1 /* Driver for USB Mass Storage compliant devices 2 * 3 * Current development and maintenance by: 4 * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net) 5 * 6 * Developed with the assistance of: 7 * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org) 8 * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov) 9 * (c) 2002 Alan Stern <stern@rowland.org> 10 * 11 * Initial work by: 12 * (c) 1999 Michael Gee (michael@linuxspecific.com) 13 * 14 * This driver is based on the 'USB Mass Storage Class' document. This 15 * describes in detail the protocol used to communicate with such 16 * devices. Clearly, the designers had SCSI and ATAPI commands in 17 * mind when they created this document. The commands are all very 18 * similar to commands in the SCSI-II and ATAPI specifications. 19 * 20 * It is important to note that in a number of cases this class 21 * exhibits class-specific exemptions from the USB specification. 22 * Notably the usage of NAK, STALL and ACK differs from the norm, in 23 * that they are used to communicate wait, failed and OK on commands. 24 * 25 * Also, for certain devices, the interrupt endpoint is used to convey 26 * status of a command. 27 * 28 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more 29 * information about this driver. 30 * 31 * This program is free software; you can redistribute it and/or modify it 32 * under the terms of the GNU General Public License as published by the 33 * Free Software Foundation; either version 2, or (at your option) any 34 * later version. 35 * 36 * This program is distributed in the hope that it will be useful, but 37 * WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 39 * General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, write to the Free Software Foundation, Inc., 43 * 675 Mass Ave, Cambridge, MA 02139, USA. 44 */ 45 46 #include <linux/sched.h> 47 #include <linux/errno.h> 48 #include <linux/slab.h> 49 50 #include <scsi/scsi.h> 51 #include <scsi/scsi_eh.h> 52 #include <scsi/scsi_device.h> 53 54 #include "usb.h" 55 #include "transport.h" 56 #include "protocol.h" 57 #include "scsiglue.h" 58 #include "debug.h" 59 60 #include <linux/blkdev.h> 61 #include "../../scsi/sd.h" 62 63 64 /*********************************************************************** 65 * Data transfer routines 66 ***********************************************************************/ 67 68 /* 69 * This is subtle, so pay attention: 70 * --------------------------------- 71 * We're very concerned about races with a command abort. Hanging this code 72 * is a sure fire way to hang the kernel. (Note that this discussion applies 73 * only to transactions resulting from a scsi queued-command, since only 74 * these transactions are subject to a scsi abort. Other transactions, such 75 * as those occurring during device-specific initialization, must be handled 76 * by a separate code path.) 77 * 78 * The abort function (usb_storage_command_abort() in scsiglue.c) first 79 * sets the machine state and the ABORTING bit in us->dflags to prevent 80 * new URBs from being submitted. It then calls usb_stor_stop_transport() 81 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags 82 * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE 83 * bit is tested to see if the current_sg scatter-gather request needs to be 84 * stopped. The timeout callback routine does much the same thing. 85 * 86 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to 87 * prevent new URBs from being submitted, and usb_stor_stop_transport() is 88 * called to stop any ongoing requests. 89 * 90 * The submit function first verifies that the submitting is allowed 91 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit 92 * completes without errors, and only then sets the URB_ACTIVE bit. This 93 * prevents the stop_transport() function from trying to cancel the URB 94 * while the submit call is underway. Next, the submit function must test 95 * the flags to see if an abort or disconnect occurred during the submission 96 * or before the URB_ACTIVE bit was set. If so, it's essential to cancel 97 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit 98 * is still set). Either way, the function must then wait for the URB to 99 * finish. Note that the URB can still be in progress even after a call to 100 * usb_unlink_urb() returns. 101 * 102 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set, 103 * either the stop_transport() function or the submitting function 104 * is guaranteed to call usb_unlink_urb() for an active URB, 105 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being 106 * called more than once or from being called during usb_submit_urb(). 107 */ 108 109 /* This is the completion handler which will wake us up when an URB 110 * completes. 111 */ 112 static void usb_stor_blocking_completion(struct urb *urb) 113 { 114 struct completion *urb_done_ptr = urb->context; 115 116 complete(urb_done_ptr); 117 } 118 119 /* This is the common part of the URB message submission code 120 * 121 * All URBs from the usb-storage driver involved in handling a queued scsi 122 * command _must_ pass through this function (or something like it) for the 123 * abort mechanisms to work properly. 