1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VFIO PCI config space virtualization 4 * 5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 6 * Author: Alex Williamson <alex.williamson@redhat.com> 7 * 8 * Derived from original vfio: 9 * Copyright 2010 Cisco Systems, Inc. All rights reserved. 10 * Author: Tom Lyon, pugs@cisco.com 11 */ 12 13 /* 14 * This code handles reading and writing of PCI configuration registers. 15 * This is hairy because we want to allow a lot of flexibility to the 16 * user driver, but cannot trust it with all of the config fields. 17 * Tables determine which fields can be read and written, as well as 18 * which fields are 'virtualized' - special actions and translations to 19 * make it appear to the user that he has control, when in fact things 20 * must be negotiated with the underlying OS. 21 */ 22 23 #include <linux/fs.h> 24 #include <linux/pci.h> 25 #include <linux/uaccess.h> 26 #include <linux/vfio.h> 27 #include <linux/slab.h> 28 29 #include <linux/vfio_pci_core.h> 30 31 /* Fake capability ID for standard config space */ 32 #define PCI_CAP_ID_BASIC 0 33 34 #define is_bar(offset) \ 35 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \ 36 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4)) 37 38 /* 39 * Lengths of PCI Config Capabilities 40 * 0: Removed from the user visible capability list 41 * FF: Variable length 42 */ 43 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = { 44 [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */ 45 [PCI_CAP_ID_PM] = PCI_PM_SIZEOF, 46 [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF, 47 [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF, 48 [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */ 49 [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */ 50 [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */ 51 [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */ 52 [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */ 53 [PCI_CAP_ID_VNDR] = 0xFF, /* variable */ 54 [PCI_CAP_ID_DBG] = 0, /* debug - don't care */ 55 [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */ 56 [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */ 57 [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */ 58 [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */ 59 [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */ 60 [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */ 61 [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF, 62 [PCI_CAP_ID_SATA] = 0xFF, 63 [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF, 64 }; 65 66 /* 67 * Lengths of PCIe/PCI-X Extended Config Capabilities 68 * 0: Removed or masked from the user visible capability list 69 * FF: Variable length 70 */ 71 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = { 72 [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND, 73 [PCI_EXT_CAP_ID_VC] = 0xFF, 74 [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF, 75 [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF, 76 [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */ 77 [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */ 78 [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */ 79 [PCI_EXT_CAP_ID_MFVC] = 0xFF, 80 [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */ 81 [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */ 82 [PCI_EXT_CAP_ID_VNDR] = 0xFF, 83 [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */ 84 [PCI_EXT_CAP_ID_ACS] = 0xFF, 85 [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF, 86 [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF, 87 [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF, 88 [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */ 89 [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF, 90 [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF, 91 [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */ 92 [PCI_EXT_CAP_ID_REBAR] = 0xFF, 93 [PCI_EXT_CAP_ID_DPA] = 0xFF, 94 [PCI_EXT_CAP_ID_TPH] = 0xFF, 95 [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF, 96 [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */ 97 [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */ 98 [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */ 99 }; 100 101 /* 102 * Read/Write Permission Bits - one bit for each bit in capability 103 * Any field can be read if it exists, but what is read depends on 104 * whether the field is 'virtualized', or just pass through to the 105 * hardware. Any virtualized field is also virtualized for writes. 106 * Writes are only permitted if they have a 1 bit here. 107 */ 108 struct perm_bits { 109 u8 *virt; /* read/write virtual data, not hw */ 110 u8 *write; /* writeable bits */ 111 int (*readfn)(struct vfio_pci_core_device *vdev, int pos, int count, 112 struct perm_bits *perm, int offset, __le32 *val); 113 int (*writefn)(struct vfio_pci_core_device *vdev, int pos, int count, 114 struct perm_bits *perm, int offset, __le32 val); 115 }; 116 117 #define NO_VIRT 0 118 #define ALL_VIRT 0xFFFFFFFFU 119 #define NO_WRITE 0 120 #define ALL_WRITE 0xFFFFFFFFU 121 122 static int vfio_user_config_read(struct pci_dev *pdev, int offset, 123 __le32 *val, int count) 124 { 125 int ret = -EINVAL; 126 u32 tmp_val = 0; 127 128 switch (count) { 129 case 1: 130 { 131 u8 tmp; 132 ret = pci_user_read_config_byte(pdev, offset, &tmp); 133 tmp_val = tmp; 134 break; 135 } 136 case 2: 137 { 138 u16 tmp; 139 ret = pci_user_read_config_word(pdev, offset, &tmp); 140 tmp_val = tmp; 141 break; 142 } 143 case 4: 144 ret = pci_user_read_config_dword(pdev, offset, &tmp_val); 145 break; 146 } 147 148 *val = cpu_to_le32(tmp_val); 149 150 return ret; 151 } 152 153 static int vfio_user_config_write(struct pci_dev *pdev, int offset, 154 __le32 val, int count) 155 { 156 int ret = -EINVAL; 157 u32 tmp_val = le32_to_cpu(val); 158 159 switch (count) { 160 case 1: 161 ret = pci_user_write_config_byte(pdev, offset, tmp_val); 162 break; 163 case 2: 164 ret = pci_user_write_config_word(pdev, offset, tmp_val); 165 break; 166 case 4: 167 ret = pci_user_write_config_dword(pdev, offset, tmp_val); 168 break; 169 } 170 171 return ret; 172 } 173 174 static int vfio_default_config_read(struct vfio_pci_core_device *vdev, int pos, 175 int count, struct perm_bits *perm, 176 int offset, __le32 *val) 177 { 178 __le32 virt = 0; 179 180 memcpy(val, vdev->vconfig + pos, count); 181 182 memcpy(&virt, perm->virt + offset, count); 183 184 /* Any non-virtualized bits? */ 185 if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) { 186 struct pci_dev *pdev = vdev->pdev; 187 __le32 phys_val = 0; 188 int ret; 189 190 ret = vfio_user_config_read(pdev, pos, &phys_val, count); 191 if (ret) 192 return ret; 193 194 *val = (phys_val & ~virt) | (*val & virt); 195 } 196 197 return count; 198 } 199 200 static int vfio_default_config_write(struct vfio_pci_core_device *vdev, int pos, 201 int count, struct perm_bits *perm, 202 int offset, __le32 val) 203 { 204 __le32 virt = 0, write = 0; 205 206 memcpy(&write, perm->write + offset, count); 207 208 if (!write) 209 return count; /* drop, no writable bits */ 210 211 memcpy(&virt, perm->virt + offset, count); 212 213 /* Virtualized and writable bits go to vconfig */ 214 if (write & virt) { 215 __le32 virt_val = 0; 216 217 memcpy(&virt_val, vdev->vconfig + pos, count); 218 219 virt_val &= ~(write & virt); 220 virt_val |= (val & (write & virt)); 221 222 memcpy(vdev->vconfig + pos, &virt_val, count); 223 } 224 225 /* Non-virtualzed and writable bits go to hardware */ 226 if (write & ~virt) { 227 