1 /*
2  * VFIO PCI config space virtualization
3  *
4  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
5  *     Author: Alex Williamson <alex.williamson@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Derived from original vfio:
12  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
13  * Author: Tom Lyon, pugs@cisco.com
14  */
15 
16 /*
17  * This code handles reading and writing of PCI configuration registers.
18  * This is hairy because we want to allow a lot of flexibility to the
19  * user driver, but cannot trust it with all of the config fields.
20  * Tables determine which fields can be read and written, as well as
21  * which fields are 'virtualized' - special actions and translations to
22  * make it appear to the user that he has control, when in fact things
23  * must be negotiated with the underlying OS.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/pci.h>
28 #include <linux/uaccess.h>
29 #include <linux/vfio.h>
30 #include <linux/slab.h>
31 
32 #include "vfio_pci_private.h"
33 
34 #define PCI_CFG_SPACE_SIZE	256
35 
36 /* Useful "pseudo" capabilities */
37 #define PCI_CAP_ID_BASIC	0
38 #define PCI_CAP_ID_INVALID	0xFF
39 
40 #define is_bar(offset)	\
41 	((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
42 	 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
43 
44 /*
45  * Lengths of PCI Config Capabilities
46  *   0: Removed from the user visible capability list
47  *   FF: Variable length
48  */
49 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
50 	[PCI_CAP_ID_BASIC]	= PCI_STD_HEADER_SIZEOF, /* pci config header */
51 	[PCI_CAP_ID_PM]		= PCI_PM_SIZEOF,
52 	[PCI_CAP_ID_AGP]	= PCI_AGP_SIZEOF,
53 	[PCI_CAP_ID_VPD]	= PCI_CAP_VPD_SIZEOF,
54 	[PCI_CAP_ID_SLOTID]	= 0,		/* bridge - don't care */
55 	[PCI_CAP_ID_MSI]	= 0xFF,		/* 10, 14, 20, or 24 */
56 	[PCI_CAP_ID_CHSWP]	= 0,		/* cpci - not yet */
57 	[PCI_CAP_ID_PCIX]	= 0xFF,		/* 8 or 24 */
58 	[PCI_CAP_ID_HT]		= 0xFF,		/* hypertransport */
59 	[PCI_CAP_ID_VNDR]	= 0xFF,		/* variable */
60 	[PCI_CAP_ID_DBG]	= 0,		/* debug - don't care */
61 	[PCI_CAP_ID_CCRC]	= 0,		/* cpci - not yet */
62 	[PCI_CAP_ID_SHPC]	= 0,		/* hotswap - not yet */
63 	[PCI_CAP_ID_SSVID]	= 0,		/* bridge - don't care */
64 	[PCI_CAP_ID_AGP3]	= 0,		/* AGP8x - not yet */
65 	[PCI_CAP_ID_SECDEV]	= 0,		/* secure device not yet */
66 	[PCI_CAP_ID_EXP]	= 0xFF,		/* 20 or 44 */
67 	[PCI_CAP_ID_MSIX]	= PCI_CAP_MSIX_SIZEOF,
68 	[PCI_CAP_ID_SATA]	= 0xFF,
69 	[PCI_CAP_ID_AF]		= PCI_CAP_AF_SIZEOF,
70 };
71 
72 /*
73  * Lengths of PCIe/PCI-X Extended Config Capabilities
74  *   0: Removed or masked from the user visible capabilty list
75  *   FF: Variable length
76  */
77 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
78 	[PCI_EXT_CAP_ID_ERR]	=	PCI_ERR_ROOT_COMMAND,
79 	[PCI_EXT_CAP_ID_VC]	=	0xFF,
80 	[PCI_EXT_CAP_ID_DSN]	=	PCI_EXT_CAP_DSN_SIZEOF,
81 	[PCI_EXT_CAP_ID_PWR]	=	PCI_EXT_CAP_PWR_SIZEOF,
82 	[PCI_EXT_CAP_ID_RCLD]	=	0,	/* root only - don't care */
83 	[PCI_EXT_CAP_ID_RCILC]	=	0,	/* root only - don't care */
84 	[PCI_EXT_CAP_ID_RCEC]	=	0,	/* root only - don't care */
85 	[PCI_EXT_CAP_ID_MFVC]	=	0xFF,
86 	[PCI_EXT_CAP_ID_VC9]	=	0xFF,	/* same as CAP_ID_VC */
87 	[PCI_EXT_CAP_ID_RCRB]	=	0,	/* root only - don't care */
88 	[PCI_EXT_CAP_ID_VNDR]	=	0xFF,
89 	[PCI_EXT_CAP_ID_CAC]	=	0,	/* obsolete */
90 	[PCI_EXT_CAP_ID_ACS]	=	0xFF,
91 	[PCI_EXT_CAP_ID_ARI]	=	PCI_EXT_CAP_ARI_SIZEOF,
92 	[PCI_EXT_CAP_ID_ATS]	=	PCI_EXT_CAP_ATS_SIZEOF,
93 	[PCI_EXT_CAP_ID_SRIOV]	=	PCI_EXT_CAP_SRIOV_SIZEOF,
94 	[PCI_EXT_CAP_ID_MRIOV]	=	0,	/* not yet */
95 	[PCI_EXT_CAP_ID_MCAST]	=	PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
96 	[PCI_EXT_CAP_ID_PRI]	=	PCI_EXT_CAP_PRI_SIZEOF,
97 	[PCI_EXT_CAP_ID_AMD_XXX] =	0,	/* not yet */
98 	[PCI_EXT_CAP_ID_REBAR]	=	0xFF,
99 	[PCI_EXT_CAP_ID_DPA]	=	0xFF,
100 	[PCI_EXT_CAP_ID_TPH]	=	0xFF,
101 	[PCI_EXT_CAP_ID_LTR]	=	PCI_EXT_CAP_LTR_SIZEOF,
102 	[PCI_EXT_CAP_ID_SECPCI]	=	0,	/* not yet */
103 	[PCI_EXT_CAP_ID_PMUX]	=	0,	/* not yet */
104 	[PCI_EXT_CAP_ID_PASID]	=	0,	/* not yet */
105 };
106 
107 /*
108  * Read/Write Permission Bits - one bit for each bit in capability
109  * Any field can be read if it exists, but what is read depends on
110  * whether the field is 'virtualized', or just pass thru to the
111  * hardware.  Any virtualized field is also virtualized for writes.
112  * Writes are only permitted if they have a 1 bit here.
