xref: /openbmc/linux/drivers/usb/storage/transport.c (revision a06c488d)
1 /* Driver for USB Mass Storage compliant devices
2  *
3  * Current development and maintenance by:
4  *   (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
5  *
6  * Developed with the assistance of:
7  *   (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
8  *   (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
9  *   (c) 2002 Alan Stern <stern@rowland.org>
10  *
11  * Initial work by:
12  *   (c) 1999 Michael Gee (michael@linuxspecific.com)
13  *
14  * This driver is based on the 'USB Mass Storage Class' document. This
15  * describes in detail the protocol used to communicate with such
16  * devices.  Clearly, the designers had SCSI and ATAPI commands in
17  * mind when they created this document.  The commands are all very
18  * similar to commands in the SCSI-II and ATAPI specifications.
19  *
20  * It is important to note that in a number of cases this class
21  * exhibits class-specific exemptions from the USB specification.
22  * Notably the usage of NAK, STALL and ACK differs from the norm, in
23  * that they are used to communicate wait, failed and OK on commands.
24  *
25  * Also, for certain devices, the interrupt endpoint is used to convey
26  * status of a command.
27  *
28  * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more
29  * information about this driver.
30  *
31  * This program is free software; you can redistribute it and/or modify it
32  * under the terms of the GNU General Public License as published by the
33  * Free Software Foundation; either version 2, or (at your option) any
34  * later version.
35  *
36  * This program is distributed in the hope that it will be useful, but
37  * WITHOUT ANY WARRANTY; without even the implied warranty of
38  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
39  * General Public License for more details.
40  *
41  * You should have received a copy of the GNU General Public License along
42  * with this program; if not, write to the Free Software Foundation, Inc.,
43  * 675 Mass Ave, Cambridge, MA 02139, USA.
44  */
45 
46 #include <linux/sched.h>
47 #include <linux/gfp.h>
48 #include <linux/errno.h>
49 #include <linux/export.h>
50 
51 #include <linux/usb/quirks.h>
52 
53 #include <scsi/scsi.h>
54 #include <scsi/scsi_eh.h>
55 #include <scsi/scsi_device.h>
56 
57 #include "usb.h"
58 #include "transport.h"
59 #include "protocol.h"
60 #include "scsiglue.h"
61 #include "debug.h"
62 
63 #include <linux/blkdev.h>
64 #include "../../scsi/sd.h"
65 
66 
67 /***********************************************************************
68  * Data transfer routines
69  ***********************************************************************/
70 
71 /*
72  * This is subtle, so pay attention:
73  * ---------------------------------
74  * We're very concerned about races with a command abort.  Hanging this code
75  * is a sure fire way to hang the kernel.  (Note that this discussion applies
76  * only to transactions resulting from a scsi queued-command, since only
77  * these transactions are subject to a scsi abort.  Other transactions, such
78  * as those occurring during device-specific initialization, must be handled
79  * by a separate code path.)
80  *
81  * The abort function (usb_storage_command_abort() in scsiglue.c) first
82  * sets the machine state and the ABORTING bit in us->dflags to prevent
83  * new URBs from being submitted.  It then calls usb_stor_stop_transport()
84  * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags
85  * to see if the current_urb needs to be stopped.  Likewise, the SG_ACTIVE
86  * bit is tested to see if the current_sg scatter-gather request needs to be
87  * stopped.  The timeout callback routine does much the same thing.
88  *
89  * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to
90  * prevent new URBs from being submitted, and usb_stor_stop_transport() is
91  * called to stop any ongoing requests.
92  *
93  * The submit function first verifies that the submitting is allowed
94  * (neither ABORTING nor DISCONNECTING bits are set) and that the submit
95  * completes without errors, and only then sets the URB_ACTIVE bit.  This
96  * prevents the stop_transport() function from trying to cancel the URB
97  * while the submit call is underway.  Next, the submit function must test
98  * the flags to see if an abort or disconnect occurred during the submission
99  * or before the URB_ACTIVE bit was set.  If so, it's essential to cancel
100  * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
101  * is still set).  Either way, the function must then wait for the URB to
102  * finish.  Note that the URB can still be in progress even after a call to
103  * usb_unlink_urb() returns.
104  *
105  * The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
106  * either the stop_transport() function or the submitting function
107  * is guaranteed to call usb_unlink_urb() for an active URB,
108  * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
109  * called more than once or from being called during usb_submit_urb().
110  */
111 
112 /* This is the completion handler which will wake us up when an URB
113  * completes.
114  */
115 static void usb_stor_blocking_completion(struct urb *urb)
116 {
117 	struct completion *urb_done_ptr = urb->context;
118 
119 	complete(urb_done_ptr);
120 }
121 
122 /* This is the common part of the URB message submission code
123  *
124  * All URBs from the usb-storage driver involved in handling a queued scsi
125  * command _must_ pass through this function (or something like it) for the
126  * abort mechanisms to work properly.
127  */
128 static int usb_stor_msg_common(struct us_data *us, int timeout)
129 {
130 	struct completion urb_done;
131 	long timeleft;
132 	int status;
133 
134 	/* don't submit URBs during abort processing */
135 	if (test_bit(US_FLIDX_ABORTING, &us->dflags))
136 		return -EIO;
137 
138 	/* set up data structures for the wakeup system */
139 	init_completion(&urb_done);
140 
141 	/* fill the common fields in the URB */
142 	us->current_urb->context = &urb_done;
143 	us->current_urb->transfer_flags = 0;
144 
145 	/* we assume that if transfer_buffer isn't us->iobuf then it
146 	 * hasn't been mapped for DMA.  Yes, this is clunky, but it's
147 	 * easier than always having the caller tell us whether the
148 	 * transfer buffer has already been mapped. */
149 	if (us->current_urb->transfer_buffer == us->iobuf)
150 		us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
151 	us->current_urb->transfer_dma = us->iobuf_dma;
152 
153 	/* submit the URB */
154 	status = usb_submit_urb(us->current_urb, GFP_NOIO);
155 	if (status) {
156 		/* something went wrong */
157 		return status;
158 	}
159 
160 	/* since the URB has been submitted successfully, it's now okay
161 	 * to cancel it */
162 	set_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
163 
164 	/* did an abort occur during the submission? */
165 	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
166 
167 		/* cancel the URB, if it hasn't been cancelled already */
168 		if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
169 			usb_stor_dbg(us, "-- cancelling URB\n");
170 			usb_unlink_urb(us->current_urb);
171 		}
172 	}
173 
174 	/* wait for the completion of the URB */
175 	timeleft = wait_for_completion_interruptible_timeout(
176 			&urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT);
177 
178 	clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
179 
180 	if (timeleft <= 0) {
181 		usb_stor_dbg(us, "%s -- cancelling URB\n",
182 			     timeleft == 0 ? "Timeout" : "Signal");
183 		usb_kill_urb(us->current_urb);
184 	}
185 
186 	/* return the URB status */
187 	return us->current_urb->status;
188 }
189 
190 /*
191  * Transfer one control message, with timeouts, and allowing early
192  * termination.  Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
193  */
194 int usb_stor_control_msg(struct us_data *us, unsigned int pipe,
195 		 u8 request, u8 requesttype, u16 value, u16 index,
196 		 void *data, u16 size, int timeout)
197 {
198 	int status;
199 
200 	usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
201 		     request, requesttype, value, index, size);
202 
203 	/* fill in the devrequest structure */
204 	us->cr->bRequestType = requesttype;
205 	us->cr->bRequest = request;
206 	us->cr->wValue = cpu_to_le16(value);
207 	us->cr->wIndex = cpu_to_le16(index);
208 	us->cr->wLength = cpu_to_le16(size);
209 
210 	/* fill and submit the URB */
211 	usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
212 			 (unsigned char*) us->cr, data, size,
213 			 usb_stor_blocking_completion, NULL);
214 	status = usb_stor_msg_common(us, timeout);
215 
216 	/* return the actual length of the data transferred if no error */
217 	if (status == 0)
218 		status = us->current_urb->actual_length;
219 	return status;
220 }
221 EXPORT_SYMBOL_GPL(usb_stor_control_msg);
222 
223 /* This is a version of usb_clear_halt() that allows early termination and
224  * doesn't read the status from the device -- this is because some devices
225  * crash their internal firmware when the status is requested after a halt.