struct pci_dev *pdev = vdev->pdev; 228 __le32 phys_val = 0; 229 int ret; 230 231 ret = vfio_user_config_read(pdev, pos, &phys_val, count); 232 if (ret) 233 return ret; 234 235 phys_val &= ~(write & ~virt); 236 phys_val |= (val & (write & ~virt)); 237 238 ret = vfio_user_config_write(pdev, pos, phys_val, count); 239 if (ret) 240 return ret; 241 } 242 243 return count; 244 } 245 246 /* Allow direct read from hardware, except for capability next pointer */ 247 static int vfio_direct_config_read(struct vfio_pci_core_device *vdev, int pos, 248 int count, struct perm_bits *perm, 249 int offset, __le32 *val) 250 { 251 int ret; 252 253 ret = vfio_user_config_read(vdev->pdev, pos, val, count); 254 if (ret) 255 return ret; 256 257 if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */ 258 if (offset < 4) 259 memcpy(val, vdev->vconfig + pos, count); 260 } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */ 261 if (offset == PCI_CAP_LIST_ID && count > 1) 262 memcpy(val, vdev->vconfig + pos, 263 min(PCI_CAP_FLAGS, count)); 264 else if (offset == PCI_CAP_LIST_NEXT) 265 memcpy(val, vdev->vconfig + pos, 1); 266 } 267 268 return count; 269 } 270 271 /* Raw access skips any kind of virtualization */ 272 static int vfio_raw_config_write(struct vfio_pci_core_device *vdev, int pos, 273 int count, struct perm_bits *perm, 274 int offset, __le32 val) 275 { 276 int ret; 277 278 ret = vfio_user_config_write(vdev->pdev, pos, val, count); 279 if (ret) 280 return ret; 281 282 return count; 283 } 284 285 static int vfio_raw_config_read(struct vfio_pci_core_device *vdev, int pos, 286 int count, struct perm_bits *perm, 287 int offset, __le32 *val) 288 { 289 int ret; 290 291 ret = vfio_user_config_read(vdev->pdev, pos, val, count); 292 if (ret) 293 return ret; 294 295 return count; 296 } 297 298 /* Virt access uses only virtualization */ 299 static int vfio_virt_config_write(struct vfio_pci_core_device *vdev, int pos, 300 int count, struct perm_bits *perm, 301 int offset, __le32 val) 302 { 303 memcpy(vdev->vconfig + pos, &val, count); 304 return count; 305 } 306 307 static int vfio_virt_config_read(struct vfio_pci_core_device *vdev, int pos, 308 int count, struct perm_bits *perm, 309 int offset, __le32 *val) 310 { 311 memcpy(val, vdev->vconfig + pos, count); 312 return count; 313 } 314 315 /* Default capability regions to read-only, no-virtualization */ 316 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = { 317 [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read } 318 }; 319 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = { 320 [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read } 321 }; 322 /* 323 * Default unassigned regions to raw read-write access. Some devices 324 * require this to function as they hide registers between the gaps in 325 * config space (be2net). Like MMIO and I/O port registers, we have 326 * to trust the hardware isolation. 327 */ 328 static struct perm_bits unassigned_perms = { 329 .readfn = vfio_raw_config_read, 330 .writefn = vfio_raw_config_write 331 }; 332 333 static struct perm_bits virt_perms = { 334 .readfn = vfio_virt_config_read, 335 .writefn = vfio_virt_config_write 336 }; 337 338 static void free_perm_bits(struct perm_bits *perm) 339 { 340 kfree(perm->virt); 341 kfree(perm->write); 342 perm->virt = NULL; 343 perm->write = NULL; 344 } 345 346 static int alloc_perm_bits(struct perm_bits *perm, int size) 347 { 348 /* 349 * Round up all permission bits to the next dword, this lets us 350 * ignore whether a read/write exceeds the defined capability 351 * structure. We can do this because: 352 * - Standard config space is already dword aligned 353 * - Capabilities are all dword aligned (bits 0:1 of next reserved) 354 * - Express capabilities defined as dword aligned 355 */ 356 size = round_up(size, 4); 357 358 /* 359 * Zero state is 360 * - All Readable, None Writeable, None Virtualized 361 */ 362 perm->virt = kzalloc(size, GFP_KERNEL); 363 perm->write = kzalloc(size, GFP_KERNEL); 364 if (!perm->virt || !perm->write) { 365 free_perm_bits(perm); 366 return -ENOMEM; 367 } 368 369 perm->readfn = vfio_default_config_read; 370 perm->writefn = vfio_default_config_write; 371 372 return 0; 373 } 374 375 /* 376 * Helper functions for filling in permission tables 377 */ 378 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write) 379 { 380 p->virt[off] = virt; 381 p->write[off] = write; 382 } 383 384 /* Handle endian-ness - pci and tables are little-endian */ 385 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write) 386 { 387 *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt); 388 *(__le16 *)(&p->write[off]) = cpu_to_le16(write); 389 } 390 391 /* Handle endian-ness - pci and tables are little-endian */ 392 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write) 393 { 394 *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt); 395 *(__le32 *)(&p->write[off]) = cpu_to_le32(write); 396 } 397 398 /* Caller should hold memory_lock semaphore */ 399 bool __vfio_pci_memory_enabled(struct vfio_pci_core_device *vdev) 400 { 401 struct pci_dev *pdev = vdev->pdev; 402 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]); 403 404 /* 405 * Memory region cannot be accessed if device power state is D3. 406 * 407 * SR-IOV VF memory enable is handled by the MSE bit in the 408 * PF SR-IOV capability, there's therefore no need to trigger 409 * faults based on the virtual value. 410 */ 411 return pdev->current_state < PCI_D3hot && 412 (pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY)); 413 } 414 415 /* 416 * Restore the *real* BARs after we detect a FLR or backdoor reset. 417 * (backdoor = some device specific technique that we didn't catch) 418 */ 419 static void vfio_bar_restore(struct vfio_pci_core_device *vdev) 420 { 421 struct pci_dev *pdev = vdev->pdev; 422 u32 *rbar = vdev->rbar; 423 u16 cmd; 424 int i; 425 426 if (pdev->is_virtfn) 427 return; 428 429 pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__); 430 431 for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++) 432 pci_user_write_config_dword(pdev, i, *rbar); 433 434 pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar); 435 436 if (vdev->nointx) { 437 pci_user_read_config_word(pdev, PCI_COMMAND, &cmd); 438 cmd |= PCI_COMMAND_INTX_DISABLE; 439 pci_user_write_config_word(pdev, PCI_COMMAND, cmd); 440 } 441 } 442 443 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar) 444 { 445 unsigned long flags = pci_resource_flags(pdev, bar); 446 u32 val; 447 448 if (flags & IORESOURCE_IO) 449 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO); 450 451 val = PCI_BASE_ADDRESS_SPACE_MEMORY; 452 453 if (flags & IORESOURCE_PREFETCH) 454 val |= PCI_BASE_ADDRESS_MEM_PREFETCH; 455 456 if (flags & IORESOURCE_MEM_64) 457 val |= PCI_BASE_ADDRESS_MEM_TYPE_64; 458 459 return cpu_to_le32(val); 460 } 461 462 /* 463 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs 464 * to reflect the hardware capabilities. This implements BAR sizing. 465 */ 466 static void vfio_bar_fixup(struct vfio_pci_core_device *vdev) 467 { 468 struct pci_dev *pdev = vdev->pdev; 469 int i; 470 __le32 *vbar; 471 u64 mask; 472 473 if (!vdev->bardirty) 474 return; 475 476 vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0]; 477 478 for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) { 479 int bar = i + PCI_STD_RESOURCES; 480 481 if (!pci_resource_start(pdev, bar)) { 482 *vbar = 0; /* Unmapped by host = unimplemented to user */ 483 continue; 484 } 485 486 mask = ~(pci_resource_len(pdev, bar) - 1); 487 488 *vbar &= cpu_to_le32((u32)mask); 489 *vbar |= vfio_generate_bar_flags(pdev, bar); 490 491 if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) { 492 vbar++; 493 *vbar &= cpu_to_le32((u32)(mask >> 32)); 494 i++; 495 } 496 } 497 498 vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS]; 499 500 /* 501 * NB. REGION_INFO will have reported zero size if we weren't able 502 * to read the ROM, but we still return the actual BAR size here if 503 * it exists (or the shadow ROM space). 