124 */ 125 static int usb_stor_msg_common(struct us_data *us, int timeout) 126 { 127 struct completion urb_done; 128 long timeleft; 129 int status; 130 131 /* don't submit URBs during abort processing */ 132 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) 133 return -EIO; 134 135 /* set up data structures for the wakeup system */ 136 init_completion(&urb_done); 137 138 /* fill the common fields in the URB */ 139 us->current_urb->context = &urb_done; 140 us->current_urb->actual_length = 0; 141 us->current_urb->error_count = 0; 142 us->current_urb->status = 0; 143 144 /* we assume that if transfer_buffer isn't us->iobuf then it 145 * hasn't been mapped for DMA. Yes, this is clunky, but it's 146 * easier than always having the caller tell us whether the 147 * transfer buffer has already been mapped. */ 148 us->current_urb->transfer_flags = URB_NO_SETUP_DMA_MAP; 149 if (us->current_urb->transfer_buffer == us->iobuf) 150 us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 151 us->current_urb->transfer_dma = us->iobuf_dma; 152 us->current_urb->setup_dma = us->cr_dma; 153 154 /* submit the URB */ 155 status = usb_submit_urb(us->current_urb, GFP_NOIO); 156 if (status) { 157 /* something went wrong */ 158 return status; 159 } 160 161 /* since the URB has been submitted successfully, it's now okay 162 * to cancel it */ 163 set_bit(US_FLIDX_URB_ACTIVE, &us->dflags); 164 165 /* did an abort occur during the submission? */ 166 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { 167 168 /* cancel the URB, if it hasn't been cancelled already */ 169 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { 170 US_DEBUGP("-- cancelling URB\n"); 171 usb_unlink_urb(us->current_urb); 172 } 173 } 174 175 /* wait for the completion of the URB */ 176 timeleft = wait_for_completion_interruptible_timeout( 177 &urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT); 178 179 clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags); 180 181 if (timeleft <= 0) { 182 US_DEBUGP("%s -- cancelling URB\n", 183 timeleft == 0 ? "Timeout" : "Signal"); 184 usb_kill_urb(us->current_urb); 185 } 186 187 /* return the URB status */ 188 return us->current_urb->status; 189 } 190 191 /* 192 * Transfer one control message, with timeouts, and allowing early 193 * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx. 194 */ 195 int usb_stor_control_msg(struct us_data *us, unsigned int pipe, 196 u8 request, u8 requesttype, u16 value, u16 index, 197 void *data, u16 size, int timeout) 198 { 199 int status; 200 201 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", 202 __func__, request, requesttype, 203 value, index, size); 204 205 /* fill in the devrequest structure */ 206 us->cr->bRequestType = requesttype; 207 us->cr->bRequest = request; 208 us->cr->wValue = cpu_to_le16(value); 209 us->cr->wIndex = cpu_to_le16(index); 210 us->cr->wLength = cpu_to_le16(size); 211 212 /* fill and submit the URB */ 213 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 214 (unsigned char*) us->cr, data, size, 215 usb_stor_blocking_completion, NULL); 216 status = usb_stor_msg_common(us, timeout); 217 218 /* return the actual length of the data transferred if no error */ 219 if (status == 0) 220 status = us->current_urb->actual_length; 221 return status; 222 } 223 EXPORT_SYMBOL_GPL(usb_stor_control_msg); 224 225 /* This is a version of usb_clear_halt() that allows early termination and 226 * doesn't read the status from the device -- this is because some devices 227 * crash their internal firmware when the status is requested after a halt. 228 * 229 * A definitive list of these 'bad' devices is too difficult to maintain or 230 * make complete enough to be useful. This problem was first observed on the 231 * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither 232 * MacOS nor Windows checks the status after clearing a halt. 233 * 234 * Since many vendors in this space limit their testing to interoperability 235 * with these two OSes, specification violations like this one are common. 236 */ 237 int usb_stor_clear_halt(struct us_data *us, unsigned int pipe) 238 { 239 int result; 240 int endp = usb_pipeendpoint(pipe); 241 242 if (usb_pipein (pipe)) 243 endp |= USB_DIR_IN; 244 245 result = usb_stor_control_msg(us, us->send_ctrl_pipe, 246 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 247 USB_ENDPOINT_HALT, endp, 248 NULL, 0, 3*HZ); 249 250 if (result >= 0) 251 usb_reset_endpoint(us->pusb_dev, endp); 252 253 US_DEBUGP("%s: result = %d\n", __func__, result); 254 return result; 255 } 256 EXPORT_SYMBOL_GPL(usb_stor_clear_halt); 257 258 259 /* 260 * Interpret the results of a URB transfer 261 * 262 * This function prints appropriate debugging messages, clears halts on 263 * non-control endpoints, and translates the status to the corresponding 264 * USB_STOR_XFER_xxx return code. 265 */ 266 static int interpret_urb_result(struct us_data *us, unsigned int pipe, 267 unsigned int length, int result, unsigned int partial) 268 { 269 US_DEBUGP("Status code %d; transferred %u/%u\n", 270 result, partial, length); 271 switch (result) { 272 273 /* no error code; did we send all the data? */ 274 case 0: 275 if (partial != length) { 276 US_DEBUGP("-- short transfer\n"); 277 return USB_STOR_XFER_SHORT; 278 } 279 280 US_DEBUGP("-- transfer complete\n"); 281 return USB_STOR_XFER_GOOD; 282 283 /* stalled */ 284 case -EPIPE: 285 /* for control endpoints, (used by CB[I]) a stall indicates 286 * a failed command */ 287 if (usb_pipecontrol(pipe)) { 288 US_DEBUGP("-- stall on control pipe\n"); 289 return USB_STOR_XFER_STALLED; 290 } 291 292 /* for other sorts of endpoint, clear the stall */ 293 US_DEBUGP("clearing endpoint halt for pipe 0x%x\n", pipe); 294 if (usb_stor_clear_halt(us, pipe) < 0) 295 return USB_STOR_XFER_ERROR; 296 return USB_STOR_XFER_STALLED; 297 298 /* babble - the device tried to send more than we wanted to read */ 299 case -EOVERFLOW: 300 US_DEBUGP("-- babble\n"); 301 return USB_STOR_XFER_LONG; 302 303 /* the transfer was cancelled by