1 /* 2 * Driver for USB Mass Storage compliant devices 3 * 4 * Current development and maintenance by: 5 * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net) 6 * 7 * Developed with the assistance of: 8 * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org) 9 * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov) 10 * (c) 2002 Alan Stern <stern@rowland.org> 11 * 12 * Initial work by: 13 * (c) 1999 Michael Gee (michael@linuxspecific.com) 14 * 15 * This driver is based on the 'USB Mass Storage Class' document. This 16 * describes in detail the protocol used to communicate with such 17 * devices. Clearly, the designers had SCSI and ATAPI commands in 18 * mind when they created this document. The commands are all very 19 * similar to commands in the SCSI-II and ATAPI specifications. 20 * 21 * It is important to note that in a number of cases this class 22 * exhibits class-specific exemptions from the USB specification. 23 * Notably the usage of NAK, STALL and ACK differs from the norm, in 24 * that they are used to communicate wait, failed and OK on commands. 25 * 26 * Also, for certain devices, the interrupt endpoint is used to convey 27 * status of a command. 28 * 29 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more 30 * information about this driver. 31 * 32 * This program is free software; you can redistribute it and/or modify it 33 * under the terms of the GNU General Public License as published by the 34 * Free Software Foundation; either version 2, or (at your option) any 35 * later version. 36 * 37 * This program is distributed in the hope that it will be useful, but 38 * WITHOUT ANY WARRANTY; without even the implied warranty of 39 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 40 * General Public License for more details. 41 * 42 * You should have received a copy of the GNU General Public License along 43 * with this program; if not, write to the Free Software Foundation, Inc., 44 * 675 Mass Ave, Cambridge, MA 02139, USA. 45 */ 46 47 #include <linux/sched.h> 48 #include <linux/gfp.h> 49 #include <linux/errno.h> 50 #include <linux/export.h> 51 52 #include <linux/usb/quirks.h> 53 54 #include <scsi/scsi.h> 55 #include <scsi/scsi_eh.h> 56 #include <scsi/scsi_device.h> 57 58 #include "usb.h" 59 #include "transport.h" 60 #include "protocol.h" 61 #include "scsiglue.h" 62 #include "debug.h" 63 64 #include <linux/blkdev.h> 65 #include "../../scsi/sd.h" 66 67 68 /*********************************************************************** 69 * Data transfer routines 70 ***********************************************************************/ 71 72 /* 73 * This is subtle, so pay attention: 74 * --------------------------------- 75 * We're very concerned about races with a command abort. Hanging this code 76 * is a sure fire way to hang the kernel. (Note that this discussion applies 77 * only to transactions resulting from a scsi queued-command, since only 78 * these transactions are subject to a scsi abort. Other transactions, such 79 * as those occurring during device-specific initialization, must be handled 80 * by a separate code path.) 81 * 82 * The abort function (usb_storage_command_abort() in scsiglue.c) first 83 * sets the machine state and the ABORTING bit in us->dflags to prevent 84 * new URBs from being submitted. It then calls usb_stor_stop_transport() 85 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags 86 * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE 87 * bit is tested to see if the current_sg scatter-gather request needs to be 88 * stopped. The timeout callback routine does much the same thing. 89 * 90 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to 91 * prevent new URBs from being submitted, and usb_stor_stop_transport() is 92 * called to stop any ongoing requests. 93 * 94 * The submit function first verifies that the submitting is allowed 95 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit 96 * completes without errors, and only then sets the URB_ACTIVE bit. This 97 * prevents the stop_transport() function from trying to cancel the URB 98 * while the submit call is underway. Next, the submit function must test 99 * the flags to see if an abort or disconnect occurred during the submission 100 * or before the URB_ACTIVE bit was set. If so, it's essential to cancel 101 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit 102 * is still set). Either way, the function must then wait for the URB to 103 * finish. Note that the URB can still be in progress even after a call to 104 * usb_unlink_urb() returns. 105 * 106 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set, 107 * either the stop_transport() function or the submitting function 108 * is guaranteed to call usb_unlink_urb() for an active URB, 109 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being 110 * called more than once or from being called during usb_submit_urb(). 111 */ 112 113 /* 114 * This is the completion handler which will wake us up when an URB 115 * completes. 116 */ 117 static void usb_stor_blocking_completion(struct urb *urb) 118 { 119 struct completion *urb_done_ptr = urb->context; 120 121 complete(urb_done_ptr); 122 } 123 124 /* 125 * This is the common part of the URB message submission code 126 * 127 * All URBs from the usb-storage driver involved in handling a queued scsi 128 * command _must_ pass through this function (or something like it) for the 129 * abort mechanisms to work properly. 130 */ 131 static int usb_stor_msg_common(struct us_data *us, int timeout) 132 { 133 struct completion urb_done; 134 long timeleft; 135 int status; 136 137 /* don't submit URBs during abort processing */ 138 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) 139 return -EIO; 140 141 /* set up data structures for the wakeup system */ 142 init_completion(&urb_done); 143 144 /* fill the common fields in the URB */ 145 us->current_urb->context = &urb_done; 146 us->current_urb->transfer_flags = 0; 147 148 /* 149 * we assume that if transfer_buffer isn't us->iobuf then it 150 * hasn't been mapped for DMA. Yes, this is clunky, but it's 151 * easier than always having the caller tell us whether the 152 * transfer buffer has already been mapped. 