504 */ 505 if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) { 506 mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1); 507 mask |= PCI_ROM_ADDRESS_ENABLE; 508 *vbar &= cpu_to_le32((u32)mask); 509 } else if (pdev->resource[PCI_ROM_RESOURCE].flags & 510 IORESOURCE_ROM_SHADOW) { 511 mask = ~(0x20000 - 1); 512 mask |= PCI_ROM_ADDRESS_ENABLE; 513 *vbar &= cpu_to_le32((u32)mask); 514 } else 515 *vbar = 0; 516 517 vdev->bardirty = false; 518 } 519 520 static int vfio_basic_config_read(struct vfio_pci_core_device *vdev, int pos, 521 int count, struct perm_bits *perm, 522 int offset, __le32 *val) 523 { 524 if (is_bar(offset)) /* pos == offset for basic config */ 525 vfio_bar_fixup(vdev); 526 527 count = vfio_default_config_read(vdev, pos, count, perm, offset, val); 528 529 /* Mask in virtual memory enable */ 530 if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) { 531 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]); 532 u32 tmp_val = le32_to_cpu(*val); 533 534 tmp_val |= cmd & PCI_COMMAND_MEMORY; 535 *val = cpu_to_le32(tmp_val); 536 } 537 538 return count; 539 } 540 541 /* Test whether BARs match the value we think they should contain */ 542 static bool vfio_need_bar_restore(struct vfio_pci_core_device *vdev) 543 { 544 int i = 0, pos = PCI_BASE_ADDRESS_0, ret; 545 u32 bar; 546 547 for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) { 548 if (vdev->rbar[i]) { 549 ret = pci_user_read_config_dword(vdev->pdev, pos, &bar); 550 if (ret || vdev->rbar[i] != bar) 551 return true; 552 } 553 } 554 555 return false; 556 } 557 558 static int vfio_basic_config_write(struct vfio_pci_core_device *vdev, int pos, 559 int count, struct perm_bits *perm, 560 int offset, __le32 val) 561 { 562 struct pci_dev *pdev = vdev->pdev; 563 __le16 *virt_cmd; 564 u16 new_cmd = 0; 565 int ret; 566 567 virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND]; 568 569 if (offset == PCI_COMMAND) { 570 bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io; 571 u16 phys_cmd; 572 573 ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd); 574 if (ret) 575 return ret; 576 577 new_cmd = le32_to_cpu(val); 578 579 phys_io = !!(phys_cmd & PCI_COMMAND_IO); 580 virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO); 581 new_io = !!(new_cmd & PCI_COMMAND_IO); 582 583 phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY); 584 virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY); 585 new_mem = !!(new_cmd & PCI_COMMAND_MEMORY); 586 587 if (!new_mem) 588 vfio_pci_zap_and_down_write_memory_lock(vdev); 589 else 590 down_write(&vdev->memory_lock); 591 592 /* 593 * If the user is writing mem/io enable (new_mem/io) and we 594 * think it's already enabled (virt_mem/io), but the hardware 595 * shows it disabled (phys_mem/io, then the device has 596 * undergone some kind of backdoor reset and needs to be 597 * restored before we allow it to enable the bars. 598 * SR-IOV devices will trigger this - for mem enable let's 599 * catch this now and for io enable it will be caught later 600 */ 601 if ((new_mem && virt_mem && !phys_mem && 602 !pdev->no_command_memory) || 603 (new_io && virt_io && !phys_io) || 604 vfio_need_bar_restore(vdev)) 605 vfio_bar_restore(vdev); 606 } 607 608 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 609 if (count < 0) { 610 if (offset == PCI_COMMAND) 611 up_write(&vdev->memory_lock); 612 return count; 613 } 614 615 /* 616 * Save current memory/io enable bits in vconfig to allow for 617 * the test above next time. 618 */ 619 if (offset == PCI_COMMAND) { 620 u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO; 621 622 *virt_cmd &= cpu_to_le16(~mask); 623 *virt_cmd |= cpu_to_le16(new_cmd & mask); 624 625 up_write(&vdev->memory_lock); 626 } 627 628 /* Emulate INTx disable */ 629 if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) { 630 bool virt_intx_disable; 631 632 virt_intx_disable = !!(le16_to_cpu(*virt_cmd) & 633 PCI_COMMAND_INTX_DISABLE); 634 635 if (virt_intx_disable && !vdev->virq_disabled) { 636 vdev->virq_disabled = true; 637 vfio_pci_intx_mask(vdev); 638 } else if (!virt_intx_disable && vdev->virq_disabled) { 639 vdev->virq_disabled = false; 640 vfio_pci_intx_unmask(vdev); 641 } 642 } 643 644 if (is_bar(offset)) 645 vdev->bardirty = true; 646 647 return count; 648 } 649 650 /* Permissions for the Basic PCI Header */ 651 static int __init init_pci_cap_basic_perm(struct perm_bits *perm) 652 { 653 if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF)) 654 return -ENOMEM; 655 656 perm->readfn = vfio_basic_config_read; 657 perm->writefn = vfio_basic_config_write; 658 659 /* Virtualized for SR-IOV functions, which just have FFFF */ 660 p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE); 661 p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE); 662 663 /* 664 * Virtualize INTx disable, we use it internally for interrupt 665 * control and can emulate it for non-PCI 2.3 devices. 666 */ 667 p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE); 668 669 /* Virtualize capability list, we might want to skip/disable */ 670 p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE); 671 672 /* No harm to write */ 673 p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE); 674 p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE); 675 p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE); 676 677 /* Virtualize all bars, can't touch the real ones */ 678 p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE); 679 p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE); 680 p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE); 681 p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE); 682 p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE); 683 p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE); 684 p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE); 685 686 /* Allow us to adjust capability chain */ 687 p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE); 688 689 /* Sometimes used by sw, just virtualize */ 690 p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE); 691 692 /* Virtualize interrupt pin to allow hiding INTx */ 693 p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE); 694 695 return 0; 696 } 697 698 /* 699 * It takes all the required locks to protect the access of power related 700 * variables and then invokes vfio_pci_set_power_state(). 