbar[i]) {
546 			ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
547 			if (ret || vdev->rbar[i] != bar)
548 				return true;
549 		}
550 	}
551 
552 	return false;
553 }
554 
555 static int vfio_basic_config_write(struct vfio_pci_core_device *vdev, int pos,
556 				   int count, struct perm_bits *perm,
557 				   int offset, __le32 val)
558 {
559 	struct pci_dev *pdev = vdev->pdev;
560 	__le16 *virt_cmd;
561 	u16 new_cmd = 0;
562 	int ret;
563 
564 	virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
565 
566 	if (offset == PCI_COMMAND) {
567 		bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
568 		u16 phys_cmd;
569 
570 		ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
571 		if (ret)
572 			return ret;
573 
574 		new_cmd = le32_to_cpu(val);
575 
576 		phys_io = !!(phys_cmd & PCI_COMMAND_IO);
577 		virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
578 		new_io = !!(new_cmd & PCI_COMMAND_IO);
579 
580 		phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
581 		virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
582 		new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
583 
584 		if (!new_mem)
585 			vfio_pci_zap_and_down_write_memory_lock(vdev);
586 		else
587 			down_write(&vdev->memory_lock);
588 
589 		/*
590 		 * If the user is writing mem/io enable (new_mem/io) and we
591 		 * think it's already enabled (virt_mem/io), but the hardware
592 		 * shows it disabled (phys_mem/io, then the device has
593 		 * undergone some kind of backdoor reset and needs to be
594 		 * restored before we allow it to enable the bars.
595 		 * SR-IOV devices will trigger this - for mem enable let's
596 		 * catch this now and for io enable it will be caught later
597 		 */
598 		if ((new_mem && virt_mem && !phys_mem &&
599 		     !pdev->no_command_memory) ||
600 		    (new_io && virt_io && !phys_io) ||
601 		    vfio_need_bar_restore(vdev))
602 			vfio_bar_restore(vdev);
603 	}
604 
605 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
606 	if (count < 0) {
607 		if (offset == PCI_COMMAND)
608 			up_write(&vdev->memory_lock);
609 		return count;
610 	}
611 
612 	/*
613 	 * Save current memory/io enable bits in vconfig to allow for
614 	 * the test above next time.
615 	 */
616 	if (offset == PCI_COMMAND) {
617 		u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
618 
619 		*virt_cmd &= cpu_to_le16(~mask);
620 		*virt_cmd |= cpu_to_le16(new_cmd & mask);
621 
622 		up_write(&vdev->memory_lock);
623 	}
624 
625 	/* Emulate INTx disable */
626 	if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
627 		bool virt_intx_disable;
628 
629 		virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
630 				       PCI_COMMAND_INTX_DISABLE);
631 
632 		if (virt_intx_disable && !vdev->virq_disabled) {
633 			vdev->virq_disabled = true;
634 			vfio_pci_intx_mask(vdev);
635 		} else if (!virt_intx_disable && vdev->virq_disabled) {
636 			vdev->virq_disabled = false;
637 			vfio_pci_intx_unmask(vdev);
638 		}
639 	}
640 
641 	if (is_bar(offset))
642 		vdev->bardirty = true;
643 
644 	return count;
645 }
646 
647 /* Permissions for the Basic PCI Header */
648 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
649 {
650 	if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
651 		return -ENOMEM;
652 
653 	perm->readfn = vfio_basic_config_read;
654 	perm->writefn = vfio_basic_config_write;
655 
656 	/* Virtualized for SR-IOV functions, which just have FFFF */
657 	p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
658 	p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
659 
660 	/*
661 	 * Virtualize INTx disable, we use it internally for interrupt
662 	 * control and can emulate it for non-PCI 2.3 devices.
663 	 */
664 	p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
665 
666 	/* Virtualize capability list, we might want to skip/disable */
667 	p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
668 
669 	/* No harm to write */
670 	p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
671 	p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
672 	p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
673 
674 	/* Virtualize all bars, can't touch the real ones */
675 	p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
676 	p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
677 	p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
678 	p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
679 	p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
680 	p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
681 	p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
682 
683 	/* Allow us to adjust capability chain */
684 	p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
685 
686 	/* Sometimes used by sw, just virtualize */
687 	p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
688 
689 	/* Virtualize interrupt pin to allow hiding INTx */
690 	p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
691 
692 	return 0;
693 }
694 
695 static int vfio_pm_config_write(struct vfio_pci_core_device *vdev, int pos,
696 				int count, struct perm_bits *perm,
697 				int offset, __le32 val)
698 {
699 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
700 	if (count < 0)
701 		return count;
702 
703 	if (offset == PCI_PM_CTRL) {
704 		pci_power_t state;
705 
706 		switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
707 		case 0:
708 			state = PCI_D0;
709 			break;
710 		case 1:
711 			state = PCI_D1;
712 			break;
713 		case 2:
714 			state = PCI_D2;
715 			break;
716 		case 3:
717 			state = PCI_D3hot;
718 			break;
719 		}
720 
721 		vfio_pci_set_power_state(vdev, state);
722 	}
723 
724 	return count;
725 }
726 
727 /* Permissions for the Power Management capability */
728 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
729 {
730 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
731 		return -ENOMEM;
732 
733 	perm->writefn = vfio_pm_config_write;
734 
735 	/*
736 	 * We always virtualize the next field so we can remove
737 	 * capabilities from the chain if we want to.