153 */ 154 if (us->current_urb->transfer_buffer == us->iobuf) 155 us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 156 us->current_urb->transfer_dma = us->iobuf_dma; 157 158 /* submit the URB */ 159 status = usb_submit_urb(us->current_urb, GFP_NOIO); 160 if (status) { 161 /* something went wrong */ 162 return status; 163 } 164 165 /* 166 * since the URB has been submitted successfully, it's now okay 167 * to cancel it 168 */ 169 set_bit(US_FLIDX_URB_ACTIVE, &us->dflags); 170 171 /* did an abort occur during the submission? */ 172 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { 173 174 /* cancel the URB, if it hasn't been cancelled already */ 175 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { 176 usb_stor_dbg(us, "-- cancelling URB\n"); 177 usb_unlink_urb(us->current_urb); 178 } 179 } 180 181 /* wait for the completion of the URB */ 182 timeleft = wait_for_completion_interruptible_timeout( 183 &urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT); 184 185 clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags); 186 187 if (timeleft <= 0) { 188 usb_stor_dbg(us, "%s -- cancelling URB\n", 189 timeleft == 0 ? "Timeout" : "Signal"); 190 usb_kill_urb(us->current_urb); 191 } 192 193 /* return the URB status */ 194 return us->current_urb->status; 195 } 196 197 /* 198 * Transfer one control message, with timeouts, and allowing early 199 * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx. 200 */ 201 int usb_stor_control_msg(struct us_data *us, unsigned int pipe, 202 u8 request, u8 requesttype, u16 value, u16 index, 203 void *data, u16 size, int timeout) 204 { 205 int status; 206 207 usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", 208 request, requesttype, value, index, size); 209 210 /* fill in the devrequest structure */ 211 us->cr->bRequestType = requesttype; 212 us->cr->bRequest = request; 213 us->cr->wValue = cpu_to_le16(value); 214 us->cr->wIndex = cpu_to_le16(index); 215 us->cr->wLength = cpu_to_le16(size); 216 217 /* fill and submit the URB */ 218 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 219 (unsigned char*) us->cr, data, size, 220 usb_stor_blocking_completion, NULL); 221 status = usb_stor_msg_common(us, timeout); 222 223 /* return the actual length of the data transferred if no error */ 224 if (status == 0) 225 status = us->current_urb->actual_length; 226 return status; 227 } 228 EXPORT_SYMBOL_GPL(usb_stor_control_msg); 229 230 /* 231 * This is a version of usb_clear_halt() that allows early termination and 232 * doesn't read the status from the device -- this is because some devices 233 * crash their internal firmware when the status is requested after a halt. 234 * 235 * A definitive list of these 'bad' devices is too difficult to maintain or 236 * make complete enough to be useful. This problem was first observed on the 237 * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither 238 * MacOS nor Windows checks the status after clearing a halt. 239 * 240 * Since many vendors in this space limit their testing to interoperability 241 * with these two OSes, specification violations like this one are common. 242 */ 243 int usb_stor_clear_halt(struct us_data *us, unsigned int pipe) 244 { 245 int result; 246 int endp = usb_pipeendpoint(pipe); 247 248 if (usb_pipein (pipe)) 249 endp |= USB_DIR_IN; 250 251 result = usb_stor_control_msg(us, us->send_ctrl_pipe, 252 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 253 USB_ENDPOINT_HALT, endp, 254 NULL, 0, 3*HZ); 255 256 if (result >= 0) 257 usb_reset_endpoint(us->pusb_dev, endp); 258 259 usb_stor_dbg(us, "result = %d\n", result); 260 return result; 261 } 262 EXPORT_SYMBOL_GPL(usb_stor_clear_halt); 263 264 265 /* 266 * Interpret the results of a URB transfer 267 * 268 * This function prints appropriate debugging messages, clears halts on 269 * non-control endpoints, and translates the status to the corresponding 270 * USB_STOR_XFER_xxx return code. 271 */ 272 static int interpret_urb_result(struct us_data *us, unsigned int pipe, 273 unsigned int length, int result, unsigned int partial) 274 { 275 usb_stor_dbg(us, "Status code %d; transferred %u/%u\n", 276 result, partial, length); 277 switch (result) { 278 279 /* no error code; did we send all the data? */ 280 case 0: 281 if (partial != length) { 282 usb_stor_dbg(us, "-- short transfer\n"); 283 return USB_STOR_XFER_SHORT; 284 } 285 286 usb_stor_dbg(us, "-- transfer complete\n"); 287 return USB_STOR_XFER_GOOD; 288 289 /* stalled */ 290 case -EPIPE: 291 /* 292 * for control endpoints, (used by CB[I]) a stall indicates 293 * a failed command 294 */ 295 if (usb_pipecontrol(pipe)) { 296 usb_stor_dbg(us, "-- stall on control pipe\n"); 297 return USB_STOR_XFER_STALLED; 298 } 299 300 /* for other sorts of endpoint, clear the stall */ 301 usb_stor_dbg(us, "clearing endpoint halt for pipe 0x%x\n", 302 pipe); 303 if (usb_stor_clear_halt(us, pipe) < 0) 304 return USB_STOR_XFER_ERROR; 305 return USB_STOR_XFER_STALLED; 306 307 /* babble - the device tried to send more than we wanted to read */ 308 case -EOVERFLOW: 309 usb_stor_dbg(us, "-- babble\n"); 310 return USB_STOR_XFER_LONG; 311 312 /* the transfer was cancelled by abort, disconnect, or timeout */ 313 case -ECONNRESET: 314 usb_stor_dbg(us, "-- transfer cancelled\n"); 315 return USB_STOR_XFER_ERROR; 316 317 /* short scatter-gather read transfer */ 318 case -EREMOTEIO: 319 usb_stor_dbg(us, "-- short read transfer\n"); 320 return USB_STOR_XFER_SHORT; 321 322 /* abort or disconnect in progress */ 323 case -EIO: 324 usb_stor_dbg(us, "-- abort or disconnect in progress\n"); 325 return USB_STOR_XFER_ERROR; 326 327 /* the catch-all error case */ 328 default: 329 usb_stor_dbg(us, "-- unknown error\n"); 330 return USB_STOR_XFER_ERROR; 331 } 332 } 333 334 /* 335 * Transfer one control message, without timeouts, but allowing early 336 * termination. Return codes are USB_STOR_XFER_xxx. 337 */ 338 int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe, 339 u8 request, u8 requesttype, u16 value, u16 index, 340 void *data, u16 size) 341 { 342 int result; 343 344 usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", 345 request, requesttype, value, index, size); 346 347 /* fill in the devrequest structure */ 348 us->cr->bRequestType = requesttype; 349 us->cr->bRequest = request; 350 us->cr->wValue = cpu_to_le16(value); 351 us->cr->wIndex = cpu_to_le16(index); 352 us->cr->wLength = cpu_to_le16(size); 353 354 /* fill and submit the URB */ 355 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 356 (unsigned char*) us->cr, data, size, 357 usb_stor_blocking_completion, NULL); 358 result = usb_stor_msg_common(us, 0); 359 360 return interpret_urb_result(us, pipe, size, result, 361 us->current_urb->actual_length); 362 } 363 EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer); 364 365 /* 366 * Receive one interrupt buffer, without timeouts, but allowing early 367 * termination. Return codes are USB_STOR_XFER_xxx. 368 * 369 * This routine always uses us->recv_intr_pipe as the pipe and 370 * us->ep_bInterval as the interrupt interval. 371 */ 372 static int usb_stor_intr_transfer(struct us_data *us, void *buf, 373 unsigned int length) 374 { 375 int result; 376 unsigned int pipe = us->recv_intr_pipe; 377 unsigned int maxp; 378 379 usb_stor_dbg(us, "xfer %u bytes\n", length); 380 381 /* calculate the max packet size */ 382 maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe)); 383 if (maxp > length) 384 maxp = length; 385 386 /* fill and submit the URB */ 387 usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf, 388 maxp, usb_stor_blocking_completion, NULL, 389 us->ep_bInterval); 390 result = usb_stor_msg_common(us, 0); 391 392 return interpret_urb_result(us, pipe, length, result, 393 us->current_urb->actual_length); 394 } 395 396 /* 397 * Transfer one buffer via bulk pipe, without timeouts, but allowing early 398 * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe 399 * stalls during the transfer, the halt is automatically cleared. 400 */ 401 int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe, 402 void *buf, unsigned int length, unsigned int *act_len) 403 { 404 int result; 405 406 usb_stor_dbg(us, "xfer %u bytes\n", length); 407 408 /* fill and submit the URB */ 409 usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length, 410 usb_stor_blocking_completion, NULL); 411 result = usb_stor_msg_common(us, 0); 412 413 /* store the actual length of the data transferred */ 414 if (act_len) 415 *act_len = us->current_urb->actual_length; 416 return interpret_urb_result(us, pipe, length, result, 417 us->current_urb->actual_length); 418 } 419 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf); 420 421 /* 422 * Transfer a scatter-gather list via bulk transfer 423 * 424 * This function does basically the same thing as usb_stor_bulk_transfer_buf() 425 * above, but it uses the usbcore scatter-gather library. 426 */ 427 static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe, 428 struct scatterlist *sg, int num_sg, unsigned int length, 429 unsigned int *act_len) 430 { 431 int result; 432 433 /* don't submit s-g requests during abort processing */ 434 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) 435 return USB_STOR_XFER_ERROR; 436 437 /* initialize the scatter-gather request block */ 438 usb_stor_dbg(us, "xfer %u bytes, %d entries\n", length, num_sg); 439 result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0, 440 sg, num_sg, length, GFP_NOIO); 441 if (result) { 442 usb_stor_dbg(us, "usb_sg_init returned %d\n", result); 443 return USB_STOR_XFER_ERROR; 444 } 445 446 /* 447 * since the block has been initialized successfully, it's now 448 * okay to cancel it 449 */ 450 set_bit(US_FLIDX_SG_ACTIVE, &us->dflags); 451 452 /* did an abort occur during the submission? */ 453 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { 454 455 /* cancel the request, if it hasn't been cancelled already */ 456 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { 457 usb_stor_dbg(us, "-- cancelling sg request\n"); 458 usb_sg_cancel(&us->current_sg); 459 } 460 } 461 462 /* wait for the completion of the transfer */ 463 usb_sg_wait(&us->current_sg); 464 clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags); 465 466 result = us->current_sg.status; 467 if (act_len) 468 *act_len = us->current_sg.bytes; 469 return interpret_urb_result(us, pipe, length, result, 470 us->current_sg.bytes); 471 } 472 473 /* 474 * Common used function. Transfer a complete command 475 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid 476 */ 477 int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe, 478 struct scsi_cmnd* srb) 479 { 480 unsigned int partial; 481 int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb), 482 scsi_sg_count(srb), scsi_bufflen(srb), 483 &partial); 484 485 scsi_set_resid(srb, scsi_bufflen(srb) - partial); 486 return result; 487 } 488 EXPORT_SYMBOL_GPL(usb_stor_bulk_srb); 489 490 /* 491 * Transfer an entire SCSI command's worth of data payload over the bulk 492 * pipe. 493 * 494 * Note that this uses usb_stor_bulk_transfer_buf() and 495 * usb_stor_bulk_transfer_sglist() to achieve its goals -- 496 * this function simply determines whether we're going to use 497 * scatter-gather or not, and acts appropriately. 498 */ 499 int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe, 500 void *buf, unsigned int length_left, int use_sg, int *residual) 501 { 502 int result; 503 unsigned int partial; 504 505 /* are we scatter-gathering? */ 506 if (use_sg) { 507 /* use the usb core scatter-gather primitives */ 508 result = usb_stor_bulk_transfer_sglist(us, pipe, 509 (struct scatterlist *) buf, use_sg, 510 length_left, &partial); 511 length_left -= partial; 512 } else { 513 /* no scatter-gather, just make the request */ 514 result = usb_stor_bulk_transfer_buf(us, pipe, buf, 515 length_left, &partial); 516 length_left -= partial; 517 } 518 519 /* store the residual and return the error code */ 520 if (residual) 521 *residual = length_left; 522 return result; 523 } 524 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg); 525 526 /*********************************************************************** 527 * Transport routines 528 ***********************************************************************/ 529 530 /* 531 * There are so many devices that report the capacity incorrectly, 532 * this routine was written to counteract some of the resulting 533 * problems. 