701 */ 702 static void vfio_lock_and_set_power_state(struct vfio_pci_core_device *vdev, 703 pci_power_t state) 704 { 705 if (state >= PCI_D3hot) 706 vfio_pci_zap_and_down_write_memory_lock(vdev); 707 else 708 down_write(&vdev->memory_lock); 709 710 vfio_pci_set_power_state(vdev, state); 711 up_write(&vdev->memory_lock); 712 } 713 714 static int vfio_pm_config_write(struct vfio_pci_core_device *vdev, int pos, 715 int count, struct perm_bits *perm, 716 int offset, __le32 val) 717 { 718 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 719 if (count < 0) 720 return count; 721 722 if (offset == PCI_PM_CTRL) { 723 pci_power_t state; 724 725 switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) { 726 case 0: 727 state = PCI_D0; 728 break; 729 case 1: 730 state = PCI_D1; 731 break; 732 case 2: 733 state = PCI_D2; 734 break; 735 case 3: 736 state = PCI_D3hot; 737 break; 738 } 739 740 vfio_lock_and_set_power_state(vdev, state); 741 } 742 743 return count; 744 } 745 746 /* Permissions for the Power Management capability */ 747 static int __init init_pci_cap_pm_perm(struct perm_bits *perm) 748 { 749 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM])) 750 return -ENOMEM; 751 752 perm->writefn = vfio_pm_config_write; 753 754 /* 755 * We always virtualize the next field so we can remove 756 * capabilities from the chain if we want to. 757 */ 758 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 759 760 /* 761 * The guests can't process PME events. If any PME event will be 762 * generated, then it will be mostly handled in the host and the 763 * host will clear the PME_STATUS. So virtualize PME_Support bits. 764 * The vconfig bits will be cleared during device capability 765 * initialization. 766 */ 767 p_setw(perm, PCI_PM_PMC, PCI_PM_CAP_PME_MASK, NO_WRITE); 768 769 /* 770 * Power management is defined *per function*, so we can let 771 * the user change power state, but we trap and initiate the 772 * change ourselves, so the state bits are read-only. 773 * 774 * The guest can't process PME from D3cold so virtualize PME_Status 775 * and PME_En bits. The vconfig bits will be cleared during device 776 * capability initialization. 777 */ 778 p_setd(perm, PCI_PM_CTRL, 779 PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS, 780 ~(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS | 781 PCI_PM_CTRL_STATE_MASK)); 782 783 return 0; 784 } 785 786 static int vfio_vpd_config_write(struct vfio_pci_core_device *vdev, int pos, 787 int count, struct perm_bits *perm, 788 int offset, __le32 val) 789 { 790 struct pci_dev *pdev = vdev->pdev; 791 __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR); 792 __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA); 793 u16 addr; 794 u32 data; 795 796 /* 797 * Write through to emulation. If the write includes the upper byte 798 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we 799 * have work to do. 800 */ 801 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 802 if (count < 0 || offset > PCI_VPD_ADDR + 1 || 803 offset + count <= PCI_VPD_ADDR + 1) 804 return count; 805 806 addr = le16_to_cpu(*paddr); 807 808 if (addr & PCI_VPD_ADDR_F) { 809 data = le32_to_cpu(*pdata); 810 if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4) 811 return count; 812 } else { 813 data = 0; 814 if (pci_read_vpd(pdev, addr, 4, &data) < 0) 815 return count; 816 *pdata = cpu_to_le32(data); 817 } 818 819 /* 820 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to 821 * signal completion. If an error occurs above, we assume that not 822 * toggling this bit will induce a driver timeout. 823 */ 824 addr ^= PCI_VPD_ADDR_F; 825 *paddr = cpu_to_le16(addr); 826 827 return count; 828 } 829 830 /* Permissions for Vital Product Data capability */ 831 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm) 832 { 833 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD])) 834 return -ENOMEM; 835 836 perm->writefn = vfio_vpd_config_write; 837 838 /* 839 * We always virtualize the next field so we can remove 840 * capabilities from the chain if we want to. 841 */ 842 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 843 844 /* 845 * Both the address and data registers are virtualized to 846 * enable access through the pci_vpd_read/write functions 847 */ 848 p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE); 849 p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE); 850 851 return 0; 852 } 853 854 /* Permissions for PCI-X capability */ 855 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm) 856 { 857 /* Alloc 24, but only 8 are used in v0 */ 858 if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2)) 859 return -ENOMEM; 860 861 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 862 863 p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE); 864 p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE); 865 return 0; 866 } 867 868 static int vfio_exp_config_write(struct vfio_pci_core_device *vdev, int pos, 869 int count, struct perm_bits *perm, 870 int offset, __le32 val) 871 { 872 __le16 *ctrl = (__le16 *)(vdev->vconfig + pos - 873 offset + PCI_EXP_DEVCTL); 874 int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ; 875 876 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 877 if (count < 0) 878 return count; 879 880 /* 881 * The FLR bit is virtualized, if set and the device supports PCIe 882 * FLR, issue a reset_function. Regardless, clear the bit, the spec 883 * requires it to be always read as zero. NB, reset_function might 884 * not use a PCIe FLR, we don't have that level of granularity. 885 */ 886 if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) { 887 u32 cap; 888 int ret; 889 890 *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR); 891 892 ret = pci_user_read_config_dword(vdev->pdev, 893 pos - offset + PCI_EXP_DEVCAP, 894 &cap); 895 896 if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) { 897 vfio_pci_zap_and_down_write_memory_lock(vdev); 898 pci_try_reset_function(vdev->pdev); 899 up_write(&vdev->memory_lock); 900 } 901 } 902 903 /* 904 * MPS is virtualized to the user, writes do not change the physical 905 * register since determining a proper MPS value requires a system wide 906 * device view. The MRRS is largely independent of MPS, but since the 907 * user does not have that system-wide view, they might set a safe, but 908 * inefficiently low value. Here we allow writes through to hardware, 909 * but we set the floor to the physical device MPS setting, so that 910 * we can at least use full TLPs, as defined by the MPS value. 911 * 912 * NB, if any devices actually depend on an artificially low MRRS 913 * setting, this will need to be revisited, perhaps with a quirk 914 * though pcie_set_readrq(). 915 */ 916 if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) { 917 readrq = 128 << 918 ((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12); 919 readrq = max(readrq, pcie_get_mps(vdev->pdev)); 920 921 pcie_set_readrq(vdev->pdev, readrq); 922 } 923 924 return count; 925 } 926 927 /* Permissions for PCI Express capability */ 928 static int __init init_pci_cap_exp_perm(struct perm_bits *perm) 929 { 930 /* Alloc largest of possible sizes */ 931 if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2)) 932 return -ENOMEM; 933 934 perm->writefn = vfio_exp_config_write; 935 936 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 937 938 /* 939 * Allow writes to device control fields, except devctl_phantom, 940 * which could confuse IOMMU, MPS, which can break communication 941 * with other physical devices, and the ARI bit in devctl2, which 942 * is set at probe time. FLR and MRRS get virtualized via our 943 * writefn. 944 */ 945 p_setw(perm, PCI_EXP_DEVCTL, 946 PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD | 947 PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM); 948 p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI); 949 return 0; 950 } 951 952 static int vfio_af_config_write(struct vfio_pci_core_device *vdev, int pos, 953 int count, struct perm_bits *perm, 954 int offset, __le32 val) 955 { 956 u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL; 957 958 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 959 if (count < 0) 960 return count; 961 962 /* 963 * The FLR bit is virtualized, if set and the device supports AF 964 * FLR, issue a reset_function. Regardless, clear the bit, the spec 965 * requires it to be always read as zero. NB, reset_function might 966 * not use an AF FLR, we don't have that level of granularity. 