1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VFIO PCI config space virtualization
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * Derived from original vfio:
9  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
10  * Author: Tom Lyon, pugs@cisco.com
11  */
12 
13 /*
14  * This code handles reading and writing of PCI configuration registers.
15  * This is hairy because we want to allow a lot of flexibility to the
16  * user driver, but cannot trust it with all of the config fields.
17  * Tables determine which fields can be read and written, as well as
18  * which fields are 'virtualized' - special actions and translations to
19  * make it appear to the user that he has control, when in fact things
20  * must be negotiated with the underlying OS.
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/pci.h>
25 #include <linux/uaccess.h>
26 #include <linux/vfio.h>
27 #include <linux/slab.h>
28 
29 #include "vfio_pci_private.h"
30 
31 /* Fake capability ID for standard config space */
32 #define PCI_CAP_ID_BASIC	0
33 
34 #define is_bar(offset)	\
35 	((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
36 	 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
37 
38 /*
39  * Lengths of PCI Config Capabilities
40  *   0: Removed from the user visible capability list
41  *   FF: Variable length
42  */
43 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
44 	[PCI_CAP_ID_BASIC]	= PCI_STD_HEADER_SIZEOF, /* pci config header */
45 	[PCI_CAP_ID_PM]		= PCI_PM_SIZEOF,
46 	[PCI_CAP_ID_AGP]	= PCI_AGP_SIZEOF,
47 	[PCI_CAP_ID_VPD]	= PCI_CAP_VPD_SIZEOF,
48 	[PCI_CAP_ID_SLOTID]	= 0,		/* bridge - don't care */
49 	[PCI_CAP_ID_MSI]	= 0xFF,		/* 10, 14, 20, or 24 */
50 	[PCI_CAP_ID_CHSWP]	= 0,		/* cpci - not yet */
51 	[PCI_CAP_ID_PCIX]	= 0xFF,		/* 8 or 24 */
52 	[PCI_CAP_ID_HT]		= 0xFF,		/* hypertransport */
53 	[PCI_CAP_ID_VNDR]	= 0xFF,		/* variable */
54 	[PCI_CAP_ID_DBG]	= 0,		/* debug - don't care */
55 	[PCI_CAP_ID_CCRC]	= 0,		/* cpci - not yet */
56 	[PCI_CAP_ID_SHPC]	= 0,		/* hotswap - not yet */
57 	[PCI_CAP_ID_SSVID]	= 0,		/* bridge - don't care */
58 	[PCI_CAP_ID_AGP3]	= 0,		/* AGP8x - not yet */
59 	[PCI_CAP_ID_SECDEV]	= 0,		/* secure device not yet */
60 	[PCI_CAP_ID_EXP]	= 0xFF,		/* 20 or 44 */
61 	[PCI_CAP_ID_MSIX]	= PCI_CAP_MSIX_SIZEOF,
62 	[PCI_CAP_ID_SATA]	= 0xFF,
63 	[PCI_CAP_ID_AF]		= PCI_CAP_AF_SIZEOF,
64 };
65 
66 /*
67  * Lengths of PCIe/PCI-X Extended Config Capabilities
68  *   0: Removed or masked from the user visible capability list
69  *   FF: Variable length
70  */
71 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
72 	[PCI_EXT_CAP_ID_ERR]	=	PCI_ERR_ROOT_COMMAND,
73 	[PCI_EXT_CAP_ID_VC]	=	0xFF,
74 	[PCI_EXT_CAP_ID_DSN]	=	PCI_EXT_CAP_DSN_SIZEOF,
75 	[PCI_EXT_CAP_ID_PWR]	=	PCI_EXT_CAP_PWR_SIZEOF,
76 	[PCI_EXT_CAP_ID_RCLD]	=	0,	/* root only - don't care */
77 	[PCI_EXT_CAP_ID_RCILC]	=	0,	/* root only - don't care */
78 	[PCI_EXT_CAP_ID_RCEC]	=	0,	/* root only - don't care */
79 	[PCI_EXT_CAP_ID_MFVC]	=	0xFF,
80 	[PCI_EXT_CAP_ID_VC9]	=	0xFF,	/* same as CAP_ID_VC */
81 	[PCI_EXT_CAP_ID_RCRB]	=	0,	/* root only - don't care */
82 	[PCI_EXT_CAP_ID_VNDR]	=	0xFF,
83 	[PCI_EXT_CAP_ID_CAC]	=	0,	/* obsolete */
84 	[PCI_EXT_CAP_ID_ACS]	=	0xFF,
85 	[PCI_EXT_CAP_ID_ARI]	=	PCI_EXT_CAP_ARI_SIZEOF,
86 	[PCI_EXT_CAP_ID_ATS]	=	PCI_EXT_CAP_ATS_SIZEOF,
87 	[PCI_EXT_CAP_ID_SRIOV]	=	PCI_EXT_CAP_SRIOV_SIZEOF,
88 	[PCI_EXT_CAP_ID_MRIOV]	=	0,	/* not yet */
89 	[PCI_EXT_CAP_ID_MCAST]	=	PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
90 	[PCI_EXT_CAP_ID_PRI]	=	PCI_EXT_CAP_PRI_SIZEOF,
91 	[PCI_EXT_CAP_ID_AMD_XXX] =	0,	/* not yet */
92 	[PCI_EXT_CAP_ID_REBAR]	=	0xFF,
93 	[PCI_EXT_CAP_ID_DPA]	=	0xFF,
94 	[PCI_EXT_CAP_ID_TPH]	=	0xFF,
95 	[PCI_EXT_CAP_ID_LTR]	=	PCI_EXT_CAP_LTR_SIZEOF,
96 	[PCI_EXT_CAP_ID_SECPCI]	=	0,	/* not yet */
97 	[PCI_EXT_CAP_ID_PMUX]	=	0,	/* not yet */
98 	[PCI_EXT_CAP_ID_PASID]	=	0,	/* not yet */
99 };
100 
101 /*
102  * Read/Write Permission Bits - one bit for each bit in capability
103  * Any field can be read if it exists, but what is read depends on
104  * whether the field is 'virtualized', or just pass thru to the
105  * hardware.  Any virtualized field is also virtualized for writes.
106  * Writes are only permitted if they have a 1 bit here.