534 */ 535 static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb) 536 { 537 struct gendisk *disk; 538 struct scsi_disk *sdkp; 539 u32 sector; 540 541 /* To Report "Medium Error: Record Not Found */ 542 static unsigned char record_not_found[18] = { 543 [0] = 0x70, /* current error */ 544 [2] = MEDIUM_ERROR, /* = 0x03 */ 545 [7] = 0x0a, /* additional length */ 546 [12] = 0x14 /* Record Not Found */ 547 }; 548 549 /* 550 * If last-sector problems can't occur, whether because the 551 * capacity was already decremented or because the device is 552 * known to report the correct capacity, then we don't need 553 * to do anything. 554 */ 555 if (!us->use_last_sector_hacks) 556 return; 557 558 /* Was this command a READ(10) or a WRITE(10)? */ 559 if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10) 560 goto done; 561 562 /* Did this command access the last sector? */ 563 sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) | 564 (srb->cmnd[4] << 8) | (srb->cmnd[5]); 565 disk = srb->request->rq_disk; 566 if (!disk) 567 goto done; 568 sdkp = scsi_disk(disk); 569 if (!sdkp) 570 goto done; 571 if (sector + 1 != sdkp->capacity) 572 goto done; 573 574 if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) { 575 576 /* 577 * The command succeeded. We know this device doesn't 578 * have the last-sector bug, so stop checking it. 579 */ 580 us->use_last_sector_hacks = 0; 581 582 } else { 583 /* 584 * The command failed. Allow up to 3 retries in case this 585 * is some normal sort of failure. After that, assume the 586 * capacity is wrong and we're trying to access the sector 587 * beyond the end. Replace the result code and sense data 588 * with values that will cause the SCSI core to fail the 589 * command immediately, instead of going into an infinite 590 * (or even just a very long) retry loop. 591 */ 592 if (++us->last_sector_retries < 3) 593 return; 594 srb->result = SAM_STAT_CHECK_CONDITION; 595 memcpy(srb->sense_buffer, record_not_found, 596 sizeof(record_not_found)); 597 } 598 599 done: 600 /* 601 * Don't reset the retry counter for TEST UNIT READY commands, 602 * because they get issued after device resets which might be 603 * caused by a failed last-sector access. 604 */ 605 if (srb->cmnd[0] != TEST_UNIT_READY) 606 us->last_sector_retries = 0; 607 } 608 609 /* 610 * Invoke the transport and basic error-handling/recovery methods 611 * 612 * This is used by the protocol layers to actually send the message to 613 * the device and receive the response. 614 */ 615 void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us) 616 { 617 int need_auto_sense; 618 int result; 619 620 /* send the command to the transport layer */ 621 scsi_set_resid(srb, 0); 622 result = us->transport(srb, us); 623 624 /* 625 * if the command gets aborted by the higher layers, we need to 626 * short-circuit all other processing 627 */ 628 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { 629 usb_stor_dbg(us, "-- command was aborted\n"); 630 srb->result = DID_ABORT << 16; 631 goto Handle_Errors; 632 } 633 634 /* if there is a transport error, reset and don't auto-sense */ 635 if (result == USB_STOR_TRANSPORT_ERROR) { 636 usb_stor_dbg(us, "-- transport indicates error, resetting\n"); 637 srb->result = DID_ERROR << 16; 638 goto Handle_Errors; 639 } 640 641 /* if the transport provided its own sense data, don't auto-sense */ 642 if (result == USB_STOR_TRANSPORT_NO_SENSE) { 643 srb->result = SAM_STAT_CHECK_CONDITION; 644 last_sector_hacks(us, srb); 645 return; 646 } 647 648 srb->result = SAM_STAT_GOOD; 649 650 /* 651 * Determine if we need to auto-sense 652 * 653 * I normally don't use a flag like this, but it's almost impossible 654 * to understand what's going on here if I don't. 655 */ 656 need_auto_sense = 0; 657 658 /* 659 * If we're running the CB transport, which is incapable 660 * of determining status on its own, we will auto-sense 661 * unless the operation involved a data-in transfer. Devices 662 * can signal most data-in errors by stalling the bulk-in pipe. 663 */ 664 if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_DPCM_USB) && 665 srb->sc_data_direction != DMA_FROM_DEVICE) { 666 usb_stor_dbg(us, "-- CB transport device requiring auto-sense\n"); 667 need_auto_sense = 1; 668 } 669 670 /* 671 * If we have a failure, we're going to do a REQUEST_SENSE 672 * automatically. Note that we differentiate between a command 673 * "failure" and an "error" in the transport mechanism. 674 */ 675 if (result == USB_STOR_TRANSPORT_FAILED) { 676 usb_stor_dbg(us, "-- transport indicates command failure\n"); 677 need_auto_sense = 1; 678 } 679 680 /* 681 * Determine if this device is SAT by seeing if the 682 * command executed successfully. Otherwise we'll have 683 * to wait for at least one CHECK_CONDITION to determine 684 * SANE_SENSE support 685 */ 686 if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) && 687 result == USB_STOR_TRANSPORT_GOOD && 688 !(us->fflags & US_FL_SANE_SENSE) && 689 !(us->fflags & US_FL_BAD_SENSE) && 690 !(srb->cmnd[2] & 0x20))) { 691 usb_stor_dbg(us, "-- SAT supported, increasing auto-sense\n"); 692 us->fflags |= US_FL_SANE_SENSE; 693 } 694 695 /* 696 * A short transfer on a command where we don't expect it 697 * is unusual, but it doesn't mean we need to auto-sense. 698 */ 699 if ((scsi_get_resid(srb) > 0) && 700 !