226  *
227  * A definitive list of these 'bad' devices is too difficult to maintain or
228  * make complete enough to be useful.  This problem was first observed on the
229  * Hagiwara FlashGate DUAL unit.  However, bus traces reveal that neither
230  * MacOS nor Windows checks the status after clearing a halt.
231  *
232  * Since many vendors in this space limit their testing to interoperability
233  * with these two OSes, specification violations like this one are common.
234  */
235 int usb_stor_clear_halt(struct us_data *us, unsigned int pipe)
236 {
237 	int result;
238 	int endp = usb_pipeendpoint(pipe);
239 
240 	if (usb_pipein (pipe))
241 		endp |= USB_DIR_IN;
242 
243 	result = usb_stor_control_msg(us, us->send_ctrl_pipe,
244 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
245 		USB_ENDPOINT_HALT, endp,
246 		NULL, 0, 3*HZ);
247 
248 	if (result >= 0)
249 		usb_reset_endpoint(us->pusb_dev, endp);
250 
251 	usb_stor_dbg(us, "result = %d\n", result);
252 	return result;
253 }
254 EXPORT_SYMBOL_GPL(usb_stor_clear_halt);
255 
256 
257 /*
258  * Interpret the results of a URB transfer
259  *
260  * This function prints appropriate debugging messages, clears halts on
261  * non-control endpoints, and translates the status to the corresponding
262  * USB_STOR_XFER_xxx return code.
263  */
264 static int interpret_urb_result(struct us_data *us, unsigned int pipe,
265 		unsigned int length, int result, unsigned int partial)
266 {
267 	usb_stor_dbg(us, "Status code %d; transferred %u/%u\n",
268 		     result, partial, length);
269 	switch (result) {
270 
271 	/* no error code; did we send all the data? */
272 	case 0:
273 		if (partial != length) {
274 			usb_stor_dbg(us, "-- short transfer\n");
275 			return USB_STOR_XFER_SHORT;
276 		}
277 
278 		usb_stor_dbg(us, "-- transfer complete\n");
279 		return USB_STOR_XFER_GOOD;
280 
281 	/* stalled */
282 	case -EPIPE:
283 		/* for control endpoints, (used by CB[I]) a stall indicates
284 		 * a failed command */
285 		if (usb_pipecontrol(pipe)) {
286 			usb_stor_dbg(us, "-- stall on control pipe\n");
287 			return USB_STOR_XFER_STALLED;
288 		}
289 
290 		/* for other sorts of endpoint, clear the stall */
291 		usb_stor_dbg(us, "clearing endpoint halt for pipe 0x%x\n",
292 			     pipe);
293 		if (usb_stor_clear_halt(us, pipe) < 0)
294 			return USB_STOR_XFER_ERROR;
295 		return USB_STOR_XFER_STALLED;
296 
297 	/* babble - the device tried to send more than we wanted to read */
298 	case -EOVERFLOW:
299 		usb_stor_dbg(us, "-- babble\n");
300 		return USB_STOR_XFER_LONG;
301 
302 	/* the transfer was cancelled by abort, disconnect, or timeout */
303 	case -ECONNRESET:
304 		usb_stor_dbg(us, "-- transfer cancelled\n");
305 		return USB_STOR_XFER_ERROR;
306 
307 	/* short scatter-gather read transfer */
308 	case -EREMOTEIO:
309 		usb_stor_dbg(us, "-- short read transfer\n");
310 		return USB_STOR_XFER_SHORT;
311 
312 	/* abort or disconnect in progress */
313 	case -EIO:
314 		usb_stor_dbg(us, "-- abort or disconnect in progress\n");
315 		return USB_STOR_XFER_ERROR;
316 
317 	/* the catch-all error case */
318 	default:
319 		usb_stor_dbg(us, "-- unknown error\n");
320 		return USB_STOR_XFER_ERROR;
321 	}
322 }
323 
324 /*
325  * Transfer one control message, without timeouts, but allowing early
326  * termination.  Return codes are USB_STOR_XFER_xxx.
327  */
328 int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe,
329 		u8 request, u8 requesttype, u16 value, u16 index,
330 		void *data, u16 size)
331 {
332 	int result;
333 
334 	usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
335 		     request, requesttype, value, index, size);
336 
337 	/* fill in the devrequest structure */
338 	us->cr->bRequestType = requesttype;
339 	us->cr->bRequest = request;
340 	us->cr->wValue = cpu_to_le16(value);
341 	us->cr->wIndex = cpu_to_le16(index);
342 	us->cr->wLength = cpu_to_le16(size);
343 
344 	/* fill and submit the URB */
345 	usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
346 			 (unsigned char*) us->cr, data, size,
347 			 usb_stor_blocking_completion, NULL);
348 	result = usb_stor_msg_common(us, 0);
349 
350 	return interpret_urb_result(us, pipe, size, result,
351 			us->current_urb->actual_length);
352 }
353 EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer);
354 
355 /*
356  * Receive one interrupt buffer, without timeouts, but allowing early
357  * termination.  Return codes are USB_STOR_XFER_xxx.
358  *
359  * This routine always uses us->recv_intr_pipe as the pipe and
360  * us->ep_bInterval as the interrupt interval.