abort, disconnect, or timeout */ 304 case -ECONNRESET: 305 US_DEBUGP("-- transfer cancelled\n"); 306 return USB_STOR_XFER_ERROR; 307 308 /* short scatter-gather read transfer */ 309 case -EREMOTEIO: 310 US_DEBUGP("-- short read transfer\n"); 311 return USB_STOR_XFER_SHORT; 312 313 /* abort or disconnect in progress */ 314 case -EIO: 315 US_DEBUGP("-- abort or disconnect in progress\n"); 316 return USB_STOR_XFER_ERROR; 317 318 /* the catch-all error case */ 319 default: 320 US_DEBUGP("-- unknown error\n"); 321 return USB_STOR_XFER_ERROR; 322 } 323 } 324 325 /* 326 * Transfer one control message, without timeouts, but allowing early 327 * termination. Return codes are USB_STOR_XFER_xxx. 328 */ 329 int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe, 330 u8 request, u8 requesttype, u16 value, u16 index, 331 void *data, u16 size) 332 { 333 int result; 334 335 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", 336 __func__, request, requesttype, 337 value, index, size); 338 339 /* fill in the devrequest structure */ 340 us->cr->bRequestType = requesttype; 341 us->cr->bRequest = request; 342 us->cr->wValue = cpu_to_le16(value); 343 us->cr->wIndex = cpu_to_le16(index); 344 us->cr->wLength = cpu_to_le16(size); 345 346 /* fill and submit the URB */ 347 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 348 (unsigned char*) us->cr, data, size, 349 usb_stor_blocking_completion, NULL); 350 result = usb_stor_msg_common(us, 0); 351 352 return interpret_urb_result(us, pipe, size, result, 353 us->current_urb->actual_length); 354 } 355 EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer); 356 357 /* 358 * Receive one interrupt buffer, without timeouts, but allowing early 359 * termination. Return codes are USB_STOR_XFER_xxx. 360 * 361 * This routine always uses us->recv_intr_pipe as the pipe and 362 * us->ep_bInterval as the interrupt interval. 363 */ 364 static int usb_stor_intr_transfer(struct us_data *us, void *buf, 365 unsigned int length) 366 { 367 int result; 368 unsigned int pipe = us->recv_intr_pipe; 369 unsigned int maxp; 370 371 US_DEBUGP("%s: xfer %u bytes\n", __func__, length); 372 373 /* calculate the max packet size */ 374 maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe)); 375 if (maxp > length) 376 maxp = length; 377 378 /* fill and submit the URB */ 379 usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf, 380 maxp, usb_stor_blocking_completion, NULL, 381 us->ep_bInterval); 382 result = usb_stor_msg_common(us, 0); 383 384 return interpret_urb_result(us, pipe, length, result, 385 us->current_urb->actual_length); 386 } 387 388 /* 389 * Transfer one buffer via bulk pipe, without timeouts, but allowing early 390 * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe 391 * stalls during the transfer, the halt is automatically cleared. 392 */ 393 int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe, 394 void *buf, unsigned int length, unsigned int *act_len) 395 { 396 int result; 397 398 US_DEBUGP("%s: xfer %u bytes\n", __func__, length); 399 400 /* fill and submit the URB */ 401 usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length, 402 usb_stor_blocking_completion, NULL); 403 result = usb_stor_msg_common(us, 0); 404 405 /* store the actual length of the data transferred */ 406 if (act_len) 407 *act_len = us->current_urb->actual_length; 408 return interpret_urb_result(us, pipe, length, result, 409 us->current_urb->actual_length); 410 } 411 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf); 412 413 /* 414 * Transfer a scatter-gather list via bulk transfer 415 * 416 * This function does basically the same thing as usb_stor_bulk_transfer_buf() 417 * above, but it uses the usbcore scatter-gather library. 418 */ 419 static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe, 420 struct scatterlist *sg, int num_sg, unsigned int length, 421 unsigned int *act_len) 422 { 423 int result; 424 425 /* don't submit s-g requests during abort processing */ 426 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) 427 return USB_STOR_XFER_ERROR; 428 429 /* initialize the scatter-gather request block */ 430 US_DEBUGP("%s: xfer %u bytes, %d entries\n", __func__, 431 length, num_sg); 432 result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0, 433 sg, num_sg, length, GFP_NOIO); 434 if (result) { 435 US_DEBUGP("usb_sg_init returned %d\n", result); 436 return USB_STOR_XFER_ERROR; 437 } 438 439 /* since the block has been initialized successfully, it's now 440 * okay to cancel it */ 441 set_bit(US_FLIDX_SG_ACTIVE, &us->dflags); 442 443 /* did an abort occur during the submission? */ 444 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { 445 446 /* cancel the request, if it hasn't been cancelled already */ 447 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { 448 US_DEBUGP("-- cancelling sg request\n"); 449 usb_sg_cancel(&us->current_sg); 450 } 451 } 452 453 /* wait for the completion of the transfer */ 454 usb_sg_wait(&us->current_sg); 455 clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags); 456 457 result = us->current_sg.status; 458 if (act_len) 459 *act_len = us->current_sg.bytes; 460 return interpret_urb_result(us, pipe, length, result, 461 us->current_sg.bytes); 462 } 463 464 /* 465 * Common used function. Transfer a complete command 466 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid 467 */ 468 int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe, 469 struct scsi_cmnd* srb) 470 { 471 unsigned int partial; 472 int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb), 473 scsi_sg_count(srb), scsi_bufflen(srb), 474 &partial); 475 476 scsi_set_resid(srb, scsi_bufflen(srb) - partial); 477 return result; 478 } 479 EXPORT_SYMBOL_GPL(usb_stor_bulk_srb); 480 481 /* 482 * Transfer an entire SCSI command's worth of data payload over the bulk 483 * pipe. 484 * 485 * Note that this uses usb_stor_bulk_transfer_buf() and 486 * usb_stor_bulk_transfer_sglist() to achieve its goals -- 487 * this function simply determines whether we're going to use 488 * scatter-gather or not, and acts appropriately. 