((srb->cmnd[0] == REQUEST_SENSE) || 701 (srb->cmnd[0] == INQUIRY) || 702 (srb->cmnd[0] == MODE_SENSE) || 703 (srb->cmnd[0] == LOG_SENSE) || 704 (srb->cmnd[0] == MODE_SENSE_10))) { 705 usb_stor_dbg(us, "-- unexpectedly short transfer\n"); 706 } 707 708 /* Now, if we need to do the auto-sense, let's do it */ 709 if (need_auto_sense) { 710 int temp_result; 711 struct scsi_eh_save ses; 712 int sense_size = US_SENSE_SIZE; 713 struct scsi_sense_hdr sshdr; 714 const u8 *scdd; 715 u8 fm_ili; 716 717 /* device supports and needs bigger sense buffer */ 718 if (us->fflags & US_FL_SANE_SENSE) 719 sense_size = ~0; 720 Retry_Sense: 721 usb_stor_dbg(us, "Issuing auto-REQUEST_SENSE\n"); 722 723 scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size); 724 725 /* FIXME: we must do the protocol translation here */ 726 if (us->subclass == USB_SC_RBC || us->subclass == USB_SC_SCSI || 727 us->subclass == USB_SC_CYP_ATACB) 728 srb->cmd_len = 6; 729 else 730 srb->cmd_len = 12; 731 732 /* issue the auto-sense command */ 733 scsi_set_resid(srb, 0); 734 temp_result = us->transport(us->srb, us); 735 736 /* let's clean up right away */ 737 scsi_eh_restore_cmnd(srb, &ses); 738 739 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { 740 usb_stor_dbg(us, "-- auto-sense aborted\n"); 741 srb->result = DID_ABORT << 16; 742 743 /* If SANE_SENSE caused this problem, disable it */ 744 if (sense_size != US_SENSE_SIZE) { 745 us->fflags &= ~US_FL_SANE_SENSE; 746 us->fflags |= US_FL_BAD_SENSE; 747 } 748 goto Handle_Errors; 749 } 750 751 /* 752 * Some devices claim to support larger sense but fail when 753 * trying to request it. When a transport failure happens 754 * using US_FS_SANE_SENSE, we always retry with a standard 755 * (small) sense request. This fixes some USB GSM modems 756 */ 757 if (temp_result == USB_STOR_TRANSPORT_FAILED && 758 sense_size != US_SENSE_SIZE) { 759 usb_stor_dbg(us, "-- auto-sense failure, retry small sense\n"); 760 sense_size = US_SENSE_SIZE; 761 us->fflags &= ~US_FL_SANE_SENSE; 762 us->fflags |= US_FL_BAD_SENSE; 763 goto Retry_Sense; 764 } 765 766 /* Other failures */ 767 if (temp_result != USB_STOR_TRANSPORT_GOOD) { 768 usb_stor_dbg(us, "-- auto-sense failure\n"); 769 770 /* 771 * we skip the reset if this happens to be a 772 * multi-target device, since failure of an 773 * auto-sense is perfectly valid 774 */ 775 srb->result = DID_ERROR << 16; 776 if (!(us->fflags & US_FL_SCM_MULT_TARG)) 777 goto Handle_Errors; 778 return; 779 } 780 781 /* 782 * If the sense data returned is larger than 18-bytes then we 783 * assume this device supports requesting more in the future. 784 * The response code must be 70h through 73h inclusive. 785 */ 786 if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) && 787 !(us->fflags & US_FL_SANE_SENSE) && 788 !(us->fflags & US_FL_BAD_SENSE) && 789 (srb->sense_buffer[0] & 0x7C) == 0x70) { 790 usb_stor_dbg(us, "-- SANE_SENSE support enabled\n"); 791 us->fflags |= US_FL_SANE_SENSE; 792 793 /* 794 * Indicate to the user that we truncated their sense 795 * because we didn't know it supported larger sense. 796 */ 797 usb_stor_dbg(us, "-- Sense data truncated to %i from %i\n", 798 US_SENSE_SIZE, 799 srb->sense_buffer[7] + 8); 800 srb->sense_buffer[7] = (US_SENSE_SIZE - 8); 801 } 802 803 scsi_normalize_sense(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE, 804 &sshdr); 805 806 usb_stor_dbg(us, "-- Result from auto-sense is %d\n", 807 temp_result); 808 usb_stor_dbg(us, "-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n", 809 sshdr.response_code, sshdr.sense_key, 810 sshdr.asc, sshdr.ascq); 811 #ifdef CONFIG_USB_STORAGE_DEBUG 812 usb_stor_show_sense(us, sshdr.sense_key, sshdr.asc, sshdr.ascq); 813 #endif 814 815 /* set the result so the higher layers expect this data */ 816 srb->result = SAM_STAT_CHECK_CONDITION; 817 818 scdd = scsi_sense_desc_find(srb->sense_buffer, 819 SCSI_SENSE_BUFFERSIZE, 4); 820 fm_ili = (scdd ? scdd[3] : srb->sense_buffer[2]) & 0xA0; 821 822 /* 823 * We often get empty sense data. This could indicate that 824 * everything worked or that there was an unspecified 825 * problem. We have to decide which. 826 */ 827 if (sshdr.sense_key == 0 && sshdr.asc == 0 && sshdr.ascq == 0 && 828 fm_ili == 0) { 829 /* 830 * If things are really okay, then let's show that. 831 * Zero out the sense buffer so the higher layers 832 * won't realize we did an unsolicited auto-sense. 833 */ 834 if (result == USB_STOR_TRANSPORT_GOOD) { 835 srb->result = SAM_STAT_GOOD; 836 srb->sense_buffer[0] = 0x0; 837 838 /* 839 * If there was a problem, report an unspecified 840 * hardware error to prevent the higher layers from 841 * entering an infinite retry loop. 842 */ 843 } else { 844 srb->result = DID_ERROR << 16; 845 if ((sshdr.response_code & 0x72) == 0x72) 846 srb->sense_buffer[1] = HARDWARE_ERROR; 847 else 848 srb->sense_buffer[2] = HARDWARE_ERROR; 849 } 850 } 851 } 852 853 /* 854 * Some devices don't work or return incorrect data the first 855 * time they get a READ(10) command, or for the first READ(10) 856 * after a media change. If the INITIAL_READ10 flag is set, 857 * keep track of whether READ(10) commands succeed. If the 858 * previous one succeeded and this one failed, set the REDO_READ10 859 * flag to force a retry. 860 */ 861 if (unlikely((us->fflags & US_FL_INITIAL_READ10) && 862 srb->cmnd[0] == READ_10)) { 863 if (srb->result == SAM_STAT_GOOD) { 864 set_bit(US_FLIDX_READ10_WORKED, &us->dflags); 865 } else if (test_bit(US_FLIDX_READ10_WORKED, &us->dflags)) { 866 clear_bit(US_FLIDX_READ10_WORKED, &us->dflags); 867 set_bit(US_FLIDX_REDO_READ10, &us->dflags); 868 } 869 870 /* 871 * Next, if the REDO_READ10 flag is set, return a result 872 * code that will cause the SCSI core to retry the READ(10) 873 * command immediately. 874 */ 875 if (test_bit(US_FLIDX_REDO_READ10, &us->dflags)) { 876 clear_bit(US_FLIDX_REDO_READ10, &us->dflags); 877 srb->result = DID_IMM_RETRY << 16; 878 srb->sense_buffer[0] = 0; 879 } 880 } 881 882 /* Did we transfer less than the minimum amount required? */ 883 if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) && 884 scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow) 885 srb->result = DID_ERROR << 16; 886 887 last_sector_hacks(us, srb); 888 return; 889 890 /* 891 * Error and abort processing: try to resynchronize with the device 892 * by issuing a port reset. If that fails, try a class-specific 893 * device reset. 