738 	 */
739 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
740 
741 	/*
742 	 * Power management is defined *per function*, so we can let
743 	 * the user change power state, but we trap and initiate the
744 	 * change ourselves, so the state bits are read-only.
745 	 */
746 	p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
747 	return 0;
748 }
749 
750 static int vfio_vpd_config_write(struct vfio_pci_core_device *vdev, int pos,
751 				 int count, struct perm_bits *perm,
752 				 int offset, __le32 val)
753 {
754 	struct pci_dev *pdev = vdev->pdev;
755 	__le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
756 	__le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
757 	u16 addr;
758 	u32 data;
759 
760 	/*
761 	 * Write through to emulation.  If the write includes the upper byte
762 	 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
763 	 * have work to do.
764 	 */
765 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
766 	if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
767 	    offset + count <= PCI_VPD_ADDR + 1)
768 		return count;
769 
770 	addr = le16_to_cpu(*paddr);
771 
772 	if (addr & PCI_VPD_ADDR_F) {
773 		data = le32_to_cpu(*pdata);
774 		if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
775 			return count;
776 	} else {
777 		data = 0;
778 		if (pci_read_vpd(pdev, addr, 4, &data) < 0)
779 			return count;
780 		*pdata = cpu_to_le32(data);
781 	}
782 
783 	/*
784 	 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
785 	 * signal completion.  If an error occurs above, we assume that not
786 	 * toggling this bit will induce a driver timeout.
787 	 */
788 	addr ^= PCI_VPD_ADDR_F;
789 	*paddr = cpu_to_le16(addr);
790 
791 	return count;
792 }
793 
794 /* Permissions for Vital Product Data capability */
795 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
796 {
797 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
798 		return -ENOMEM;
799 
800 	perm->writefn = vfio_vpd_config_write;
801 
802 	/*
803 	 * We always virtualize the next field so we can remove
804 	 * capabilities from the chain if we want to.
805 	 */
806 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
807 
808 	/*
809 	 * Both the address and data registers are virtualized to
810 	 * enable access through the pci_vpd_read/write functions
811 	 */
812 	p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
813 	p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
814 
815 	return 0;
816 }
817 
818 /* Permissions for PCI-X capability */
819 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
820 {
821 	/* Alloc 24, but only 8 are used in v0 */
822 	if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
823 		return -ENOMEM;
824 
825 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
826 
827 	p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
828 	p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
829 	return 0;
830 }
831 
832 static int vfio_exp_config_write(struct vfio_pci_core_device *vdev, int pos,
833 				 int count, struct perm_bits *perm,
834 				 int offset, __le32 val)
835 {
836 	__le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
837 				  offset + PCI_EXP_DEVCTL);
838 	int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
839 
840 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
841 	if (count < 0)
842 		return count;
843 
844 	/*
845 	 * The FLR bit is virtualized, if set and the device supports PCIe
846 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
847 	 * requires it to be always read as zero.  NB, reset_function might
848 	 * not use a PCIe FLR, we don't have that level of granularity.
849 	 */
850 	if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
851 		u32 cap;
852 		int ret;
853 
854 		*ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
855 
856 		ret = pci_user_read_config_dword(vdev->pdev,
857 						 pos - offset + PCI_EXP_DEVCAP,
858 						 &cap);
859 
860 		if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) {
861 			vfio_pci_zap_and_down_write_memory_lock(vdev);
862 			pci_try_reset_function(vdev->pdev);
863 			up_write(&vdev->memory_lock);
864 		}
865 	}
866 
867 	/*
868 	 * MPS is virtualized to the user, writes do not change the physical
869 	 * register since determining a proper MPS value requires a system wide
870 	 * device view.  The MRRS is largely independent of MPS, but since the
871 	 * user does not have that system-wide view, they might set a safe, but
872 	 * inefficiently low value.  Here we allow writes through to hardware,
873 	 * but we set the floor to the physical device MPS setting, so that
874 	 * we can at least use full TLPs, as defined by the MPS value.
875 	 *
876 	 * NB, if any devices actually depend on an artificially low MRRS
877 	 * setting, this will need to be revisited, perhaps with a quirk
878 	 * though pcie_set_readrq().
879 	 */
880 	if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
881 		readrq = 128 <<
882 			((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
883 		readrq = max(readrq, pcie_get_mps(vdev->pdev));
884 
885 		pcie_set_readrq(vdev->pdev, readrq);
886 	}
887 
888 	return count;
889 }
890 
891 /* Permissions for PCI Express capability */
892 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
893 {
894 	/* Alloc largest of possible sizes */
895 	if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
896 		return -ENOMEM;
897 
898 	perm->writefn = vfio_exp_config_write;
899 
900 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
901 
902 	/*
903 	 * Allow writes to device control fields, except devctl_phantom,
904 	 * which could confuse IOMMU, MPS, which can break communication
905 	 * with other physical devices, and the ARI bit in devctl2, which
906 	 * is set at probe time.  FLR and MRRS get virtualized via our
907 	 * writefn.
908 	 */
909 	p_setw(perm, PCI_EXP_DEVCTL,
910 	       PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
911 	       PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
912 	p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
913 	return 0;
914 }
915 
916 static int vfio_af_config_write(struct vfio_pci_core_device *vdev, int pos,
917 				int count, struct perm_bits *perm,
918 				int offset, __le32 val)
919 {
920 	u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
921 
922 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
923 	if (count < 0)
924 		return count;
925 
926 	/*
927 	 * The FLR bit is virtualized, if set and the device supports AF
928 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
929 	 * requires it to be always read as zero.  NB, reset_function might
930 	 * not use an AF FLR, we don't have that level of granularity.