361  */
362 static int usb_stor_intr_transfer(struct us_data *us, void *buf,
363 				  unsigned int length)
364 {
365 	int result;
366 	unsigned int pipe = us->recv_intr_pipe;
367 	unsigned int maxp;
368 
369 	usb_stor_dbg(us, "xfer %u bytes\n", length);
370 
371 	/* calculate the max packet size */
372 	maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe));
373 	if (maxp > length)
374 		maxp = length;
375 
376 	/* fill and submit the URB */
377 	usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf,
378 			maxp, usb_stor_blocking_completion, NULL,
379 			us->ep_bInterval);
380 	result = usb_stor_msg_common(us, 0);
381 
382 	return interpret_urb_result(us, pipe, length, result,
383 			us->current_urb->actual_length);
384 }
385 
386 /*
387  * Transfer one buffer via bulk pipe, without timeouts, but allowing early
388  * termination.  Return codes are USB_STOR_XFER_xxx.  If the bulk pipe
389  * stalls during the transfer, the halt is automatically cleared.
390  */
391 int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe,
392 	void *buf, unsigned int length, unsigned int *act_len)
393 {
394 	int result;
395 
396 	usb_stor_dbg(us, "xfer %u bytes\n", length);
397 
398 	/* fill and submit the URB */
399 	usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length,
400 		      usb_stor_blocking_completion, NULL);
401 	result = usb_stor_msg_common(us, 0);
402 
403 	/* store the actual length of the data transferred */
404 	if (act_len)
405 		*act_len = us->current_urb->actual_length;
406 	return interpret_urb_result(us, pipe, length, result,
407 			us->current_urb->actual_length);
408 }
409 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf);
410 
411 /*
412  * Transfer a scatter-gather list via bulk transfer
413  *
414  * This function does basically the same thing as usb_stor_bulk_transfer_buf()
415  * above, but it uses the usbcore scatter-gather library.
416  */
417 static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe,
418 		struct scatterlist *sg, int num_sg, unsigned int length,
419 		unsigned int *act_len)
420 {
421 	int result;
422 
423 	/* don't submit s-g requests during abort processing */
424 	if (test_bit(US_FLIDX_ABORTING, &us->dflags))
425 		return USB_STOR_XFER_ERROR;
426 
427 	/* initialize the scatter-gather request block */
428 	usb_stor_dbg(us, "xfer %u bytes, %d entries\n", length, num_sg);
429 	result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0,
430 			sg, num_sg, length, GFP_NOIO);
431 	if (result) {
432 		usb_stor_dbg(us, "usb_sg_init returned %d\n", result);
433 		return USB_STOR_XFER_ERROR;
434 	}
435 
436 	/* since the block has been initialized successfully, it's now
437 	 * okay to cancel it */
438 	set_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
439 
440 	/* did an abort occur during the submission? */
441 	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
442 
443 		/* cancel the request, if it hasn't been cancelled already */
444 		if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
445 			usb_stor_dbg(us, "-- cancelling sg request\n");
446 			usb_sg_cancel(&us->current_sg);
447 		}
448 	}
449 
450 	/* wait for the completion of the transfer */
451 	usb_sg_wait(&us->current_sg);
452 	clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
453 
454 	result = us->current_sg.status;
455 	if (act_len)
456 		*act_len = us->current_sg.bytes;
457 	return interpret_urb_result(us, pipe, length, result,
458 			us->current_sg.bytes);
459 }
460 
461 /*
462  * Common used function. Transfer a complete command
463  * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
464  */
465 int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe,
466 		      struct scsi_cmnd* srb)
467 {
468 	unsigned int partial;
469 	int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb),
470 				      scsi_sg_count(srb), scsi_bufflen(srb),
471 				      &partial);
472 
473 	scsi_set_resid(srb, scsi_bufflen(srb) - partial);
474 	return result;
475 }
476 EXPORT_SYMBOL_GPL(usb_stor_bulk_srb);
477 
478 /*
479  * Transfer an entire SCSI command's worth of data payload over the bulk
480  * pipe.
481  *
482  * Note that this uses usb_stor_bulk_transfer_buf() and
483  * usb_stor_bulk_transfer_sglist() to achieve its goals --
484  * this function simply determines whether we're going to use
485  * scatter-gather or not, and acts appropriately.
486  */
487 int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe,
488 		void *buf, unsigned int length_left, int use_sg, int *residual)
489 {
490 	int result;
491 	unsigned int partial;
492 
493 	/* are we scatter-gathering? */
494 	if (use_sg) {
495 		/* use the usb core scatter-gather primitives */
496 		result = usb_stor_bulk_transfer_sglist(us, pipe,
497 				(struct scatterlist *) buf, use_sg,
498 				length_left, &partial);
499 		length_left -= partial;
500 	} else {
501 		/* no scatter-gather, just make the request */
502 		result = usb_stor_bulk_transfer_buf(us, pipe, buf,
503 				length_left, &partial);
504 		length_left -= partial;
505 	}
506 
507 	/* store the residual and return the error code */
508 	if (residual)
509 		*residual = length_left;
510 	return result;
511 }
512 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg);
513 
514 /***********************************************************************
515  * Transport routines
516  ***********************************************************************/
517 
518 /* There are so many devices that report the capacity incorrectly,
519  * this routine was written to counteract some of the resulting
520  * problems.
521  */
522 static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb)
523 {
524 	struct gendisk *disk;
525 	struct scsi_disk *sdkp;
526 	u32 sector;
527 
528 	/* To Report "Medium Error: Record Not Found */
529 	static unsigned char record_not_found[18] = {
530 		[0]	= 0x70,			/* current error */
531 		[2]	= MEDIUM_ERROR,		/* = 0x03 */
532 		[7]	= 0x0a,			/* additional length */
533 		[12]	= 0x14			/* Record Not Found */
534 	};
535 
536 	/* If last-sector problems can't occur, whether because the
537 	 * capacity was already decremented or because the device is
538 	 * known to report the correct capacity, then we don't need
539 	 * to do anything.
540 	 */
541 	if (!us->use_last_sector_hacks)
542 		return;
543 
544 	/* Was this command a READ(10) or a WRITE(10)? */
545 	if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10)
546 		goto done;
547 
548 	/* Did this command access the last sector? */
549 	sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) |
550 			(srb->cmnd[4] << 8) | (srb->cmnd[5]);
551 	disk = srb->request->rq_disk;
552 	if (!disk)
553 		goto done;
554 	sdkp = scsi_disk(disk);
555 	if (!sdkp)
556 		goto done;
557 	if (sector + 1 != sdkp->capacity)
558 		goto done;
559 
560 	if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) {
561 
562 		/* The command succeeded.  We know this device doesn't
563 		 * have the last-sector bug, so stop checking it.
564 		 */
565 		us->use_last_sector_hacks = 0;
566 
567 	} else {
568 		/* The command failed.  Allow up to 3 retries in case this
569 		 * is some normal sort of failure.  After that, assume the
570 		 * capacity is wrong and we're trying to access the sector
571 		 * beyond the end.  Replace the result code and sense data
572 		 * with values that will cause the SCSI core to fail the
573 		 * command immediately, instead of going into an infinite
574 		 * (or even just a very long) retry loop.