489 */ 490 int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe, 491 void *buf, unsigned int length_left, int use_sg, int *residual) 492 { 493 int result; 494 unsigned int partial; 495 496 /* are we scatter-gathering? */ 497 if (use_sg) { 498 /* use the usb core scatter-gather primitives */ 499 result = usb_stor_bulk_transfer_sglist(us, pipe, 500 (struct scatterlist *) buf, use_sg, 501 length_left, &partial); 502 length_left -= partial; 503 } else { 504 /* no scatter-gather, just make the request */ 505 result = usb_stor_bulk_transfer_buf(us, pipe, buf, 506 length_left, &partial); 507 length_left -= partial; 508 } 509 510 /* store the residual and return the error code */ 511 if (residual) 512 *residual = length_left; 513 return result; 514 } 515 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg); 516 517 /*********************************************************************** 518 * Transport routines 519 ***********************************************************************/ 520 521 /* There are so many devices that report the capacity incorrectly, 522 * this routine was written to counteract some of the resulting 523 * problems. 524 */ 525 static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb) 526 { 527 struct gendisk *disk; 528 struct scsi_disk *sdkp; 529 u32 sector; 530 531 /* To Report "Medium Error: Record Not Found */ 532 static unsigned char record_not_found[18] = { 533 [0] = 0x70, /* current error */ 534 [2] = MEDIUM_ERROR, /* = 0x03 */ 535 [7] = 0x0a, /* additional length */ 536 [12] = 0x14 /* Record Not Found */ 537 }; 538 539 /* If last-sector problems can't occur, whether because the 540 * capacity was already decremented or because the device is 541 * known to report the correct capacity, then we don't need 542 * to do anything. 543 */ 544 if (!us->use_last_sector_hacks) 545 return; 546 547 /* Was this command a READ(10) or a WRITE(10)? */ 548 if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10) 549 goto done; 550 551 /* Did this command access the last sector? */ 552 sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) | 553 (srb->cmnd[4] << 8) | (srb->cmnd[5]); 554 disk = srb->request->rq_disk; 555 if (!disk) 556 goto done; 557 sdkp = scsi_disk(disk); 558 if (!sdkp) 559 goto done; 560 if (sector + 1 != sdkp->capacity) 561 goto done; 562 563 if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) { 564 565 /* The command succeeded. We know this device doesn't 566 * have the last-sector bug, so stop checking it. 567 */ 568 us->use_last_sector_hacks = 0; 569 570 } else { 571 /* The command failed. Allow up to 3 retries in case this 572 * is some normal sort of failure. After that, assume the 573 * capacity is wrong and we're trying to access the sector 574 * beyond the end. Replace the result code and sense data 575 * with values that will cause the SCSI core to fail the 576 * command immediately, instead of going into an infinite 577 * (or even just a very long) retry loop. 578 */ 579 if (++us->last_sector_retries < 3) 580 return; 581 srb->result = SAM_STAT_CHECK_CONDITION; 582 memcpy(srb->sense_buffer, record_not_found, 583 sizeof(record_not_found)); 584 } 585 586 done: 587 /* Don't reset the retry counter for TEST UNIT READY commands, 588 * because they get issued after device resets which might be 589 * caused by a failed last-sector access. 590 */ 591 if (srb->cmnd[0] != TEST_UNIT_READY) 592 us->last_sector_retries = 0; 593 } 594 595 /* Invoke the transport and basic error-handling/recovery methods 596 * 597 * This is used by the protocol layers to actually send the message to 598 * the device and receive the response. 599 */ 600 void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us) 601 { 602 int need_auto_sense; 603 int result; 604 605 /* send the command to the transport layer */ 606 scsi_set_resid(srb, 0); 607 result = us->transport(srb, us); 608 609 /* if the command gets aborted by the higher layers, we need to 610 * short-circuit all other processing 611 */ 612 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { 613 US_DEBUGP("-- command was aborted\n"); 614 srb->result = DID_ABORT << 16; 615 goto Handle_Errors; 616 } 617 618 /* if there is a transport error, reset and don't auto-sense */ 619 if (result == USB_STOR_TRANSPORT_ERROR) { 620 US_DEBUGP("-- transport indicates error, resetting\n"); 621 srb->result = DID_ERROR << 16; 622 goto Handle_Errors; 623 } 624 625 /* if the transport provided its own sense data, don't auto-sense */ 626 if (result == USB_STOR_TRANSPORT_NO_SENSE) { 627 srb->result = SAM_STAT_CHECK_CONDITION; 628 last_sector_hacks(us, srb); 629 return; 630 } 631 632 srb->result = SAM_STAT_GOOD; 633 634 /* Determine if we need to auto-sense 635 * 636 * I normally don't use a flag like this, but it's almost impossible 637 * to understand what's going on here if I don't. 638 */ 639 need_auto_sense = 0; 640 641 /* 642 * If we're running the CB transport, which is incapable 643 * of determining status on its own, we will auto-sense 644 * unless the operation involved a data-in transfer. Devices 645 * can signal most data-in errors by stalling the bulk-in pipe. 646 */ 647 if ((us->protocol == US_PR_CB || us->protocol == US_PR_DPCM_USB) && 648 srb->sc_data_direction != DMA_FROM_DEVICE) { 649 US_DEBUGP("-- CB transport device requiring auto-sense\n"); 650 need_auto_sense = 1; 651 } 652 653 /* 654 * If we have a failure, we're going to do a REQUEST_SENSE 655 * automatically. Note that we differentiate between a command 656 * "failure" and an "error" in the transport mechanism. 