894 */ 895 Handle_Errors: 896 897 /* 898 * Set the RESETTING bit, and clear the ABORTING bit so that 899 * the reset may proceed. 900 */ 901 scsi_lock(us_to_host(us)); 902 set_bit(US_FLIDX_RESETTING, &us->dflags); 903 clear_bit(US_FLIDX_ABORTING, &us->dflags); 904 scsi_unlock(us_to_host(us)); 905 906 /* 907 * We must release the device lock because the pre_reset routine 908 * will want to acquire it. 909 */ 910 mutex_unlock(&us->dev_mutex); 911 result = usb_stor_port_reset(us); 912 mutex_lock(&us->dev_mutex); 913 914 if (result < 0) { 915 scsi_lock(us_to_host(us)); 916 usb_stor_report_device_reset(us); 917 scsi_unlock(us_to_host(us)); 918 us->transport_reset(us); 919 } 920 clear_bit(US_FLIDX_RESETTING, &us->dflags); 921 last_sector_hacks(us, srb); 922 } 923 924 /* Stop the current URB transfer */ 925 void usb_stor_stop_transport(struct us_data *us) 926 { 927 /* 928 * If the state machine is blocked waiting for an URB, 929 * let's wake it up. The test_and_clear_bit() call 930 * guarantees that if a URB has just been submitted, 931 * it won't be cancelled more than once. 932 */ 933 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { 934 usb_stor_dbg(us, "-- cancelling URB\n"); 935 usb_unlink_urb(us->current_urb); 936 } 937 938 /* If we are waiting for a scatter-gather operation, cancel it. */ 939 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { 940 usb_stor_dbg(us, "-- cancelling sg request\n"); 941 usb_sg_cancel(&us->current_sg); 942 } 943 } 944 945 /* 946 * Control/Bulk and Control/Bulk/Interrupt transport 947 */ 948 949 int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us) 950 { 951 unsigned int transfer_length = scsi_bufflen(srb); 952 unsigned int pipe = 0; 953 int result; 954 955 /* COMMAND STAGE */ 956 /* let's send the command via the control pipe */ 957 result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, 958 US_CBI_ADSC, 959 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, 960 us->ifnum, srb->cmnd, srb->cmd_len); 961 962 /* check the return code for the command */ 963 usb_stor_dbg(us, "Call to usb_stor_ctrl_transfer() returned %d\n", 964 result); 965 966 /* if we stalled the command, it means command failed */ 967 if (result == USB_STOR_XFER_STALLED) { 968 return USB_STOR_TRANSPORT_FAILED; 969 } 970 971 /* Uh oh... serious problem here */ 972 if (result != USB_STOR_XFER_GOOD) { 973 return USB_STOR_TRANSPORT_ERROR; 974 } 975 976 /* DATA STAGE */ 977 /* transfer the data payload for this command, if one exists*/ 978 if (transfer_length) { 979 pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 980 us->recv_bulk_pipe : us->send_bulk_pipe; 981 result = usb_stor_bulk_srb(us, pipe, srb); 982 usb_stor_dbg(us, "CBI data stage result is 0x%x\n", result); 983 984 /* if we stalled the data transfer it means command failed */ 985 if (result == USB_STOR_XFER_STALLED) 986 return USB_STOR_TRANSPORT_FAILED; 987 if (result > USB_STOR_XFER_STALLED) 988 return USB_STOR_TRANSPORT_ERROR; 989 } 990 991 /* STATUS STAGE */ 992 993 /* 994 * NOTE: CB does not have a status stage. Silly, I know. So 995 * we have to catch this at a higher level. 996 */ 997 if (us->protocol != USB_PR_CBI) 998 return USB_STOR_TRANSPORT_GOOD; 999 1000 result = usb_stor_intr_transfer(us, us->iobuf, 2); 1001 usb_stor_dbg(us, "Got interrupt data (0x%x, 0x%x)\n", 1002 us->iobuf[0], us->iobuf[1]); 1003 if (result != USB_STOR_XFER_GOOD) 1004 return USB_STOR_TRANSPORT_ERROR; 1005 1006 /* 1007 * UFI gives us ASC and ASCQ, like a request sense 1008 * 1009 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI 1010 * devices, so we ignore the information for those commands. Note 1011 * that this means we could be ignoring a real error on these 1012 * commands, but that can't be helped. 1013 */ 1014 if (us->subclass == USB_SC_UFI) { 1015 if (srb->cmnd[0] == REQUEST_SENSE || 1016 srb->cmnd[0] == INQUIRY) 1017 return USB_STOR_TRANSPORT_GOOD; 1018 if (us->iobuf[0]) 1019 goto Failed; 1020 return USB_STOR_TRANSPORT_GOOD; 1021 } 1022 1023 /* 1024 * If not UFI, we interpret the data as a result code 1025 * The first byte should always be a 0x0. 1026 * 1027 * Some bogus devices don't follow that rule. They stuff the ASC 1028 * into the first byte -- so if it's non-zero, call it a failure. 1029 */ 1030 if (us->iobuf[0]) { 1031 usb_stor_dbg(us, "CBI IRQ data showed reserved bType 0x%x\n", 1032 us->iobuf[0]); 1033 goto Failed; 1034 1035 } 1036 1037 /* The second byte & 0x0F should be 0x0 for good, otherwise error */ 1038 switch (us->iobuf[1] & 0x0F) { 1039 case 0x00: 1040 return USB_STOR_TRANSPORT_GOOD; 1041 case 0x01: 1042 goto Failed; 1043 } 1044 return USB_STOR_TRANSPORT_ERROR; 1045 1046 /* 1047 * the CBI spec requires that the bulk pipe must be cleared 1048 * following any data-in/out command failure (section 2.4.3.1.3) 1049 */ 1050 Failed: 1051 if (pipe) 1052 usb_stor_clear_halt(us, pipe); 1053 return USB_STOR_TRANSPORT_FAILED; 1054 } 1055 EXPORT_SYMBOL_GPL(usb_stor_CB_transport); 1056 1057 /* 1058 * Bulk only transport 1059 */ 1060 1061 /* Determine what the maximum LUN supported is */ 1062 int usb_stor_Bulk_max_lun(struct us_data *us) 1063 { 1064 int result; 1065 1066 /* issue the command */ 1067 us->iobuf[0] = 0; 1068 result = usb_stor_control_msg(us, us->recv_ctrl_pipe, 1069 US_BULK_GET_MAX_LUN, 1070 USB_DIR_IN | USB_TYPE_CLASS | 1071 USB_RECIP_INTERFACE, 1072 0, us->ifnum, us->iobuf, 1, 10*HZ); 1073 1074 usb_stor_dbg(us, "GetMaxLUN command result is %d, data is %d\n", 1075 result, us->iobuf[0]); 1076 1077 /* 1078 * If we have a successful request, return the result if valid. The 1079 * CBW LUN field is 4 bits wide, so the value reported by the device 1080 * should fit into that. 1081 */ 1082 if (result > 0) { 1083 if (us->iobuf[0] < 16) { 1084 return us->iobuf[0]; 1085 } else { 1086 