1 /* Driver for USB Mass Storage compliant devices 2 * 3 * Current development and maintenance by: 4 * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net) 5 * 6 * Developed with the assistance of: 7 * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org) 8 * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov) 9 * (c) 2002 Alan Stern <stern@rowland.org> 10 * 11 * Initial work by: 12 * (c) 1999 Michael Gee (michael@linuxspecific.com) 13 * 14 * This driver is based on the 'USB Mass Storage Class' document. This 15 * describes in detail the protocol used to communicate with such 16 * devices. Clearly, the designers had SCSI and ATAPI commands in 17 * mind when they created this document. The commands are all very 18 * similar to commands in the SCSI-II and ATAPI specifications. 19 * 20 * It is important to note that in a number of cases this class 21 * exhibits class-specific exemptions from the USB specification. 22 * Notably the usage of NAK, STALL and ACK differs from the norm, in 23 * that they are used to communicate wait, failed and OK on commands. 24 * 25 * Also, for certain devices, the interrupt endpoint is used to convey 26 * status of a command. 27 * 28 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more 29 * information about this driver. 30 * 31 * This program is free software; you can redistribute it and/or modify it 32 * under the terms of the GNU General Public License as published by the 33 * Free Software Foundation; either version 2, or (at your option) any 34 * later version. 35 * 36 * This program is distributed in the hope that it will be useful, but 37 * WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 39 * General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, write to the Free Software Foundation, Inc., 43 * 675 Mass Ave, Cambridge, MA 02139, USA. 44 */ 45 46 #include <linux/sched.h> 47 #include <linux/gfp.h> 48 #include <linux/errno.h> 49 #include <linux/export.h> 50 51 #include <linux/usb/quirks.h> 52 53 #include <scsi/scsi.h> 54 #include <scsi/scsi_eh.h> 55 #include <scsi/scsi_device.h> 56 57 #include "usb.h" 58 #include "transport.h" 59 #include "protocol.h" 60 #include "scsiglue.h" 61 #include "debug.h" 62 63 #include <linux/blkdev.h> 64 #include "../../scsi/sd.h" 65 66 67 /*********************************************************************** 68 * Data transfer routines 69 ***********************************************************************/ 70 71 /* 72 * This is subtle, so pay attention: 73 * --------------------------------- 74 * We're very concerned about races with a command abort. Hanging this code 75 * is a sure fire way to hang the kernel. (Note that this discussion applies 76 * only to transactions resulting from a scsi queued-command, since only 77 * these transactions are subject to a scsi abort. Other transactions, such 78 * as those occurring during device-specific initialization, must be handled 79 * by a separate code path.) 80 * 81 * The abort function (usb_storage_command_abort() in scsiglue.c) first 82 * sets the machine state and the ABORTING bit in us->dflags to prevent 83 * new URBs from being submitted. It then calls usb_stor_stop_transport() 84 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags 85 * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE 86 * bit is tested to see if the current_sg scatter-gather request needs to be 87 * stopped. The timeout callback routine does much the same thing. 88 * 89 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to 90 * prevent new URBs from being submitted, and usb_stor_stop_transport() is 91 * called to stop any ongoing requests. 92 * 93 * The submit function first verifies that the submitting is allowed 94 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit 95 * completes without errors, and only then sets the URB_ACTIVE bit. This 96 * prevents the stop_transport() function from trying to cancel the URB 97 * while the submit call is underway. Next, the submit function must test 98 * the flags to see if an abort or disconnect occurred during the submission 99 * or before the URB_ACTIVE bit was set. If so, it's essential to cancel 100 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit 101 * is still set). Either way, the function must then wait for the URB to 102 * finish. Note that the URB can still be in progress even after a call to 103 * usb_unlink_urb() returns. 104 * 105 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set, 106 * either the stop_transport() function or the submitting function 107 * is guaranteed to call usb_unlink_urb() for an active URB, 108 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being 109 * called more than once or from being called during usb_submit_urb(). 