107  */
108 struct perm_bits {
109 	u8	*virt;		/* read/write virtual data, not hw */
110 	u8	*write;		/* writeable bits */
111 	int	(*readfn)(struct vfio_pci_device *vdev, int pos, int count,
112 			  struct perm_bits *perm, int offset, __le32 *val);
113 	int	(*writefn)(struct vfio_pci_device *vdev, int pos, int count,
114 			   struct perm_bits *perm, int offset, __le32 val);
115 };
116 
117 #define	NO_VIRT		0
118 #define	ALL_VIRT	0xFFFFFFFFU
119 #define	NO_WRITE	0
120 #define	ALL_WRITE	0xFFFFFFFFU
121 
122 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
123 				 __le32 *val, int count)
124 {
125 	int ret = -EINVAL;
126 	u32 tmp_val = 0;
127 
128 	switch (count) {
129 	case 1:
130 	{
131 		u8 tmp;
132 		ret = pci_user_read_config_byte(pdev, offset, &tmp);
133 		tmp_val = tmp;
134 		break;
135 	}
136 	case 2:
137 	{
138 		u16 tmp;
139 		ret = pci_user_read_config_word(pdev, offset, &tmp);
140 		tmp_val = tmp;
141 		break;
142 	}
143 	case 4:
144 		ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
145 		break;
146 	}
147 
148 	*val = cpu_to_le32(tmp_val);
149 
150 	return ret;
151 }
152 
153 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
154 				  __le32 val, int count)
155 {
156 	int ret = -EINVAL;
157 	u32 tmp_val = le32_to_cpu(val);
158 
159 	switch (count) {
160 	case 1:
161 		ret = pci_user_write_config_byte(pdev, offset, tmp_val);
162 		break;
163 	case 2:
164 		ret = pci_user_write_config_word(pdev, offset, tmp_val);
165 		break;
166 	case 4:
167 		ret = pci_user_write_config_dword(pdev, offset, tmp_val);
168 		break;
169 	}
170 
171 	return ret;
172 }
173 
174 static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
175 				    int count, struct perm_bits *perm,
176 				    int offset, __le32 *val)
177 {
178 	__le32 virt = 0;
179 
180 	memcpy(val, vdev->vconfig + pos, count);
181 
182 	memcpy(&virt, perm->virt + offset, count);
183 
184 	/* Any non-virtualized bits? */
185 	if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
186 		struct pci_dev *pdev = vdev->pdev;
187 		__le32 phys_val = 0;
188 		int ret;
189 
190 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
191 		if (ret)
192 			return ret;
193 
194 		*val = (phys_val & ~virt) | (*val & virt);
195 	}
196 
197 	return count;
198 }
199 
200 static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
201 				     int count, struct perm_bits *perm,
202 				     int offset, __le32 val)
203 {
204 	__le32 virt = 0, write = 0;
205 
206 	memcpy(&write, perm->write + offset, count);
207 
208 	if (!write)
209 		return count; /* drop, no writable bits */
210 
211 	memcpy(&virt, perm->virt + offset, count);
212 
213 	/* Virtualized and writable bits go to vconfig */
214 	if (write & virt) {
215 		__le32 virt_val = 0;
216 
217 		memcpy(&virt_val, vdev->vconfig + pos, count);
218 
219 		virt_val &= ~(write & virt);
220 		virt_val |= (val & (write & virt));
221 
222 		memcpy(vdev->vconfig + pos, &virt_val, count);
223 	}
224 
225 	/* Non-virtualzed and writable bits go to hardware */
226 	if (write & ~virt) {
227 		struct pci_dev *pdev = vdev->pdev;
228 		__le32 phys_val = 0;
229 		int ret;
230 
231 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
232 		if (ret)
233 			return ret;
234 
235 		phys_val &= ~(write & ~virt);
236 		phys_val |= (val & (write & ~virt));
237 
238 		ret = vfio_user_config_write(pdev, pos, phys_val, count);
239 		if (ret)
240 			return ret;
241 	}
242 
243 	return count;
244 }
245 
246 /* Allow direct read from hardware, except for capability next pointer */
247 static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
248 				   int count, struct perm_bits *perm,
249 				   int offset, __le32 *val)
250 {
251 	int ret;
252 
253 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
254 	if (ret)
255 		return ret;
256 
257 	if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
258 		if (offset < 4)
259 			memcpy(val, vdev->vconfig + pos, count);
260 	} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
261 		if (offset == PCI_CAP_LIST_ID && count > 1)
262 			memcpy(val, vdev->vconfig + pos,
263 			       min(PCI_CAP_FLAGS, count));
264 		else if (offset == PCI_CAP_LIST_NEXT)
265 			memcpy(val, vdev->vconfig + pos, 1);
266 	}
267 
268 	return count;
269 }
270 
271 /* Raw access skips any kind of virtualization */
272 static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
273 				 int count, struct perm_bits *perm,
274 				 int offset, __le32 val)
275 {
276 	int ret;
277 
278 	ret = vfio_user_config_write(vdev->pdev, pos, val, count);
279 	if (ret)
280 		return ret;
281 
282 	return count;
283 }
284 
285 static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
286 				int count, struct perm_bits *perm,
287 				int offset, __le32 *val)
288 {
289 	int ret;
290 
291 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
292 	if (ret)
293 		return ret;
294 
295 	return count;
296 }
297 
298 /* Virt access uses only virtualization */
299 static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos,
300 				  int count, struct perm_bits *perm,
301 				  int offset, __le32 val)
302 {
303 	memcpy(vdev->vconfig + pos, &val, count);
304 	return count;
305 }
306 
307 static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos,
308 				 int count, struct perm_bits *perm,
309 				 int offset, __le32 *val)
310 {
311 	memcpy(val, vdev->vconfig + pos, count);
312 	return count;
313 }
314 
315 /* Default capability regions to read-only, no-virtualization */
316 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
317 	[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
318 };
319 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
320 	[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
321 };
322 /*
323  * Default unassigned regions to raw read-write access.  Some devices
324  * require this to function as they hide registers between the gaps in
325  * config space (be2net).  Like MMIO and I/O port registers, we have
326  * to trust the hardware isolation.
327  */
328 static struct perm_bits unassigned_perms = {
329 	.readfn = vfio_raw_config_read,
330 	.writefn = vfio_raw_config_write
331 };
332 
333 static struct perm_bits virt_perms = {
334 	.readfn = vfio_virt_config_read,
335 	.writefn = vfio_virt_config_write
336 };
337 
338 static void free_perm_bits(struct perm_bits *perm)
339 {
340 	kfree(perm->virt);
341 	kfree(perm->write);
342 	perm->virt = NULL;
343 	perm->write = NULL;
344 }
345 
346 static int alloc_perm_bits(struct perm_bits *perm, int size)
347 {
348 	/*
349 	 * Round up all permission bits to the next dword, this lets us
350 	 * ignore whether a read/write exceeds the defined capability
351 	 * structure.  We can do this because:
352 	 *  - Standard config space is already dword aligned
353 	 *  - Capabilities are all dword aligned (bits 0:1 of next reserved)
354 	 *  - Express capabilities defined as dword aligned
355 	 */
356 	size = round_up(size, 4);
357 
358 	/*
359 	 * Zero state is
360 	 * - All Readable, None Writeable, None Virtualized
361 	 */
362 	perm->virt = kzalloc(size, GFP_KERNEL);
363 	perm->write = kzalloc(size, GFP_KERNEL);
364 	if (!perm->virt || !perm->write) {
365 		free_perm_bits(perm);
366 		return -ENOMEM;
367 	}
368 
369 	perm->readfn = vfio_default_config_read;
370 	perm->writefn = vfio_default_config_write;
371 
372 	return 0;
373 }
374 
375 /*
376  * Helper functions for filling in permission tables
377  */
378 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
379 {
380 	p->virt[off] = virt;
381 	p->write[off] = write;
382 }
383 
384 /* Handle endian-ness - pci and tables are little-endian */
385 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
386 {
387 	*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
388 	*(__le16 *)(&p->write[off]) = cpu_to_le16(write);
389 }
390 
391 /* Handle endian-ness - pci and tables are little-endian */
392 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
393 {
394 	*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
395 	*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
396 }
397 
398 /*
399  * Restore the *real* BARs after we detect a FLR or backdoor reset.