dev_info(&us->pusb_intf->dev, 1087 "Max LUN %d is not valid, using 0 instead", 1088 us->iobuf[0]); 1089 } 1090 } 1091 1092 /* 1093 * Some devices don't like GetMaxLUN. They may STALL the control 1094 * pipe, they may return a zero-length result, they may do nothing at 1095 * all and timeout, or they may fail in even more bizarrely creative 1096 * ways. In these cases the best approach is to use the default 1097 * value: only one LUN. 1098 */ 1099 return 0; 1100 } 1101 1102 int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us) 1103 { 1104 struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf; 1105 struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf; 1106 unsigned int transfer_length = scsi_bufflen(srb); 1107 unsigned int residue; 1108 int result; 1109 int fake_sense = 0; 1110 unsigned int cswlen; 1111 unsigned int cbwlen = US_BULK_CB_WRAP_LEN; 1112 1113 /* Take care of BULK32 devices; set extra byte to 0 */ 1114 if (unlikely(us->fflags & US_FL_BULK32)) { 1115 cbwlen = 32; 1116 us->iobuf[31] = 0; 1117 } 1118 1119 /* set up the command wrapper */ 1120 bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); 1121 bcb->DataTransferLength = cpu_to_le32(transfer_length); 1122 bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ? 1123 US_BULK_FLAG_IN : 0; 1124 bcb->Tag = ++us->tag; 1125 bcb->Lun = srb->device->lun; 1126 if (us->fflags & US_FL_SCM_MULT_TARG) 1127 bcb->Lun |= srb->device->id << 4; 1128 bcb->Length = srb->cmd_len; 1129 1130 /* copy the command payload */ 1131 memset(bcb->CDB, 0, sizeof(bcb->CDB)); 1132 memcpy(bcb->CDB, srb->cmnd, bcb->Length); 1133 1134 /* send it to out endpoint */ 1135 usb_stor_dbg(us, "Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n", 1136 le32_to_cpu(bcb->Signature), bcb->Tag, 1137 le32_to_cpu(bcb->DataTransferLength), bcb->Flags, 1138 (bcb->Lun >> 4), (bcb->Lun & 0x0F), 1139 bcb->Length); 1140 result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 1141 bcb, cbwlen, NULL); 1142 usb_stor_dbg(us, "Bulk command transfer result=%d\n", result); 1143 if (result != USB_STOR_XFER_GOOD) 1144 return USB_STOR_TRANSPORT_ERROR; 1145 1146 /* DATA STAGE */ 1147 /* send/receive data payload, if there is any */ 1148 1149 /* 1150 * Some USB-IDE converter chips need a 100us delay between the 1151 * command phase and the data phase. Some devices need a little 1152 * more than that, probably because of clock rate inaccuracies. 1153 */ 1154 if (unlikely(us->fflags & US_FL_GO_SLOW)) 1155 usleep_range(125, 150); 1156 1157 if (transfer_length) { 1158 unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 1159 us->recv_bulk_pipe : us->send_bulk_pipe; 1160 result = usb_stor_bulk_srb(us, pipe, srb); 1161 usb_stor_dbg(us, "Bulk data transfer result 0x%x\n", result); 1162 if (result == USB_STOR_XFER_ERROR) 1163 return USB_STOR_TRANSPORT_ERROR; 1164 1165 /* 1166 * If the device tried to send back more data than the 1167 * amount requested, the spec requires us to transfer 1168 * the CSW anyway. Since there's no point retrying the 1169 * the command, we'll return fake sense data indicating 1170 * Illegal Request, Invalid Field in CDB. 1171 */ 1172 if (result == USB_STOR_XFER_LONG) 1173 fake_sense = 1; 1174 1175 /* 1176 * Sometimes a device will mistakenly skip the data phase 1177 * and go directly to the status phase without sending a 1178 * zero-length packet. If we get a 13-byte response here, 1179 * check whether it really is a CSW. 1180 */ 1181 if (result == USB_STOR_XFER_SHORT && 1182 srb->sc_data_direction == DMA_FROM_DEVICE && 1183 transfer_length - scsi_get_resid(srb) == 1184 US_BULK_CS_WRAP_LEN) { 1185 struct scatterlist *sg = NULL; 1186 unsigned int offset = 0; 1187 1188 if (usb_stor_access_xfer_buf((unsigned char *) bcs, 1189 US_BULK_CS_WRAP_LEN, srb, &sg, 1190 &offset, FROM_XFER_BUF) == 1191 US_BULK_CS_WRAP_LEN && 1192 bcs->Signature == 1193 cpu_to_le32(US_BULK_CS_SIGN)) { 1194 usb_stor_dbg(us, "Device skipped data phase\n"); 1195 scsi_set_resid(srb, transfer_length); 1196 goto skipped_data_phase; 1197 } 1198 } 1199 } 1200 1201 /* 1202 * See flow chart on pg 15 of the Bulk Only Transport spec for 1203 * an explanation of how this code works. 1204 */ 1205 1206 /* get CSW for device status */ 1207 usb_stor_dbg(us, "Attempting to get CSW...\n"); 1208 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1209 bcs, US_BULK_CS_WRAP_LEN, &cswlen); 1210 1211 /* 1212 * Some broken devices add unnecessary zero-length packets to the 1213 * end of their data transfers. Such packets show up as 0-length 1214 * CSWs. If we encounter such a thing, try to read the CSW again. 1215 */ 1216 if (result == USB_STOR_XFER_SHORT && cswlen == 0) { 1217 usb_stor_dbg(us, "Received 0-length CSW; retrying...\n"); 1218 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1219 bcs, US_BULK_CS_WRAP_LEN, &cswlen); 1220 } 1221 1222 /* did the attempt to read the CSW fail? */ 1223 if (result == USB_STOR_XFER_STALLED) { 1224 1225 /* get the status again */ 1226 usb_stor_dbg(us, "Attempting to get CSW (2nd try)...\n"); 1227 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1228 bcs, US_BULK_CS_WRAP_LEN, NULL); 1229 } 1230 1231 /* if we still have a failure at this point, we're in trouble */ 1232 usb_stor_dbg(us, "Bulk status result = %d\n", result); 1233 if (result != USB_STOR_XFER_GOOD) 1234 return USB_STOR_TRANSPORT_ERROR; 1235 1236 skipped_data_phase: 1237 /* check bulk status */ 1238 residue = le32_to_cpu(bcs->Residue); 1239 usb_stor_dbg(us, "Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n", 1240 le32_to_cpu(bcs->Signature), bcs->Tag, 1241 residue, bcs->Status); 1242 if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) || 1243 bcs->Status > US_BULK_STAT_PHASE) { 1244 usb_stor_dbg(us, "Bulk logical error\n"); 1245 return USB_STOR_TRANSPORT_ERROR; 1246 } 1247 1248 /* 1249 * Some broken devices report odd signatures, so we do not check them 1250 * for validity against the spec. We store the first one we see, 1251 * and check subsequent transfers for validity against this signature. 