113  */
114 struct perm_bits {
115 	u8	*virt;		/* read/write virtual data, not hw */
116 	u8	*write;		/* writeable bits */
117 	int	(*readfn)(struct vfio_pci_device *vdev, int pos, int count,
118 			  struct perm_bits *perm, int offset, __le32 *val);
119 	int	(*writefn)(struct vfio_pci_device *vdev, int pos, int count,
120 			   struct perm_bits *perm, int offset, __le32 val);
121 };
122 
123 #define	NO_VIRT		0
124 #define	ALL_VIRT	0xFFFFFFFFU
125 #define	NO_WRITE	0
126 #define	ALL_WRITE	0xFFFFFFFFU
127 
128 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
129 				 __le32 *val, int count)
130 {
131 	int ret = -EINVAL;
132 	u32 tmp_val = 0;
133 
134 	switch (count) {
135 	case 1:
136 	{
137 		u8 tmp;
138 		ret = pci_user_read_config_byte(pdev, offset, &tmp);
139 		tmp_val = tmp;
140 		break;
141 	}
142 	case 2:
143 	{
144 		u16 tmp;
145 		ret = pci_user_read_config_word(pdev, offset, &tmp);
146 		tmp_val = tmp;
147 		break;
148 	}
149 	case 4:
150 		ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
151 		break;
152 	}
153 
154 	*val = cpu_to_le32(tmp_val);
155 
156 	return pcibios_err_to_errno(ret);
157 }
158 
159 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
160 				  __le32 val, int count)
161 {
162 	int ret = -EINVAL;
163 	u32 tmp_val = le32_to_cpu(val);
164 
165 	switch (count) {
166 	case 1:
167 		ret = pci_user_write_config_byte(pdev, offset, tmp_val);
168 		break;
169 	case 2:
170 		ret = pci_user_write_config_word(pdev, offset, tmp_val);
171 		break;
172 	case 4:
173 		ret = pci_user_write_config_dword(pdev, offset, tmp_val);
174 		break;
175 	}
176 
177 	return pcibios_err_to_errno(ret);
178 }
179 
180 static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
181 				    int count, struct perm_bits *perm,
182 				    int offset, __le32 *val)
183 {
184 	__le32 virt = 0;
185 
186 	memcpy(val, vdev->vconfig + pos, count);
187 
188 	memcpy(&virt, perm->virt + offset, count);
189 
190 	/* Any non-virtualized bits? */
191 	if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
192 		struct pci_dev *pdev = vdev->pdev;
193 		__le32 phys_val = 0;
194 		int ret;
195 
196 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
197 		if (ret)
198 			return ret;
199 
200 		*val = (phys_val & ~virt) | (*val & virt);
201 	}
202 
203 	return count;
204 }
205 
206 static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
207 				     int count, struct perm_bits *perm,
208 				     int offset, __le32 val)
209 {
210 	__le32 virt = 0, write = 0;
211 
212 	memcpy(&write, perm->write + offset, count);
213 
214 	if (!write)
215 		return count; /* drop, no writable bits */
216 
217 	memcpy(&virt, perm->virt + offset, count);
218 
219 	/* Virtualized and writable bits go to vconfig */
220 	if (write & virt) {
221 		__le32 virt_val = 0;
222 
223 		memcpy(&virt_val, vdev->vconfig + pos, count);
224 
225 		virt_val &= ~(write & virt);
226 		virt_val |= (val & (write & virt));
227 
228 		memcpy(vdev->vconfig + pos, &virt_val, count);
229 	}
230 
231 	/* Non-virtualzed and writable bits go to hardware */
232 	if (write & ~virt) {
233 		struct pci_dev *pdev = vdev->pdev;
234 		__le32 phys_val = 0;
235 		int ret;
236 
237 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
238 		if (ret)
239 			return ret;
240 
241 		phys_val &= ~(write & ~virt);
242 		phys_val |= (val & (write & ~virt));
243 
244 		ret = vfio_user_config_write(pdev, pos, phys_val, count);
245 		if (ret)
246 			return ret;
247 	}
248 
249 	return count;
250 }
251 
252 /* Allow direct read from hardware, except for capability next pointer */
253 static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
254 				   int count, struct perm_bits *perm,
255 				   int offset, __le32 *val)
256 {
257 	int ret;
258 
259 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
260 	if (ret)
261 		return pcibios_err_to_errno(ret);
262 
263 	if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
264 		if (offset < 4)
265 			memcpy(val, vdev->vconfig + pos, count);
266 	} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
267 		if (offset == PCI_CAP_LIST_ID && count > 1)
268 			memcpy(val, vdev->vconfig + pos,
269 			       min(PCI_CAP_FLAGS, count));
270 		else if (offset == PCI_CAP_LIST_NEXT)
271 			memcpy(val, vdev->vconfig + pos, 1);
272 	}
273 
274 	return count;
275 }
276 
277 /* Raw access skips any kind of virtualization */
278 static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
279 				 int count, struct perm_bits *perm,
280 				 int offset, __le32 val)
281 {
282 	int ret;
283 
284 	ret = vfio_user_config_write(vdev->pdev, pos, val, count);
285 	if (ret)
286 		return ret;
287 
288 	return count;
289 }
290 
291 static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
292 				int count, struct perm_bits *perm,
293 				int offset, __le32 *val)
294 {
295 	int ret;
296 
297 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
298 	if (ret)
299 		return pcibios_err_to_errno(ret);
300 
301 	return count;
302 }
303 
304 /* Default capability regions to read-only, no-virtualization */
305 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
306 	[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
307 };
308 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
309 	[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
310 };
311 /*
312  * Default unassigned regions to raw read-write access.  Some devices
313  * require this to function as they hide registers between the gaps in
314  * config space (be2net).  Like MMIO and I/O port registers, we have
315  * to trust the hardware isolation.