400  * (backdoor = some device specific technique that we didn't catch)
401  */
402 static void vfio_bar_restore(struct vfio_pci_device *vdev)
403 {
404 	struct pci_dev *pdev = vdev->pdev;
405 	u32 *rbar = vdev->rbar;
406 	u16 cmd;
407 	int i;
408 
409 	if (pdev->is_virtfn)
410 		return;
411 
412 	pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__);
413 
414 	for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
415 		pci_user_write_config_dword(pdev, i, *rbar);
416 
417 	pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
418 
419 	if (vdev->nointx) {
420 		pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
421 		cmd |= PCI_COMMAND_INTX_DISABLE;
422 		pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
423 	}
424 }
425 
426 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
427 {
428 	unsigned long flags = pci_resource_flags(pdev, bar);
429 	u32 val;
430 
431 	if (flags & IORESOURCE_IO)
432 		return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
433 
434 	val = PCI_BASE_ADDRESS_SPACE_MEMORY;
435 
436 	if (flags & IORESOURCE_PREFETCH)
437 		val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
438 
439 	if (flags & IORESOURCE_MEM_64)
440 		val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
441 
442 	return cpu_to_le32(val);
443 }
444 
445 /*
446  * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
447  * to reflect the hardware capabilities.  This implements BAR sizing.
448  */
449 static void vfio_bar_fixup(struct vfio_pci_device *vdev)
450 {
451 	struct pci_dev *pdev = vdev->pdev;
452 	int i;
453 	__le32 *bar;
454 	u64 mask;
455 
456 	bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
457 
458 	for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
459 		if (!pci_resource_start(pdev, i)) {
460 			*bar = 0; /* Unmapped by host = unimplemented to user */
461 			continue;
462 		}
463 
464 		mask = ~(pci_resource_len(pdev, i) - 1);
465 
466 		*bar &= cpu_to_le32((u32)mask);
467 		*bar |= vfio_generate_bar_flags(pdev, i);
468 
469 		if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
470 			bar++;
471 			*bar &= cpu_to_le32((u32)(mask >> 32));
472 			i++;
473 		}
474 	}
475 
476 	bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
477 
478 	/*
479 	 * NB. REGION_INFO will have reported zero size if we weren't able
480 	 * to read the ROM, but we still return the actual BAR size here if
481 	 * it exists (or the shadow ROM space).
482 	 */
483 	if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
484 		mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
485 		mask |= PCI_ROM_ADDRESS_ENABLE;
486 		*bar &= cpu_to_le32((u32)mask);
487 	} else if (pdev->resource[PCI_ROM_RESOURCE].flags &
488 					IORESOURCE_ROM_SHADOW) {
489 		mask = ~(0x20000 - 1);
490 		mask |= PCI_ROM_ADDRESS_ENABLE;
491 		*bar &= cpu_to_le32((u32)mask);
492 	} else
493 		*bar = 0;
494 
495 	vdev->bardirty = false;
496 }
497 
498 static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
499 				  int count, struct perm_bits *perm,
500 				  int offset, __le32 *val)
501 {
502 	if (is_bar(offset)) /* pos == offset for basic config */
503 		vfio_bar_fixup(vdev);
504 
505 	count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
506 
507 	/* Mask in virtual memory enable for SR-IOV devices */
508 	if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
509 		u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
510 		u32 tmp_val = le32_to_cpu(*val);
511 
512 		tmp_val |= cmd & PCI_COMMAND_MEMORY;
513 		*val = cpu_to_le32(tmp_val);
514 	}
515 
516 	return count;
517 }
518 
519 /* Test whether BARs match the value we think they should contain */
520 static bool vfio_need_bar_restore(struct vfio_pci_device *vdev)
521 {
522 	int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
523 	u32 bar;
524 
525 	for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
526 		if (vdev->rbar[i]) {
527 			ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
528 			if (ret || vdev->rbar[i] != bar)
529 				return true;
530 		}
531 	}
532 
533 	return false;
534 }
535 
536 static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
537 				   int count, struct perm_bits *perm,
538 				   int offset, __le32 val)
539 {
540 	struct pci_dev *pdev = vdev->pdev;
541 	__le16 *virt_cmd;
542 	u16 new_cmd = 0;
543 	int ret;
544 
545 	virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
546 
547 	if (offset == PCI_COMMAND) {
548 		bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
549 		u16 phys_cmd;
550 
551 		ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
552 		if (ret)
553 			return ret;
554 
555 		new_cmd = le32_to_cpu(val);
556 
557 		phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
558 		virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
559 		new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
560 
561 		phys_io = !!(phys_cmd & PCI_COMMAND_IO);
562 		virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
563 		new_io = !!(new_cmd & PCI_COMMAND_IO);
564 
565 		/*
566 		 * If the user is writing mem/io enable (new_mem/io) and we
567 		 * think it's already enabled (virt_mem/io), but the hardware
568 		 * shows it disabled (phys_mem/io, then the device has
569 		 * undergone some kind of backdoor reset and needs to be
570 		 * restored before we allow it to enable the bars.
571 		 * SR-IOV devices will trigger this, but we catch them later
572 		 */
573 		if ((new_mem && virt_mem && !phys_mem) ||
574 		    (new_io && virt_io && !phys_io) ||
575 		    vfio_need_bar_restore(vdev))
576 			vfio_bar_restore(vdev);
577 	}
578 
579 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
580 	if (count < 0)
581 		return count;
582 
583 	/*
584 	 * Save current memory/io enable bits in vconfig to allow for
585 	 * the test above next time.
586 	 */
587 	if (offset == PCI_COMMAND) {
588 		u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
589 
590 		*virt_cmd &= cpu_to_le16(~mask);
591 		*virt_cmd |= cpu_to_le16(new_cmd & mask);
592 	}
593 
594 	/* Emulate INTx disable */
595 	if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
596 		bool virt_intx_disable;
597 
598 		virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
599 				       PCI_COMMAND_INTX_DISABLE);
600 
601 		if (virt_intx_disable && !vdev->virq_disabled) {
602 			vdev->virq_disabled = true;
603 			vfio_pci_intx_mask(vdev);
604 		} else if (!virt_intx_disable && vdev->virq_disabled) {
605 			vdev->virq_disabled = false;
606 			vfio_pci_intx_unmask(vdev);
607 		}
608 	}
609 
610 	if (is_bar(offset))
611 		vdev->bardirty = true;
612 
613 	return count;
614 }
615 
616 /* Permissions for the Basic PCI Header */
617 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
618 {
619 	if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
620 		return -ENOMEM;
621 
622 	perm->readfn = vfio_basic_config_read;
623 	perm->writefn = vfio_basic_config_write;
624 
625 	/* Virtualized for SR-IOV functions, which just have FFFF */
626 	p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
627 	p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
628 
629 	/*
630 	 * Virtualize INTx disable, we use it internally for interrupt
631 	 * control and can emulate it for non-PCI 2.3 devices.