110 */ 111 112 /* This is the completion handler which will wake us up when an URB 113 * completes. 114 */ 115 static void usb_stor_blocking_completion(struct urb *urb) 116 { 117 struct completion *urb_done_ptr = urb->context; 118 119 complete(urb_done_ptr); 120 } 121 122 /* This is the common part of the URB message submission code 123 * 124 * All URBs from the usb-storage driver involved in handling a queued scsi 125 * command _must_ pass through this function (or something like it) for the 126 * abort mechanisms to work properly. 127 */ 128 static int usb_stor_msg_common(struct us_data *us, int timeout) 129 { 130 struct completion urb_done; 131 long timeleft; 132 int status; 133 134 /* don't submit URBs during abort processing */ 135 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) 136 return -EIO; 137 138 /* set up data structures for the wakeup system */ 139 init_completion(&urb_done); 140 141 /* fill the common fields in the URB */ 142 us->current_urb->context = &urb_done; 143 us->current_urb->transfer_flags = 0; 144 145 /* we assume that if transfer_buffer isn't us->iobuf then it 146 * hasn't been mapped for DMA. Yes, this is clunky, but it's 147 * easier than always having the caller tell us whether the 148 * transfer buffer has already been mapped. */ 149 if (us->current_urb->transfer_buffer == us->iobuf) 150 us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 151 us->current_urb->transfer_dma = us->iobuf_dma; 152 153 /* submit the URB */ 154 status = usb_submit_urb(us->current_urb, GFP_NOIO); 155 if (status) { 156 /* something went wrong */ 157 return status; 158 } 159 160 /* since the URB has been submitted successfully, it's now okay 161 * to cancel it */ 162 set_bit(US_FLIDX_URB_ACTIVE, &us->dflags); 163 164 /* did an abort occur during the submission? */ 165 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { 166 167 /* cancel the URB, if it hasn't been cancelled already */ 168 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { 169 US_DEBUGP("-- cancelling URB\n"); 170 usb_unlink_urb(us->current_urb); 171 } 172 } 173 174 /* wait for the completion of the URB */ 175 timeleft = wait_for_completion_interruptible_timeout( 176 &urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT); 177 178 clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags); 179 180 if (timeleft <= 0) { 181 US_DEBUGP("%s -- cancelling URB\n", 182 timeleft == 0 ? "Timeout" : "Signal"); 183 usb_kill_urb(us->current_urb); 184 } 185 186 /* return the URB status */ 187 return us->current_urb->status; 188 } 189 190 /* 191 * Transfer one control message, with timeouts, and allowing early 192 * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx. 193 */ 194 int usb_stor_control_msg(struct us_data *us, unsigned int pipe, 195 u8 request, u8 requesttype, u16 value, u16 index, 196 void *data, u16 size, int timeout) 197 { 198 int status; 199 200 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", 201 __func__, request, requesttype, 202 value, index, size); 203 204 /* fill in the devrequest structure */ 205 us->cr->bRequestType = requesttype; 206 us->cr->bRequest = request; 207 us->cr->wValue = cpu_to_le16(value); 208 us->cr->wIndex = cpu_to_le16(index); 209 us->cr->wLength = cpu_to_le16(size); 210 211 /* fill and submit the URB */ 212 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 213 (unsigned char*) us->cr, data, size, 214 usb_stor_blocking_completion, NULL); 215 status = usb_stor_msg_common(us, timeout); 216 217 /* return the actual length of the data transferred if no error */ 218 if (status == 0) 219 status = us->current_urb->actual_length; 220 return status; 221 } 222 EXPORT_SYMBOL_GPL(usb_stor_control_msg); 223 224 /* This is a version of usb_clear_halt() that allows early termination and 225 * doesn't read the status from the device -- this is because some devices 226 * crash their internal firmware when the status is requested after a halt. 227 * 228 * A definitive list of these 'bad' devices is too difficult to maintain or 229 * make complete enough to be useful. This problem was first observed on the 230 * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither 231 * MacOS nor Windows checks the status after clearing a halt. 232 * 233 * Since many vendors in this space limit their testing to interoperability 234 * with these two OSes, specification violations like this one are common. 