967 */ 968 if (*ctrl & PCI_AF_CTRL_FLR) { 969 u8 cap; 970 int ret; 971 972 *ctrl &= ~PCI_AF_CTRL_FLR; 973 974 ret = pci_user_read_config_byte(vdev->pdev, 975 pos - offset + PCI_AF_CAP, 976 &cap); 977 978 if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) { 979 vfio_pci_zap_and_down_write_memory_lock(vdev); 980 pci_try_reset_function(vdev->pdev); 981 up_write(&vdev->memory_lock); 982 } 983 } 984 985 return count; 986 } 987 988 /* Permissions for Advanced Function capability */ 989 static int __init init_pci_cap_af_perm(struct perm_bits *perm) 990 { 991 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF])) 992 return -ENOMEM; 993 994 perm->writefn = vfio_af_config_write; 995 996 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 997 p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR); 998 return 0; 999 } 1000 1001 /* Permissions for Advanced Error Reporting extended capability */ 1002 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm) 1003 { 1004 u32 mask; 1005 1006 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR])) 1007 return -ENOMEM; 1008 1009 /* 1010 * Virtualize the first dword of all express capabilities 1011 * because it includes the next pointer. This lets us later 1012 * remove capabilities from the chain if we need to. 1013 */ 1014 p_setd(perm, 0, ALL_VIRT, NO_WRITE); 1015 1016 /* Writable bits mask */ 1017 mask = PCI_ERR_UNC_UND | /* Undefined */ 1018 PCI_ERR_UNC_DLP | /* Data Link Protocol */ 1019 PCI_ERR_UNC_SURPDN | /* Surprise Down */ 1020 PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */ 1021 PCI_ERR_UNC_FCP | /* Flow Control Protocol */ 1022 PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */ 1023 PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */ 1024 PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */ 1025 PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */ 1026 PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */ 1027 PCI_ERR_UNC_ECRC | /* ECRC Error Status */ 1028 PCI_ERR_UNC_UNSUP | /* Unsupported Request */ 1029 PCI_ERR_UNC_ACSV | /* ACS Violation */ 1030 PCI_ERR_UNC_INTN | /* internal error */ 1031 PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */ 1032 PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */ 1033 PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */ 1034 p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask); 1035 p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask); 1036 p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask); 1037 1038 mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */ 1039 PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */ 1040 PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */ 1041 PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */ 1042 PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */ 1043 PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */ 1044 PCI_ERR_COR_INTERNAL | /* Corrected Internal */ 1045 PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */ 1046 p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask); 1047 p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask); 1048 1049 mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */ 1050 PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */ 1051 p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask); 1052 return 0; 1053 } 1054 1055 /* Permissions for Power Budgeting extended capability */ 1056 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm) 1057 { 1058 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR])) 1059 return -ENOMEM; 1060 1061 p_setd(perm, 0, ALL_VIRT, NO_WRITE); 1062 1063 /* Writing the data selector is OK, the info is still read-only */ 1064 p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE); 1065 return 0; 1066 } 1067 1068 /* 1069 * Initialize the shared permission tables 1070 */ 1071 void vfio_pci_uninit_perm_bits(void) 1072 { 1073 free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]); 1074 1075 free_perm_bits(&cap_perms[PCI_CAP_ID_PM]); 1076 free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]); 1077 free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]); 1078 free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]); 1079 free_perm_bits(&cap_perms[PCI_CAP_ID_AF]); 1080 1081 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]); 1082 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]); 1083 } 1084 1085 int __init vfio_pci_init_perm_bits(void) 1086 { 1087 int ret; 1088 1089 /* Basic config space */ 1090 ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]); 1091 1092 /* Capabilities */ 1093 ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]); 1094 ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]); 1095 ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]); 1096 cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write; 1097 ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]); 1098 ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]); 1099 1100 /* Extended capabilities */ 1101 ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]); 1102 ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]); 1103 ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write; 1104 1105 if (ret) 1106 vfio_pci_uninit_perm_bits(); 1107 1108 return ret; 1109 } 1110 1111 static int vfio_find_cap_start(struct vfio_pci_core_device *vdev, int pos) 1112 { 1113 u8 cap; 1114 int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE : 1115 PCI_STD_HEADER_SIZEOF; 1116 cap = vdev->pci_config_map[pos]; 1117 1118 if (cap == PCI_CAP_ID_BASIC) 1119 return 0; 1120 1121 /* XXX Can we have to abutting capabilities of the same type? */ 1122 while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap) 1123 pos--; 1124 1125 return pos; 1126 } 1127 1128 static int vfio_msi_config_read(struct vfio_pci_core_device *vdev, int pos, 1129 int count, struct perm_bits *perm, 1130 int offset, __le32 *val) 1131 { 1132 /* Update max available queue size from msi_qmax */ 1133 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) { 1134 __le16 *flags; 1135 int start; 1136 1137 start = vfio_find_cap_start(vdev, pos); 1138 1139 flags = (__le16 *)&vdev->vconfig[start]; 1140 1141 *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK); 1142 *flags |= cpu_to_le16(vdev->msi_qmax << 1); 1143 } 1144 1145 return vfio_default_config_read(vdev, pos, count, perm, offset, val); 1146 } 1147 1148 static int vfio_msi_config_write(struct vfio_pci_core_device *vdev, int pos, 1149 int count, struct perm_bits *perm, 1150 int offset, __le32 val) 1151 { 1152 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 1153 if (count < 0) 1154 return count; 1155 1156 /* Fixup and write configured queue size and enable to hardware */ 1157 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) { 1158 __le16 *pflags; 1159 u16 flags; 1160 int start, ret; 1161 1162 start = vfio_find_cap_start(vdev, pos); 1163 1164 pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS]; 1165 1166 flags = le16_to_cpu(*pflags); 1167 1168 /* MSI is enabled via ioctl */ 1169 if (!is_msi(vdev)) 1170 flags &= ~PCI_MSI_FLAGS_ENABLE; 1171 1172 /* Check queue size */ 1173 if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) { 1174 flags &= ~PCI_MSI_FLAGS_QSIZE; 1175 flags |= vdev->msi_qmax << 4; 1176 } 1177 1178 /* Write back to virt and to