632 	 */
633 	p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
634 
635 	/* Virtualize capability list, we might want to skip/disable */
636 	p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
637 
638 	/* No harm to write */
639 	p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
640 	p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
641 	p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
642 
643 	/* Virtualize all bars, can't touch the real ones */
644 	p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
645 	p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
646 	p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
647 	p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
648 	p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
649 	p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
650 	p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
651 
652 	/* Allow us to adjust capability chain */
653 	p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
654 
655 	/* Sometimes used by sw, just virtualize */
656 	p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
657 
658 	/* Virtualize interrupt pin to allow hiding INTx */
659 	p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
660 
661 	return 0;
662 }
663 
664 static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
665 				int count, struct perm_bits *perm,
666 				int offset, __le32 val)
667 {
668 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
669 	if (count < 0)
670 		return count;
671 
672 	if (offset == PCI_PM_CTRL) {
673 		pci_power_t state;
674 
675 		switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
676 		case 0:
677 			state = PCI_D0;
678 			break;
679 		case 1:
680 			state = PCI_D1;
681 			break;
682 		case 2:
683 			state = PCI_D2;
684 			break;
685 		case 3:
686 			state = PCI_D3hot;
687 			break;
688 		}
689 
690 		vfio_pci_set_power_state(vdev, state);
691 	}
692 
693 	return count;
694 }
695 
696 /* Permissions for the Power Management capability */
697 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
698 {
699 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
700 		return -ENOMEM;
701 
702 	perm->writefn = vfio_pm_config_write;
703 
704 	/*
705 	 * We always virtualize the next field so we can remove
706 	 * capabilities from the chain if we want to.
707 	 */
708 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
709 
710 	/*
711 	 * Power management is defined *per function*, so we can let
712 	 * the user change power state, but we trap and initiate the
713 	 * change ourselves, so the state bits are read-only.
714 	 */
715 	p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
716 	return 0;
717 }
718 
719 static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
720 				 int count, struct perm_bits *perm,
721 				 int offset, __le32 val)
722 {
723 	struct pci_dev *pdev = vdev->pdev;
724 	__le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
725 	__le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
726 	u16 addr;
727 	u32 data;
728 
729 	/*
730 	 * Write through to emulation.  If the write includes the upper byte
731 	 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
732 	 * have work to do.
733 	 */
734 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
735 	if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
736 	    offset + count <= PCI_VPD_ADDR + 1)
737 		return count;
738 
739 	addr = le16_to_cpu(*paddr);
740 
741 	if (addr & PCI_VPD_ADDR_F) {
742 		data = le32_to_cpu(*pdata);
743 		if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
744 			return count;
745 	} else {
746 		data = 0;
747 		if (pci_read_vpd(pdev, addr, 4, &data) < 0)
748 			return count;
749 		*pdata = cpu_to_le32(data);
750 	}
751 
752 	/*
753 	 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
754 	 * signal completion.  If an error occurs above, we assume that not
755 	 * toggling this bit will induce a driver timeout.
756 	 */
757 	addr ^= PCI_VPD_ADDR_F;
758 	*paddr = cpu_to_le16(addr);
759 
760 	return count;
761 }
762 
763 /* Permissions for Vital Product Data capability */
764 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
765 {
766 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
767 		return -ENOMEM;
768 
769 	perm->writefn = vfio_vpd_config_write;
770 
771 	/*
772 	 * We always virtualize the next field so we can remove
773 	 * capabilities from the chain if we want to.
774 	 */
775 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
776 
777 	/*
778 	 * Both the address and data registers are virtualized to
779 	 * enable access through the pci_vpd_read/write functions
780 	 */
781 	p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
782 	p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
783 
784 	return 0;
785 }
786 
787 /* Permissions for PCI-X capability */
788 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
789 {
790 	/* Alloc 24, but only 8 are used in v0 */
791 	if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
792 		return -ENOMEM;
793 
794 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
795 
796 	p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
797 	p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
798 	return 0;
799 }
800 
801 static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos,
802 				 int count, struct perm_bits *perm,
803 				 int offset, __le32 val)
804 {
805 	__le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
806 				  offset + PCI_EXP_DEVCTL);
807 	int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
808 
809 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
810 	if (count < 0)
811 		return count;
812 
813 	/*
814 	 * The FLR bit is virtualized, if set and the device supports PCIe
815 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
816 	 * requires it to be always read as zero.  NB, reset_function might
817 	 * not use a PCIe FLR, we don't have that level of granularity.
818 	 */
819 	if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
820 		u32 cap;
821 		int ret;
822 
823 		*ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
824 
825 		ret = pci_user_read_config_dword(vdev->pdev,
826 						 pos - offset + PCI_EXP_DEVCAP,
827 						 &cap);
828 
829 		if (!ret && (cap & PCI_EXP_DEVCAP_FLR))
830 			pci_try_reset_function(vdev->pdev);
831 	}
832 
833 	/*
834 	 * MPS is virtualized to the user, writes do not change the physical
835 	 * register since determining a proper MPS value requires a system wide
836 	 * device view.  The MRRS is largely independent of MPS, but since the
837 	 * user does not have that system-wide view, they might set a safe, but
838 	 * inefficiently low value.  Here we allow writes through to hardware,
839 	 * but we set the floor to the physical device MPS setting, so that
840 	 * we can at least use full TLPs, as defined by the MPS value.
841 	 *
842 	 * NB, if any devices actually depend on an artificially low MRRS
843 	 * setting, this will need to be revisited, perhaps with a quirk
844 	 * though pcie_set_readrq().
845 	 */
846 	if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
847 		readrq = 128 <<
848 			((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
849 		readrq = max(readrq, pcie_get_mps(vdev->pdev));
850 
851 		pcie_set_readrq(vdev->pdev, readrq);
852 	}
853 
854 	return count;
855 }
856 
857 /* Permissions for PCI Express capability */
858 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
859 {
860 	/* Alloc largest of possible sizes */
861 	if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
862 		return -ENOMEM;
863 
864 	perm->writefn = vfio_exp_config_write;
865 
866 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
867 
868 	/*
869 	 * Allow writes to device control fields, except devctl_phantom,
870 	 * which could confuse IOMMU, MPS, which can break communication
871 	 * with other physical devices, and the ARI bit in devctl2, which
872 	 * is set at probe time.  FLR and MRRS get virtualized via our
873 	 * writefn.
874 	 */
875 	p_setw(perm, PCI_EXP_DEVCTL,
876 	       PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
877 	       PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
878 	p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
879 	return 0;
880 }
881 
882 static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos,
883 				int count, struct perm_bits *perm,
884 				int offset, __le32 val)
885 {
886 	u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
887 
888 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
889 	if (count < 0)
890 		return count;
891 
892 	/*
893 	 * The FLR bit is virtualized, if set and the device supports AF
894 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
895 	 * requires it to be always read as zero.  NB, reset_function might
896 	 * not use an AF FLR, we don't have that level of granularity.
897 	 */
898 	if (*ctrl & PCI_AF_CTRL_FLR) {
899 		u8 cap;
900 		int ret;
901 
902 		*ctrl &= ~PCI_AF_CTRL_FLR;
903 
904 		ret = pci_user_read_config_byte(vdev->pdev,
905 						pos - offset + PCI_AF_CAP,
906 						&cap);
907 
908 		if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP))
909 			pci_try_reset_function(vdev->pdev);
910 	}
911 
912 	return count;
913 }
914 
915 /* Permissions for Advanced Function capability */
916 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
917 {
918 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
919 		return -ENOMEM;
920 
921 	perm->writefn = vfio_af_config_write;
922 
923 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
924 	p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
925 	return 0;
926 }
927 
928 /* Permissions for Advanced Error Reporting extended capability */
929 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
930 {
931 	u32 mask;
932 
933 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
934 		return -ENOMEM;
935 
936 	/*
937 	 * Virtualize the first dword of all express capabilities
938 	 * because it includes the next pointer.  This lets us later
939 	 * remove capabilities from the chain if we need to.