316  */
317 static struct perm_bits unassigned_perms = {
318 	.readfn = vfio_raw_config_read,
319 	.writefn = vfio_raw_config_write
320 };
321 
322 static void free_perm_bits(struct perm_bits *perm)
323 {
324 	kfree(perm->virt);
325 	kfree(perm->write);
326 	perm->virt = NULL;
327 	perm->write = NULL;
328 }
329 
330 static int alloc_perm_bits(struct perm_bits *perm, int size)
331 {
332 	/*
333 	 * Round up all permission bits to the next dword, this lets us
334 	 * ignore whether a read/write exceeds the defined capability
335 	 * structure.  We can do this because:
336 	 *  - Standard config space is already dword aligned
337 	 *  - Capabilities are all dword alinged (bits 0:1 of next reserved)
338 	 *  - Express capabilities defined as dword aligned
339 	 */
340 	size = round_up(size, 4);
341 
342 	/*
343 	 * Zero state is
344 	 * - All Readable, None Writeable, None Virtualized
345 	 */
346 	perm->virt = kzalloc(size, GFP_KERNEL);
347 	perm->write = kzalloc(size, GFP_KERNEL);
348 	if (!perm->virt || !perm->write) {
349 		free_perm_bits(perm);
350 		return -ENOMEM;
351 	}
352 
353 	perm->readfn = vfio_default_config_read;
354 	perm->writefn = vfio_default_config_write;
355 
356 	return 0;
357 }
358 
359 /*
360  * Helper functions for filling in permission tables
361  */
362 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
363 {
364 	p->virt[off] = virt;
365 	p->write[off] = write;
366 }
367 
368 /* Handle endian-ness - pci and tables are little-endian */
369 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
370 {
371 	*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
372 	*(__le16 *)(&p->write[off]) = cpu_to_le16(write);
373 }
374 
375 /* Handle endian-ness - pci and tables are little-endian */
376 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
377 {
378 	*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
379 	*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
380 }
381 
382 /*
383  * Restore the *real* BARs after we detect a FLR or backdoor reset.
384  * (backdoor = some device specific technique that we didn't catch)
385  */
386 static void vfio_bar_restore(struct vfio_pci_device *vdev)
387 {
388 	struct pci_dev *pdev = vdev->pdev;
389 	u32 *rbar = vdev->rbar;
390 	int i;
391 
392 	if (pdev->is_virtfn)
393 		return;
394 
395 	pr_info("%s: %s reset recovery - restoring bars\n",
396 		__func__, dev_name(&pdev->dev));
397 
398 	for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
399 		pci_user_write_config_dword(pdev, i, *rbar);
400 
401 	pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
402 }
403 
404 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
405 {
406 	unsigned long flags = pci_resource_flags(pdev, bar);
407 	u32 val;
408 
409 	if (flags & IORESOURCE_IO)
410 		return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
411 
412 	val = PCI_BASE_ADDRESS_SPACE_MEMORY;
413 
414 	if (flags & IORESOURCE_PREFETCH)
415 		val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
416 
417 	if (flags & IORESOURCE_MEM_64)
418 		val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
419 
420 	return cpu_to_le32(val);
421 }
422 
423 /*
424  * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
425  * to reflect the hardware capabilities.  This implements BAR sizing.
426  */
427 static void vfio_bar_fixup(struct vfio_pci_device *vdev)
428 {
429 	struct pci_dev *pdev = vdev->pdev;
430 	int i;
431 	__le32 *bar;
432 	u64 mask;
433 
434 	bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
435 
436 	for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
437 		if (!pci_resource_start(pdev, i)) {
438 			*bar = 0; /* Unmapped by host = unimplemented to user */
439 			continue;
440 		}
441 
442 		mask = ~(pci_resource_len(pdev, i) - 1);
443 
444 		*bar &= cpu_to_le32((u32)mask);
445 		*bar |= vfio_generate_bar_flags(pdev, i);
446 
447 		if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
448 			bar++;
449 			*bar &= cpu_to_le32((u32)(mask >> 32));
450 			i++;
451 		}
452 	}
453 
454 	bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
455 
456 	/*
457 	 * NB. we expose the actual BAR size here, regardless of whether
458 	 * we can read it.  When we report the REGION_INFO for the ROM
459 	 * we report what PCI tells us is the actual ROM size.
460 	 */
461 	if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
462 		mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
463 		mask |= PCI_ROM_ADDRESS_ENABLE;
464 		*bar &= cpu_to_le32((u32)mask);
465 	} else
466 		*bar = 0;
467 
468 	vdev->bardirty = false;
469 }
470 
471 static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
472 				  int count, struct perm_bits *perm,
473 				  int offset, __le32 *val)
474 {
475 	if (is_bar(offset)) /* pos == offset for basic config */
476 		vfio_bar_fixup(vdev);
477 
478 	count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
479 
480 	/* Mask in virtual memory enable for SR-IOV devices */
481 	if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
482 		u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
483 		u32 tmp_val = le32_to_cpu(*val);
484 
485 		tmp_val |= cmd & PCI_COMMAND_MEMORY;
486 		*val = cpu_to_le32(tmp_val);
487 	}
488 
489 	return count;
490 }
491 
492 static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
493 				   int count, struct perm_bits *perm,
494 				   int offset, __le32 val)
495 {
496 	struct pci_dev *pdev = vdev->pdev;
497 	__le16 *virt_cmd;
498 	u16 new_cmd = 0;
499 	int ret;
500 
501 	virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
502 
503 	if (offset == PCI_COMMAND) {
504 		bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
505 		u16 phys_cmd;
506 
507 		ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
508 		if (ret)
509 			return ret;
510 
511 		new_cmd = le32_to_cpu(val);
512 
513 		phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
514 		virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
515 		new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
516 
517 		phys_io = !!(phys_cmd & PCI_COMMAND_IO);
518 		virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
519 		new_io = !!(new_cmd & PCI_COMMAND_IO);
520 
521 		/*
522 		 * If the user is writing mem/io enable (new_mem/io) and we
523 		 * think it's already enabled (virt_mem/io), but the hardware
524 		 * shows it disabled (phys_mem/io, then the device has
525 		 * undergone some kind of backdoor reset and needs to be
526 		 * restored before we allow it to enable the bars.
527 		 * SR-IOV devices will trigger this, but we catch them later
528 		 */
529 		if ((new_mem && virt_mem && !phys_mem) ||
530 		    (new_io && virt_io && !phys_io))
531 			vfio_bar_restore(vdev);
532 	}
533 
534 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
535 	if (count < 0)
536 		return count;
537 
538 	/*
539 	 * Save current memory/io enable bits in vconfig to allow for
540 	 * the test above next time.
541 	 */
542 	if (offset == PCI_COMMAND) {
543 		u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
544 
545 		*virt_cmd &= cpu_to_le16(~mask);
546 		*virt_cmd |= cpu_to_le16(new_cmd & mask);
547 	}
548 
549 	/* Emulate INTx disable */
550 	if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
551 		bool virt_intx_disable;
552 
553 		virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
554 				       PCI_COMMAND_INTX_DISABLE);
555 
556 		if (virt_intx_disable && !vdev->virq_disabled) {
557 			vdev->virq_disabled = true;
558 			vfio_pci_intx_mask(vdev);
559 		} else if (!virt_intx_disable && vdev->virq_disabled) {
560 			vdev->virq_disabled = false;
561 			vfio_pci_intx_unmask(vdev);
562 		}
563 	}
564 
565 	if (is_bar(offset))
566 		vdev->bardirty = true;
567 
568 	return count;
569 }
570 
571 /* Permissions for the Basic PCI Header */
572 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
573 {
574 	if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
575 		return -ENOMEM;
576 
577 	perm->readfn = vfio_basic_config_read;
578 	perm->writefn = vfio_basic_config_write;
579 
580 	/* Virtualized for SR-IOV functions, which just have FFFF */
581 	p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
582 	p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
583 
584 	/*
585 	 * Virtualize INTx disable, we use it internally for interrupt
586 	 * control and can emulate it for non-PCI 2.3 devices.