235 */ 236 int usb_stor_clear_halt(struct us_data *us, unsigned int pipe) 237 { 238 int result; 239 int endp = usb_pipeendpoint(pipe); 240 241 if (usb_pipein (pipe)) 242 endp |= USB_DIR_IN; 243 244 result = usb_stor_control_msg(us, us->send_ctrl_pipe, 245 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 246 USB_ENDPOINT_HALT, endp, 247 NULL, 0, 3*HZ); 248 249 if (result >= 0) 250 usb_reset_endpoint(us->pusb_dev, endp); 251 252 US_DEBUGP("%s: result = %d\n", __func__, result); 253 return result; 254 } 255 EXPORT_SYMBOL_GPL(usb_stor_clear_halt); 256 257 258 /* 259 * Interpret the results of a URB transfer 260 * 261 * This function prints appropriate debugging messages, clears halts on 262 * non-control endpoints, and translates the status to the corresponding 263 * USB_STOR_XFER_xxx return code. 264 */ 265 static int interpret_urb_result(struct us_data *us, unsigned int pipe, 266 unsigned int length, int result, unsigned int partial) 267 { 268 US_DEBUGP("Status code %d; transferred %u/%u\n", 269 result, partial, length); 270 switch (result) { 271 272 /* no error code; did we send all the data? */ 273 case 0: 274 if (partial != length) { 275 US_DEBUGP("-- short transfer\n"); 276 return USB_STOR_XFER_SHORT; 277 } 278 279 US_DEBUGP("-- transfer complete\n"); 280 return USB_STOR_XFER_GOOD; 281 282 /* stalled */ 283 case -EPIPE: 284 /* for control endpoints, (used by CB[I]) a stall indicates 285 * a failed command */ 286 if (usb_pipecontrol(pipe)) { 287 US_DEBUGP("-- stall on control pipe\n"); 288 return USB_STOR_XFER_STALLED; 289 } 290 291 /* for other sorts of endpoint, clear the stall */ 292 US_DEBUGP("clearing endpoint halt for pipe 0x%x\n", pipe); 293 if (usb_stor_clear_halt(us, pipe) < 0) 294 return USB_STOR_XFER_ERROR; 295 return USB_STOR_XFER_STALLED; 296 297 /* babble - the device tried to send more than we wanted to read */ 298 case -EOVERFLOW: 299 US_DEBUGP("-- babble\n"); 300 return USB_STOR_XFER_LONG; 301 302 /* the transfer was cancelled by abort, disconnect, or timeout */ 303 case -ECONNRESET: 304 US_DEBUGP("-- transfer cancelled\n"); 305 return USB_STOR_XFER_ERROR; 306 307 /* short scatter-gather read transfer */ 308 case -EREMOTEIO: 309 US_DEBUGP("-- short read transfer\n"); 310 return USB_STOR_XFER_SHORT; 311 312 /* abort or disconnect in progress */ 313 case -EIO: 314 US_DEBUGP("-- abort or disconnect in progress\n"); 315 return USB_STOR_XFER_ERROR; 316 317 /* the catch-all error case */ 318 default: 319 US_DEBUGP("-- unknown error\n"); 320 return USB_STOR_XFER_ERROR; 321 } 322 } 323 324 /* 325 * Transfer one control message, without timeouts, but allowing early 326 * termination. Return codes are USB_STOR_XFER_xxx. 327 */ 328 int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe, 329 u8 request, u8 requesttype, u16 value, u16 index, 330 void *data, u16 size) 331 { 332 int result; 333 334 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", 335 __func__, request, requesttype, 336 value, index, size); 337 338 /* fill in the devrequest structure */ 339 us->cr->bRequestType = requesttype; 340 us->cr->bRequest = request; 341 us->cr->wValue = cpu_to_le16(value); 342 us->cr->wIndex = cpu_to_le16(index); 343 us->cr->wLength = cpu_to_le16(size); 344 345 /* fill and submit the URB */ 346 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 347 (unsigned char*) us->cr, data, size, 348 usb_stor_blocking_completion, NULL); 349 result = usb_stor_msg_common(us, 0); 350 351 return interpret_urb_result(us, pipe, size, result, 352 us->current_urb->actual_length); 353 } 354 EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer); 355 356 /* 357 * Receive one interrupt buffer, without timeouts, but allowing early 358 * termination. Return codes are USB_STOR_XFER_xxx. 359 * 360 * This routine always uses us->recv_intr_pipe as the pipe and 361 * us->ep_bInterval as the interrupt interval. 362 */ 363 static int usb_stor_intr_transfer(struct us_data *us, void *buf, 364 unsigned int length) 365 { 366 int result; 367 unsigned int pipe = us->recv_intr_pipe; 368 unsigned int maxp; 369 370 US_DEBUGP("%s: xfer %u bytes\n", __func__, length); 371 372 /* calculate the max packet size */ 373 maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe)); 374 if (maxp > length) 375 maxp = length; 376 377 /* fill and submit the URB */ 378 usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf, 379 maxp, usb_stor_blocking_completion, NULL, 380 us->ep_bInterval); 381 result = usb_stor_msg_common(us, 0); 382 383 return interpret_urb_result(us, pipe, length, result, 384 us->current_urb->actual_length); 385 } 386 387 /* 388 * Transfer one buffer via bulk pipe, without timeouts, but allowing early 389 * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe 390 * stalls during the transfer, the halt is automatically cleared. 