hardware */ 1179 *pflags = cpu_to_le16(flags); 1180 ret = pci_user_write_config_word(vdev->pdev, 1181 start + PCI_MSI_FLAGS, 1182 flags); 1183 if (ret) 1184 return ret; 1185 } 1186 1187 return count; 1188 } 1189 1190 /* 1191 * MSI determination is per-device, so this routine gets used beyond 1192 * initialization time. Don't add __init 1193 */ 1194 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags) 1195 { 1196 if (alloc_perm_bits(perm, len)) 1197 return -ENOMEM; 1198 1199 perm->readfn = vfio_msi_config_read; 1200 perm->writefn = vfio_msi_config_write; 1201 1202 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 1203 1204 /* 1205 * The upper byte of the control register is reserved, 1206 * just setup the lower byte. 1207 */ 1208 p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE); 1209 p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE); 1210 if (flags & PCI_MSI_FLAGS_64BIT) { 1211 p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE); 1212 p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE); 1213 if (flags & PCI_MSI_FLAGS_MASKBIT) { 1214 p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE); 1215 p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE); 1216 } 1217 } else { 1218 p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE); 1219 if (flags & PCI_MSI_FLAGS_MASKBIT) { 1220 p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE); 1221 p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE); 1222 } 1223 } 1224 return 0; 1225 } 1226 1227 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */ 1228 static int vfio_msi_cap_len(struct vfio_pci_core_device *vdev, u8 pos) 1229 { 1230 struct pci_dev *pdev = vdev->pdev; 1231 int len, ret; 1232 u16 flags; 1233 1234 ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags); 1235 if (ret) 1236 return pcibios_err_to_errno(ret); 1237 1238 len = 10; /* Minimum size */ 1239 if (flags & PCI_MSI_FLAGS_64BIT) 1240 len += 4; 1241 if (flags & PCI_MSI_FLAGS_MASKBIT) 1242 len += 10; 1243 1244 if (vdev->msi_perm) 1245 return len; 1246 1247 vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL); 1248 if (!vdev->msi_perm) 1249 return -ENOMEM; 1250 1251 ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags); 1252 if (ret) { 1253 kfree(vdev->msi_perm); 1254 return ret; 1255 } 1256 1257 return len; 1258 } 1259 1260 /* Determine extended capability length for VC (2 & 9) and MFVC */ 1261 static int vfio_vc_cap_len(struct vfio_pci_core_device *vdev, u16 pos) 1262 { 1263 struct pci_dev *pdev = vdev->pdev; 1264 u32 tmp; 1265 int ret, evcc, phases, vc_arb; 1266 int len = PCI_CAP_VC_BASE_SIZEOF; 1267 1268 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp); 1269 if (ret) 1270 return pcibios_err_to_errno(ret); 1271 1272 evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */ 1273 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp); 1274 if (ret) 1275 return pcibios_err_to_errno(ret); 1276 1277 if (tmp & PCI_VC_CAP2_128_PHASE) 1278 phases = 128; 1279 else if (tmp & PCI_VC_CAP2_64_PHASE) 1280 phases = 64; 1281 else if (tmp & PCI_VC_CAP2_32_PHASE) 1282 phases = 32; 1283 else 1284 phases = 0; 1285 1286 vc_arb = phases * 4; 1287 1288 /* 1289 * Port arbitration tables are root & switch only; 1290 * function arbitration tables are function 0 only. 1291 * In either case, we'll never let user write them so 1292 * we don't care how big they are 1293 */ 1294 len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF; 1295 if (vc_arb) { 1296 len = round_up(len, 16); 1297 len += vc_arb / 8; 1298 } 1299 return len; 1300 } 1301 1302 static int vfio_cap_len(struct vfio_pci_core_device *vdev, u8 cap, u8 pos) 1303 { 1304 struct pci_dev *pdev = vdev->pdev; 1305 u32 dword; 1306 u16 word; 1307 u8 byte; 1308 int ret; 1309 1310 switch (cap) { 1311 case PCI_CAP_ID_MSI: 1312 return vfio_msi_cap_len(vdev, pos); 1313 case PCI_CAP_ID_PCIX: 1314 ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word); 1315 if (ret) 1316 return pcibios_err_to_errno(ret); 1317 1318 if (PCI_X_CMD_VERSION(word)) { 1319 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) { 1320 /* Test for extended capabilities */ 1321 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, 1322 &dword); 1323 vdev->extended_caps = (dword != 0); 1324 } 1325 return PCI_CAP_PCIX_SIZEOF_V2; 1326 } else 1327 return PCI_CAP_PCIX_SIZEOF_V0; 1328 case PCI_CAP_ID_VNDR: 1329 /* length follows next field */ 1330 ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte); 1331 if (ret) 1332 return pcibios_err_to_errno(ret); 1333 1334 return byte; 1335 case PCI_CAP_ID_EXP: 1336 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) { 1337 /* Test for extended capabilities */ 1338 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword); 1339 vdev->extended_caps = (dword != 0); 1340 } 1341 1342 /* length based on version and type */ 1343 if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) { 1344 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END) 1345 return 0xc; /* "All Devices" only, no link */ 1346 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1; 1347 } else { 1348 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END) 1349 return 0x2c; /* No link */ 1350 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2; 1351 } 1352 case PCI_CAP_ID_HT: 1353 ret = pci_read_config_byte(pdev, pos + 3, &byte); 1354 if (ret) 1355 return pcibios_err_to_errno(ret); 1356 1357 return (byte & HT_3BIT_CAP_MASK) ? 1358 HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG; 1359 case PCI_CAP_ID_SATA: 1360 ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte); 1361 if (ret) 1362 return pcibios_err_to_errno(ret); 1363 1364 byte &= PCI_SATA_REGS_MASK; 1365 if (byte == PCI_SATA_REGS_INLINE) 1366 return PCI_SATA_SIZEOF_LONG; 1367 else 1368 return PCI_SATA_SIZEOF_SHORT; 1369 default: 1370 pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n", 1371 __func__, cap, pos); 1372 } 1373 1374 return 0; 1375 } 1376 1377 static int vfio_ext_cap_len(struct vfio_pci_core_device *vdev, u16 ecap, u16 epos) 1378 { 1379 struct pci_dev *pdev = vdev->pdev; 1380 u8 byte; 1381 u32 dword; 1382 int ret; 1383 1384 switch (ecap) { 1385 case PCI_EXT_CAP_ID_VNDR: 1386 ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword); 1387 if (ret) 1388 return pcibios_err_to_errno(ret); 1389 1390 return dword >> PCI_VSEC_HDR_LEN_SHIFT; 1391 case PCI_EXT_CAP_ID_VC: 1392 case PCI_EXT_CAP_ID_VC9: 1393 case PCI_EXT_CAP_ID_MFVC: 1394 return vfio_vc_cap_len(vdev, epos); 1395 case PCI_EXT_CAP_ID_ACS: 1396 ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte); 1397 if (ret) 1398 return pcibios_err_to_errno(ret); 1399 1400 if (byte & PCI_ACS_EC) { 1401 int bits; 1402 1403 ret = pci_read_config_byte(pdev, 1404 epos + PCI_ACS_EGRESS_BITS, 1405 &byte); 1406 if (ret) 1407 return pcibios_err_to_errno(ret); 1408 1409 bits = byte ? round_up(byte, 32) : 256; 1410 return 8 + (bits / 8); 1411 } 1412 return 8; 1413 1414 case PCI_EXT_CAP_ID_REBAR: 1415 ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte); 1416 if (ret) 1417 return pcibios_err_to_errno(ret); 1418 1419 byte &= PCI_REBAR_CTRL_NBAR_MASK; 1420 byte >>= PCI_REBAR_CTRL_NBAR_SHIFT; 1421 1422 return 4 + (byte * 8); 1423 case PCI_EXT_CAP_ID_DPA: 1424 ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte); 1425 if (ret) 1426 return pcibios_err_to_errno(ret); 1427 1428 byte &= PCI_DPA_CAP_SUBSTATE_MASK; 1429 return PCI_DPA_BASE_SIZEOF + byte + 1; 1430 case PCI_EXT_CAP_ID_TPH: 1431 ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword); 1432 if (ret) 1433 return pcibios_err_to_errno(ret); 