931 	 */
932 	if (*ctrl & PCI_AF_CTRL_FLR) {
933 		u8 cap;
934 		int ret;
935 
936 		*ctrl &= ~PCI_AF_CTRL_FLR;
937 
938 		ret = pci_user_read_config_byte(vdev->pdev,
939 						pos - offset + PCI_AF_CAP,
940 						&cap);
941 
942 		if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) {
943 			vfio_pci_zap_and_down_write_memory_lock(vdev);
944 			pci_try_reset_function(vdev->pdev);
945 			up_write(&vdev->memory_lock);
946 		}
947 	}
948 
949 	return count;
950 }
951 
952 /* Permissions for Advanced Function capability */
953 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
954 {
955 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
956 		return -ENOMEM;
957 
958 	perm->writefn = vfio_af_config_write;
959 
960 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
961 	p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
962 	return 0;
963 }
964 
965 /* Permissions for Advanced Error Reporting extended capability */
966 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
967 {
968 	u32 mask;
969 
970 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
971 		return -ENOMEM;
972 
973 	/*
974 	 * Virtualize the first dword of all express capabilities
975 	 * because it includes the next pointer.  This lets us later
976 	 * remove capabilities from the chain if we need to.
977 	 */
978 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
979 
980 	/* Writable bits mask */
981 	mask =	PCI_ERR_UNC_UND |		/* Undefined */
982 		PCI_ERR_UNC_DLP |		/* Data Link Protocol */
983 		PCI_ERR_UNC_SURPDN |		/* Surprise Down */
984 		PCI_ERR_UNC_POISON_TLP |	/* Poisoned TLP */
985 		PCI_ERR_UNC_FCP |		/* Flow Control Protocol */
986 		PCI_ERR_UNC_COMP_TIME |		/* Completion Timeout */
987 		PCI_ERR_UNC_COMP_ABORT |	/* Completer Abort */
988 		PCI_ERR_UNC_UNX_COMP |		/* Unexpected Completion */
989 		PCI_ERR_UNC_RX_OVER |		/* Receiver Overflow */
990 		PCI_ERR_UNC_MALF_TLP |		/* Malformed TLP */
991 		PCI_ERR_UNC_ECRC |		/* ECRC Error Status */
992 		PCI_ERR_UNC_UNSUP |		/* Unsupported Request */
993 		PCI_ERR_UNC_ACSV |		/* ACS Violation */
994 		PCI_ERR_UNC_INTN |		/* internal error */
995 		PCI_ERR_UNC_MCBTLP |		/* MC blocked TLP */
996 		PCI_ERR_UNC_ATOMEG |		/* Atomic egress blocked */
997 		PCI_ERR_UNC_TLPPRE;		/* TLP prefix blocked */
998 	p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
999 	p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
1000 	p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
1001 
1002 	mask =	PCI_ERR_COR_RCVR |		/* Receiver Error Status */
1003 		PCI_ERR_COR_BAD_TLP |		/* Bad TLP Status */
1004 		PCI_ERR_COR_BAD_DLLP |		/* Bad DLLP Status */
1005 		PCI_ERR_COR_REP_ROLL |		/* REPLAY_NUM Rollover */
1006 		PCI_ERR_COR_REP_TIMER |		/* Replay Timer Timeout */
1007 		PCI_ERR_COR_ADV_NFAT |		/* Advisory Non-Fatal */
1008 		PCI_ERR_COR_INTERNAL |		/* Corrected Internal */
1009 		PCI_ERR_COR_LOG_OVER;		/* Header Log Overflow */
1010 	p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
1011 	p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
1012 
1013 	mask =	PCI_ERR_CAP_ECRC_GENE |		/* ECRC Generation Enable */
1014 		PCI_ERR_CAP_ECRC_CHKE;		/* ECRC Check Enable */
1015 	p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
1016 	return 0;
1017 }
1018 
1019 /* Permissions for Power Budgeting extended capability */
1020 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
1021 {
1022 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
1023 		return -ENOMEM;
1024 
1025 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1026 
1027 	/* Writing the data selector is OK, the info is still read-only */
1028 	p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
1029 	return 0;
1030 }
1031 
1032 /*
1033  * Initialize the shared permission tables
1034  */
1035 void vfio_pci_uninit_perm_bits(void)
1036 {
1037 	free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1038 
1039 	free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1040 	free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1041 	free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1042 	free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1043 	free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1044 
1045 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1046 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1047 }
1048 
1049 int __init vfio_pci_init_perm_bits(void)
1050 {
1051 	int ret;
1052 
1053 	/* Basic config space */
1054 	ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1055 
1056 	/* Capabilities */
1057 	ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1058 	ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1059 	ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1060 	cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1061 	ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1062 	ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1063 
1064 	/* Extended capabilities */
1065 	ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1066 	ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1067 	ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1068 
1069 	if (ret)
1070 		vfio_pci_uninit_perm_bits();
1071 
1072 	return ret;
1073 }
1074 
1075 static int vfio_find_cap_start(struct vfio_pci_core_device *vdev, int pos)
1076 {
1077 	u8 cap;