391 */ 392 int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe, 393 void *buf, unsigned int length, unsigned int *act_len) 394 { 395 int result; 396 397 US_DEBUGP("%s: xfer %u bytes\n", __func__, length); 398 399 /* fill and submit the URB */ 400 usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length, 401 usb_stor_blocking_completion, NULL); 402 result = usb_stor_msg_common(us, 0); 403 404 /* store the actual length of the data transferred */ 405 if (act_len) 406 *act_len = us->current_urb->actual_length; 407 return interpret_urb_result(us, pipe, length, result, 408 us->current_urb->actual_length); 409 } 410 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf); 411 412 /* 413 * Transfer a scatter-gather list via bulk transfer 414 * 415 * This function does basically the same thing as usb_stor_bulk_transfer_buf() 416 * above, but it uses the usbcore scatter-gather library. 417 */ 418 static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe, 419 struct scatterlist *sg, int num_sg, unsigned int length, 420 unsigned int *act_len) 421 { 422 int result; 423 424 /* don't submit s-g requests during abort processing */ 425 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) 426 return USB_STOR_XFER_ERROR; 427 428 /* initialize the scatter-gather request block */ 429 US_DEBUGP("%s: xfer %u bytes, %d entries\n", __func__, 430 length, num_sg); 431 result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0, 432 sg, num_sg, length, GFP_NOIO); 433 if (result) { 434 US_DEBUGP("usb_sg_init returned %d\n", result); 435 return USB_STOR_XFER_ERROR; 436 } 437 438 /* since the block has been initialized successfully, it's now 439 * okay to cancel it */ 440 set_bit(US_FLIDX_SG_ACTIVE, &us->dflags); 441 442 /* did an abort occur during the submission? */ 443 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { 444 445 /* cancel the request, if it hasn't been cancelled already */ 446 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { 447 US_DEBUGP("-- cancelling sg request\n"); 448 usb_sg_cancel(&us->current_sg); 449 } 450 } 451 452 /* wait for the completion of the transfer */ 453 usb_sg_wait(&us->current_sg); 454 clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags); 455 456 result = us->current_sg.status; 457 if (act_len) 458 *act_len = us->current_sg.bytes; 459 return interpret_urb_result(us, pipe, length, result, 460 us->current_sg.bytes); 461 } 462 463 /* 464 * Common used function. Transfer a complete command 465 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid 466 */ 467 int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe, 468 struct scsi_cmnd* srb) 469 { 470 unsigned int partial; 471 int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb), 472 scsi_sg_count(srb), scsi_bufflen(srb), 473 &partial); 474 475 scsi_set_resid(srb, scsi_bufflen(srb) - partial); 476 return result; 477 } 478 EXPORT_SYMBOL_GPL(usb_stor_bulk_srb); 479 480 /* 481 * Transfer an entire SCSI command's worth of data payload over the bulk 482 * pipe. 483 * 484 * Note that this uses usb_stor_bulk_transfer_buf() and 485 * usb_stor_bulk_transfer_sglist() to achieve its goals -- 486 * this function simply determines whether we're going to use 487 * scatter-gather or not, and acts appropriately. 488 */ 489 int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe, 490 void *buf, unsigned int length_left, int use_sg, int *residual) 491 { 492 int result; 493 unsigned int partial; 494 495 /* are we scatter-gathering? */ 496 if (use_sg) { 497 /* use the usb core scatter-gather primitives */ 498 result = usb_stor_bulk_transfer_sglist(us, pipe, 499 (struct scatterlist *) buf, use_sg, 500 length_left, &partial); 501 length_left -= partial; 502 } else { 503 /* no scatter-gather, just make the request */ 504 result = usb_stor_bulk_transfer_buf(us, pipe, buf, 505 length_left, &partial); 506 length_left -= partial; 507 } 508 509 /* store the residual and return the error code */ 510 if (residual) 511 *residual = length_left; 512 return result; 513 } 514 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg); 515 516 /*********************************************************************** 517 * Transport routines 518 ***********************************************************************/ 519 520 /* There are so many devices that report the capacity incorrectly, 521 * this routine was written to counteract some of the resulting 522 * problems. 523 */ 524 static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb) 525 { 526 struct gendisk *disk; 527 struct scsi_disk *sdkp; 528 u32 sector; 529 530 /* To Report "Medium Error: Record Not Found */ 531 static unsigned char record_not_found[18] = { 532 [0] = 0x70, /* current error */ 533 [2] = MEDIUM_ERROR, /* = 0x03 */ 534 [7] = 0x0a, /* additional length */ 535 [12] = 0x14 /* Record Not Found */ 536 }; 537 538 /* If last-sector problems can't occur, whether because the 539 * capacity was already decremented or because the device is 540 * known to report the correct capacity, then we don't need 541 * to do anything. 