940 	 */
941 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
942 
943 	/* Writable bits mask */
944 	mask =	PCI_ERR_UNC_UND |		/* Undefined */
945 		PCI_ERR_UNC_DLP |		/* Data Link Protocol */
946 		PCI_ERR_UNC_SURPDN |		/* Surprise Down */
947 		PCI_ERR_UNC_POISON_TLP |	/* Poisoned TLP */
948 		PCI_ERR_UNC_FCP |		/* Flow Control Protocol */
949 		PCI_ERR_UNC_COMP_TIME |		/* Completion Timeout */
950 		PCI_ERR_UNC_COMP_ABORT |	/* Completer Abort */
951 		PCI_ERR_UNC_UNX_COMP |		/* Unexpected Completion */
952 		PCI_ERR_UNC_RX_OVER |		/* Receiver Overflow */
953 		PCI_ERR_UNC_MALF_TLP |		/* Malformed TLP */
954 		PCI_ERR_UNC_ECRC |		/* ECRC Error Status */
955 		PCI_ERR_UNC_UNSUP |		/* Unsupported Request */
956 		PCI_ERR_UNC_ACSV |		/* ACS Violation */
957 		PCI_ERR_UNC_INTN |		/* internal error */
958 		PCI_ERR_UNC_MCBTLP |		/* MC blocked TLP */
959 		PCI_ERR_UNC_ATOMEG |		/* Atomic egress blocked */
960 		PCI_ERR_UNC_TLPPRE;		/* TLP prefix blocked */
961 	p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
962 	p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
963 	p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
964 
965 	mask =	PCI_ERR_COR_RCVR |		/* Receiver Error Status */
966 		PCI_ERR_COR_BAD_TLP |		/* Bad TLP Status */
967 		PCI_ERR_COR_BAD_DLLP |		/* Bad DLLP Status */
968 		PCI_ERR_COR_REP_ROLL |		/* REPLAY_NUM Rollover */
969 		PCI_ERR_COR_REP_TIMER |		/* Replay Timer Timeout */
970 		PCI_ERR_COR_ADV_NFAT |		/* Advisory Non-Fatal */
971 		PCI_ERR_COR_INTERNAL |		/* Corrected Internal */
972 		PCI_ERR_COR_LOG_OVER;		/* Header Log Overflow */
973 	p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
974 	p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
975 
976 	mask =	PCI_ERR_CAP_ECRC_GENE |		/* ECRC Generation Enable */
977 		PCI_ERR_CAP_ECRC_CHKE;		/* ECRC Check Enable */
978 	p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
979 	return 0;
980 }
981 
982 /* Permissions for Power Budgeting extended capability */
983 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
984 {
985 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
986 		return -ENOMEM;
987 
988 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
989 
990 	/* Writing the data selector is OK, the info is still read-only */
991 	p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
992 	return 0;
993 }
994 
995 /*
996  * Initialize the shared permission tables
997  */
998 void vfio_pci_uninit_perm_bits(void)
999 {
1000 	free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1001 
1002 	free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1003 	free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1004 	free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1005 	free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1006 	free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1007 
1008 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1009 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1010 }
1011 
1012 int __init vfio_pci_init_perm_bits(void)
1013 {
1014 	int ret;
1015 
1016 	/* Basic config space */
1017 	ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1018 
1019 	/* Capabilities */
1020 	ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1021 	ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1022 	ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1023 	cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1024 	ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1025 	ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1026 
1027 	/* Extended capabilities */
1028 	ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1029 	ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1030 	ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1031 
1032 	if (ret)
1033 		vfio_pci_uninit_perm_bits();
1034 
1035 	return ret;
1036 }
1037 
1038 static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
1039 {
1040 	u8 cap;
1041 	int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1042 						 PCI_STD_HEADER_SIZEOF;
1043 	cap = vdev->pci_config_map[pos];
1044 
1045 	if (cap == PCI_CAP_ID_BASIC)
1046 		return 0;
1047 
1048 	/* XXX Can we have to abutting capabilities of the same type? */
1049 	while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1050 		pos--;
1051 
1052 	return pos;
1053 }
1054 
1055 static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
1056 				int count, struct perm_bits *perm,
1057 				int offset, __le32 *val)
1058 {
1059 	/* Update max available queue size from msi_qmax */
1060 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1061 		__le16 *flags;
1062 		int start;
1063 
1064 		start = vfio_find_cap_start(vdev, pos);
1065 
1066 		flags = (__le16 *)&vdev->vconfig[start];
1067 
1068 		*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1069 		*flags |= cpu_to_le16(vdev->msi_qmax << 1);
1070 	}
1071 
1072 	return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1073 }
1074 
1075 static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
1076 				 int count, struct perm_bits *perm,
1077 				 int offset, __le32 val)
1078 {
1079 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1080 	if (count < 0)
1081 		return count;
1082 
1083 	/* Fixup and write configured queue size and enable to hardware */
1084 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1085 		__le16 *pflags;
1086 		u16 flags;
1087 		int start, ret;
1088 
1089 		start = vfio_find_cap_start(vdev, pos);
1090 
1091 		pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1092 
1093 		flags = le16_to_cpu(*pflags);
1094 
1095 		/* MSI is enabled via ioctl */
1096 		if  (!is_msi(vdev))
1097 			flags &= ~PCI_MSI_FLAGS_ENABLE;
1098 
1099 		/* Check queue size */
1100 		if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1101 			flags &= ~PCI_MSI_FLAGS_QSIZE;
1102 			flags |= vdev->msi_qmax << 4;
1103 		}
1104 
1105 		/* Write back to virt and to hardware */
1106 		*pflags = cpu_to_le16(flags);
1107 		ret = pci_user_write_config_word(vdev->pdev,
1108 						 start + PCI_MSI_FLAGS,
1109 						 flags);
1110 		if (ret)
1111 			return ret;
1112 	}
1113 
1114 	return count;
1115 }
1116 
1117 /*
1118  * MSI determination is per-device, so this routine gets used beyond
1119  * initialization time. Don't add __init
1120  */
1121 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1122 {
1123 	if (alloc_perm_bits(perm, len))
1124 		return -ENOMEM;
1125 
1126 	perm->readfn = vfio_msi_config_read;
1127 	perm->writefn = vfio_msi_config_write;
1128 
1129 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1130 
1131 	/*
1132 	 * The upper byte of the control register is reserved,
1133 	 * just setup the lower byte.