1078 	int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1079 						 PCI_STD_HEADER_SIZEOF;
1080 	cap = vdev->pci_config_map[pos];
1081 
1082 	if (cap == PCI_CAP_ID_BASIC)
1083 		return 0;
1084 
1085 	/* XXX Can we have to abutting capabilities of the same type? */
1086 	while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1087 		pos--;
1088 
1089 	return pos;
1090 }
1091 
1092 static int vfio_msi_config_read(struct vfio_pci_core_device *vdev, int pos,
1093 				int count, struct perm_bits *perm,
1094 				int offset, __le32 *val)
1095 {
1096 	/* Update max available queue size from msi_qmax */
1097 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1098 		__le16 *flags;
1099 		int start;
1100 
1101 		start = vfio_find_cap_start(vdev, pos);
1102 
1103 		flags = (__le16 *)&vdev->vconfig[start];
1104 
1105 		*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1106 		*flags |= cpu_to_le16(vdev->msi_qmax << 1);
1107 	}
1108 
1109 	return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1110 }
1111 
1112 static int vfio_msi_config_write(struct vfio_pci_core_device *vdev, int pos,
1113 				 int count, struct perm_bits *perm,
1114 				 int offset, __le32 val)
1115 {
1116 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1117 	if (count < 0)
1118 		return count;
1119 
1120 	/* Fixup and write configured queue size and enable to hardware */
1121 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1122 		__le16 *pflags;
1123 		u16 flags;
1124 		int start, ret;
1125 
1126 		start = vfio_find_cap_start(vdev, pos);
1127 
1128 		pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1129 
1130 		flags = le16_to_cpu(*pflags);
1131 
1132 		/* MSI is enabled via ioctl */
1133 		if  (!is_msi(vdev))
1134 			flags &= ~PCI_MSI_FLAGS_ENABLE;
1135 
1136 		/* Check queue size */
1137 		if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1138 			flags &= ~PCI_MSI_FLAGS_QSIZE;
1139 			flags |= vdev->msi_qmax << 4;
1140 		}
1141 
1142 		/* Write back to virt and to hardware */
1143 		*pflags = cpu_to_le16(flags);
1144 		ret = pci_user_write_config_word(vdev->pdev,
1145 						 start + PCI_MSI_FLAGS,
1146 						 flags);
1147 		if (ret)
1148 			return ret;
1149 	}
1150 
1151 	return count;
1152 }
1153 
1154 /*
1155  * MSI determination is per-device, so this routine gets used beyond
1156  * initialization time. Don't add __init
1157  */
1158 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1159 {
1160 	if (alloc_perm_bits(perm, len))
1161 		return -ENOMEM;
1162 
1163 	perm->readfn = vfio_msi_config_read;
1164 	perm->writefn = vfio_msi_config_write;
1165 
1166 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1167 
1168 	/*
1169 	 * The upper byte of the control register is reserved,
1170 	 * just setup the lower byte.
1171 	 */
1172 	p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1173 	p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1174 	if (flags & PCI_MSI_FLAGS_64BIT) {
1175 		p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1176 		p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1177 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1178 			p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1179 			p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1180 		}
1181 	} else {
1182 		p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1183 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1184 			p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1185 			p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1186 		}
1187 	}
1188 	return 0;
1189 }
1190 
1191 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1192 static int vfio_msi_cap_len(struct vfio_pci_core_device *vdev, u8 pos)
1193 {
1194 	struct pci_dev *pdev = vdev->pdev;
1195 	int len, ret;
1196 	u16 flags;
1197 
1198 	ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1199 	if (ret)
1200 		return pcibios_err_to_errno(ret);
1201 
1202 	len = 10; /* Minimum size */
1203 	if (flags & PCI_MSI_FLAGS_64BIT)
1204 		len += 4;
1205 	if (flags & PCI_MSI_FLAGS_MASKBIT)
1206 		len += 10;
1207 
1208 	if (vdev->msi_perm)
1209 		return len;
1210 
1211 	vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1212 	if (!vdev->msi_perm)
1213 		return -ENOMEM;
1214 
1215 	ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1216 	if (ret) {
1217 		kfree(vdev->msi_perm);
1218 		return ret;
1219 	}
1220 
1221 	return len;
1222 }
1223 
1224 /* Determine extended capability length for VC (2 & 9) and MFVC */
1225 static int vfio_vc_cap_len(struct vfio_pci_core_device *vdev, u16 pos)
1226 {
1227 	struct pci_dev *pdev = vdev->pdev;
1228 	u32 tmp;
1229 	int ret, evcc, phases, vc_arb;
1230 	int len = PCI_CAP_VC_BASE_SIZEOF;
1231 
1232 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1233 	if (ret)
1234 		return pcibios_err_to_errno(ret);
1235 
1236 	evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1237 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1238 	if (ret)
1239 		return pcibios_err_to_errno(ret);
1240 
1241 	if (tmp & PCI_VC_CAP2_128_PHASE)
1242 		phases = 128;
1243 	else if (tmp & PCI_VC_CAP2_64_PHASE)
1244 		phases = 64;
1245 	else if (tmp & PCI_VC_CAP2_32_PHASE)
1246 		phases = 32;
1247 	else
1248 		phases = 0;
1249 
1250 	vc_arb = phases * 4;
1251 
1252 	/*
1253 	 * Port arbitration tables are root & switch only;
1254 	 * function arbitration tables are function 0 only.