542 */ 543 if (!us->use_last_sector_hacks) 544 return; 545 546 /* Was this command a READ(10) or a WRITE(10)? */ 547 if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10) 548 goto done; 549 550 /* Did this command access the last sector? */ 551 sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) | 552 (srb->cmnd[4] << 8) | (srb->cmnd[5]); 553 disk = srb->request->rq_disk; 554 if (!disk) 555 goto done; 556 sdkp = scsi_disk(disk); 557 if (!sdkp) 558 goto done; 559 if (sector + 1 != sdkp->capacity) 560 goto done; 561 562 if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) { 563 564 /* The command succeeded. We know this device doesn't 565 * have the last-sector bug, so stop checking it. 566 */ 567 us->use_last_sector_hacks = 0; 568 569 } else { 570 /* The command failed. Allow up to 3 retries in case this 571 * is some normal sort of failure. After that, assume the 572 * capacity is wrong and we're trying to access the sector 573 * beyond the end. Replace the result code and sense data 574 * with values that will cause the SCSI core to fail the 575 * command immediately, instead of going into an infinite 576 * (or even just a very long) retry loop. 577 */ 578 if (++us->last_sector_retries < 3) 579 return; 580 srb->result = SAM_STAT_CHECK_CONDITION; 581 memcpy(srb->sense_buffer, record_not_found, 582 sizeof(record_not_found)); 583 } 584 585 done: 586 /* Don't reset the retry counter for TEST UNIT READY commands, 587 * because they get issued after device resets which might be 588 * caused by a failed last-sector access. 589 */ 590 if (srb->cmnd[0] != TEST_UNIT_READY) 591 us->last_sector_retries = 0; 592 } 593 594 /* Invoke the transport and basic error-handling/recovery methods 595 * 596 * This is used by the protocol layers to actually send the message to 597 * the device and receive the response. 598 */ 599 void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us) 600 { 601 int need_auto_sense; 602 int result; 603 604 /* send the command to the transport layer */ 605 scsi_set_resid(srb, 0); 606 result = us->transport(srb, us); 607 608 /* if the command gets aborted by the higher layers, we need to 609 * short-circuit all other processing 610 */ 611 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { 612 US_DEBUGP("-- command was aborted\n"); 613 srb->result = DID_ABORT << 16; 614 goto Handle_Errors; 615 } 616 617 /* if there is a transport error, reset and don't auto-sense */ 618 if (result == USB_STOR_TRANSPORT_ERROR) { 619 US_DEBUGP("-- transport indicates error, resetting\n"); 620 srb->result = DID_ERROR << 16; 621 goto Handle_Errors; 622 } 623 624 /* if the transport provided its own sense data, don't auto-sense */ 625 if (result == USB_STOR_TRANSPORT_NO_SENSE) { 626 srb->result = SAM_STAT_CHECK_CONDITION; 627 last_sector_hacks(us, srb); 628 return; 629 } 630 631 srb->result = SAM_STAT_GOOD; 632 633 /* Determine if we need to auto-sense 634 * 635 * I normally don't use a flag like this, but it's almost impossible 636 * to understand what's going on here if I don't. 637 */ 638 need_auto_sense = 0; 639 640 /* 641 * If we're running the CB transport, which is incapable 642 * of determining status on its own, we will auto-sense 643 * unless the operation involved a data-in transfer. Devices 644 * can signal most data-in errors by stalling the bulk-in pipe. 645 */ 646 if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_DPCM_USB) && 647 srb->sc_data_direction != DMA_FROM_DEVICE) { 648 US_DEBUGP("-- CB transport device requiring auto-sense\n"); 649 need_auto_sense = 1; 650 } 651 652 /* 653 * If we have a failure, we're going to do a REQUEST_SENSE 654 * automatically. Note that we differentiate between a command 655 * "failure" and an "error" in the transport mechanism. 656 */ 657 if (result == USB_STOR_TRANSPORT_FAILED) { 658 US_DEBUGP("-- transport indicates command failure\n"); 659 need_auto_sense = 1; 660 } 661 662 /* 663 * Determine if this device is SAT by seeing if the 664 * command executed successfully. Otherwise we'll have 665 * to wait for at least one CHECK_CONDITION to determine 666 * SANE_SENSE support 667 */ 668 if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) && 669 result == USB_STOR_TRANSPORT_GOOD && 670 !(us->fflags & US_FL_SANE_SENSE) && 671 !(us->fflags & US_FL_BAD_SENSE) && 672 !(srb->cmnd[2] & 0x20))) { 673 US_DEBUGP("-- SAT supported, increasing auto-sense\n"); 674 us->fflags |= US_FL_SANE_SENSE; 675 } 676 677 /* 678 * A short transfer on a command where we don't expect it 679 * is unusual, but it doesn't mean we need to auto-sense. 