1434 1435 if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) { 1436 int sts; 1437 1438 sts = dword & PCI_TPH_CAP_ST_MASK; 1439 sts >>= PCI_TPH_CAP_ST_SHIFT; 1440 return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2; 1441 } 1442 return PCI_TPH_BASE_SIZEOF; 1443 default: 1444 pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n", 1445 __func__, ecap, epos); 1446 } 1447 1448 return 0; 1449 } 1450 1451 static void vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device *vdev, 1452 int offset) 1453 { 1454 __le16 *pmc = (__le16 *)&vdev->vconfig[offset + PCI_PM_PMC]; 1455 __le16 *ctrl = (__le16 *)&vdev->vconfig[offset + PCI_PM_CTRL]; 1456 1457 /* Clear vconfig PME_Support, PME_Status, and PME_En bits */ 1458 *pmc &= ~cpu_to_le16(PCI_PM_CAP_PME_MASK); 1459 *ctrl &= ~cpu_to_le16(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS); 1460 } 1461 1462 static int vfio_fill_vconfig_bytes(struct vfio_pci_core_device *vdev, 1463 int offset, int size) 1464 { 1465 struct pci_dev *pdev = vdev->pdev; 1466 int ret = 0; 1467 1468 /* 1469 * We try to read physical config space in the largest chunks 1470 * we can, assuming that all of the fields support dword access. 1471 * pci_save_state() makes this same assumption and seems to do ok. 1472 */ 1473 while (size) { 1474 int filled; 1475 1476 if (size >= 4 && !(offset % 4)) { 1477 __le32 *dwordp = (__le32 *)&vdev->vconfig[offset]; 1478 u32 dword; 1479 1480 ret = pci_read_config_dword(pdev, offset, &dword); 1481 if (ret) 1482 return ret; 1483 *dwordp = cpu_to_le32(dword); 1484 filled = 4; 1485 } else if (size >= 2 && !(offset % 2)) { 1486 __le16 *wordp = (__le16 *)&vdev->vconfig[offset]; 1487 u16 word; 1488 1489 ret = pci_read_config_word(pdev, offset, &word); 1490 if (ret) 1491 return ret; 1492 *wordp = cpu_to_le16(word); 1493 filled = 2; 1494 } else { 1495 u8 *byte = &vdev->vconfig[offset]; 1496 ret = pci_read_config_byte(pdev, offset, byte); 1497 if (ret) 1498 return ret; 1499 filled = 1; 1500 } 1501 1502 offset += filled; 1503 size -= filled; 1504 } 1505 1506 return ret; 1507 } 1508 1509 static int vfio_cap_init(struct vfio_pci_core_device *vdev) 1510 { 1511 struct pci_dev *pdev = vdev->pdev; 1512 u8 *map = vdev->pci_config_map; 1513 u16 status; 1514 u8 pos, *prev, cap; 1515 int loops, ret, caps = 0; 1516 1517 /* Any capabilities? */ 1518 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 1519 if (ret) 1520 return ret; 1521 1522 if (!(status & PCI_STATUS_CAP_LIST)) 1523 return 0; /* Done */ 1524 1525 ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos); 1526 if (ret) 1527 return ret; 1528 1529 /* Mark the previous position in case we want to skip a capability */ 1530 prev = &vdev->vconfig[PCI_CAPABILITY_LIST]; 1531 1532 /* We can bound our loop, capabilities are dword aligned */ 1533 loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF; 1534 while (pos && loops--) { 1535 u8 next; 1536 int i, len = 0; 1537 1538 ret = pci_read_config_byte(pdev, pos, &cap); 1539 if (ret) 1540 return ret; 1541 1542 ret = pci_read_config_byte(pdev, 1543 pos + PCI_CAP_LIST_NEXT, &next); 1544 if (ret) 1545 return ret; 1546 1547 /* 1548 * ID 0 is a NULL capability, conflicting with our fake 1549 * PCI_CAP_ID_BASIC. As it has no content, consider it 1550 * hidden for now. 1551 */ 1552 if (cap && cap <= PCI_CAP_ID_MAX) { 1553 len = pci_cap_length[cap]; 1554 if (len == 0xFF) { /* Variable length */ 1555 len = vfio_cap_len(vdev, cap, pos); 1556 if (len < 0) 1557 return len; 1558 } 1559 } 1560 1561 if (!len) { 1562 pci_info(pdev, "%s: hiding cap %#x@%#x\n", __func__, 1563 cap, pos); 1564 *prev = next; 1565 pos = next; 1566 continue; 1567 } 1568 1569 /* Sanity check, do we overlap other capabilities? */ 1570 for (i = 0; i < len; i++) { 1571 if (likely(map[pos + i] == PCI_CAP_ID_INVALID)) 1572 continue; 1573 1574 pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n", 1575 __func__, pos + i, map[pos + i], cap); 1576 } 1577 1578 BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT); 1579 1580 memset(map + pos, cap, len); 1581 ret = vfio_fill_vconfig_bytes(vdev, pos, len); 1582 if (ret) 1583 return ret; 1584 1585 if (cap == PCI_CAP_ID_PM) 1586 vfio_update_pm_vconfig_bytes(vdev, pos); 1587 1588 prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT]; 1589 pos = next; 1590 caps++; 1591 } 1592 1593 /* If we didn't fill any capabilities, clear the status flag */ 1594 if (!caps) { 1595 __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS]; 1596 *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST); 1597 } 1598 1599 return 0; 1600 } 1601 1602 static int vfio_ecap_init(struct vfio_pci_core_device *vdev) 1603 { 1604 struct pci_dev *pdev = vdev->pdev; 1605 u8 *map = vdev->pci_config_map; 1606 u16 epos; 1607 __le32 *prev = NULL; 1608 int loops, ret, ecaps = 0; 1609 1610 if (!vdev->extended_caps) 1611 return 0; 1612 1613 epos = PCI_CFG_SPACE_SIZE; 1614 1615 loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF; 1616 1617 while (loops-- && epos >= PCI_CFG_SPACE_SIZE) { 1618 u32 header; 1619 u16 ecap; 1620 int i, len = 0; 1621 bool hidden = false; 1622 1623 ret = pci_read_config_dword(pdev, epos, &header); 1624 if (ret) 1625 return ret; 1626 1627 ecap = PCI_EXT_CAP_ID(header); 1628 1629 if (ecap <= PCI_EXT_CAP_ID_MAX) { 1630 len = pci_ext_cap_length[ecap]; 1631 if (len == 0xFF) { 1632 len = vfio_ext_cap_len(vdev, ecap, epos); 1633 if (len < 0) 1634 return len; 1635 } 1636 } 1637 1638 if (!len) { 1639 pci_info(pdev, "%s: hiding ecap %#x@%#x\n", 1640 __func__, ecap, epos); 1641 1642 /* If not the first in the chain, we can skip over it */ 1643 if (prev) { 1644 u32 val = epos = PCI_EXT_CAP_NEXT(header); 1645 *prev &= cpu_to_le32(~(0xffcU << 20)); 1646 *prev |= cpu_to_le32(val << 20); 1647 continue; 1648 } 1649 1650 /* 1651 * Otherwise, fill in a placeholder, the direct 1652 * readfn will virtualize this automatically 1653 */ 1654 len = PCI_CAP_SIZEOF; 1655 hidden = true; 1656 } 1657 1658 for (i = 0; i < len; i++) { 1659 if (likely(map[epos + i] == PCI_CAP_ID_INVALID)) 1660 continue; 1661 1662 pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n", 1663 __func__, epos + i, map[epos + i], ecap); 1664 } 1665 1666 /* 1667 * Even though ecap is 2 bytes, we're currently a long way 1668 * from exceeding 1 byte capabilities. If we ever make it 1669 * up to 0xFE we'll need to up this to a two-byte, byte map. 1670 */ 1671 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT); 1672 1673 memset(map + epos, ecap, len); 1674 ret = vfio_fill_vconfig_bytes(vdev, epos, len); 1675 if (ret) 1676 return ret; 1677 1678 /* 1679 * If we're just using this capability to anchor the list, 1680 * hide the real ID. Only count real ecaps. XXX PCI spec 1681 * indicates to use cap id = 0, version = 0, next = 0 if 1682 * ecaps are absent, hope users check all the way to next. 1683 */ 1684 if (hidden) 1685 *(__le32 *)&vdev->vconfig[epos] &= 1686 cpu_to_le32((0xffcU << 20)); 1687 else 1688 ecaps++; 1689 1690 prev = (__le32 *)&vdev->vconfig[epos]; 1691 epos = PCI_EXT_CAP_NEXT(header); 1692 } 1693 1694 if (!ecaps) 1695 *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0; 1696 1697 return 0; 1698 } 1699 1700 /* 1701 * Nag about hardware bugs, hopefully to have vendors fix them, but at least 1702 * to collect a list of dependencies for the VF INTx pin quirk below. 