1255 	 * In either case, we'll never let user write them so
1256 	 * we don't care how big they are
1257 	 */
1258 	len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1259 	if (vc_arb) {
1260 		len = round_up(len, 16);
1261 		len += vc_arb / 8;
1262 	}
1263 	return len;
1264 }
1265 
1266 static int vfio_cap_len(struct vfio_pci_core_device *vdev, u8 cap, u8 pos)
1267 {
1268 	struct pci_dev *pdev = vdev->pdev;
1269 	u32 dword;
1270 	u16 word;
1271 	u8 byte;
1272 	int ret;
1273 
1274 	switch (cap) {
1275 	case PCI_CAP_ID_MSI:
1276 		return vfio_msi_cap_len(vdev, pos);
1277 	case PCI_CAP_ID_PCIX:
1278 		ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1279 		if (ret)
1280 			return pcibios_err_to_errno(ret);
1281 
1282 		if (PCI_X_CMD_VERSION(word)) {
1283 			if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1284 				/* Test for extended capabilities */
1285 				pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1286 						      &dword);
1287 				vdev->extended_caps = (dword != 0);
1288 			}
1289 			return PCI_CAP_PCIX_SIZEOF_V2;
1290 		} else
1291 			return PCI_CAP_PCIX_SIZEOF_V0;
1292 	case PCI_CAP_ID_VNDR:
1293 		/* length follows next field */
1294 		ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1295 		if (ret)
1296 			return pcibios_err_to_errno(ret);
1297 
1298 		return byte;
1299 	case PCI_CAP_ID_EXP:
1300 		if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1301 			/* Test for extended capabilities */
1302 			pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1303 			vdev->extended_caps = (dword != 0);
1304 		}
1305 
1306 		/* length based on version and type */
1307 		if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1308 			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1309 				return 0xc; /* "All Devices" only, no link */
1310 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1311 		} else {
1312 			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1313 				return 0x2c; /* No link */
1314 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1315 		}
1316 	case PCI_CAP_ID_HT:
1317 		ret = pci_read_config_byte(pdev, pos + 3, &byte);
1318 		if (ret)
1319 			return pcibios_err_to_errno(ret);
1320 
1321 		return (byte & HT_3BIT_CAP_MASK) ?
1322 			HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1323 	case PCI_CAP_ID_SATA:
1324 		ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1325 		if (ret)
1326 			return pcibios_err_to_errno(ret);
1327 
1328 		byte &= PCI_SATA_REGS_MASK;
1329 		if (byte == PCI_SATA_REGS_INLINE)
1330 			return PCI_SATA_SIZEOF_LONG;
1331 		else
1332 			return PCI_SATA_SIZEOF_SHORT;
1333 	default:
1334 		pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n",
1335 			 __func__, cap, pos);
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 static int vfio_ext_cap_len(struct vfio_pci_core_device *vdev, u16 ecap, u16 epos)
1342 {
1343 	struct pci_dev *pdev = vdev->pdev;
1344 	u8 byte;
1345 	u32 dword;
1346 	int ret;
1347 
1348 	switch (ecap) {
1349 	case PCI_EXT_CAP_ID_VNDR:
1350 		ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1351 		if (ret)
1352 			return pcibios_err_to_errno(ret);
1353 
1354 		return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1355 	case PCI_EXT_CAP_ID_VC:
1356 	case PCI_EXT_CAP_ID_VC9:
1357 	case PCI_EXT_CAP_ID_MFVC:
1358 		return vfio_vc_cap_len(vdev, epos);
1359 	case PCI_EXT_CAP_ID_ACS:
1360 		ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1361 		if (ret)
1362 			return pcibios_err_to_errno(ret);
1363 
1364 		if (byte & PCI_ACS_EC) {
1365 			int bits;
1366 
1367 			ret = pci_read_config_byte(pdev,
1368 						   epos + PCI_ACS_EGRESS_BITS,
1369 						   &byte);
1370 			if (ret)
1371 				return pcibios_err_to_errno(ret);
1372 
1373 			bits = byte ? round_up(byte, 32) : 256;
1374 			return 8 + (bits / 8);
1375 		}
1376 		return 8;
1377 
1378 	case PCI_EXT_CAP_ID_REBAR:
1379 		ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1380 		if (ret)
1381 			return pcibios_err_to_errno(ret);
1382 
1383 		byte &= PCI_REBAR_CTRL_NBAR_MASK;
1384 		byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1385 
1386 		return 4 + (byte * 8);
1387 	case PCI_EXT_CAP_ID_DPA:
1388 		ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1389 		if (ret)
1390 			return pcibios_err_to_errno(ret);
1391 
1392 		byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1393 		return PCI_DPA_BASE_SIZEOF + byte + 1;
1394 	case PCI_EXT_CAP_ID_TPH:
1395 		ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1396 		if (ret)
1397 			return pcibios_err_to_errno(ret);
1398 
1399 		if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1400 			int sts;
1401 
1402 			sts = dword & PCI_TPH_CAP_ST_MASK;
1403 			sts >>= PCI_TPH_CAP_ST_SHIFT;
1404 			return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1405 		}
1406 		return PCI_TPH_BASE_SIZEOF;
1407 	default:
1408 		pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n",
1409 			 __func__, ecap, epos);
1410 	}
1411 
1412 	return 0;
1413 }
1414 
1415 static int vfio_fill_vconfig_bytes(struct vfio_pci_core_device *vdev,
1416 				   int offset, int size)
1417 {
1418 	struct pci_dev *pdev = vdev->pdev;
1419 	int ret = 0;
1420 
1421 	/*
1422 	 * We try to read physical config space in the largest chunks
1423 	 * we can, assuming that all of the fields support dword access.