680 */ 681 if ((scsi_get_resid(srb) > 0) && 682 !((srb->cmnd[0] == REQUEST_SENSE) || 683 (srb->cmnd[0] == INQUIRY) || 684 (srb->cmnd[0] == MODE_SENSE) || 685 (srb->cmnd[0] == LOG_SENSE) || 686 (srb->cmnd[0] == MODE_SENSE_10))) { 687 US_DEBUGP("-- unexpectedly short transfer\n"); 688 } 689 690 /* Now, if we need to do the auto-sense, let's do it */ 691 if (need_auto_sense) { 692 int temp_result; 693 struct scsi_eh_save ses; 694 int sense_size = US_SENSE_SIZE; 695 struct scsi_sense_hdr sshdr; 696 const u8 *scdd; 697 u8 fm_ili; 698 699 /* device supports and needs bigger sense buffer */ 700 if (us->fflags & US_FL_SANE_SENSE) 701 sense_size = ~0; 702 Retry_Sense: 703 US_DEBUGP("Issuing auto-REQUEST_SENSE\n"); 704 705 scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size); 706 707 /* FIXME: we must do the protocol translation here */ 708 if (us->subclass == USB_SC_RBC || us->subclass == USB_SC_SCSI || 709 us->subclass == USB_SC_CYP_ATACB) 710 srb->cmd_len = 6; 711 else 712 srb->cmd_len = 12; 713 714 /* issue the auto-sense command */ 715 scsi_set_resid(srb, 0); 716 temp_result = us->transport(us->srb, us); 717 718 /* let's clean up right away */ 719 scsi_eh_restore_cmnd(srb, &ses); 720 721 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { 722 US_DEBUGP("-- auto-sense aborted\n"); 723 srb->result = DID_ABORT << 16; 724 725 /* If SANE_SENSE caused this problem, disable it */ 726 if (sense_size != US_SENSE_SIZE) { 727 us->fflags &= ~US_FL_SANE_SENSE; 728 us->fflags |= US_FL_BAD_SENSE; 729 } 730 goto Handle_Errors; 731 } 732 733 /* Some devices claim to support larger sense but fail when 734 * trying to request it. When a transport failure happens 735 * using US_FS_SANE_SENSE, we always retry with a standard 736 * (small) sense request. This fixes some USB GSM modems 737 */ 738 if (temp_result == USB_STOR_TRANSPORT_FAILED && 739 sense_size != US_SENSE_SIZE) { 740 US_DEBUGP("-- auto-sense failure, retry small sense\n"); 741 sense_size = US_SENSE_SIZE; 742 us->fflags &= ~US_FL_SANE_SENSE; 743 us->fflags |= US_FL_BAD_SENSE; 744 goto Retry_Sense; 745 } 746 747 /* Other failures */ 748 if (temp_result != USB_STOR_TRANSPORT_GOOD) { 749 US_DEBUGP("-- auto-sense failure\n"); 750 751 /* we skip the reset if this happens to be a 752 * multi-target device, since failure of an 753 * auto-sense is perfectly valid 754 */ 755 srb->result = DID_ERROR << 16; 756 if (!(us->fflags & US_FL_SCM_MULT_TARG)) 757 goto Handle_Errors; 758 return; 759 } 760 761 /* If the sense data returned is larger than 18-bytes then we 762 * assume this device supports requesting more in the future. 763 * The response code must be 70h through 73h inclusive. 764 */ 765 if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) && 766 !(us->fflags & US_FL_SANE_SENSE) && 767 !(us->fflags & US_FL_BAD_SENSE) && 768 (srb->sense_buffer[0] & 0x7C) == 0x70) { 769 US_DEBUGP("-- SANE_SENSE support enabled\n"); 770 us->fflags |= US_FL_SANE_SENSE; 771 772 /* Indicate to the user that we truncated their sense 773 * because we didn't know it supported larger sense. 774 */ 775 US_DEBUGP("-- Sense data truncated to %i from %i\n", 776 US_SENSE_SIZE, 777 srb->sense_buffer[7] + 8); 778 srb->sense_buffer[7] = (US_SENSE_SIZE - 8); 779 } 780 781 scsi_normalize_sense(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE, 782 &sshdr); 783 784 US_DEBUGP("-- Result from auto-sense is %d\n", temp_result); 785 US_DEBUGP("-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n", 786 sshdr.response_code, sshdr.sense_key, 787 sshdr.asc, sshdr.ascq); 788 #ifdef CONFIG_USB_STORAGE_DEBUG 789 usb_stor_show_sense(sshdr.sense_key, sshdr.asc, sshdr.ascq); 790 #endif 791 792 /* set the result so the higher layers expect this data */ 793 srb->result = SAM_STAT_CHECK_CONDITION; 794 795 scdd = scsi_sense_desc_find(srb->sense_buffer, 796 SCSI_SENSE_BUFFERSIZE, 4); 797 fm_ili = (scdd ? scdd[3] : srb->sense_buffer[2]) & 0xA0; 798 799 /* We often get empty sense data. This could indicate that 800 * everything worked or that there was an unspecified 801 * problem. We have to decide which. 802 */ 803 if (sshdr.sense_key == 0 && sshdr.asc == 0 && sshdr.ascq == 0 && 804 fm_ili == 0) { 805 /* If things are really okay, then let's show that. 806 * Zero out the sense buffer so the higher layers 807 * won't realize we did an unsolicited auto-sense. 