657 */ 658 if (result == USB_STOR_TRANSPORT_FAILED) { 659 US_DEBUGP("-- transport indicates command failure\n"); 660 need_auto_sense = 1; 661 } 662 663 /* 664 * Determine if this device is SAT by seeing if the 665 * command executed successfully. Otherwise we'll have 666 * to wait for at least one CHECK_CONDITION to determine 667 * SANE_SENSE support 668 */ 669 if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) && 670 result == USB_STOR_TRANSPORT_GOOD && 671 !(us->fflags & US_FL_SANE_SENSE) && 672 !(us->fflags & US_FL_BAD_SENSE) && 673 !(srb->cmnd[2] & 0x20))) { 674 US_DEBUGP("-- SAT supported, increasing auto-sense\n"); 675 us->fflags |= US_FL_SANE_SENSE; 676 } 677 678 /* 679 * A short transfer on a command where we don't expect it 680 * is unusual, but it doesn't mean we need to auto-sense. 681 */ 682 if ((scsi_get_resid(srb) > 0) && 683 !((srb->cmnd[0] == REQUEST_SENSE) || 684 (srb->cmnd[0] == INQUIRY) || 685 (srb->cmnd[0] == MODE_SENSE) || 686 (srb->cmnd[0] == LOG_SENSE) || 687 (srb->cmnd[0] == MODE_SENSE_10))) { 688 US_DEBUGP("-- unexpectedly short transfer\n"); 689 } 690 691 /* Now, if we need to do the auto-sense, let's do it */ 692 if (need_auto_sense) { 693 int temp_result; 694 struct scsi_eh_save ses; 695 int sense_size = US_SENSE_SIZE; 696 697 /* device supports and needs bigger sense buffer */ 698 if (us->fflags & US_FL_SANE_SENSE) 699 sense_size = ~0; 700 Retry_Sense: 701 US_DEBUGP("Issuing auto-REQUEST_SENSE\n"); 702 703 scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size); 704 705 /* FIXME: we must do the protocol translation here */ 706 if (us->subclass == US_SC_RBC || us->subclass == US_SC_SCSI || 707 us->subclass == US_SC_CYP_ATACB) 708 srb->cmd_len = 6; 709 else 710 srb->cmd_len = 12; 711 712 /* issue the auto-sense command */ 713 scsi_set_resid(srb, 0); 714 temp_result = us->transport(us->srb, us); 715 716 /* let's clean up right away */ 717 scsi_eh_restore_cmnd(srb, &ses); 718 719 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { 720 US_DEBUGP("-- auto-sense aborted\n"); 721 srb->result = DID_ABORT << 16; 722 723 /* If SANE_SENSE caused this problem, disable it */ 724 if (sense_size != US_SENSE_SIZE) { 725 us->fflags &= ~US_FL_SANE_SENSE; 726 us->fflags |= US_FL_BAD_SENSE; 727 } 728 goto Handle_Errors; 729 } 730 731 /* Some devices claim to support larger sense but fail when 732 * trying to request it. When a transport failure happens 733 * using US_FS_SANE_SENSE, we always retry with a standard 734 * (small) sense request. This fixes some USB GSM modems 735 */ 736 if (temp_result == USB_STOR_TRANSPORT_FAILED && 737 sense_size != US_SENSE_SIZE) { 738 US_DEBUGP("-- auto-sense failure, retry small sense\n"); 739 sense_size = US_SENSE_SIZE; 740 us->fflags &= ~US_FL_SANE_SENSE; 741 us->fflags |= US_FL_BAD_SENSE; 742 goto Retry_Sense; 743 } 744 745 /* Other failures */ 746 if (temp_result != USB_STOR_TRANSPORT_GOOD) { 747 US_DEBUGP("-- auto-sense failure\n"); 748 749 /* we skip the reset if this happens to be a 750 * multi-target device, since failure of an 751 * auto-sense is perfectly valid 752 */ 753 srb->result = DID_ERROR << 16; 754 if (!(us->fflags & US_FL_SCM_MULT_TARG)) 755 goto Handle_Errors; 756 return; 757 } 758 759 /* If the sense data returned is larger than 18-bytes then we 760 * assume this device supports requesting more in the future. 761 * The response code must be 70h through 73h inclusive. 762 */ 763 if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) && 764 !(us->fflags & US_FL_SANE_SENSE) && 765 !(us->fflags & US_FL_BAD_SENSE) && 766 (srb->sense_buffer[0] & 0x7C) == 0x70) { 767 US_DEBUGP("-- SANE_SENSE support enabled\n"); 768 us->fflags |= US_FL_SANE_SENSE; 769 770 /* Indicate to the user that we truncated their sense 771 * because we didn't know it supported larger sense. 772 */ 773 US_DEBUGP("-- Sense data truncated to %i from %i\n", 774 US_SENSE_SIZE, 775 srb->sense_buffer[7] + 8); 776 srb->sense_buffer[7] = (US_SENSE_SIZE - 8); 777 } 778 779 US_DEBUGP("-- Result from auto-sense is %d\n", temp_result); 780 US_DEBUGP("-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n", 781 srb->sense_buffer[0], 782 srb->sense_buffer[2] & 0xf, 783 srb->sense_buffer[12], 784 srb->sense_buffer[13]); 785 #ifdef CONFIG_USB_STORAGE_DEBUG 786 usb_stor_show_sense( 787 srb->sense_buffer[2] & 0xf, 788 srb->sense_buffer[12], 789 srb->sense_buffer[13]); 790 #endif 791 792 /* set the result so the higher layers expect this data */ 793 srb->result = SAM_STAT_CHECK_CONDITION; 794 795 /* We often get empty sense data. This could indicate that 796 * everything worked or that there was an unspecified 797 * problem. We have to decide which. 798 */ 799 if ( /* Filemark 0, ignore EOM, ILI 0, no sense */ 800 (srb->sense_buffer[2] & 0xaf) == 0 && 801 /* No ASC or ASCQ */ 802 srb->sense_buffer[12] == 0 && 803 srb->sense_buffer[13] == 0) { 804 805 /* If things are really okay, then let's show that. 806 * Zero out the sense buffer so the higher layers 807 * won't realize we did an unsolicited auto-sense. 