1424 	 * pci_save_state() makes this same assumption and seems to do ok.
1425 	 */
1426 	while (size) {
1427 		int filled;
1428 
1429 		if (size >= 4 && !(offset % 4)) {
1430 			__le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1431 			u32 dword;
1432 
1433 			ret = pci_read_config_dword(pdev, offset, &dword);
1434 			if (ret)
1435 				return ret;
1436 			*dwordp = cpu_to_le32(dword);
1437 			filled = 4;
1438 		} else if (size >= 2 && !(offset % 2)) {
1439 			__le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1440 			u16 word;
1441 
1442 			ret = pci_read_config_word(pdev, offset, &word);
1443 			if (ret)
1444 				return ret;
1445 			*wordp = cpu_to_le16(word);
1446 			filled = 2;
1447 		} else {
1448 			u8 *byte = &vdev->vconfig[offset];
1449 			ret = pci_read_config_byte(pdev, offset, byte);
1450 			if (ret)
1451 				return ret;
1452 			filled = 1;
1453 		}
1454 
1455 		offset += filled;
1456 		size -= filled;
1457 	}
1458 
1459 	return ret;
1460 }
1461 
1462 static int vfio_cap_init(struct vfio_pci_core_device *vdev)
1463 {
1464 	struct pci_dev *pdev = vdev->pdev;
1465 	u8 *map = vdev->pci_config_map;
1466 	u16 status;
1467 	u8 pos, *prev, cap;
1468 	int loops, ret, caps = 0;
1469 
1470 	/* Any capabilities? */
1471 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1472 	if (ret)
1473 		return ret;
1474 
1475 	if (!(status & PCI_STATUS_CAP_LIST))
1476 		return 0; /* Done */
1477 
1478 	ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1479 	if (ret)
1480 		return ret;
1481 
1482 	/* Mark the previous position in case we want to skip a capability */
1483 	prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1484 
1485 	/* We can bound our loop, capabilities are dword aligned */
1486 	loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1487 	while (pos && loops--) {
1488 		u8 next;
1489 		int i, len = 0;
1490 
1491 		ret = pci_read_config_byte(pdev, pos, &cap);
1492 		if (ret)
1493 			return ret;
1494 
1495 		ret = pci_read_config_byte(pdev,
1496 					   pos + PCI_CAP_LIST_NEXT, &next);
1497 		if (ret)
1498 			return ret;
1499 
1500 		/*
1501 		 * ID 0 is a NULL capability, conflicting with our fake
1502 		 * PCI_CAP_ID_BASIC.  As it has no content, consider it
1503 		 * hidden for now.
1504 		 */
1505 		if (cap && cap <= PCI_CAP_ID_MAX) {
1506 			len = pci_cap_length[cap];
1507 			if (len == 0xFF) { /* Variable length */
1508 				len = vfio_cap_len(vdev, cap, pos);
1509 				if (len < 0)
1510 					return len;
1511 			}
1512 		}
1513 
1514 		if (!len) {
1515 			pci_info(pdev, "%s: hiding cap %#x@%#x\n", __func__,
1516 				 cap, pos);
1517 			*prev = next;
1518 			pos = next;
1519 			continue;
1520 		}
1521 
1522 		/* Sanity check, do we overlap other capabilities? */
1523 		for (i = 0; i < len; i++) {
1524 			if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1525 				continue;
1526 
1527 			pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
1528 				 __func__, pos + i, map[pos + i], cap);
1529 		}
1530 
1531 		BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1532 
1533 		memset(map + pos, cap, len);
1534 		ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1535 		if (ret)
1536 			return ret;
1537 
1538 		prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1539 		pos = next;
1540 		caps++;
1541 	}
1542 
1543 	/* If we didn't fill any capabilities, clear the status flag */
1544 	if (!caps) {
1545 		__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1546 		*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1547 	}
1548 
1549 	return 0;
1550 }
1551 
1552 static int vfio_ecap_init(struct vfio_pci_core_device *vdev)
1553 {
1554 	struct pci_dev *pdev = vdev->pdev;
1555 	u8 *map = vdev->pci_config_map;
1556 	u16 epos;
1557 	__le32 *prev = NULL;
1558 	int loops, ret, ecaps = 0;
1559 
1560 	if (!vdev->extended_caps)
1561 		return 0;
1562 
1563 	epos = PCI_CFG_SPACE_SIZE;
1564 
1565 	loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1566 
1567 	while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1568 		u32 header;
1569 		u16 ecap;
1570 		int i, len = 0;
1571 		bool hidden = false;
1572 
1573 		ret = pci_read_config_dword(pdev, epos, &header);
1574 		if (ret)
1575 			return ret;
1576 
1577 		ecap = PCI_EXT_CAP_ID(header);
1578 
1579 		if (ecap <= PCI_EXT_CAP_ID_MAX) {
1580 			len = pci_ext_cap_length[ecap];
1581 			if (len == 0xFF) {
1582 				len = vfio_ext_cap_len(vdev, ecap, epos);
1583 				if (len < 0)
1584 					return len;
1585 			}
1586 		}
1587 
1588 		if (!len) {
1589 			pci_info(pdev, "%s: hiding ecap %#x@%#x\n",
1590 				 __func__, ecap, epos);
1591 
1592 			/* If not the first in the chain, we can skip over it */
1593 			if (prev) {
1594 				u32 val = epos = PCI_EXT_CAP_NEXT(header);
1595 				*prev &= cpu_to_le32(~(0xffcU << 20));
1596 				*prev |= cpu_to_le32(val << 20);
1597 				continue;
1598 			}
1599 
1600 			/*
1601 			 * Otherwise, fill in a placeholder, the direct
1602 			 * readfn will virtualize this automatically
1603 			 */
1604 			len = PCI_CAP_SIZEOF;
1605 			hidden = true;
1606 		}
1607 
1608 		for (i = 0; i < len; i++) {
1609 			if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1610 				continue;
1611 
1612 			pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
1613 				 __func__, epos + i, map[epos + i], ecap);
1614 		}
1615 
1616 		/*
1617 		 * Even though ecap is 2 bytes, we're currently a long way
1618 		 * from exceeding 1 byte capabilities.  If we ever make it
1619 		 * up to 0xFE we'll need to up this to a two-byte, byte map.