808 */ 809 if (result == USB_STOR_TRANSPORT_GOOD) { 810 srb->result = SAM_STAT_GOOD; 811 srb->sense_buffer[0] = 0x0; 812 813 /* If there was a problem, report an unspecified 814 * hardware error to prevent the higher layers from 815 * entering an infinite retry loop. 816 */ 817 } else { 818 srb->result = DID_ERROR << 16; 819 if ((sshdr.response_code & 0x72) == 0x72) 820 srb->sense_buffer[1] = HARDWARE_ERROR; 821 else 822 srb->sense_buffer[2] = HARDWARE_ERROR; 823 } 824 } 825 } 826 827 /* 828 * Some devices don't work or return incorrect data the first 829 * time they get a READ(10) command, or for the first READ(10) 830 * after a media change. If the INITIAL_READ10 flag is set, 831 * keep track of whether READ(10) commands succeed. If the 832 * previous one succeeded and this one failed, set the REDO_READ10 833 * flag to force a retry. 834 */ 835 if (unlikely((us->fflags & US_FL_INITIAL_READ10) && 836 srb->cmnd[0] == READ_10)) { 837 if (srb->result == SAM_STAT_GOOD) { 838 set_bit(US_FLIDX_READ10_WORKED, &us->dflags); 839 } else if (test_bit(US_FLIDX_READ10_WORKED, &us->dflags)) { 840 clear_bit(US_FLIDX_READ10_WORKED, &us->dflags); 841 set_bit(US_FLIDX_REDO_READ10, &us->dflags); 842 } 843 844 /* 845 * Next, if the REDO_READ10 flag is set, return a result 846 * code that will cause the SCSI core to retry the READ(10) 847 * command immediately. 848 */ 849 if (test_bit(US_FLIDX_REDO_READ10, &us->dflags)) { 850 clear_bit(US_FLIDX_REDO_READ10, &us->dflags); 851 srb->result = DID_IMM_RETRY << 16; 852 srb->sense_buffer[0] = 0; 853 } 854 } 855 856 /* Did we transfer less than the minimum amount required? */ 857 if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) && 858 scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow) 859 srb->result = DID_ERROR << 16; 860 861 last_sector_hacks(us, srb); 862 return; 863 864 /* Error and abort processing: try to resynchronize with the device 865 * by issuing a port reset. If that fails, try a class-specific 866 * device reset. */ 867 Handle_Errors: 868 869 /* Set the RESETTING bit, and clear the ABORTING bit so that 870 * the reset may proceed. */ 871 scsi_lock(us_to_host(us)); 872 set_bit(US_FLIDX_RESETTING, &us->dflags); 873 clear_bit(US_FLIDX_ABORTING, &us->dflags); 874 scsi_unlock(us_to_host(us)); 875 876 /* We must release the device lock because the pre_reset routine 877 * will want to acquire it. */ 878 mutex_unlock(&us->dev_mutex); 879 result = usb_stor_port_reset(us); 880 mutex_lock(&us->dev_mutex); 881 882 if (result < 0) { 883 scsi_lock(us_to_host(us)); 884 usb_stor_report_device_reset(us); 885 scsi_unlock(us_to_host(us)); 886 us->transport_reset(us); 887 } 888 clear_bit(US_FLIDX_RESETTING, &us->dflags); 889 last_sector_hacks(us, srb); 890 } 891 892 /* Stop the current URB transfer */ 893 void usb_stor_stop_transport(struct us_data *us) 894 { 895 US_DEBUGP("%s called\n", __func__); 896 897 /* If the state machine is blocked waiting for an URB, 898 * let's wake it up. The test_and_clear_bit() call 899 * guarantees that if a URB has just been submitted, 900 * it won't be cancelled more than once. */ 901 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { 902 US_DEBUGP("-- cancelling URB\n"); 903 usb_unlink_urb(us->current_urb); 904 } 905 906 /* If we are waiting for a scatter-gather operation, cancel it. */ 907 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { 908 US_DEBUGP("-- cancelling sg request\n"); 909 usb_sg_cancel(&us->current_sg); 910 } 911 } 912 913 /* 914 * Control/Bulk and Control/Bulk/Interrupt transport 915 */ 916 917 int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us) 918 { 919 unsigned int transfer_length = scsi_bufflen(srb); 920 unsigned int pipe = 0; 921 int result; 922 923 /* COMMAND STAGE */ 924 /* let's send the command via the control pipe */ 925 result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, 926 US_CBI_ADSC, 927 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, 928 us->ifnum, srb->cmnd, srb->cmd_len); 929 930 /* check the return code for the command */ 931 US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result); 932 933 /* if we stalled the command, it means command failed */ 934 if (result == USB_STOR_XFER_STALLED) { 935 return USB_STOR_TRANSPORT_FAILED; 936 } 937 938 /* Uh oh... serious problem here */ 939 if (result != USB_STOR_XFER_GOOD) { 940 return USB_STOR_TRANSPORT_ERROR; 941 } 942 943 /* DATA STAGE */ 944 /* transfer the data payload for this command, if one exists*/ 945 if (transfer_length) { 946 pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 947 us->recv_bulk_pipe : us->send_bulk_pipe; 948 result = usb_stor_bulk_srb(us, pipe, srb); 949 US_DEBUGP("CBI data stage result is 0x%x\n", result); 950 951 /* if we stalled the data transfer it means command failed */ 952 if (result == USB_STOR_XFER_STALLED) 953 return USB_STOR_TRANSPORT_FAILED; 954 if (result > USB_STOR_XFER_STALLED) 955 return USB_STOR_TRANSPORT_ERROR; 956 } 957 958 /* STATUS STAGE */ 959 960 /* NOTE: CB does not have a status stage. Silly, I know. So 961 * we have to catch this at a higher level. 