587 	 */
588 	p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
589 
590 	/* Virtualize capability list, we might want to skip/disable */
591 	p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
592 
593 	/* No harm to write */
594 	p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
595 	p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
596 	p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
597 
598 	/* Virtualize all bars, can't touch the real ones */
599 	p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
600 	p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
601 	p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
602 	p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
603 	p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
604 	p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
605 	p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
606 
607 	/* Allow us to adjust capability chain */
608 	p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
609 
610 	/* Sometimes used by sw, just virtualize */
611 	p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
612 
613 	/* Virtualize interrupt pin to allow hiding INTx */
614 	p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
615 
616 	return 0;
617 }
618 
619 static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
620 				int count, struct perm_bits *perm,
621 				int offset, __le32 val)
622 {
623 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
624 	if (count < 0)
625 		return count;
626 
627 	if (offset == PCI_PM_CTRL) {
628 		pci_power_t state;
629 
630 		switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
631 		case 0:
632 			state = PCI_D0;
633 			break;
634 		case 1:
635 			state = PCI_D1;
636 			break;
637 		case 2:
638 			state = PCI_D2;
639 			break;
640 		case 3:
641 			state = PCI_D3hot;
642 			break;
643 		}
644 
645 		pci_set_power_state(vdev->pdev, state);
646 	}
647 
648 	return count;
649 }
650 
651 /* Permissions for the Power Management capability */
652 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
653 {
654 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
655 		return -ENOMEM;
656 
657 	perm->writefn = vfio_pm_config_write;
658 
659 	/*
660 	 * We always virtualize the next field so we can remove
661 	 * capabilities from the chain if we want to.
662 	 */
663 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
664 
665 	/*
666 	 * Power management is defined *per function*, so we can let
667 	 * the user change power state, but we trap and initiate the
668 	 * change ourselves, so the state bits are read-only.
669 	 */
670 	p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
671 	return 0;
672 }
673 
674 static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
675 				 int count, struct perm_bits *perm,
676 				 int offset, __le32 val)
677 {
678 	struct pci_dev *pdev = vdev->pdev;
679 	__le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
680 	__le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
681 	u16 addr;
682 	u32 data;
683 
684 	/*
685 	 * Write through to emulation.  If the write includes the upper byte
686 	 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
687 	 * have work to do.
688 	 */
689 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
690 	if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
691 	    offset + count <= PCI_VPD_ADDR + 1)
692 		return count;
693 
694 	addr = le16_to_cpu(*paddr);
695 
696 	if (addr & PCI_VPD_ADDR_F) {
697 		data = le32_to_cpu(*pdata);
698 		if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
699 			return count;
700 	} else {
701 		if (pci_read_vpd(pdev, addr, 4, &data) != 4)
702 			return count;
703 		*pdata = cpu_to_le32(data);
704 	}
705 
706 	/*
707 	 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
708 	 * signal completion.  If an error occurs above, we assume that not
709 	 * toggling this bit will induce a driver timeout.
710 	 */
711 	addr ^= PCI_VPD_ADDR_F;
712 	*paddr = cpu_to_le16(addr);
713 
714 	return count;
715 }
716 
717 /* Permissions for Vital Product Data capability */
718 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
719 {
720 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
721 		return -ENOMEM;
722 
723 	perm->writefn = vfio_vpd_config_write;
724 
725 	/*
726 	 * We always virtualize the next field so we can remove
727 	 * capabilities from the chain if we want to.
728 	 */
729 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
730 
731 	/*
732 	 * Both the address and data registers are virtualized to
733 	 * enable access through the pci_vpd_read/write functions
734 	 */
735 	p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
736 	p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
737 
738 	return 0;
739 }
740 
741 /* Permissions for PCI-X capability */
742 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
743 {
744 	/* Alloc 24, but only 8 are used in v0 */
745 	if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
746 		return -ENOMEM;
747 
748 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
749 
750 	p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
751 	p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
752 	return 0;
753 }
754 
755 /* Permissions for PCI Express capability */
756 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
757 {
758 	/* Alloc larger of two possible sizes */
759 	if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
760 		return -ENOMEM;
761 
762 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
763 
764 	/*
765 	 * Allow writes to device control fields (includes FLR!)
766 	 * but not to devctl_phantom which could confuse IOMMU
767 	 * or to the ARI bit in devctl2 which is set at probe time
768 	 */
769 	p_setw(perm, PCI_EXP_DEVCTL, NO_VIRT, ~PCI_EXP_DEVCTL_PHANTOM);
770 	p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
771 	return 0;
772 }
773 
774 /* Permissions for Advanced Function capability */
775 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
776 {
777 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
778 		return -ENOMEM;
779 
780 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
781 	p_setb(perm, PCI_AF_CTRL, NO_VIRT, PCI_AF_CTRL_FLR);
782 	return 0;
783 }
784 
785 /* Permissions for Advanced Error Reporting extended capability */
786 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
787 {
788 	u32 mask;
789 
790 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
791 		return -ENOMEM;
792 
793 	/*
794 	 * Virtualize the first dword of all express capabilities
795 	 * because it includes the next pointer.  This lets us later
796 	 * remove capabilities from the chain if we need to.