1620 		 */
1621 		BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1622 
1623 		memset(map + epos, ecap, len);
1624 		ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1625 		if (ret)
1626 			return ret;
1627 
1628 		/*
1629 		 * If we're just using this capability to anchor the list,
1630 		 * hide the real ID.  Only count real ecaps.  XXX PCI spec
1631 		 * indicates to use cap id = 0, version = 0, next = 0 if
1632 		 * ecaps are absent, hope users check all the way to next.
1633 		 */
1634 		if (hidden)
1635 			*(__le32 *)&vdev->vconfig[epos] &=
1636 				cpu_to_le32((0xffcU << 20));
1637 		else
1638 			ecaps++;
1639 
1640 		prev = (__le32 *)&vdev->vconfig[epos];
1641 		epos = PCI_EXT_CAP_NEXT(header);
1642 	}
1643 
1644 	if (!ecaps)
1645 		*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1646 
1647 	return 0;
1648 }
1649 
1650 /*
1651  * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1652  * to collect a list of dependencies for the VF INTx pin quirk below.
1653  */
1654 static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1655 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1656 	{}
1657 };
1658 
1659 /*
1660  * For each device we allocate a pci_config_map that indicates the
1661  * capability occupying each dword and thus the struct perm_bits we
1662  * use for read and write.  We also allocate a virtualized config
1663  * space which tracks reads and writes to bits that we emulate for
1664  * the user.  Initial values filled from device.
1665  *
1666  * Using shared struct perm_bits between all vfio-pci devices saves
1667  * us from allocating cfg_size buffers for virt and write for every
1668  * device.  We could remove vconfig and allocate individual buffers
1669  * for each area requiring emulated bits, but the array of pointers
1670  * would be comparable in size (at least for standard config space).
1671  */
1672 int vfio_config_init(struct vfio_pci_core_device *vdev)
1673 {
1674 	struct pci_dev *pdev = vdev->pdev;
1675 	u8 *map, *vconfig;
1676 	int ret;
1677 
1678 	/*
1679 	 * Config space, caps and ecaps are all dword aligned, so we could
1680 	 * use one byte per dword to record the type.  However, there are
1681 	 * no requiremenst on the length of a capability, so the gap between
1682 	 * capabilities needs byte granularity.
1683 	 */
1684 	map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1685 	if (!map)
1686 		return -ENOMEM;
1687 
1688 	vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1689 	if (!vconfig) {
1690 		kfree(map);
1691 		return -ENOMEM;
1692 	}
1693 
1694 	vdev->pci_config_map = map;
1695 	vdev->vconfig = vconfig;
1696 
1697 	memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1698 	memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1699 	       pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1700 
1701 	ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1702 	if (ret)
1703 		goto out;
1704 
1705 	vdev->bardirty = true;
1706 
1707 	/*
1708 	 * XXX can we just pci_load_saved_state/pci_restore_state?
1709 	 * may need to rebuild vconfig after that
1710 	 */
1711 
1712 	/* For restore after reset */
1713 	vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1714 	vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1715 	vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1716 	vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1717 	vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1718 	vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1719 	vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1720 
1721 	if (pdev->is_virtfn) {
1722 		*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1723 		*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1724 
1725 		/*
1726 		 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1727 		 * does not apply to VFs and VFs must implement this register
1728 		 * as read-only with value zero.  Userspace is not readily able
1729 		 * to identify whether a device is a VF and thus that the pin
1730 		 * definition on the device is bogus should it violate this
1731 		 * requirement.  We already virtualize the pin register for
1732 		 * other purposes, so we simply need to replace the bogus value
1733 		 * and consider VFs when we determine INTx IRQ count.
1734 		 */
1735 		if (vconfig[PCI_INTERRUPT_PIN] &&
1736 		    !pci_match_id(known_bogus_vf_intx_pin, pdev))
1737 			pci_warn(pdev,
1738 				 "Hardware bug: VF reports bogus INTx pin %d\n",
1739 				 vconfig[PCI_INTERRUPT_PIN]);
1740 
1741 		vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1742 	}
1743 	if (pdev->no_command_memory) {
1744 		/*
1745 		 * VFs and devices that set pdev->no_command_memory do not
1746 		 * implement the memory enable bit of the COMMAND register
1747 		 * therefore we'll not have it set in our initial copy of
1748 		 * config space after pci_enable_device().  For consistency
1749 		 * with PFs, set the virtual enable bit here.