808 */ 809 if (result == USB_STOR_TRANSPORT_GOOD) { 810 srb->result = SAM_STAT_GOOD; 811 srb->sense_buffer[0] = 0x0; 812 813 /* If there was a problem, report an unspecified 814 * hardware error to prevent the higher layers from 815 * entering an infinite retry loop. 816 */ 817 } else { 818 srb->result = DID_ERROR << 16; 819 srb->sense_buffer[2] = HARDWARE_ERROR; 820 } 821 } 822 } 823 824 /* Did we transfer less than the minimum amount required? */ 825 if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) && 826 scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow) 827 srb->result = DID_ERROR << 16; 828 829 last_sector_hacks(us, srb); 830 return; 831 832 /* Error and abort processing: try to resynchronize with the device 833 * by issuing a port reset. If that fails, try a class-specific 834 * device reset. */ 835 Handle_Errors: 836 837 /* Set the RESETTING bit, and clear the ABORTING bit so that 838 * the reset may proceed. */ 839 scsi_lock(us_to_host(us)); 840 set_bit(US_FLIDX_RESETTING, &us->dflags); 841 clear_bit(US_FLIDX_ABORTING, &us->dflags); 842 scsi_unlock(us_to_host(us)); 843 844 /* We must release the device lock because the pre_reset routine 845 * will want to acquire it. */ 846 mutex_unlock(&us->dev_mutex); 847 result = usb_stor_port_reset(us); 848 mutex_lock(&us->dev_mutex); 849 850 if (result < 0) { 851 scsi_lock(us_to_host(us)); 852 usb_stor_report_device_reset(us); 853 scsi_unlock(us_to_host(us)); 854 us->transport_reset(us); 855 } 856 clear_bit(US_FLIDX_RESETTING, &us->dflags); 857 last_sector_hacks(us, srb); 858 } 859 860 /* Stop the current URB transfer */ 861 void usb_stor_stop_transport(struct us_data *us) 862 { 863 US_DEBUGP("%s called\n", __func__); 864 865 /* If the state machine is blocked waiting for an URB, 866 * let's wake it up. The test_and_clear_bit() call 867 * guarantees that if a URB has just been submitted, 868 * it won't be cancelled more than once. */ 869 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { 870 US_DEBUGP("-- cancelling URB\n"); 871 usb_unlink_urb(us->current_urb); 872 } 873 874 /* If we are waiting for a scatter-gather operation, cancel it. */ 875 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { 876 US_DEBUGP("-- cancelling sg request\n"); 877 usb_sg_cancel(&us->current_sg); 878 } 879 } 880 881 /* 882 * Control/Bulk and Control/Bulk/Interrupt transport 883 */ 884 885 int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us) 886 { 887 unsigned int transfer_length = scsi_bufflen(srb); 888 unsigned int pipe = 0; 889 int result; 890 891 /* COMMAND STAGE */ 892 /* let's send the command via the control pipe */ 893 result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, 894 US_CBI_ADSC, 895 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, 896 us->ifnum, srb->cmnd, srb->cmd_len); 897 898 /* check the return code for the command */ 899 US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result); 900 901 /* if we stalled the command, it means command failed */ 902 if (result == USB_STOR_XFER_STALLED) { 903 return USB_STOR_TRANSPORT_FAILED; 904 } 905 906 /* Uh oh... serious problem here */ 907 if (result != USB_STOR_XFER_GOOD) { 908 return USB_STOR_TRANSPORT_ERROR; 909 } 910 911 /* DATA STAGE */ 912 /* transfer the data payload for this command, if one exists*/ 913 if (transfer_length) { 914 pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 915 us->recv_bulk_pipe : us->send_bulk_pipe; 916 result = usb_stor_bulk_srb(us, pipe, srb); 917 US_DEBUGP("CBI data stage result is 0x%x\n", result); 918 919 /* if we stalled the data transfer it means command failed */ 920 if (result == USB_STOR_XFER_STALLED) 921 return USB_STOR_TRANSPORT_FAILED; 922 if (result > USB_STOR_XFER_STALLED) 923 return USB_STOR_TRANSPORT_ERROR; 924 } 925 926 /* STATUS STAGE */ 927 928 /* NOTE: CB does not have a status stage. Silly, I know. So 929 * we have to catch this at a higher level. 930 */ 931 if (us->protocol != US_PR_CBI) 932 return USB_STOR_TRANSPORT_GOOD; 933 934 result = usb_stor_intr_transfer(us, us->iobuf, 2); 935 US_DEBUGP("Got interrupt data (0x%x, 0x%x)\n", 936 us->iobuf[0], us->iobuf[1]); 937 if (result != USB_STOR_XFER_GOOD) 938 return USB_STOR_TRANSPORT_ERROR; 939 940 /* UFI gives us ASC and ASCQ, like a request sense 941 * 942 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI 943 * devices, so we ignore the information for those commands. Note 944 * that this means we could be ignoring a real error on these 945 * commands, but that can't be helped. 946 */ 947 if (us->subclass == US_SC_UFI) { 948 if (srb->cmnd[0] == REQUEST_SENSE || 949 srb->cmnd[0] == INQUIRY) 950 return USB_STOR_TRANSPORT_GOOD; 951 if (us->iobuf[0]) 952 goto Failed; 953 return USB_STOR_TRANSPORT_GOOD; 954 } 955 956 /* If not UFI, we interpret the data as a result code 957 * The first byte should always be a 0x0. 958 * 959 * Some bogus devices don't follow that rule. They stuff the ASC 960 * into the first byte -- so if it's non-zero, call it a failure. 