797 	 */
798 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
799 
800 	/* Writable bits mask */
801 	mask =	PCI_ERR_UNC_UND |		/* Undefined */
802 		PCI_ERR_UNC_DLP |		/* Data Link Protocol */
803 		PCI_ERR_UNC_SURPDN |		/* Surprise Down */
804 		PCI_ERR_UNC_POISON_TLP |	/* Poisoned TLP */
805 		PCI_ERR_UNC_FCP |		/* Flow Control Protocol */
806 		PCI_ERR_UNC_COMP_TIME |		/* Completion Timeout */
807 		PCI_ERR_UNC_COMP_ABORT |	/* Completer Abort */
808 		PCI_ERR_UNC_UNX_COMP |		/* Unexpected Completion */
809 		PCI_ERR_UNC_RX_OVER |		/* Receiver Overflow */
810 		PCI_ERR_UNC_MALF_TLP |		/* Malformed TLP */
811 		PCI_ERR_UNC_ECRC |		/* ECRC Error Status */
812 		PCI_ERR_UNC_UNSUP |		/* Unsupported Request */
813 		PCI_ERR_UNC_ACSV |		/* ACS Violation */
814 		PCI_ERR_UNC_INTN |		/* internal error */
815 		PCI_ERR_UNC_MCBTLP |		/* MC blocked TLP */
816 		PCI_ERR_UNC_ATOMEG |		/* Atomic egress blocked */
817 		PCI_ERR_UNC_TLPPRE;		/* TLP prefix blocked */
818 	p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
819 	p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
820 	p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
821 
822 	mask =	PCI_ERR_COR_RCVR |		/* Receiver Error Status */
823 		PCI_ERR_COR_BAD_TLP |		/* Bad TLP Status */
824 		PCI_ERR_COR_BAD_DLLP |		/* Bad DLLP Status */
825 		PCI_ERR_COR_REP_ROLL |		/* REPLAY_NUM Rollover */
826 		PCI_ERR_COR_REP_TIMER |		/* Replay Timer Timeout */
827 		PCI_ERR_COR_ADV_NFAT |		/* Advisory Non-Fatal */
828 		PCI_ERR_COR_INTERNAL |		/* Corrected Internal */
829 		PCI_ERR_COR_LOG_OVER;		/* Header Log Overflow */
830 	p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
831 	p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
832 
833 	mask =	PCI_ERR_CAP_ECRC_GENE |		/* ECRC Generation Enable */
834 		PCI_ERR_CAP_ECRC_CHKE;		/* ECRC Check Enable */
835 	p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
836 	return 0;
837 }
838 
839 /* Permissions for Power Budgeting extended capability */
840 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
841 {
842 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
843 		return -ENOMEM;
844 
845 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
846 
847 	/* Writing the data selector is OK, the info is still read-only */
848 	p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
849 	return 0;
850 }
851 
852 /*
853  * Initialize the shared permission tables
854  */
855 void vfio_pci_uninit_perm_bits(void)
856 {
857 	free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
858 
859 	free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
860 	free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
861 	free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
862 	free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
863 	free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
864 
865 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
866 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
867 }
868 
869 int __init vfio_pci_init_perm_bits(void)
870 {
871 	int ret;
872 
873 	/* Basic config space */
874 	ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
875 
876 	/* Capabilities */
877 	ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
878 	ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
879 	ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
880 	cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
881 	ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
882 	ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
883 
884 	/* Extended capabilities */
885 	ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
886 	ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
887 	ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
888 
889 	if (ret)
890 		vfio_pci_uninit_perm_bits();
891 
892 	return ret;
893 }
894 
895 static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
896 {
897 	u8 cap;
898 	int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
899 						 PCI_STD_HEADER_SIZEOF;
900 	cap = vdev->pci_config_map[pos];
901 
902 	if (cap == PCI_CAP_ID_BASIC)
903 		return 0;
904 
905 	/* XXX Can we have to abutting capabilities of the same type? */
906 	while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
907 		pos--;
908 
909 	return pos;
910 }
911 
912 static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
913 				int count, struct perm_bits *perm,
914 				int offset, __le32 *val)
915 {
916 	/* Update max available queue size from msi_qmax */
917 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
918 		__le16 *flags;
919 		int start;
920 
921 		start = vfio_find_cap_start(vdev, pos);
922 
923 		flags = (__le16 *)&vdev->vconfig[start];
924 
925 		*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
926 		*flags |= cpu_to_le16(vdev->msi_qmax << 1);
927 	}
928 
929 	return vfio_default_config_read(vdev, pos, count, perm, offset, val);
930 }
931 
932 static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
933 				 int count, struct perm_bits *perm,
934 				 int offset, __le32 val)
935 {
936 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
937 	if (count < 0)
938 		return count;
939 
940 	/* Fixup and write configured queue size and enable to hardware */
941 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
942 		__le16 *pflags;
943 		u16 flags;
944 		int start, ret;
945 
946 		start = vfio_find_cap_start(vdev, pos);
947 
948 		pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
949 
950 		flags = le16_to_cpu(*pflags);
951 
952 		/* MSI is enabled via ioctl */
953 		if  (!is_msi(vdev))
954 			flags &= ~PCI_MSI_FLAGS_ENABLE;
955 
956 		/* Check queue size */
957 		if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
958 			flags &= ~PCI_MSI_FLAGS_QSIZE;
959 			flags |= vdev->msi_qmax << 4;
960 		}
961 
962 		/* Write back to virt and to hardware */
963 		*pflags = cpu_to_le16(flags);
964 		ret = pci_user_write_config_word(vdev->pdev,
965 						 start + PCI_MSI_FLAGS,
966 						 flags);
967 		if (ret)
968 			return pcibios_err_to_errno(ret);
969 	}
970 
971 	return count;
972 }
973 
974 /*
975  * MSI determination is per-device, so this routine gets used beyond
976  * initialization time. Don't add __init
977  */
978 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
979 {
980 	if (alloc_perm_bits(perm, len))
981 		return -ENOMEM;
982 
983 	perm->readfn = vfio_msi_config_read;
984 	perm->writefn = vfio_msi_config_write;
985 
986 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
987 
988 	/*
989 	 * The upper byte of the control register is reserved,
990 	 * just setup the lower byte.
991 	 */
992 	p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
993 	p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
994 	if (flags & PCI_MSI_FLAGS_64BIT) {
995 		p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
996 		p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
997 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
998 			p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
999 			p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1000 		}
1001 	} else {
1002 		p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1003 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1004 			p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1005 			p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1006 		}
1007 	}
1008 	return 0;
1009 }
1010 
1011 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1012 static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
1013 {
1014 	struct pci_dev *pdev = vdev->pdev;
1015 	int len, ret;
1016 	u16 flags;
1017 
1018 	ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1019 	if (ret)
1020 		return pcibios_err_to_errno(ret);
1021 
1022 	len = 10; /* Minimum size */
1023 	if (flags & PCI_MSI_FLAGS_64BIT)
1024 		len += 4;
1025 	if (flags & PCI_MSI_FLAGS_MASKBIT)
1026 		len += 10;
1027 
1028 	if (vdev->msi_perm)
1029 		return len;
1030 
1031 	vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1032 	if (!vdev->msi_perm)
1033 		return -ENOMEM;
1034 
1035 	ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1036 	if (ret)
1037 		return ret;
1038 
1039 	return len;
1040 }
1041 
1042 /* Determine extended capability length for VC (2 & 9) and MFVC */
1043 static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
1044 {
1045 	struct pci_dev *pdev = vdev->pdev;
1046 	u32 tmp;
1047 	int ret, evcc, phases, vc_arb;
1048 	int len = PCI_CAP_VC_BASE_SIZEOF;
1049 
1050 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1051 	if (ret)
1052 		return pcibios_err_to_errno(ret);
1053 
1054 	evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1055 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1056 	if (ret)
1057 		return pcibios_err_to_errno(ret);
1058 
1059 	if (tmp & PCI_VC_CAP2_128_PHASE)
1060 		phases = 128;
1061 	else if (tmp & PCI_VC_CAP2_64_PHASE)
1062 		phases = 64;
1063 	else if (tmp & PCI_VC_CAP2_32_PHASE)
1064 		phases = 32;
1065 	else
1066 		phases = 0;
1067 
1068 	vc_arb = phases * 4;
1069 
1070 	/*
1071 	 * Port arbitration tables are root & switch only;
1072 	 * function arbitration tables are function 0 only.