575 		 */
576 		if (++us->last_sector_retries < 3)
577 			return;
578 		srb->result = SAM_STAT_CHECK_CONDITION;
579 		memcpy(srb->sense_buffer, record_not_found,
580 				sizeof(record_not_found));
581 	}
582 
583  done:
584 	/* Don't reset the retry counter for TEST UNIT READY commands,
585 	 * because they get issued after device resets which might be
586 	 * caused by a failed last-sector access.
587 	 */
588 	if (srb->cmnd[0] != TEST_UNIT_READY)
589 		us->last_sector_retries = 0;
590 }
591 
592 /* Invoke the transport and basic error-handling/recovery methods
593  *
594  * This is used by the protocol layers to actually send the message to
595  * the device and receive the response.
596  */
597 void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us)
598 {
599 	int need_auto_sense;
600 	int result;
601 
602 	/* send the command to the transport layer */
603 	scsi_set_resid(srb, 0);
604 	result = us->transport(srb, us);
605 
606 	/* if the command gets aborted by the higher layers, we need to
607 	 * short-circuit all other processing
608 	 */
609 	if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
610 		usb_stor_dbg(us, "-- command was aborted\n");
611 		srb->result = DID_ABORT << 16;
612 		goto Handle_Errors;
613 	}
614 
615 	/* if there is a transport error, reset and don't auto-sense */
616 	if (result == USB_STOR_TRANSPORT_ERROR) {
617 		usb_stor_dbg(us, "-- transport indicates error, resetting\n");
618 		srb->result = DID_ERROR << 16;
619 		goto Handle_Errors;
620 	}
621 
622 	/* if the transport provided its own sense data, don't auto-sense */
623 	if (result == USB_STOR_TRANSPORT_NO_SENSE) {
624 		srb->result = SAM_STAT_CHECK_CONDITION;
625 		last_sector_hacks(us, srb);
626 		return;
627 	}
628 
629 	srb->result = SAM_STAT_GOOD;
630 
631 	/* Determine if we need to auto-sense
632 	 *
633 	 * I normally don't use a flag like this, but it's almost impossible
634 	 * to understand what's going on here if I don't.
635 	 */
636 	need_auto_sense = 0;
637 
638 	/*
639 	 * If we're running the CB transport, which is incapable
640 	 * of determining status on its own, we will auto-sense
641 	 * unless the operation involved a data-in transfer.  Devices
642 	 * can signal most data-in errors by stalling the bulk-in pipe.
643 	 */
644 	if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_DPCM_USB) &&
645 			srb->sc_data_direction != DMA_FROM_DEVICE) {
646 		usb_stor_dbg(us, "-- CB transport device requiring auto-sense\n");
647 		need_auto_sense = 1;
648 	}
649 
650 	/*
651 	 * If we have a failure, we're going to do a REQUEST_SENSE
652 	 * automatically.  Note that we differentiate between a command
653 	 * "failure" and an "error" in the transport mechanism.
654 	 */
655 	if (result == USB_STOR_TRANSPORT_FAILED) {
656 		usb_stor_dbg(us, "-- transport indicates command failure\n");
657 		need_auto_sense = 1;
658 	}
659 
660 	/*
661 	 * Determine if this device is SAT by seeing if the
662 	 * command executed successfully.  Otherwise we'll have
663 	 * to wait for at least one CHECK_CONDITION to determine
664 	 * SANE_SENSE support
665 	 */
666 	if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) &&
667 	    result == USB_STOR_TRANSPORT_GOOD &&
668 	    !(us->fflags & US_FL_SANE_SENSE) &&
669 	    !(us->fflags & US_FL_BAD_SENSE) &&
670 	    !(srb->cmnd[2] & 0x20))) {
671 		usb_stor_dbg(us, "-- SAT supported, increasing auto-sense\n");
672 		us->fflags |= US_FL_SANE_SENSE;
673 	}
674 
675 	/*
676 	 * A short transfer on a command where we don't expect it
677 	 * is unusual, but it doesn't mean we need to auto-sense.
678 	 */
679 	if ((scsi_get_resid(srb) > 0) &&
680 	    !((srb->cmnd[0] == REQUEST_SENSE) ||
681 	      (srb->cmnd[0] == INQUIRY) ||
682 	      (srb->cmnd[0] == MODE_SENSE) ||
683 	      (srb->cmnd[0] == LOG_SENSE) ||
684 	      (srb->cmnd[0] == MODE_SENSE_10))) {
685 		usb_stor_dbg(us, "-- unexpectedly short transfer\n");
686 	}
687 
688 	/* Now, if we need to do the auto-sense, let's do it */
689 	if (need_auto_sense) {
690 		int temp_result;
691 		struct scsi_eh_save ses;
692 		int sense_size = US_SENSE_SIZE;
693 		struct scsi_sense_hdr sshdr;
694 		const u8 *scdd;
695 		u8 fm_ili;
696 
697 		/* device supports and needs bigger sense buffer */
698 		if (us->fflags & US_FL_SANE_SENSE)
699 			sense_size = ~0;
700 Retry_Sense:
701 		usb_stor_dbg(us, "Issuing auto-REQUEST_SENSE\n");
702 
703 		scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size);
704 
705 		/* FIXME: we must do the protocol translation here */
706 		if (us->subclass == USB_SC_RBC || us->subclass == USB_SC_SCSI ||
707 				us->subclass == USB_SC_CYP_ATACB)
708 			srb->cmd_len = 6;
709 		else
710 			srb->cmd_len = 12;
711 
712 		/* issue the auto-sense command */
713 		scsi_set_resid(srb, 0);
714 		temp_result = us->transport(us->srb, us);
715 
716 		/* let's clean up right away */
717 		scsi_eh_restore_cmnd(srb, &ses);
718 
719 		if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
720 			usb_stor_dbg(us, "-- auto-sense aborted\n");
721 			srb->result = DID_ABORT << 16;
722 
723 			/* If SANE_SENSE caused this problem, disable it */
724 			if (sense_size != US_SENSE_SIZE) {
725 				us->fflags &= ~US_FL_SANE_SENSE;
726 				us->fflags |= US_FL_BAD_SENSE;
727 			}
728 			goto Handle_Errors;
729 		}
730 
731 		/* Some devices claim to support larger sense but fail when
732 		 * trying to request it. When a transport failure happens
733 		 * using US_FS_SANE_SENSE, we always retry with a standard
734 		 * (small) sense request. This fixes some USB GSM modems
735 		 */
736 		if (temp_result == USB_STOR_TRANSPORT_FAILED &&
737 				sense_size != US_SENSE_SIZE) {
738 			usb_stor_dbg(us, "-- auto-sense failure, retry small sense\n");
739 			sense_size = US_SENSE_SIZE;
740 			us->fflags &= ~US_FL_SANE_SENSE;
741 			us->fflags |= US_FL_BAD_SENSE;
742 			goto Retry_Sense;
743 		}
744 
745 		/* Other failures */
746 		if (temp_result != USB_STOR_TRANSPORT_GOOD) {
747 			usb_stor_dbg(us, "-- auto-sense failure\n");
748 
749 			/* we skip the reset if this happens to be a
750 			 * multi-target device, since failure of an
751 			 * auto-sense is perfectly valid
752 			 */
753 			srb->result = DID_ERROR << 16;
754 			if (!(us->fflags & US_FL_SCM_MULT_TARG))
755 				goto Handle_Errors;
756 			return;
757 		}
758 
759 		/* If the sense data returned is larger than 18-bytes then we
760 		 * assume this device supports requesting more in the future.