1252 */ 1253 if (!us->bcs_signature) { 1254 us->bcs_signature = bcs->Signature; 1255 if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN)) 1256 usb_stor_dbg(us, "Learnt BCS signature 0x%08X\n", 1257 le32_to_cpu(us->bcs_signature)); 1258 } else if (bcs->Signature != us->bcs_signature) { 1259 usb_stor_dbg(us, "Signature mismatch: got %08X, expecting %08X\n", 1260 le32_to_cpu(bcs->Signature), 1261 le32_to_cpu(us->bcs_signature)); 1262 return USB_STOR_TRANSPORT_ERROR; 1263 } 1264 1265 /* 1266 * try to compute the actual residue, based on how much data 1267 * was really transferred and what the device tells us 1268 */ 1269 if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) { 1270 1271 /* 1272 * Heuristically detect devices that generate bogus residues 1273 * by seeing what happens with INQUIRY and READ CAPACITY 1274 * commands. 1275 */ 1276 if (bcs->Status == US_BULK_STAT_OK && 1277 scsi_get_resid(srb) == 0 && 1278 ((srb->cmnd[0] == INQUIRY && 1279 transfer_length == 36) || 1280 (srb->cmnd[0] == READ_CAPACITY && 1281 transfer_length == 8))) { 1282 us->fflags |= US_FL_IGNORE_RESIDUE; 1283 1284 } else { 1285 residue = min(residue, transfer_length); 1286 scsi_set_resid(srb, max(scsi_get_resid(srb), 1287 (int) residue)); 1288 } 1289 } 1290 1291 /* based on the status code, we report good or bad */ 1292 switch (bcs->Status) { 1293 case US_BULK_STAT_OK: 1294 /* device babbled -- return fake sense data */ 1295 if (fake_sense) { 1296 memcpy(srb->sense_buffer, 1297 usb_stor_sense_invalidCDB, 1298 sizeof(usb_stor_sense_invalidCDB)); 1299 return USB_STOR_TRANSPORT_NO_SENSE; 1300 } 1301 1302 /* command good -- note that data could be short */ 1303 return USB_STOR_TRANSPORT_GOOD; 1304 1305 case US_BULK_STAT_FAIL: 1306 /* command failed */ 1307 return USB_STOR_TRANSPORT_FAILED; 1308 1309 case US_BULK_STAT_PHASE: 1310 /* 1311 * phase error -- note that a transport reset will be 1312 * invoked by the invoke_transport() function 1313 */ 1314 return USB_STOR_TRANSPORT_ERROR; 1315 } 1316 1317 /* we should never get here, but if we do, we're in trouble */ 1318 return USB_STOR_TRANSPORT_ERROR; 1319 } 1320 EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport); 1321 1322 /*********************************************************************** 1323 * Reset routines 1324 ***********************************************************************/ 1325 1326 /* 1327 * This is the common part of the device reset code. 1328 * 1329 * It's handy that every transport mechanism uses the control endpoint for 1330 * resets. 1331 * 1332 * Basically, we send a reset with a 5-second timeout, so we don't get 1333 * jammed attempting to do the reset. 1334 */ 1335 static int usb_stor_reset_common(struct us_data *us, 1336 u8 request, u8 requesttype, 1337 u16 value, u16 index, void *data, u16 size) 1338 { 1339 int result; 1340 int result2; 1341 1342 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1343 usb_stor_dbg(us, "No reset during disconnect\n"); 1344 return -EIO; 1345 } 1346 1347 result = usb_stor_control_msg(us, us->send_ctrl_pipe, 1348 request, requesttype, value, index, data, size, 1349 5*HZ); 1350 if (result < 0) { 1351 usb_stor_dbg(us, "Soft reset failed: %d\n", result); 1352 return result; 1353 } 1354 1355 /* 1356 * Give the device some time to recover from the reset, 1357 * but don't delay disconnect processing. 1358 */ 1359 wait_event_interruptible_timeout(us->delay_wait, 1360 test_bit(US_FLIDX_DISCONNECTING, &us->dflags), 1361 HZ*6); 1362 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1363 usb_stor_dbg(us, "Reset interrupted by disconnect\n"); 1364 return -EIO; 1365 } 1366 1367 usb_stor_dbg(us, "Soft reset: clearing bulk-in endpoint halt\n"); 1368 result = usb_stor_clear_halt(us, us->recv_bulk_pipe); 1369 1370 usb_stor_dbg(us, "Soft reset: clearing bulk-out endpoint halt\n"); 1371 result2 = usb_stor_clear_halt(us, us->send_bulk_pipe); 1372 1373 /* return a result code based on the result of the clear-halts */ 1374 if (result >= 0) 1375 result = result2; 1376 if (result < 0) 1377 usb_stor_dbg(us, "Soft reset failed\n"); 1378 else 1379 usb_stor_dbg(us, "Soft reset done\n"); 1380 return result; 1381 } 1382 1383 /* This issues a CB[I] Reset to the device in question */ 1384 #define CB_RESET_CMD_SIZE 12 1385 1386 int usb_stor_CB_reset(struct us_data *us) 1387 { 1388 memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE); 1389 us->iobuf[0] = SEND_DIAGNOSTIC; 1390 us->iobuf[1] = 4; 1391 return usb_stor_reset_common(us, US_CBI_ADSC, 1392 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 1393 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE); 1394 } 1395 EXPORT_SYMBOL_GPL(usb_stor_CB_reset); 1396 1397 /* 1398 * This issues a Bulk-only Reset to the device in question, including 1399 * clearing the subsequent endpoint halts that may occur. 1400 */ 1401 int usb_stor_Bulk_reset(struct us_data *us) 1402 { 1403 return usb_stor_reset_common(us, US_BULK_RESET_REQUEST, 1404 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 1405 0, us->ifnum, NULL, 0); 1406 } 1407 EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset); 1408 1409 /* 1410 * Issue a USB port reset to the device. The caller must not hold 1411 * us->dev_mutex. 1412 */ 1413 int usb_stor_port_reset(struct us_data *us) 1414 { 1415 int result; 1416 1417 /*for these devices we must use the class specific method */ 1418 if (us->pusb_dev->quirks & USB_QUIRK_RESET) 1419 return -EPERM; 1420 1421 result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf); 1422 if (result < 0) 1423 usb_stor_dbg(us, "unable to lock device for reset: %d\n", 1424 result); 1425 else { 1426 /* Were we disconnected while waiting for the lock? */ 1427 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1428 result = -EIO; 1429 usb_stor_dbg(us, "No reset during disconnect\n"); 1430 } else { 1431 result = usb_reset_device(us->pusb_dev); 1432 usb_stor_dbg(us, "usb_reset_device returns %d\n", 1433 result); 1434 } 1435 usb_unlock_device(us->pusb_dev); 1436 } 1437 return result; 1438 } 1439