1750 		 */
1751 		*(__le16 *)&vconfig[PCI_COMMAND] |=
1752 					cpu_to_le16(PCI_COMMAND_MEMORY);
1753 	}
1754 
1755 	if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1756 		vconfig[PCI_INTERRUPT_PIN] = 0;
1757 
1758 	ret = vfio_cap_init(vdev);
1759 	if (ret)
1760 		goto out;
1761 
1762 	ret = vfio_ecap_init(vdev);
1763 	if (ret)
1764 		goto out;
1765 
1766 	return 0;
1767 
1768 out:
1769 	kfree(map);
1770 	vdev->pci_config_map = NULL;
1771 	kfree(vconfig);
1772 	vdev->vconfig = NULL;
1773 	return pcibios_err_to_errno(ret);
1774 }
1775 
1776 void vfio_config_free(struct vfio_pci_core_device *vdev)
1777 {
1778 	kfree(vdev->vconfig);
1779 	vdev->vconfig = NULL;
1780 	kfree(vdev->pci_config_map);
1781 	vdev->pci_config_map = NULL;
1782 	if (vdev->msi_perm) {
1783 		free_perm_bits(vdev->msi_perm);
1784 		kfree(vdev->msi_perm);
1785 		vdev->msi_perm = NULL;
1786 	}
1787 }
1788 
1789 /*
1790  * Find the remaining number of bytes in a dword that match the given
1791  * position.  Stop at either the end of the capability or the dword boundary.
1792  */
1793 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_core_device *vdev,
1794 					   loff_t pos)
1795 {
1796 	u8 cap = vdev->pci_config_map[pos];
1797 	size_t i;
1798 
1799 	for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1800 		/* nop */;
1801 
1802 	return i;
1803 }
1804 
1805 static ssize_t vfio_config_do_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1806 				 size_t count, loff_t *ppos, bool iswrite)
1807 {
1808 	struct pci_dev *pdev = vdev->pdev;
1809 	struct perm_bits *perm;
1810 	__le32 val = 0;
1811 	int cap_start = 0, offset;
1812 	u8 cap_id;
1813 	ssize_t ret;
1814 
1815 	if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1816 	    *ppos + count > pdev->cfg_size)
1817 		return -EFAULT;
1818 
1819 	/*
1820 	 * Chop accesses into aligned chunks containing no more than a
1821 	 * single capability.  Caller increments to the next chunk.
1822 	 */
1823 	count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1824 	if (count >= 4 && !(*ppos % 4))
1825 		count = 4;
1826 	else if (count >= 2 && !(*ppos % 2))
1827 		count = 2;
1828 	else
1829 		count = 1;
1830 
1831 	ret = count;
1832 
1833 	cap_id = vdev->pci_config_map[*ppos];
1834 
1835 	if (cap_id == PCI_CAP_ID_INVALID) {
1836 		perm = &unassigned_perms;
1837 		cap_start = *ppos;
1838 	} else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1839 		perm = &virt_perms;
1840 		cap_start = *ppos;
1841 	} else {
1842 		if (*ppos >= PCI_CFG_SPACE_SIZE) {
1843 			WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1844 
1845 			perm = &ecap_perms[cap_id];
1846 			cap_start = vfio_find_cap_start(vdev, *ppos);
1847 		} else {
1848 			WARN_ON(cap_id > PCI_CAP_ID_MAX);
1849 
1850 			perm = &cap_perms[cap_id];
1851 
1852 			if (cap_id == PCI_CAP_ID_MSI)
1853 				perm = vdev->msi_perm;
1854 
1855 			if (cap_id > PCI_CAP_ID_BASIC)
1856 				cap_start = vfio_find_cap_start(vdev, *ppos);
1857 		}
1858 	}
1859 
1860 	WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1861 	WARN_ON(cap_start > *ppos);
1862 
1863 	offset = *ppos - cap_start;
1864 
1865 	if (iswrite) {
1866 		if (!perm->writefn)
1867 			return ret;
1868 
1869 		if (copy_from_user(&val, buf, count))
1870 			return -EFAULT;
1871 
1872 		ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1873 	} else {
1874 		if (perm->readfn) {
1875 			ret = perm->readfn(vdev, *ppos, count,
1876 					   perm, offset, &val);
1877 			if (ret < 0)
1878 				return ret;
1879 		}
1880 
1881 		if (copy_to_user(buf, &val, count))
1882 			return -EFAULT;
1883 	}
1884 
1885 	return ret;
1886 }
1887 
1888 ssize_t vfio_pci_config_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1889 			   size_t count, loff_t *ppos, bool iswrite)
1890 {
1891 	size_t done = 0;
1892 	int ret = 0;
1893 	loff_t pos = *ppos;
1894 
1895 	pos &= VFIO_PCI_OFFSET_MASK;
1896 
1897 	while (count) {
1898 		ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1899 		if (ret < 0)
1900 			return ret;
1901 
1902 		count -= ret;
1903 		done += ret;
1904 		buf += ret;
1905 		pos += ret;
1906 	}
1907 
1908 	*ppos += done;
1909 
1910 	return done;
1911 }
1912