761 		 * The response code must be 70h through 73h inclusive.
762 		 */
763 		if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) &&
764 		    !(us->fflags & US_FL_SANE_SENSE) &&
765 		    !(us->fflags & US_FL_BAD_SENSE) &&
766 		    (srb->sense_buffer[0] & 0x7C) == 0x70) {
767 			usb_stor_dbg(us, "-- SANE_SENSE support enabled\n");
768 			us->fflags |= US_FL_SANE_SENSE;
769 
770 			/* Indicate to the user that we truncated their sense
771 			 * because we didn't know it supported larger sense.
772 			 */
773 			usb_stor_dbg(us, "-- Sense data truncated to %i from %i\n",
774 				     US_SENSE_SIZE,
775 				     srb->sense_buffer[7] + 8);
776 			srb->sense_buffer[7] = (US_SENSE_SIZE - 8);
777 		}
778 
779 		scsi_normalize_sense(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE,
780 				     &sshdr);
781 
782 		usb_stor_dbg(us, "-- Result from auto-sense is %d\n",
783 			     temp_result);
784 		usb_stor_dbg(us, "-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
785 			     sshdr.response_code, sshdr.sense_key,
786 			     sshdr.asc, sshdr.ascq);
787 #ifdef CONFIG_USB_STORAGE_DEBUG
788 		usb_stor_show_sense(us, sshdr.sense_key, sshdr.asc, sshdr.ascq);
789 #endif
790 
791 		/* set the result so the higher layers expect this data */
792 		srb->result = SAM_STAT_CHECK_CONDITION;
793 
794 		scdd = scsi_sense_desc_find(srb->sense_buffer,
795 					    SCSI_SENSE_BUFFERSIZE, 4);
796 		fm_ili = (scdd ? scdd[3] : srb->sense_buffer[2]) & 0xA0;
797 
798 		/* We often get empty sense data.  This could indicate that
799 		 * everything worked or that there was an unspecified
800 		 * problem.  We have to decide which.
801 		 */
802 		if (sshdr.sense_key == 0 && sshdr.asc == 0 && sshdr.ascq == 0 &&
803 		    fm_ili == 0) {
804 			/* If things are really okay, then let's show that.
805 			 * Zero out the sense buffer so the higher layers
806 			 * won't realize we did an unsolicited auto-sense.
807 			 */
808 			if (result == USB_STOR_TRANSPORT_GOOD) {
809 				srb->result = SAM_STAT_GOOD;
810 				srb->sense_buffer[0] = 0x0;
811 
812 			/* If there was a problem, report an unspecified
813 			 * hardware error to prevent the higher layers from
814 			 * entering an infinite retry loop.
815 			 */
816 			} else {
817 				srb->result = DID_ERROR << 16;
818 				if ((sshdr.response_code & 0x72) == 0x72)
819 					srb->sense_buffer[1] = HARDWARE_ERROR;
820 				else
821 					srb->sense_buffer[2] = HARDWARE_ERROR;
822 			}
823 		}
824 	}
825 
826 	/*
827 	 * Some devices don't work or return incorrect data the first
828 	 * time they get a READ(10) command, or for the first READ(10)
829 	 * after a media change.  If the INITIAL_READ10 flag is set,
830 	 * keep track of whether READ(10) commands succeed.  If the
831 	 * previous one succeeded and this one failed, set the REDO_READ10
832 	 * flag to force a retry.
833 	 */
834 	if (unlikely((us->fflags & US_FL_INITIAL_READ10) &&
835 			srb->cmnd[0] == READ_10)) {
836 		if (srb->result == SAM_STAT_GOOD) {
837 			set_bit(US_FLIDX_READ10_WORKED, &us->dflags);
838 		} else if (test_bit(US_FLIDX_READ10_WORKED, &us->dflags)) {
839 			clear_bit(US_FLIDX_READ10_WORKED, &us->dflags);
840 			set_bit(US_FLIDX_REDO_READ10, &us->dflags);
841 		}
842 
843 		/*
844 		 * Next, if the REDO_READ10 flag is set, return a result
845 		 * code that will cause the SCSI core to retry the READ(10)
846 		 * command immediately.