961 */ 962 if (us->iobuf[0]) { 963 US_DEBUGP("CBI IRQ data showed reserved bType 0x%x\n", 964 us->iobuf[0]); 965 goto Failed; 966 967 } 968 969 /* The second byte & 0x0F should be 0x0 for good, otherwise error */ 970 switch (us->iobuf[1] & 0x0F) { 971 case 0x00: 972 return USB_STOR_TRANSPORT_GOOD; 973 case 0x01: 974 goto Failed; 975 } 976 return USB_STOR_TRANSPORT_ERROR; 977 978 /* the CBI spec requires that the bulk pipe must be cleared 979 * following any data-in/out command failure (section 2.4.3.1.3) 980 */ 981 Failed: 982 if (pipe) 983 usb_stor_clear_halt(us, pipe); 984 return USB_STOR_TRANSPORT_FAILED; 985 } 986 EXPORT_SYMBOL_GPL(usb_stor_CB_transport); 987 988 /* 989 * Bulk only transport 990 */ 991 992 /* Determine what the maximum LUN supported is */ 993 int usb_stor_Bulk_max_lun(struct us_data *us) 994 { 995 int result; 996 997 /* issue the command */ 998 us->iobuf[0] = 0; 999 result = usb_stor_control_msg(us, us->recv_ctrl_pipe, 1000 US_BULK_GET_MAX_LUN, 1001 USB_DIR_IN | USB_TYPE_CLASS | 1002 USB_RECIP_INTERFACE, 1003 0, us->ifnum, us->iobuf, 1, 10*HZ); 1004 1005 US_DEBUGP("GetMaxLUN command result is %d, data is %d\n", 1006 result, us->iobuf[0]); 1007 1008 /* if we have a successful request, return the result */ 1009 if (result > 0) 1010 return us->iobuf[0]; 1011 1012 /* 1013 * Some devices don't like GetMaxLUN. They may STALL the control 1014 * pipe, they may return a zero-length result, they may do nothing at 1015 * all and timeout, or they may fail in even more bizarrely creative 1016 * ways. In these cases the best approach is to use the default 1017 * value: only one LUN. 1018 */ 1019 return 0; 1020 } 1021 1022 int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us) 1023 { 1024 struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf; 1025 struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf; 1026 unsigned int transfer_length = scsi_bufflen(srb); 1027 unsigned int residue; 1028 int result; 1029 int fake_sense = 0; 1030 unsigned int cswlen; 1031 unsigned int cbwlen = US_BULK_CB_WRAP_LEN; 1032 1033 /* Take care of BULK32 devices; set extra byte to 0 */ 1034 if (unlikely(us->fflags & US_FL_BULK32)) { 1035 cbwlen = 32; 1036 us->iobuf[31] = 0; 1037 } 1038 1039 /* set up the command wrapper */ 1040 bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); 1041 bcb->DataTransferLength = cpu_to_le32(transfer_length); 1042 bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ? 1 << 7 : 0; 1043 bcb->Tag = ++us->tag; 1044 bcb->Lun = srb->device->lun; 1045 if (us->fflags & US_FL_SCM_MULT_TARG) 1046 bcb->Lun |= srb->device->id << 4; 1047 bcb->Length = srb->cmd_len; 1048 1049 /* copy the command payload */ 1050 memset(bcb->CDB, 0, sizeof(bcb->CDB)); 1051 memcpy(bcb->CDB, srb->cmnd, bcb->Length); 1052 1053 /* send it to out endpoint */ 1054 US_DEBUGP("Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n", 1055 le32_to_cpu(bcb->Signature), bcb->Tag, 1056 le32_to_cpu(bcb->DataTransferLength), bcb->Flags, 1057 (bcb->Lun >> 4), (bcb->Lun & 0x0F), 1058 bcb->Length); 1059 result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 1060 bcb, cbwlen, NULL); 1061 US_DEBUGP("Bulk command transfer result=%d\n", result); 1062 if (result != USB_STOR_XFER_GOOD) 1063 return USB_STOR_TRANSPORT_ERROR; 1064 1065 /* DATA STAGE */ 1066 /* send/receive data payload, if there is any */ 1067 1068 /* Some USB-IDE converter chips need a 100us delay between the 1069 * command phase and the data phase. Some devices need a little 1070 * more than that, probably because of clock rate inaccuracies. */ 1071 if (unlikely(us->fflags & US_FL_GO_SLOW)) 1072 udelay(125); 1073 1074 if (transfer_length) { 1075 unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 1076 us->recv_bulk_pipe : us->send_bulk_pipe; 1077 result = usb_stor_bulk_srb(us, pipe, srb); 1078 US_DEBUGP("Bulk data transfer result 0x%x\n", result); 1079 if (result == USB_STOR_XFER_ERROR) 1080 return USB_STOR_TRANSPORT_ERROR; 1081 1082 /* If the device tried to send back more data than the 1083 * amount requested, the spec requires us to transfer 1084 * the CSW anyway. Since there's no point retrying the 1085 * the command, we'll return fake sense data indicating 1086 * Illegal Request, Invalid Field in CDB. 1087 */ 1088 if (result == USB_STOR_XFER_LONG) 1089 fake_sense = 1; 1090 } 1091 1092 /* See flow chart on pg 15 of the Bulk Only Transport spec for 1093 * an explanation of how this code works. 1094 */ 1095 1096 /* get CSW for device status */ 1097 US_DEBUGP("Attempting to get CSW...\n"); 1098 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1099 bcs, US_BULK_CS_WRAP_LEN, &cswlen); 1100 1101 /* Some broken devices add unnecessary zero-length packets to the 1102 * end of their data transfers. Such packets show up as 0-length 1103 * CSWs. If we encounter such a thing, try to read the CSW again. 1104 */ 1105 if (result == USB_STOR_XFER_SHORT && cswlen == 0) { 1106 US_DEBUGP("Received 0-length CSW; retrying...\n"); 1107 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1108 bcs, US_BULK_CS_WRAP_LEN, &cswlen); 1109 } 1110 1111 /* did the attempt to read the CSW fail? */ 1112 if (result == USB_STOR_XFER_STALLED) { 1113 1114 /* get the status again */ 1115 US_DEBUGP("Attempting to get CSW (2nd try)...\n"); 1116 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1117 bcs, US_BULK_CS_WRAP_LEN, NULL); 1118 } 1119 1120 /* if we still have a failure at this point, we're in trouble */ 1121 US_DEBUGP("Bulk status result = %d\n", result); 1122 if (result != USB_STOR_XFER_GOOD) 1123 return USB_STOR_TRANSPORT_ERROR; 1124 1125 /* check bulk status */ 1126 residue = le32_to_cpu(bcs->Residue); 1127 US_DEBUGP("Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n", 1128 le32_to_cpu(bcs->Signature), bcs->Tag, 1129 residue, bcs->Status); 1130 if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) || 1131 bcs->Status > US_BULK_STAT_PHASE) { 1132 US_DEBUGP("Bulk logical error\n"); 1133 return USB_STOR_TRANSPORT_ERROR; 1134 } 1135 1136 /* Some broken devices report odd signatures, so we do not check them 1137 * for validity against the spec. We store the first one we see, 1138 * and check subsequent transfers for validity against this signature. 