1134 	 */
1135 	p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1136 	p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1137 	if (flags & PCI_MSI_FLAGS_64BIT) {
1138 		p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1139 		p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1140 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1141 			p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1142 			p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1143 		}
1144 	} else {
1145 		p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1146 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1147 			p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1148 			p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1149 		}
1150 	}
1151 	return 0;
1152 }
1153 
1154 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1155 static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
1156 {
1157 	struct pci_dev *pdev = vdev->pdev;
1158 	int len, ret;
1159 	u16 flags;
1160 
1161 	ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1162 	if (ret)
1163 		return pcibios_err_to_errno(ret);
1164 
1165 	len = 10; /* Minimum size */
1166 	if (flags & PCI_MSI_FLAGS_64BIT)
1167 		len += 4;
1168 	if (flags & PCI_MSI_FLAGS_MASKBIT)
1169 		len += 10;
1170 
1171 	if (vdev->msi_perm)
1172 		return len;
1173 
1174 	vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1175 	if (!vdev->msi_perm)
1176 		return -ENOMEM;
1177 
1178 	ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1179 	if (ret) {
1180 		kfree(vdev->msi_perm);
1181 		return ret;
1182 	}
1183 
1184 	return len;
1185 }
1186 
1187 /* Determine extended capability length for VC (2 & 9) and MFVC */
1188 static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
1189 {
1190 	struct pci_dev *pdev = vdev->pdev;
1191 	u32 tmp;
1192 	int ret, evcc, phases, vc_arb;
1193 	int len = PCI_CAP_VC_BASE_SIZEOF;
1194 
1195 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1196 	if (ret)
1197 		return pcibios_err_to_errno(ret);
1198 
1199 	evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1200 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1201 	if (ret)
1202 		return pcibios_err_to_errno(ret);
1203 
1204 	if (tmp & PCI_VC_CAP2_128_PHASE)
1205 		phases = 128;
1206 	else if (tmp & PCI_VC_CAP2_64_PHASE)
1207 		phases = 64;
1208 	else if (tmp & PCI_VC_CAP2_32_PHASE)
1209 		phases = 32;
1210 	else
1211 		phases = 0;
1212 
1213 	vc_arb = phases * 4;
1214 
1215 	/*
1216 	 * Port arbitration tables are root & switch only;
1217 	 * function arbitration tables are function 0 only.
1218 	 * In either case, we'll never let user write them so
1219 	 * we don't care how big they are
1220 	 */
1221 	len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1222 	if (vc_arb) {
1223 		len = round_up(len, 16);
1224 		len += vc_arb / 8;
1225 	}
1226 	return len;
1227 }
1228 
1229 static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
1230 {
1231 	struct pci_dev *pdev = vdev->pdev;
1232 	u32 dword;
1233 	u16 word;
1234 	u8 byte;
1235 	int ret;
1236 
1237 	switch (cap) {
1238 	case PCI_CAP_ID_MSI:
1239 		return vfio_msi_cap_len(vdev, pos);
1240 	case PCI_CAP_ID_PCIX:
1241 		ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1242 		if (ret)
1243 			return pcibios_err_to_errno(ret);
1244 
1245 		if (PCI_X_CMD_VERSION(word)) {
1246 			if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1247 				/* Test for extended capabilities */
1248 				pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1249 						      &dword);
1250 				vdev->extended_caps = (dword != 0);
1251 			}
1252 			return PCI_CAP_PCIX_SIZEOF_V2;
1253 		} else
1254 			return PCI_CAP_PCIX_SIZEOF_V0;
1255 	case PCI_CAP_ID_VNDR:
1256 		/* length follows next field */
1257 		ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1258 		if (ret)
1259 			return pcibios_err_to_errno(ret);
1260 
1261 		return byte;
1262 	case PCI_CAP_ID_EXP:
1263 		if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1264 			/* Test for extended capabilities */
1265 			pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1266 			vdev->extended_caps = (dword != 0);
1267 		}
1268 
1269 		/* length based on version and type */
1270 		if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1271 			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1272 				return 0xc; /* "All Devices" only, no link */
1273 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1274 		} else {
1275 			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1276 				return 0x2c; /* No link */
1277 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1278 		}
1279 	case PCI_CAP_ID_HT:
1280 		ret = pci_read_config_byte(pdev, pos + 3, &byte);
1281 		if (ret)
1282 			return pcibios_err_to_errno(ret);
1283 
1284 		return (byte & HT_3BIT_CAP_MASK) ?
1285 			HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1286 	case PCI_CAP_ID_SATA:
1287 		ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1288 		if (ret)
1289 			return pcibios_err_to_errno(ret);
1290 
1291 		byte &= PCI_SATA_REGS_MASK;
1292 		if (byte == PCI_SATA_REGS_INLINE)
1293 			return PCI_SATA_SIZEOF_LONG;
1294 		else
1295 			return PCI_SATA_SIZEOF_SHORT;
1296 	default:
1297 		pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n",
1298 			 __func__, cap, pos);
1299 	}
1300 
1301 	return 0;
1302 }
1303 
1304 static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1305 {
1306 	struct pci_dev *pdev = vdev->pdev;
1307 	u8 byte;
1308 	u32 dword;
1309 	int ret;
1310 
1311 	switch (ecap) {
1312 	case PCI_EXT_CAP_ID_VNDR:
1313 		ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1314 		if (ret)
1315 			return pcibios_err_to_errno(ret);
1316 
1317 		return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1318 	case PCI_EXT_CAP_ID_VC:
1319 	case PCI_EXT_CAP_ID_VC9:
1320 	case PCI_EXT_CAP_ID_MFVC:
1321 		return vfio_vc_cap_len(vdev, epos);
1322 	case PCI_EXT_CAP_ID_ACS:
1323 		ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1324 		if (ret)
1325 			return pcibios_err_to_errno(ret);
1326 
1327 		if (byte & PCI_ACS_EC) {
1328 			int bits;
1329 
1330 			ret = pci_read_config_byte(pdev,
1331 						   epos + PCI_ACS_EGRESS_BITS,
1332 						   &byte);
1333 			if (ret)
1334 				return pcibios_err_to_errno(ret);
1335 
1336 			bits = byte ? round_up(byte, 32) : 256;
1337 			return 8 + (bits / 8);
1338 		}
1339 		return 8;
1340 
1341 	case PCI_EXT_CAP_ID_REBAR:
1342 		ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1343 		if (ret)
1344 			return pcibios_err_to_errno(ret);
1345 
1346 		byte &= PCI_REBAR_CTRL_NBAR_MASK;
1347 		byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1348 
1349 		return 4 + (byte * 8);
1350 	case PCI_EXT_CAP_ID_DPA:
1351 		ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1352 		if (ret)
1353 			return pcibios_err_to_errno(ret);
1354 
1355 		byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1356 		return PCI_DPA_BASE_SIZEOF + byte + 1;
1357 	case PCI_EXT_CAP_ID_TPH:
1358 		ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1359 		if (ret)
1360 			return pcibios_err_to_errno(ret);
1361 
1362 		if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1363 			int sts;
1364 
1365 			sts = dword & PCI_TPH_CAP_ST_MASK;
1366 			sts >>= PCI_TPH_CAP_ST_SHIFT;
1367 			return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1368 		}
1369 		return PCI_TPH_BASE_SIZEOF;
1370 	default:
1371 		pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n",
1372 			 __func__, ecap, epos);
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1379 				   int offset, int size)
1380 {
1381 	struct pci_dev *pdev = vdev->pdev;
1382 	int ret = 0;
1383 
1384 	/*
1385 	 * We try to read physical config space in the largest chunks
1386 	 * we can, assuming that all of the fields support dword access.
1387 	 * pci_save_state() makes this same assumption and seems to do ok.