1073 	 * In either case, we'll never let user write them so
1074 	 * we don't care how big they are
1075 	 */
1076 	len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1077 	if (vc_arb) {
1078 		len = round_up(len, 16);
1079 		len += vc_arb / 8;
1080 	}
1081 	return len;
1082 }
1083 
1084 static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
1085 {
1086 	struct pci_dev *pdev = vdev->pdev;
1087 	u32 dword;
1088 	u16 word;
1089 	u8 byte;
1090 	int ret;
1091 
1092 	switch (cap) {
1093 	case PCI_CAP_ID_MSI:
1094 		return vfio_msi_cap_len(vdev, pos);
1095 	case PCI_CAP_ID_PCIX:
1096 		ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1097 		if (ret)
1098 			return pcibios_err_to_errno(ret);
1099 
1100 		if (PCI_X_CMD_VERSION(word)) {
1101 			/* Test for extended capabilities */
1102 			pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1103 			vdev->extended_caps = (dword != 0);
1104 			return PCI_CAP_PCIX_SIZEOF_V2;
1105 		} else
1106 			return PCI_CAP_PCIX_SIZEOF_V0;
1107 	case PCI_CAP_ID_VNDR:
1108 		/* length follows next field */
1109 		ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1110 		if (ret)
1111 			return pcibios_err_to_errno(ret);
1112 
1113 		return byte;
1114 	case PCI_CAP_ID_EXP:
1115 		/* Test for extended capabilities */
1116 		pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1117 		vdev->extended_caps = (dword != 0);
1118 
1119 		/* length based on version */
1120 		if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1)
1121 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1122 		else
1123 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1124 	case PCI_CAP_ID_HT:
1125 		ret = pci_read_config_byte(pdev, pos + 3, &byte);
1126 		if (ret)
1127 			return pcibios_err_to_errno(ret);
1128 
1129 		return (byte & HT_3BIT_CAP_MASK) ?
1130 			HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1131 	case PCI_CAP_ID_SATA:
1132 		ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1133 		if (ret)
1134 			return pcibios_err_to_errno(ret);
1135 
1136 		byte &= PCI_SATA_REGS_MASK;
1137 		if (byte == PCI_SATA_REGS_INLINE)
1138 			return PCI_SATA_SIZEOF_LONG;
1139 		else
1140 			return PCI_SATA_SIZEOF_SHORT;
1141 	default:
1142 		pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1143 			dev_name(&pdev->dev), __func__, cap, pos);
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1150 {
1151 	struct pci_dev *pdev = vdev->pdev;
1152 	u8 byte;
1153 	u32 dword;
1154 	int ret;
1155 
1156 	switch (ecap) {
1157 	case PCI_EXT_CAP_ID_VNDR:
1158 		ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1159 		if (ret)
1160 			return pcibios_err_to_errno(ret);
1161 
1162 		return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1163 	case PCI_EXT_CAP_ID_VC:
1164 	case PCI_EXT_CAP_ID_VC9:
1165 	case PCI_EXT_CAP_ID_MFVC:
1166 		return vfio_vc_cap_len(vdev, epos);
1167 	case PCI_EXT_CAP_ID_ACS:
1168 		ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1169 		if (ret)
1170 			return pcibios_err_to_errno(ret);
1171 
1172 		if (byte & PCI_ACS_EC) {
1173 			int bits;
1174 
1175 			ret = pci_read_config_byte(pdev,
1176 						   epos + PCI_ACS_EGRESS_BITS,
1177 						   &byte);
1178 			if (ret)
1179 				return pcibios_err_to_errno(ret);
1180 
1181 			bits = byte ? round_up(byte, 32) : 256;
1182 			return 8 + (bits / 8);
1183 		}
1184 		return 8;
1185 
1186 	case PCI_EXT_CAP_ID_REBAR:
1187 		ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1188 		if (ret)
1189 			return pcibios_err_to_errno(ret);
1190 
1191 		byte &= PCI_REBAR_CTRL_NBAR_MASK;
1192 		byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1193 
1194 		return 4 + (byte * 8);
1195 	case PCI_EXT_CAP_ID_DPA:
1196 		ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1197 		if (ret)
1198 			return pcibios_err_to_errno(ret);
1199 
1200 		byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1201 		return PCI_DPA_BASE_SIZEOF + byte + 1;
1202 	case PCI_EXT_CAP_ID_TPH:
1203 		ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1204 		if (ret)
1205 			return pcibios_err_to_errno(ret);
1206 
1207 		if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1208 			int sts;
1209 
1210 			sts = dword & PCI_TPH_CAP_ST_MASK;
1211 			sts >>= PCI_TPH_CAP_ST_SHIFT;
1212 			return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1213 		}
1214 		return PCI_TPH_BASE_SIZEOF;
1215 	default:
1216 		pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1217 			dev_name(&pdev->dev), __func__, ecap, epos);
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1224 				   int offset, int size)
1225 {
1226 	struct pci_dev *pdev = vdev->pdev;
1227 	int ret = 0;
1228 
1229 	/*
1230 	 * We try to read physical config space in the largest chunks
1231 	 * we can, assuming that all of the fields support dword access.
1232 	 * pci_save_state() makes this same assumption and seems to do ok.