847 		 */
848 		if (test_bit(US_FLIDX_REDO_READ10, &us->dflags)) {
849 			clear_bit(US_FLIDX_REDO_READ10, &us->dflags);
850 			srb->result = DID_IMM_RETRY << 16;
851 			srb->sense_buffer[0] = 0;
852 		}
853 	}
854 
855 	/* Did we transfer less than the minimum amount required? */
856 	if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) &&
857 			scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow)
858 		srb->result = DID_ERROR << 16;
859 
860 	last_sector_hacks(us, srb);
861 	return;
862 
863 	/* Error and abort processing: try to resynchronize with the device
864 	 * by issuing a port reset.  If that fails, try a class-specific
865 	 * device reset. */
866   Handle_Errors:
867 
868 	/* Set the RESETTING bit, and clear the ABORTING bit so that
869 	 * the reset may proceed. */
870 	scsi_lock(us_to_host(us));
871 	set_bit(US_FLIDX_RESETTING, &us->dflags);
872 	clear_bit(US_FLIDX_ABORTING, &us->dflags);
873 	scsi_unlock(us_to_host(us));
874 
875 	/* We must release the device lock because the pre_reset routine
876 	 * will want to acquire it. */
877 	mutex_unlock(&us->dev_mutex);
878 	result = usb_stor_port_reset(us);
879 	mutex_lock(&us->dev_mutex);
880 
881 	if (result < 0) {
882 		scsi_lock(us_to_host(us));
883 		usb_stor_report_device_reset(us);
884 		scsi_unlock(us_to_host(us));
885 		us->transport_reset(us);
886 	}
887 	clear_bit(US_FLIDX_RESETTING, &us->dflags);
888 	last_sector_hacks(us, srb);
889 }
890 
891 /* Stop the current URB transfer */
892 void usb_stor_stop_transport(struct us_data *us)
893 {
894 	/* If the state machine is blocked waiting for an URB,
895 	 * let's wake it up.  The test_and_clear_bit() call
896 	 * guarantees that if a URB has just been submitted,
897 	 * it won't be cancelled more than once. */
898 	if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
899 		usb_stor_dbg(us, "-- cancelling URB\n");
900 		usb_unlink_urb(us->current_urb);
901 	}
902 
903 	/* If we are waiting for a scatter-gather operation, cancel it. */
904 	if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
905 		usb_stor_dbg(us, "-- cancelling sg request\n");
906 		usb_sg_cancel(&us->current_sg);
907 	}
908 }
909 
910 /*
911  * Control/Bulk and Control/Bulk/Interrupt transport
912  */
913 
914 int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us)
915 {
916 	unsigned int transfer_length = scsi_bufflen(srb);
917 	unsigned int pipe = 0;
918 	int result;
919 
920 	/* COMMAND STAGE */
921 	/* let's send the command via the control pipe */
922 	result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
923 				      US_CBI_ADSC,
924 				      USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0,
925 				      us->ifnum, srb->cmnd, srb->cmd_len);
926 
927 	/* check the return code for the command */
928 	usb_stor_dbg(us, "Call to usb_stor_ctrl_transfer() returned %d\n",
929 		     result);
930 
931 	/* if we stalled the command, it means command failed */
932 	if (result == USB_STOR_XFER_STALLED) {
933 		return USB_STOR_TRANSPORT_FAILED;
934 	}
935 
936 	/* Uh oh... serious problem here */
937 	if (result != USB_STOR_XFER_GOOD) {
938 		return USB_STOR_TRANSPORT_ERROR;
939 	}
940 
941 	/* DATA STAGE */
942 	/* transfer the data payload for this command, if one exists*/
943 	if (transfer_length) {
944 		pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
945 				us->recv_bulk_pipe : us->send_bulk_pipe;
946 		result = usb_stor_bulk_srb(us, pipe, srb);
947 		usb_stor_dbg(us, "CBI data stage result is 0x%x\n", result);
948 
949 		/* if we stalled the data transfer it means command failed */
950 		if (result == USB_STOR_XFER_STALLED)
951 			return USB_STOR_TRANSPORT_FAILED;
952 		if (result > USB_STOR_XFER_STALLED)
953 			return USB_STOR_TRANSPORT_ERROR;
954 	}
955 
956 	/* STATUS STAGE */
957 
958 	/* NOTE: CB does not have a status stage.  Silly, I know.  So
959 	 * we have to catch this at a higher level.
960 	 */
961 	if (us->protocol != USB_PR_CBI)
962 		return USB_STOR_TRANSPORT_GOOD;
963 
964 	result = usb_stor_intr_transfer(us, us->iobuf, 2);
965 	usb_stor_dbg(us, "Got interrupt data (0x%x, 0x%x)\n",
966 		     us->iobuf[0], us->iobuf[1]);
967 	if (result != USB_STOR_XFER_GOOD)
968 		return USB_STOR_TRANSPORT_ERROR;
969 
970 	/* UFI gives us ASC and ASCQ, like a request sense
971 	 *
972 	 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
973 	 * devices, so we ignore the information for those commands.  Note
974 	 * that this means we could be ignoring a real error on these
975 	 * commands, but that can't be helped.
976 	 */
977 	if (us->subclass == USB_SC_UFI) {
978 		if (srb->cmnd[0] == REQUEST_SENSE ||
979 		    srb->cmnd[0] == INQUIRY)
980 			return USB_STOR_TRANSPORT_GOOD;
981 		if (us->iobuf[0])
982 			goto Failed;
983 		return USB_STOR_TRANSPORT_GOOD;
984 	}
985 
986 	/* If not UFI, we interpret the data as a result code
987 	 * The first byte should always be a 0x0.
988 	 *
989 	 * Some bogus devices don't follow that rule.  They stuff the ASC
990 	 * into the first byte -- so if it's non-zero, call it a failure.
991 	 */
992 	if (us->iobuf[0]) {
993 		usb_stor_dbg(us, "CBI IRQ data showed reserved bType 0x%x\n",
994 			     us->iobuf[0]);
995 		goto Failed;
996 
997 	}
998 
999 	/* The second byte & 0x0F should be 0x0 for good, otherwise error */
1000 	switch (us->iobuf[1] & 0x0F) {
1001 		case 0x00:
1002 			return USB_STOR_TRANSPORT_GOOD;
1003 		case 0x01:
1004 			goto Failed;
1005 	}
1006 	return USB_STOR_TRANSPORT_ERROR;
1007 
1008 	/* the CBI spec requires that the bulk pipe must be cleared
1009 	 * following any data-in/out command failure (section 2.4.3.1.3)
1010 	 */
1011   Failed:
1012 	if (pipe)
1013 		usb_stor_clear_halt(us, pipe);
1014 	return USB_STOR_TRANSPORT_FAILED;
1015 }
1016 EXPORT_SYMBOL_GPL(usb_stor_CB_transport);
1017 
1018 /*
1019  * Bulk only transport
1020  */
1021 
1022 /* Determine what the maximum LUN supported is */
1023 int usb_stor_Bulk_max_lun(struct us_data *us)
1024 {
1025 	int result;
1026 
1027 	/* issue the command */
1028 	us->iobuf[0] = 0;
1029 	result = usb_stor_control_msg(us, us->recv_ctrl_pipe,
1030 				 US_BULK_GET_MAX_LUN,
1031 				 USB_DIR_IN | USB_TYPE_CLASS |
1032 				 USB_RECIP_INTERFACE,
1033 				 0, us->ifnum, us->iobuf, 1, 10*HZ);
1034 
1035 	usb_stor_dbg(us, "GetMaxLUN command result is %d, data is %d\n",
1036 		     result, us->iobuf[0]);
1037 
1038 	/*
1039 	 * If we have a successful request, return the result if valid. The
1040 	 * CBW LUN field is 4 bits wide, so the value reported by the device
1041 	 * should fit into that.
1042 	 */
1043 	if (result > 0) {
1044 		if (us->iobuf[0] < 16) {
1045 			return us->iobuf[0];
1046 		} else {
1047 			dev_info(&us->pusb_intf->dev,
1048 				 "Max LUN %d is not valid, using 0 instead",
1049 				 us->iobuf[0]);
1050 		}
1051 	}
1052 
1053 	/*
1054 	 * Some devices don't like GetMaxLUN.  They may STALL the control
1055 	 * pipe, they may return a zero-length result, they may do nothing at
1056 	 * all and timeout, or they may fail in even more bizarrely creative
1057 	 * ways.  In these cases the best approach is to use the default
1058 	 * value: only one LUN.