1703 */ 1704 static const struct pci_device_id known_bogus_vf_intx_pin[] = { 1705 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) }, 1706 {} 1707 }; 1708 1709 /* 1710 * For each device we allocate a pci_config_map that indicates the 1711 * capability occupying each dword and thus the struct perm_bits we 1712 * use for read and write. We also allocate a virtualized config 1713 * space which tracks reads and writes to bits that we emulate for 1714 * the user. Initial values filled from device. 1715 * 1716 * Using shared struct perm_bits between all vfio-pci devices saves 1717 * us from allocating cfg_size buffers for virt and write for every 1718 * device. We could remove vconfig and allocate individual buffers 1719 * for each area requiring emulated bits, but the array of pointers 1720 * would be comparable in size (at least for standard config space). 1721 */ 1722 int vfio_config_init(struct vfio_pci_core_device *vdev) 1723 { 1724 struct pci_dev *pdev = vdev->pdev; 1725 u8 *map, *vconfig; 1726 int ret; 1727 1728 /* 1729 * Config space, caps and ecaps are all dword aligned, so we could 1730 * use one byte per dword to record the type. However, there are 1731 * no requiremenst on the length of a capability, so the gap between 1732 * capabilities needs byte granularity. 1733 */ 1734 map = kmalloc(pdev->cfg_size, GFP_KERNEL); 1735 if (!map) 1736 return -ENOMEM; 1737 1738 vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL); 1739 if (!vconfig) { 1740 kfree(map); 1741 return -ENOMEM; 1742 } 1743 1744 vdev->pci_config_map = map; 1745 vdev->vconfig = vconfig; 1746 1747 memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF); 1748 memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID, 1749 pdev->cfg_size - PCI_STD_HEADER_SIZEOF); 1750 1751 ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF); 1752 if (ret) 1753 goto out; 1754 1755 vdev->bardirty = true; 1756 1757 /* 1758 * XXX can we just pci_load_saved_state/pci_restore_state? 1759 * may need to rebuild vconfig after that 1760 */ 1761 1762 /* For restore after reset */ 1763 vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]); 1764 vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]); 1765 vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]); 1766 vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]); 1767 vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]); 1768 vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]); 1769 vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]); 1770 1771 if (pdev->is_virtfn) { 1772 *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor); 1773 *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device); 1774 1775 /* 1776 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register 1777 * does not apply to VFs and VFs must implement this register 1778 * as read-only with value zero. Userspace is not readily able 1779 * to identify whether a device is a VF and thus that the pin 1780 * definition on the device is bogus should it violate this 1781 * requirement. We already virtualize the pin register for 1782 * other purposes, so we simply need to replace the bogus value 1783 * and consider VFs when we determine INTx IRQ count. 1784 */ 1785 if (vconfig[PCI_INTERRUPT_PIN] && 1786 !pci_match_id(known_bogus_vf_intx_pin, pdev)) 1787 pci_warn(pdev, 1788 "Hardware bug: VF reports bogus INTx pin %d\n", 1789 vconfig[PCI_INTERRUPT_PIN]); 1790 1791 vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */ 1792 } 1793 if (pdev->no_command_memory) { 1794 /* 1795 * VFs and devices that set pdev->no_command_memory do not 1796 * implement the memory enable bit of the COMMAND register 1797 * therefore we'll not have it set in our initial copy of 1798 * config space after pci_enable_device(). For consistency 1799 * with PFs, set the virtual enable bit here. 1800 */ 1801 *(__le16 *)&vconfig[PCI_COMMAND] |= 1802 cpu_to_le16(PCI_COMMAND_MEMORY); 1803 } 1804 1805 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx) 1806 vconfig[PCI_INTERRUPT_PIN] = 0; 1807 1808 ret = vfio_cap_init(vdev); 1809 if (ret) 1810 goto out; 1811 1812 ret = vfio_ecap_init(vdev); 1813 if (ret) 1814 goto out; 1815 1816 return 0; 1817 1818 out: 1819 kfree(map); 1820 vdev->pci_config_map = NULL; 1821 kfree(vconfig); 1822 vdev->vconfig = NULL; 1823 return pcibios_err_to_errno(ret); 1824 } 1825 1826 void vfio_config_free(struct vfio_pci_core_device *vdev) 1827 { 1828 kfree(vdev->vconfig); 1829 vdev->vconfig = NULL; 1830 kfree(vdev->pci_config_map); 1831 vdev->pci_config_map = NULL; 1832 if (vdev->msi_perm) { 1833 free_perm_bits(vdev->msi_perm); 1834 kfree(vdev->msi_perm); 1835 vdev->msi_perm = NULL; 1836 } 1837 } 1838 1839 /* 1840 * Find the remaining number of bytes in a dword that match the given 1841 * position. Stop at either the end of the capability or the dword boundary. 1842 */ 1843 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_core_device *vdev, 1844 loff_t pos) 1845 { 1846 u8 cap = vdev->pci_config_map[pos]; 1847 size_t i; 1848 1849 for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++) 1850 /* nop */; 1851 1852 return i; 1853 } 1854 1855 static ssize_t vfio_config_do_rw(struct vfio_pci_core_device *vdev, char __user *buf, 1856 size_t count, loff_t *ppos, bool iswrite) 1857 { 1858 struct pci_dev *pdev = vdev->pdev; 1859 struct perm_bits *perm; 1860 __le32 val = 0; 1861 int cap_start = 0, offset; 1862 u8 cap_id; 1863 ssize_t ret; 1864 1865 if (*ppos < 0 || *ppos >= pdev->cfg_size || 1866 *ppos + count > pdev->cfg_size) 1867 return -EFAULT; 1868 1869 /* 1870 * Chop accesses into aligned chunks containing no more than a 1871 * single capability. Caller increments to the next chunk. 1872 */ 1873 count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos)); 1874 if (count >= 4 && !(*ppos % 4)) 1875 count = 4; 1876 else if (count >= 2 && !(*ppos % 2)) 1877 count = 2; 1878 else 1879 count = 1; 1880 1881 ret = count; 1882 1883 cap_id = vdev->pci_config_map[*ppos]; 1884 1885 if (cap_id == PCI_CAP_ID_INVALID) { 1886 perm = &unassigned_perms; 1887 cap_start = *ppos; 1888 } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) { 1889 perm = &virt_perms; 1890 cap_start = *ppos; 1891 } else { 1892 if (*ppos >= PCI_CFG_SPACE_SIZE) { 1893 WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX); 1894 1895 perm = &ecap_perms[cap_id]; 1896 cap_start = vfio_find_cap_start(vdev, *ppos); 1897 } else { 1898 WARN_ON(cap_id > PCI_CAP_ID_MAX); 1899 1900 perm = &cap_perms[cap_id]; 1901 1902 if (cap_id == PCI_CAP_ID_MSI) 1903 perm = vdev->msi_perm; 1904 1905 if (cap_id > PCI_CAP_ID_BASIC) 1906 cap_start = vfio_find_cap_start(vdev, *ppos); 1907 } 1908 } 1909 1910 WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC); 1911 WARN_ON(cap_start > *ppos); 1912 1913 offset = *ppos - cap_start; 1914 1915 if (iswrite) { 1916 if (!perm->writefn) 1917 return ret; 1918 1919 if (copy_from_user(&val, buf, count)) 1920 return -EFAULT; 1921 1922 ret = perm->writefn(vdev, *ppos, count, perm, offset, val); 1923 } else { 1924 if (perm->readfn) { 1925 ret = perm->readfn(vdev, *ppos, count, 1926 perm, offset, &val); 1927 if (ret < 0) 1928 return ret; 1929 } 1930 1931 if (copy_to_user(buf, &val, count)) 1932 return -EFAULT; 1933 } 1934 1935 return ret; 1936 } 1937 1938 ssize_t vfio_pci_config_rw(struct vfio_pci_core_device *vdev, char __user *buf, 1939 size_t count, loff_t *ppos, bool iswrite) 1940 { 1941 size_t done = 0; 1942 int ret = 0; 1943 loff_t pos = *ppos; 1944 1945 pos &= VFIO_PCI_OFFSET_MASK; 1946 1947 while (count) { 1948 ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite); 1949 if (ret < 0) 1950 return ret; 1951 1952 count -= ret; 1953 done += ret; 1954 buf += ret; 1955 pos += ret; 1956 } 1957 1958 *ppos += done; 1959 1960 return done; 1961 } 1962