1233 	 */
1234 	while (size) {
1235 		int filled;
1236 
1237 		if (size >= 4 && !(offset % 4)) {
1238 			__le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1239 			u32 dword;
1240 
1241 			ret = pci_read_config_dword(pdev, offset, &dword);
1242 			if (ret)
1243 				return ret;
1244 			*dwordp = cpu_to_le32(dword);
1245 			filled = 4;
1246 		} else if (size >= 2 && !(offset % 2)) {
1247 			__le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1248 			u16 word;
1249 
1250 			ret = pci_read_config_word(pdev, offset, &word);
1251 			if (ret)
1252 				return ret;
1253 			*wordp = cpu_to_le16(word);
1254 			filled = 2;
1255 		} else {
1256 			u8 *byte = &vdev->vconfig[offset];
1257 			ret = pci_read_config_byte(pdev, offset, byte);
1258 			if (ret)
1259 				return ret;
1260 			filled = 1;
1261 		}
1262 
1263 		offset += filled;
1264 		size -= filled;
1265 	}
1266 
1267 	return ret;
1268 }
1269 
1270 static int vfio_cap_init(struct vfio_pci_device *vdev)
1271 {
1272 	struct pci_dev *pdev = vdev->pdev;
1273 	u8 *map = vdev->pci_config_map;
1274 	u16 status;
1275 	u8 pos, *prev, cap;
1276 	int loops, ret, caps = 0;
1277 
1278 	/* Any capabilities? */
1279 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1280 	if (ret)
1281 		return ret;
1282 
1283 	if (!(status & PCI_STATUS_CAP_LIST))
1284 		return 0; /* Done */
1285 
1286 	ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1287 	if (ret)
1288 		return ret;
1289 
1290 	/* Mark the previous position in case we want to skip a capability */
1291 	prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1292 
1293 	/* We can bound our loop, capabilities are dword aligned */
1294 	loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1295 	while (pos && loops--) {
1296 		u8 next;
1297 		int i, len = 0;
1298 
1299 		ret = pci_read_config_byte(pdev, pos, &cap);
1300 		if (ret)
1301 			return ret;
1302 
1303 		ret = pci_read_config_byte(pdev,
1304 					   pos + PCI_CAP_LIST_NEXT, &next);
1305 		if (ret)
1306 			return ret;
1307 
1308 		if (cap <= PCI_CAP_ID_MAX) {
1309 			len = pci_cap_length[cap];
1310 			if (len == 0xFF) { /* Variable length */
1311 				len = vfio_cap_len(vdev, cap, pos);
1312 				if (len < 0)
1313 					return len;
1314 			}
1315 		}
1316 
1317 		if (!len) {
1318 			pr_info("%s: %s hiding cap 0x%x\n",
1319 				__func__, dev_name(&pdev->dev), cap);
1320 			*prev = next;
1321 			pos = next;
1322 			continue;
1323 		}
1324 
1325 		/* Sanity check, do we overlap other capabilities? */
1326 		for (i = 0; i < len; i++) {
1327 			if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1328 				continue;
1329 
1330 			pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1331 				__func__, dev_name(&pdev->dev),
1332 				pos + i, map[pos + i], cap);
1333 		}
1334 
1335 		memset(map + pos, cap, len);
1336 		ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1337 		if (ret)
1338 			return ret;
1339 
1340 		prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1341 		pos = next;
1342 		caps++;
1343 	}
1344 
1345 	/* If we didn't fill any capabilities, clear the status flag */
1346 	if (!caps) {
1347 		__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1348 		*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1349 	}
1350 
1351 	return 0;
1352 }
1353 
1354 static int vfio_ecap_init(struct vfio_pci_device *vdev)
1355 {
1356 	struct pci_dev *pdev = vdev->pdev;
1357 	u8 *map = vdev->pci_config_map;
1358 	u16 epos;
1359 	__le32 *prev = NULL;
1360 	int loops, ret, ecaps = 0;
1361 
1362 	if (!vdev->extended_caps)
1363 		return 0;
1364 
1365 	epos = PCI_CFG_SPACE_SIZE;
1366 
1367 	loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1368 
1369 	while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1370 		u32 header;
1371 		u16 ecap;
1372 		int i, len = 0;
1373 		bool hidden = false;
1374 
1375 		ret = pci_read_config_dword(pdev, epos, &header);
1376 		if (ret)
1377 			return ret;
1378 
1379 		ecap = PCI_EXT_CAP_ID(header);
1380 
1381 		if (ecap <= PCI_EXT_CAP_ID_MAX) {
1382 			len = pci_ext_cap_length[ecap];
1383 			if (len == 0xFF) {
1384 				len = vfio_ext_cap_len(vdev, ecap, epos);
1385 				if (len < 0)
1386 					return ret;
1387 			}
1388 		}
1389 
1390 		if (!len) {
1391 			pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1392 				__func__, dev_name(&pdev->dev), ecap, epos);
1393 
1394 			/* If not the first in the chain, we can skip over it */
1395 			if (prev) {
1396 				u32 val = epos = PCI_EXT_CAP_NEXT(header);
1397 				*prev &= cpu_to_le32(~(0xffcU << 20));
1398 				*prev |= cpu_to_le32(val << 20);
1399 				continue;
1400 			}
1401 
1402 			/*
1403 			 * Otherwise, fill in a placeholder, the direct
1404 			 * readfn will virtualize this automatically
1405 			 */
1406 			len = PCI_CAP_SIZEOF;
1407 			hidden = true;
1408 		}
1409 
1410 		for (i = 0; i < len; i++) {
1411 			if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1412 				continue;
1413 
1414 			pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1415 				__func__, dev_name(&pdev->dev),
1416 				epos + i, map[epos + i], ecap);
1417 		}
1418 
1419 		/*
1420 		 * Even though ecap is 2 bytes, we're currently a long way
1421 		 * from exceeding 1 byte capabilities.  If we ever make it
1422 		 * up to 0xFF we'll need to up this to a two-byte, byte map.
1423 		 */
1424 		BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID);
1425 
1426 		memset(map + epos, ecap, len);
1427 		ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1428 		if (ret)
1429 			return ret;
1430 
1431 		/*
1432 		 * If we're just using this capability to anchor the list,
1433 		 * hide the real ID.  Only count real ecaps.  XXX PCI spec
1434 		 * indicates to use cap id = 0, version = 0, next = 0 if
1435 		 * ecaps are absent, hope users check all the way to next.
1436 		 */
1437 		if (hidden)
1438 			*(__le32 *)&vdev->vconfig[epos] &=
1439 				cpu_to_le32((0xffcU << 20));
1440 		else
1441 			ecaps++;
1442 
1443 		prev = (__le32 *)&vdev->vconfig[epos];
1444 		epos = PCI_EXT_CAP_NEXT(header);
1445 	}
1446 
1447 	if (!ecaps)
1448 		*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1449 
1450 	return 0;
1451 }
1452 
1453 /*
1454  * For each device we allocate a pci_config_map that indicates the
1455  * capability occupying each dword and thus the struct perm_bits we
1456  * use for read and write.  We also allocate a virtualized config
1457  * space which tracks reads and writes to bits that we emulate for
1458  * the user.  Initial values filled from device.