1059 	 */
1060 	return 0;
1061 }
1062 
1063 int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us)
1064 {
1065 	struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf;
1066 	struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf;
1067 	unsigned int transfer_length = scsi_bufflen(srb);
1068 	unsigned int residue;
1069 	int result;
1070 	int fake_sense = 0;
1071 	unsigned int cswlen;
1072 	unsigned int cbwlen = US_BULK_CB_WRAP_LEN;
1073 
1074 	/* Take care of BULK32 devices; set extra byte to 0 */
1075 	if (unlikely(us->fflags & US_FL_BULK32)) {
1076 		cbwlen = 32;
1077 		us->iobuf[31] = 0;
1078 	}
1079 
1080 	/* set up the command wrapper */
1081 	bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
1082 	bcb->DataTransferLength = cpu_to_le32(transfer_length);
1083 	bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ?
1084 		US_BULK_FLAG_IN : 0;
1085 	bcb->Tag = ++us->tag;
1086 	bcb->Lun = srb->device->lun;
1087 	if (us->fflags & US_FL_SCM_MULT_TARG)
1088 		bcb->Lun |= srb->device->id << 4;
1089 	bcb->Length = srb->cmd_len;
1090 
1091 	/* copy the command payload */
1092 	memset(bcb->CDB, 0, sizeof(bcb->CDB));
1093 	memcpy(bcb->CDB, srb->cmnd, bcb->Length);
1094 
1095 	/* send it to out endpoint */
1096 	usb_stor_dbg(us, "Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
1097 		     le32_to_cpu(bcb->Signature), bcb->Tag,
1098 		     le32_to_cpu(bcb->DataTransferLength), bcb->Flags,
1099 		     (bcb->Lun >> 4), (bcb->Lun & 0x0F),
1100 		     bcb->Length);
1101 	result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
1102 				bcb, cbwlen, NULL);
1103 	usb_stor_dbg(us, "Bulk command transfer result=%d\n", result);
1104 	if (result != USB_STOR_XFER_GOOD)
1105 		return USB_STOR_TRANSPORT_ERROR;
1106 
1107 	/* DATA STAGE */
1108 	/* send/receive data payload, if there is any */
1109 
1110 	/* Some USB-IDE converter chips need a 100us delay between the
1111 	 * command phase and the data phase.  Some devices need a little
1112 	 * more than that, probably because of clock rate inaccuracies. */
1113 	if (unlikely(us->fflags & US_FL_GO_SLOW))
1114 		usleep_range(125, 150);
1115 
1116 	if (transfer_length) {
1117 		unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
1118 				us->recv_bulk_pipe : us->send_bulk_pipe;
1119 		result = usb_stor_bulk_srb(us, pipe, srb);
1120 		usb_stor_dbg(us, "Bulk data transfer result 0x%x\n", result);
1121 		if (result == USB_STOR_XFER_ERROR)
1122 			return USB_STOR_TRANSPORT_ERROR;
1123 
1124 		/* If the device tried to send back more data than the
1125 		 * amount requested, the spec requires us to transfer
1126 		 * the CSW anyway.  Since there's no point retrying the
1127 		 * the command, we'll return fake sense data indicating
1128 		 * Illegal Request, Invalid Field in CDB.
1129 		 */
1130 		if (result == USB_STOR_XFER_LONG)
1131 			fake_sense = 1;
1132 
1133 		/*
1134 		 * Sometimes a device will mistakenly skip the data phase
1135 		 * and go directly to the status phase without sending a
1136 		 * zero-length packet.  If we get a 13-byte response here,
1137 		 * check whether it really is a CSW.
1138 		 */
1139 		if (result == USB_STOR_XFER_SHORT &&
1140 				srb->sc_data_direction == DMA_FROM_DEVICE &&
1141 				transfer_length - scsi_get_resid(srb) ==
1142 					US_BULK_CS_WRAP_LEN) {
1143 			struct scatterlist *sg = NULL;
1144 			unsigned int offset = 0;
1145 
1146 			if (usb_stor_access_xfer_buf((unsigned char *) bcs,
1147 					US_BULK_CS_WRAP_LEN, srb, &sg,
1148 					&offset, FROM_XFER_BUF) ==
1149 						US_BULK_CS_WRAP_LEN &&
1150 					bcs->Signature ==
1151 						cpu_to_le32(US_BULK_CS_SIGN)) {
1152 				usb_stor_dbg(us, "Device skipped data phase\n");
1153 				scsi_set_resid(srb, transfer_length);
1154 				goto skipped_data_phase;
1155 			}
1156 		}
1157 	}
1158 
1159 	/* See flow chart on pg 15 of the Bulk Only Transport spec for
1160 	 * an explanation of how this code works.
1161 	 */
1162 
1163 	/* get CSW for device status */
1164 	usb_stor_dbg(us, "Attempting to get CSW...\n");
1165 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1166 				bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1167 
1168 	/* Some broken devices add unnecessary zero-length packets to the
1169 	 * end of their data transfers.  Such packets show up as 0-length
1170 	 * CSWs.  If we encounter such a thing, try to read the CSW again.
1171 	 */
1172 	if (result == USB_STOR_XFER_SHORT && cswlen == 0) {
1173 		usb_stor_dbg(us, "Received 0-length CSW; retrying...\n");
1174 		result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1175 				bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1176 	}
1177 
1178 	/* did the attempt to read the CSW fail? */
1179 	if (result == USB_STOR_XFER_STALLED) {
1180 
1181 		/* get the status again */
1182 		usb_stor_dbg(us, "Attempting to get CSW (2nd try)...\n");
1183 		result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1184 				bcs, US_BULK_CS_WRAP_LEN, NULL);
1185 	}
1186 
1187 	/* if we still have a failure at this point, we're in trouble */
1188 	usb_stor_dbg(us, "Bulk status result = %d\n", result);
1189 	if (result != USB_STOR_XFER_GOOD)
1190 		return USB_STOR_TRANSPORT_ERROR;
1191 
1192  skipped_data_phase:
1193 	/* check bulk status */
1194 	residue = le32_to_cpu(bcs->Residue);
1195 	usb_stor_dbg(us, "Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
1196 		     le32_to_cpu(bcs->Signature), bcs->Tag,
1197 		     residue, bcs->Status);
1198 	if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) ||
1199 		bcs->Status > US_BULK_STAT_PHASE) {
1200 		usb_stor_dbg(us, "Bulk logical error\n");
1201 		return USB_STOR_TRANSPORT_ERROR;
1202 	}
1203 
1204 	/* Some broken devices report odd signatures, so we do not check them
1205 	 * for validity against the spec. We store the first one we see,
1206 	 * and check subsequent transfers for validity against this signature.