1388 	 */
1389 	while (size) {
1390 		int filled;
1391 
1392 		if (size >= 4 && !(offset % 4)) {
1393 			__le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1394 			u32 dword;
1395 
1396 			ret = pci_read_config_dword(pdev, offset, &dword);
1397 			if (ret)
1398 				return ret;
1399 			*dwordp = cpu_to_le32(dword);
1400 			filled = 4;
1401 		} else if (size >= 2 && !(offset % 2)) {
1402 			__le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1403 			u16 word;
1404 
1405 			ret = pci_read_config_word(pdev, offset, &word);
1406 			if (ret)
1407 				return ret;
1408 			*wordp = cpu_to_le16(word);
1409 			filled = 2;
1410 		} else {
1411 			u8 *byte = &vdev->vconfig[offset];
1412 			ret = pci_read_config_byte(pdev, offset, byte);
1413 			if (ret)
1414 				return ret;
1415 			filled = 1;
1416 		}
1417 
1418 		offset += filled;
1419 		size -= filled;
1420 	}
1421 
1422 	return ret;
1423 }
1424 
1425 static int vfio_cap_init(struct vfio_pci_device *vdev)
1426 {
1427 	struct pci_dev *pdev = vdev->pdev;
1428 	u8 *map = vdev->pci_config_map;
1429 	u16 status;
1430 	u8 pos, *prev, cap;
1431 	int loops, ret, caps = 0;
1432 
1433 	/* Any capabilities? */
1434 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1435 	if (ret)
1436 		return ret;
1437 
1438 	if (!(status & PCI_STATUS_CAP_LIST))
1439 		return 0; /* Done */
1440 
1441 	ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1442 	if (ret)
1443 		return ret;
1444 
1445 	/* Mark the previous position in case we want to skip a capability */
1446 	prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1447 
1448 	/* We can bound our loop, capabilities are dword aligned */
1449 	loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1450 	while (pos && loops--) {
1451 		u8 next;
1452 		int i, len = 0;
1453 
1454 		ret = pci_read_config_byte(pdev, pos, &cap);
1455 		if (ret)
1456 			return ret;
1457 
1458 		ret = pci_read_config_byte(pdev,
1459 					   pos + PCI_CAP_LIST_NEXT, &next);
1460 		if (ret)
1461 			return ret;
1462 
1463 		if (cap <= PCI_CAP_ID_MAX) {
1464 			len = pci_cap_length[cap];
1465 			if (len == 0xFF) { /* Variable length */
1466 				len = vfio_cap_len(vdev, cap, pos);
1467 				if (len < 0)
1468 					return len;
1469 			}
1470 		}
1471 
1472 		if (!len) {
1473 			pci_info(pdev, "%s: hiding cap %#x@%#x\n", __func__,
1474 				 cap, pos);
1475 			*prev = next;
1476 			pos = next;
1477 			continue;
1478 		}
1479 
1480 		/* Sanity check, do we overlap other capabilities? */
1481 		for (i = 0; i < len; i++) {
1482 			if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1483 				continue;
1484 
1485 			pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
1486 				 __func__, pos + i, map[pos + i], cap);
1487 		}
1488 
1489 		BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1490 
1491 		memset(map + pos, cap, len);
1492 		ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1493 		if (ret)
1494 			return ret;
1495 
1496 		prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1497 		pos = next;
1498 		caps++;
1499 	}
1500 
1501 	/* If we didn't fill any capabilities, clear the status flag */
1502 	if (!caps) {
1503 		__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1504 		*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1505 	}
1506 
1507 	return 0;
1508 }
1509 
1510 static int vfio_ecap_init(struct vfio_pci_device *vdev)
1511 {
1512 	struct pci_dev *pdev = vdev->pdev;
1513 	u8 *map = vdev->pci_config_map;
1514 	u16 epos;
1515 	__le32 *prev = NULL;
1516 	int loops, ret, ecaps = 0;
1517 
1518 	if (!vdev->extended_caps)
1519 		return 0;
1520 
1521 	epos = PCI_CFG_SPACE_SIZE;
1522 
1523 	loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1524 
1525 	while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1526 		u32 header;
1527 		u16 ecap;
1528 		int i, len = 0;
1529 		bool hidden = false;
1530 
1531 		ret = pci_read_config_dword(pdev, epos, &header);
1532 		if (ret)
1533 			return ret;
1534 
1535 		ecap = PCI_EXT_CAP_ID(header);
1536 
1537 		if (ecap <= PCI_EXT_CAP_ID_MAX) {
1538 			len = pci_ext_cap_length[ecap];
1539 			if (len == 0xFF) {
1540 				len = vfio_ext_cap_len(vdev, ecap, epos);
1541 				if (len < 0)
1542 					return ret;
1543 			}
1544 		}
1545 
1546 		if (!len) {
1547 			pci_info(pdev, "%s: hiding ecap %#x@%#x\n",
1548 				 __func__, ecap, epos);
1549 
1550 			/* If not the first in the chain, we can skip over it */
1551 			if (prev) {
1552 				u32 val = epos = PCI_EXT_CAP_NEXT(header);
1553 				*prev &= cpu_to_le32(~(0xffcU << 20));
1554 				*prev |= cpu_to_le32(val << 20);
1555 				continue;
1556 			}
1557 
1558 			/*
1559 			 * Otherwise, fill in a placeholder, the direct
1560 			 * readfn will virtualize this automatically
1561 			 */
1562 			len = PCI_CAP_SIZEOF;
1563 			hidden = true;
1564 		}
1565 
1566 		for (i = 0; i < len; i++) {
1567 			if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1568 				continue;
1569 
1570 			pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
1571 				 __func__, epos + i, map[epos + i], ecap);
1572 		}
1573 
1574 		/*
1575 		 * Even though ecap is 2 bytes, we're currently a long way
1576 		 * from exceeding 1 byte capabilities.  If we ever make it
1577 		 * up to 0xFE we'll need to up this to a two-byte, byte map.
1578 		 */
1579 		BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1580 
1581 		memset(map + epos, ecap, len);
1582 		ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1583 		if (ret)
1584 			return ret;
1585 
1586 		/*
1587 		 * If we're just using this capability to anchor the list,
1588 		 * hide the real ID.  Only count real ecaps.  XXX PCI spec
1589 		 * indicates to use cap id = 0, version = 0, next = 0 if
1590 		 * ecaps are absent, hope users check all the way to next.
1591 		 */
1592 		if (hidden)
1593 			*(__le32 *)&vdev->vconfig[epos] &=
1594 				cpu_to_le32((0xffcU << 20));
1595 		else
1596 			ecaps++;
1597 
1598 		prev = (__le32 *)&vdev->vconfig[epos];
1599 		epos = PCI_EXT_CAP_NEXT(header);
1600 	}
1601 
1602 	if (!ecaps)
1603 		*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1604 
1605 	return 0;
1606 }
1607 
1608 /*
1609  * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1610  * to collect a list of dependencies for the VF INTx pin quirk below.
1611  */
1612 static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1613 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1614 	{}
1615 };
1616 
1617 /*
1618  * For each device we allocate a pci_config_map that indicates the
1619  * capability occupying each dword and thus the struct perm_bits we
1620  * use for read and write.  We also allocate a virtualized config
1621  * space which tracks reads and writes to bits that we emulate for
1622  * the user.  Initial values filled from device.