1139 */ 1140 if (!us->bcs_signature) { 1141 us->bcs_signature = bcs->Signature; 1142 if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN)) 1143 US_DEBUGP("Learnt BCS signature 0x%08X\n", 1144 le32_to_cpu(us->bcs_signature)); 1145 } else if (bcs->Signature != us->bcs_signature) { 1146 US_DEBUGP("Signature mismatch: got %08X, expecting %08X\n", 1147 le32_to_cpu(bcs->Signature), 1148 le32_to_cpu(us->bcs_signature)); 1149 return USB_STOR_TRANSPORT_ERROR; 1150 } 1151 1152 /* try to compute the actual residue, based on how much data 1153 * was really transferred and what the device tells us */ 1154 if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) { 1155 1156 /* Heuristically detect devices that generate bogus residues 1157 * by seeing what happens with INQUIRY and READ CAPACITY 1158 * commands. 1159 */ 1160 if (bcs->Status == US_BULK_STAT_OK && 1161 scsi_get_resid(srb) == 0 && 1162 ((srb->cmnd[0] == INQUIRY && 1163 transfer_length == 36) || 1164 (srb->cmnd[0] == READ_CAPACITY && 1165 transfer_length == 8))) { 1166 us->fflags |= US_FL_IGNORE_RESIDUE; 1167 1168 } else { 1169 residue = min(residue, transfer_length); 1170 scsi_set_resid(srb, max(scsi_get_resid(srb), 1171 (int) residue)); 1172 } 1173 } 1174 1175 /* based on the status code, we report good or bad */ 1176 switch (bcs->Status) { 1177 case US_BULK_STAT_OK: 1178 /* device babbled -- return fake sense data */ 1179 if (fake_sense) { 1180 memcpy(srb->sense_buffer, 1181 usb_stor_sense_invalidCDB, 1182 sizeof(usb_stor_sense_invalidCDB)); 1183 return USB_STOR_TRANSPORT_NO_SENSE; 1184 } 1185 1186 /* command good -- note that data could be short */ 1187 return USB_STOR_TRANSPORT_GOOD; 1188 1189 case US_BULK_STAT_FAIL: 1190 /* command failed */ 1191 return USB_STOR_TRANSPORT_FAILED; 1192 1193 case US_BULK_STAT_PHASE: 1194 /* phase error -- note that a transport reset will be 1195 * invoked by the invoke_transport() function 1196 */ 1197 return USB_STOR_TRANSPORT_ERROR; 1198 } 1199 1200 /* we should never get here, but if we do, we're in trouble */ 1201 return USB_STOR_TRANSPORT_ERROR; 1202 } 1203 EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport); 1204 1205 /*********************************************************************** 1206 * Reset routines 1207 ***********************************************************************/ 1208 1209 /* This is the common part of the device reset code. 1210 * 1211 * It's handy that every transport mechanism uses the control endpoint for 1212 * resets. 1213 * 1214 * Basically, we send a reset with a 5-second timeout, so we don't get 1215 * jammed attempting to do the reset. 1216 */ 1217 static int usb_stor_reset_common(struct us_data *us, 1218 u8 request, u8 requesttype, 1219 u16 value, u16 index, void *data, u16 size) 1220 { 1221 int result; 1222 int result2; 1223 1224 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1225 US_DEBUGP("No reset during disconnect\n"); 1226 return -EIO; 1227 } 1228 1229 result = usb_stor_control_msg(us, us->send_ctrl_pipe, 1230 request, requesttype, value, index, data, size, 1231 5*HZ); 1232 if (result < 0) { 1233 US_DEBUGP("Soft reset failed: %d\n", result); 1234 return result; 1235 } 1236 1237 /* Give the device some time to recover from the reset, 1238 * but don't delay disconnect processing. */ 1239 wait_event_interruptible_timeout(us->delay_wait, 1240 test_bit(US_FLIDX_DISCONNECTING, &us->dflags), 1241 HZ*6); 1242 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1243 US_DEBUGP("Reset interrupted by disconnect\n"); 1244 return -EIO; 1245 } 1246 1247 US_DEBUGP("Soft reset: clearing bulk-in endpoint halt\n"); 1248 result = usb_stor_clear_halt(us, us->recv_bulk_pipe); 1249 1250 US_DEBUGP("Soft reset: clearing bulk-out endpoint halt\n"); 1251 result2 = usb_stor_clear_halt(us, us->send_bulk_pipe); 1252 1253 /* return a result code based on the result of the clear-halts */ 1254 if (result >= 0) 1255 result = result2; 1256 if (result < 0) 1257 US_DEBUGP("Soft reset failed\n"); 1258 else 1259 US_DEBUGP("Soft reset done\n"); 1260 return result; 1261 } 1262 1263 /* This issues a CB[I] Reset to the device in question 1264 */ 1265 #define CB_RESET_CMD_SIZE 12 1266 1267 int usb_stor_CB_reset(struct us_data *us) 1268 { 1269 US_DEBUGP("%s called\n", __func__); 1270 1271 memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE); 1272 us->iobuf[0] = SEND_DIAGNOSTIC; 1273 us->iobuf[1] = 4; 1274 return usb_stor_reset_common(us, US_CBI_ADSC, 1275 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 1276 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE); 1277 } 1278 EXPORT_SYMBOL_GPL(usb_stor_CB_reset); 1279 1280 /* This issues a Bulk-only Reset to the device in question, including 1281 * clearing the subsequent endpoint halts that may occur. 1282 */ 1283 int usb_stor_Bulk_reset(struct us_data *us) 1284 { 1285 US_DEBUGP("%s called\n", __func__); 1286 1287 return usb_stor_reset_common(us, US_BULK_RESET_REQUEST, 1288 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 1289 0, us->ifnum, NULL, 0); 1290 } 1291 EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset); 1292 1293 /* Issue a USB port reset to the device. The caller must not hold 1294 * us->dev_mutex. 1295 */ 1296 int usb_stor_port_reset(struct us_data *us) 1297 { 1298 int result; 1299 1300 result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf); 1301 if (result < 0) 1302 US_DEBUGP("unable to lock device for reset: %d\n", result); 1303 else { 1304 /* Were we disconnected while waiting for the lock? */ 1305 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1306 result = -EIO; 1307 US_DEBUGP("No reset during disconnect\n"); 1308 } else { 1309 result = usb_reset_device(us->pusb_dev); 1310 US_DEBUGP("usb_reset_device returns %d\n", 1311 result); 1312 } 1313 usb_unlock_device(us->pusb_dev); 1314 } 1315 return result; 1316 } 1317