1207 	 */
1208 	if (!us->bcs_signature) {
1209 		us->bcs_signature = bcs->Signature;
1210 		if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN))
1211 			usb_stor_dbg(us, "Learnt BCS signature 0x%08X\n",
1212 				     le32_to_cpu(us->bcs_signature));
1213 	} else if (bcs->Signature != us->bcs_signature) {
1214 		usb_stor_dbg(us, "Signature mismatch: got %08X, expecting %08X\n",
1215 			     le32_to_cpu(bcs->Signature),
1216 			     le32_to_cpu(us->bcs_signature));
1217 		return USB_STOR_TRANSPORT_ERROR;
1218 	}
1219 
1220 	/* try to compute the actual residue, based on how much data
1221 	 * was really transferred and what the device tells us */
1222 	if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) {
1223 
1224 		/* Heuristically detect devices that generate bogus residues
1225 		 * by seeing what happens with INQUIRY and READ CAPACITY
1226 		 * commands.
1227 		 */
1228 		if (bcs->Status == US_BULK_STAT_OK &&
1229 				scsi_get_resid(srb) == 0 &&
1230 					((srb->cmnd[0] == INQUIRY &&
1231 						transfer_length == 36) ||
1232 					(srb->cmnd[0] == READ_CAPACITY &&
1233 						transfer_length == 8))) {
1234 			us->fflags |= US_FL_IGNORE_RESIDUE;
1235 
1236 		} else {
1237 			residue = min(residue, transfer_length);
1238 			scsi_set_resid(srb, max(scsi_get_resid(srb),
1239 			                                       (int) residue));
1240 		}
1241 	}
1242 
1243 	/* based on the status code, we report good or bad */
1244 	switch (bcs->Status) {
1245 		case US_BULK_STAT_OK:
1246 			/* device babbled -- return fake sense data */
1247 			if (fake_sense) {
1248 				memcpy(srb->sense_buffer,
1249 				       usb_stor_sense_invalidCDB,
1250 				       sizeof(usb_stor_sense_invalidCDB));
1251 				return USB_STOR_TRANSPORT_NO_SENSE;
1252 			}
1253 
1254 			/* command good -- note that data could be short */
1255 			return USB_STOR_TRANSPORT_GOOD;
1256 
1257 		case US_BULK_STAT_FAIL:
1258 			/* command failed */
1259 			return USB_STOR_TRANSPORT_FAILED;
1260 
1261 		case US_BULK_STAT_PHASE:
1262 			/* phase error -- note that a transport reset will be
1263 			 * invoked by the invoke_transport() function
1264 			 */
1265 			return USB_STOR_TRANSPORT_ERROR;
1266 	}
1267 
1268 	/* we should never get here, but if we do, we're in trouble */
1269 	return USB_STOR_TRANSPORT_ERROR;
1270 }
1271 EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport);
1272 
1273 /***********************************************************************
1274  * Reset routines
1275  ***********************************************************************/
1276 
1277 /* This is the common part of the device reset code.
1278  *
1279  * It's handy that every transport mechanism uses the control endpoint for
1280  * resets.
1281  *
1282  * Basically, we send a reset with a 5-second timeout, so we don't get
1283  * jammed attempting to do the reset.
1284  */
1285 static int usb_stor_reset_common(struct us_data *us,
1286 		u8 request, u8 requesttype,
1287 		u16 value, u16 index, void *data, u16 size)
1288 {
1289 	int result;
1290 	int result2;
1291 
1292 	if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1293 		usb_stor_dbg(us, "No reset during disconnect\n");
1294 		return -EIO;
1295 	}
1296 
1297 	result = usb_stor_control_msg(us, us->send_ctrl_pipe,
1298 			request, requesttype, value, index, data, size,
1299 			5*HZ);
1300 	if (result < 0) {
1301 		usb_stor_dbg(us, "Soft reset failed: %d\n", result);
1302 		return result;
1303 	}
1304 
1305 	/* Give the device some time to recover from the reset,
1306 	 * but don't delay disconnect processing. */
1307 	wait_event_interruptible_timeout(us->delay_wait,
1308 			test_bit(US_FLIDX_DISCONNECTING, &us->dflags),
1309 			HZ*6);
1310 	if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1311 		usb_stor_dbg(us, "Reset interrupted by disconnect\n");
1312 		return -EIO;
1313 	}
1314 
1315 	usb_stor_dbg(us, "Soft reset: clearing bulk-in endpoint halt\n");
1316 	result = usb_stor_clear_halt(us, us->recv_bulk_pipe);
1317 
1318 	usb_stor_dbg(us, "Soft reset: clearing bulk-out endpoint halt\n");
1319 	result2 = usb_stor_clear_halt(us, us->send_bulk_pipe);
1320 
1321 	/* return a result code based on the result of the clear-halts */
1322 	if (result >= 0)
1323 		result = result2;
1324 	if (result < 0)
1325 		usb_stor_dbg(us, "Soft reset failed\n");
1326 	else
1327 		usb_stor_dbg(us, "Soft reset done\n");
1328 	return result;
1329 }
1330 
1331 /* This issues a CB[I] Reset to the device in question
1332  */
1333 #define CB_RESET_CMD_SIZE	12
1334 
1335 int usb_stor_CB_reset(struct us_data *us)
1336 {
1337 	memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE);
1338 	us->iobuf[0] = SEND_DIAGNOSTIC;
1339 	us->iobuf[1] = 4;
1340 	return usb_stor_reset_common(us, US_CBI_ADSC,
1341 				 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1342 				 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE);
1343 }
1344 EXPORT_SYMBOL_GPL(usb_stor_CB_reset);
1345 
1346 /* This issues a Bulk-only Reset to the device in question, including
1347  * clearing the subsequent endpoint halts that may occur.
1348  */
1349 int usb_stor_Bulk_reset(struct us_data *us)
1350 {
1351 	return usb_stor_reset_common(us, US_BULK_RESET_REQUEST,
1352 				 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1353 				 0, us->ifnum, NULL, 0);
1354 }
1355 EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset);
1356 
1357 /* Issue a USB port reset to the device.  The caller must not hold
1358  * us->dev_mutex.
1359  */
1360 int usb_stor_port_reset(struct us_data *us)
1361 {
1362 	int result;
1363 
1364 	/*for these devices we must use the class specific method */
1365 	if (us->pusb_dev->quirks & USB_QUIRK_RESET)
1366 		return -EPERM;
1367 
1368 	result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf);
1369 	if (result < 0)
1370 		usb_stor_dbg(us, "unable to lock device for reset: %d\n",
1371 			     result);
1372 	else {
1373 		/* Were we disconnected while waiting for the lock? */
1374 		if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1375 			result = -EIO;
1376 			usb_stor_dbg(us, "No reset during disconnect\n");
1377 		} else {
1378 			result = usb_reset_device(us->pusb_dev);
1379 			usb_stor_dbg(us, "usb_reset_device returns %d\n",
1380 				     result);
1381 		}
1382 		usb_unlock_device(us->pusb_dev);
1383 	}
1384 	return result;
1385 }
1386