1623  *
1624  * Using shared struct perm_bits between all vfio-pci devices saves
1625  * us from allocating cfg_size buffers for virt and write for every
1626  * device.  We could remove vconfig and allocate individual buffers
1627  * for each area requiring emulated bits, but the array of pointers
1628  * would be comparable in size (at least for standard config space).
1629  */
1630 int vfio_config_init(struct vfio_pci_device *vdev)
1631 {
1632 	struct pci_dev *pdev = vdev->pdev;
1633 	u8 *map, *vconfig;
1634 	int ret;
1635 
1636 	/*
1637 	 * Config space, caps and ecaps are all dword aligned, so we could
1638 	 * use one byte per dword to record the type.  However, there are
1639 	 * no requiremenst on the length of a capability, so the gap between
1640 	 * capabilities needs byte granularity.
1641 	 */
1642 	map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1643 	if (!map)
1644 		return -ENOMEM;
1645 
1646 	vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1647 	if (!vconfig) {
1648 		kfree(map);
1649 		return -ENOMEM;
1650 	}
1651 
1652 	vdev->pci_config_map = map;
1653 	vdev->vconfig = vconfig;
1654 
1655 	memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1656 	memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1657 	       pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1658 
1659 	ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1660 	if (ret)
1661 		goto out;
1662 
1663 	vdev->bardirty = true;
1664 
1665 	/*
1666 	 * XXX can we just pci_load_saved_state/pci_restore_state?
1667 	 * may need to rebuild vconfig after that
1668 	 */
1669 
1670 	/* For restore after reset */
1671 	vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1672 	vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1673 	vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1674 	vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1675 	vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1676 	vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1677 	vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1678 
1679 	if (pdev->is_virtfn) {
1680 		*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1681 		*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1682 
1683 		/*
1684 		 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1685 		 * does not apply to VFs and VFs must implement this register
1686 		 * as read-only with value zero.  Userspace is not readily able
1687 		 * to identify whether a device is a VF and thus that the pin
1688 		 * definition on the device is bogus should it violate this
1689 		 * requirement.  We already virtualize the pin register for
1690 		 * other purposes, so we simply need to replace the bogus value
1691 		 * and consider VFs when we determine INTx IRQ count.
1692 		 */
1693 		if (vconfig[PCI_INTERRUPT_PIN] &&
1694 		    !pci_match_id(known_bogus_vf_intx_pin, pdev))
1695 			pci_warn(pdev,
1696 				 "Hardware bug: VF reports bogus INTx pin %d\n",
1697 				 vconfig[PCI_INTERRUPT_PIN]);
1698 
1699 		vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1700 	}
1701 
1702 	if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1703 		vconfig[PCI_INTERRUPT_PIN] = 0;
1704 
1705 	ret = vfio_cap_init(vdev);
1706 	if (ret)
1707 		goto out;
1708 
1709 	ret = vfio_ecap_init(vdev);
1710 	if (ret)
1711 		goto out;
1712 
1713 	return 0;
1714 
1715 out:
1716 	kfree(map);
1717 	vdev->pci_config_map = NULL;
1718 	kfree(vconfig);
1719 	vdev->vconfig = NULL;
1720 	return pcibios_err_to_errno(ret);
1721 }
1722 
1723 void vfio_config_free(struct vfio_pci_device *vdev)
1724 {
1725 	kfree(vdev->vconfig);
1726 	vdev->vconfig = NULL;
1727 	kfree(vdev->pci_config_map);
1728 	vdev->pci_config_map = NULL;
1729 	kfree(vdev->msi_perm);
1730 	vdev->msi_perm = NULL;
1731 }
1732 
1733 /*
1734  * Find the remaining number of bytes in a dword that match the given
1735  * position.  Stop at either the end of the capability or the dword boundary.
1736  */
1737 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
1738 					   loff_t pos)
1739 {
1740 	u8 cap = vdev->pci_config_map[pos];
1741 	size_t i;
1742 
1743 	for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1744 		/* nop */;
1745 
1746 	return i;
1747 }
1748 
1749 static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1750 				 size_t count, loff_t *ppos, bool iswrite)
1751 {
1752 	struct pci_dev *pdev = vdev->pdev;
1753 	struct perm_bits *perm;
1754 	__le32 val = 0;
1755 	int cap_start = 0, offset;
1756 	u8 cap_id;
1757 	ssize_t ret;
1758 
1759 	if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1760 	    *ppos + count > pdev->cfg_size)
1761 		return -EFAULT;
1762 
1763 	/*
1764 	 * Chop accesses into aligned chunks containing no more than a
1765 	 * single capability.  Caller increments to the next chunk.
1766 	 */
1767 	count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1768 	if (count >= 4 && !(*ppos % 4))
1769 		count = 4;
1770 	else if (count >= 2 && !(*ppos % 2))
1771 		count = 2;
1772 	else
1773 		count = 1;
1774 
1775 	ret = count;
1776 
1777 	cap_id = vdev->pci_config_map[*ppos];
1778 
1779 	if (cap_id == PCI_CAP_ID_INVALID) {
1780 		perm = &unassigned_perms;
1781 		cap_start = *ppos;
1782 	} else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1783 		perm = &virt_perms;
1784 		cap_start = *ppos;
1785 	} else {
1786 		if (*ppos >= PCI_CFG_SPACE_SIZE) {
1787 			WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1788 
1789 			perm = &ecap_perms[cap_id];
1790 			cap_start = vfio_find_cap_start(vdev, *ppos);
1791 		} else {
1792 			WARN_ON(cap_id > PCI_CAP_ID_MAX);
1793 
1794 			perm = &cap_perms[cap_id];
1795 
1796 			if (cap_id == PCI_CAP_ID_MSI)
1797 				perm = vdev->msi_perm;
1798 
1799 			if (cap_id > PCI_CAP_ID_BASIC)
1800 				cap_start = vfio_find_cap_start(vdev, *ppos);
1801 		}
1802 	}
1803 
1804 	WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1805 	WARN_ON(cap_start > *ppos);
1806 
1807 	offset = *ppos - cap_start;
1808 
1809 	if (iswrite) {
1810 		if (!perm->writefn)
1811 			return ret;
1812 
1813 		if (copy_from_user(&val, buf, count))
1814 			return -EFAULT;
1815 
1816 		ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1817 	} else {
1818 		if (perm->readfn) {
1819 			ret = perm->readfn(vdev, *ppos, count,
1820 					   perm, offset, &val);
1821 			if (ret < 0)
1822 				return ret;
1823 		}
1824 
1825 		if (copy_to_user(buf, &val, count))
1826 			return -EFAULT;
1827 	}
1828 
1829 	return ret;
1830 }
1831 
1832 ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1833 			   size_t count, loff_t *ppos, bool iswrite)
1834 {
1835 	size_t done = 0;
1836 	int ret = 0;
1837 	loff_t pos = *ppos;
1838 
1839 	pos &= VFIO_PCI_OFFSET_MASK;
1840 
1841 	while (count) {
1842 		ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1843 		if (ret < 0)
1844 			return ret;
1845 
1846 		count -= ret;
1847 		done += ret;
1848 		buf += ret;
1849 		pos += ret;
1850 	}
1851 
1852 	*ppos += done;
1853 
1854 	return done;
1855 }
1856