1459  *
1460  * Using shared stuct perm_bits between all vfio-pci devices saves
1461  * us from allocating cfg_size buffers for virt and write for every
1462  * device.  We could remove vconfig and allocate individual buffers
1463  * for each area requring emulated bits, but the array of pointers
1464  * would be comparable in size (at least for standard config space).
1465  */
1466 int vfio_config_init(struct vfio_pci_device *vdev)
1467 {
1468 	struct pci_dev *pdev = vdev->pdev;
1469 	u8 *map, *vconfig;
1470 	int ret;
1471 
1472 	/*
1473 	 * Config space, caps and ecaps are all dword aligned, so we could
1474 	 * use one byte per dword to record the type.  However, there are
1475 	 * no requiremenst on the length of a capability, so the gap between
1476 	 * capabilities needs byte granularity.
1477 	 */
1478 	map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1479 	if (!map)
1480 		return -ENOMEM;
1481 
1482 	vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1483 	if (!vconfig) {
1484 		kfree(map);
1485 		return -ENOMEM;
1486 	}
1487 
1488 	vdev->pci_config_map = map;
1489 	vdev->vconfig = vconfig;
1490 
1491 	memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1492 	memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1493 	       pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1494 
1495 	ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1496 	if (ret)
1497 		goto out;
1498 
1499 	vdev->bardirty = true;
1500 
1501 	/*
1502 	 * XXX can we just pci_load_saved_state/pci_restore_state?
1503 	 * may need to rebuild vconfig after that
1504 	 */
1505 
1506 	/* For restore after reset */
1507 	vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1508 	vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1509 	vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1510 	vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1511 	vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1512 	vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1513 	vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1514 
1515 	if (pdev->is_virtfn) {
1516 		*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1517 		*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1518 	}
1519 
1520 	if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX))
1521 		vconfig[PCI_INTERRUPT_PIN] = 0;
1522 
1523 	ret = vfio_cap_init(vdev);
1524 	if (ret)
1525 		goto out;
1526 
1527 	ret = vfio_ecap_init(vdev);
1528 	if (ret)
1529 		goto out;
1530 
1531 	return 0;
1532 
1533 out:
1534 	kfree(map);
1535 	vdev->pci_config_map = NULL;
1536 	kfree(vconfig);
1537 	vdev->vconfig = NULL;
1538 	return pcibios_err_to_errno(ret);
1539 }
1540 
1541 void vfio_config_free(struct vfio_pci_device *vdev)
1542 {
1543 	kfree(vdev->vconfig);
1544 	vdev->vconfig = NULL;
1545 	kfree(vdev->pci_config_map);
1546 	vdev->pci_config_map = NULL;
1547 	kfree(vdev->msi_perm);
1548 	vdev->msi_perm = NULL;
1549 }
1550 
1551 /*
1552  * Find the remaining number of bytes in a dword that match the given
1553  * position.  Stop at either the end of the capability or the dword boundary.
1554  */
1555 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
1556 					   loff_t pos)
1557 {
1558 	u8 cap = vdev->pci_config_map[pos];
1559 	size_t i;
1560 
1561 	for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1562 		/* nop */;
1563 
1564 	return i;
1565 }
1566 
1567 static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1568 				 size_t count, loff_t *ppos, bool iswrite)
1569 {
1570 	struct pci_dev *pdev = vdev->pdev;
1571 	struct perm_bits *perm;
1572 	__le32 val = 0;
1573 	int cap_start = 0, offset;
1574 	u8 cap_id;
1575 	ssize_t ret;
1576 
1577 	if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1578 	    *ppos + count > pdev->cfg_size)
1579 		return -EFAULT;
1580 
1581 	/*
1582 	 * Chop accesses into aligned chunks containing no more than a
1583 	 * single capability.  Caller increments to the next chunk.
1584 	 */
1585 	count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1586 	if (count >= 4 && !(*ppos % 4))
1587 		count = 4;
1588 	else if (count >= 2 && !(*ppos % 2))
1589 		count = 2;
1590 	else
1591 		count = 1;
1592 
1593 	ret = count;
1594 
1595 	cap_id = vdev->pci_config_map[*ppos];
1596 
1597 	if (cap_id == PCI_CAP_ID_INVALID) {
1598 		perm = &unassigned_perms;
1599 		cap_start = *ppos;
1600 	} else {
1601 		if (*ppos >= PCI_CFG_SPACE_SIZE) {
1602 			WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1603 
1604 			perm = &ecap_perms[cap_id];
1605 			cap_start = vfio_find_cap_start(vdev, *ppos);
1606 		} else {
1607 			WARN_ON(cap_id > PCI_CAP_ID_MAX);
1608 
1609 			perm = &cap_perms[cap_id];
1610 
1611 			if (cap_id == PCI_CAP_ID_MSI)
1612 				perm = vdev->msi_perm;
1613 
1614 			if (cap_id > PCI_CAP_ID_BASIC)
1615 				cap_start = vfio_find_cap_start(vdev, *ppos);
1616 		}
1617 	}
1618 
1619 	WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1620 	WARN_ON(cap_start > *ppos);
1621 
1622 	offset = *ppos - cap_start;
1623 
1624 	if (iswrite) {
1625 		if (!perm->writefn)
1626 			return ret;
1627 
1628 		if (copy_from_user(&val, buf, count))
1629 			return -EFAULT;
1630 
1631 		ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1632 	} else {
1633 		if (perm->readfn) {
1634 			ret = perm->readfn(vdev, *ppos, count,
1635 					   perm, offset, &val);
1636 			if (ret < 0)
1637 				return ret;
1638 		}
1639 
1640 		if (copy_to_user(buf, &val, count))
1641 			return -EFAULT;
1642 	}
1643 
1644 	return ret;
1645 }
1646 
1647 ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1648 			   size_t count, loff_t *ppos, bool iswrite)
1649 {
1650 	size_t done = 0;
1651 	int ret = 0;
1652 	loff_t pos = *ppos;
1653 
1654 	pos &= VFIO_PCI_OFFSET_MASK;
1655 
1656 	while (count) {
1657 		ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1658 		if (ret < 0)
1659 			return ret;
1660 
1661 		count -= ret;
1662 		done += ret;
1663 		buf += ret;
1664 		pos += ret;
1665 	}
1666 
1667 	*ppos += done;
1668 
1669 	return done;
1670 }
1671