962 */ 963 if (us->protocol != USB_PR_CBI) 964 return USB_STOR_TRANSPORT_GOOD; 965 966 result = usb_stor_intr_transfer(us, us->iobuf, 2); 967 US_DEBUGP("Got interrupt data (0x%x, 0x%x)\n", 968 us->iobuf[0], us->iobuf[1]); 969 if (result != USB_STOR_XFER_GOOD) 970 return USB_STOR_TRANSPORT_ERROR; 971 972 /* UFI gives us ASC and ASCQ, like a request sense 973 * 974 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI 975 * devices, so we ignore the information for those commands. Note 976 * that this means we could be ignoring a real error on these 977 * commands, but that can't be helped. 978 */ 979 if (us->subclass == USB_SC_UFI) { 980 if (srb->cmnd[0] == REQUEST_SENSE || 981 srb->cmnd[0] == INQUIRY) 982 return USB_STOR_TRANSPORT_GOOD; 983 if (us->iobuf[0]) 984 goto Failed; 985 return USB_STOR_TRANSPORT_GOOD; 986 } 987 988 /* If not UFI, we interpret the data as a result code 989 * The first byte should always be a 0x0. 990 * 991 * Some bogus devices don't follow that rule. They stuff the ASC 992 * into the first byte -- so if it's non-zero, call it a failure. 993 */ 994 if (us->iobuf[0]) { 995 US_DEBUGP("CBI IRQ data showed reserved bType 0x%x\n", 996 us->iobuf[0]); 997 goto Failed; 998 999 } 1000 1001 /* The second byte & 0x0F should be 0x0 for good, otherwise error */ 1002 switch (us->iobuf[1] & 0x0F) { 1003 case 0x00: 1004 return USB_STOR_TRANSPORT_GOOD; 1005 case 0x01: 1006 goto Failed; 1007 } 1008 return USB_STOR_TRANSPORT_ERROR; 1009 1010 /* the CBI spec requires that the bulk pipe must be cleared 1011 * following any data-in/out command failure (section 2.4.3.1.3) 1012 */ 1013 Failed: 1014 if (pipe) 1015 usb_stor_clear_halt(us, pipe); 1016 return USB_STOR_TRANSPORT_FAILED; 1017 } 1018 EXPORT_SYMBOL_GPL(usb_stor_CB_transport); 1019 1020 /* 1021 * Bulk only transport 1022 */ 1023 1024 /* Determine what the maximum LUN supported is */ 1025 int usb_stor_Bulk_max_lun(struct us_data *us) 1026 { 1027 int result; 1028 1029 /* issue the command */ 1030 us->iobuf[0] = 0; 1031 result = usb_stor_control_msg(us, us->recv_ctrl_pipe, 1032 US_BULK_GET_MAX_LUN, 1033 USB_DIR_IN | USB_TYPE_CLASS | 1034 USB_RECIP_INTERFACE, 1035 0, us->ifnum, us->iobuf, 1, 10*HZ); 1036 1037 US_DEBUGP("GetMaxLUN command result is %d, data is %d\n", 1038 result, us->iobuf[0]); 1039 1040 /* if we have a successful request, return the result */ 1041 if (result > 0) 1042 return us->iobuf[0]; 1043 1044 /* 1045 * Some devices don't like GetMaxLUN. They may STALL the control 1046 * pipe, they may return a zero-length result, they may do nothing at 1047 * all and timeout, or they may fail in even more bizarrely creative 1048 * ways. In these cases the best approach is to use the default 1049 * value: only one LUN. 1050 */ 1051 return 0; 1052 } 1053 1054 int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us) 1055 { 1056 struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf; 1057 struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf; 1058 unsigned int transfer_length = scsi_bufflen(srb); 1059 unsigned int residue; 1060 int result; 1061 int fake_sense = 0; 1062 unsigned int cswlen; 1063 unsigned int cbwlen = US_BULK_CB_WRAP_LEN; 1064 1065 /* Take care of BULK32 devices; set extra byte to 0 */ 1066 if (unlikely(us->fflags & US_FL_BULK32)) { 1067 cbwlen = 32; 1068 us->iobuf[31] = 0; 1069 } 1070 1071 /* set up the command wrapper */ 1072 bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); 1073 bcb->DataTransferLength = cpu_to_le32(transfer_length); 1074 bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ? 1075 US_BULK_FLAG_IN : 0; 1076 bcb->Tag = ++us->tag; 1077 bcb->Lun = srb->device->lun; 1078 if (us->fflags & US_FL_SCM_MULT_TARG) 1079 bcb->Lun |= srb->device->id << 4; 1080 bcb->Length = srb->cmd_len; 1081 1082 /* copy the command payload */ 1083 memset(bcb->CDB, 0, sizeof(bcb->CDB)); 1084 memcpy(bcb->CDB, srb->cmnd, bcb->Length); 1085 1086 /* send it to out endpoint */ 1087 US_DEBUGP("Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n", 1088 le32_to_cpu(bcb->Signature), bcb->Tag, 1089 le32_to_cpu(bcb->DataTransferLength), bcb->Flags, 1090 (bcb->Lun >> 4), (bcb->Lun & 0x0F), 1091 bcb->Length); 1092 result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 1093 bcb, cbwlen, NULL); 1094 US_DEBUGP("Bulk command transfer result=%d\n", result); 1095 if (result != USB_STOR_XFER_GOOD) 1096 return USB_STOR_TRANSPORT_ERROR; 1097 1098 /* DATA STAGE */ 1099 /* send/receive data payload, if there is any */ 1100 1101 /* Some USB-IDE converter chips need a 100us delay between the 1102 * command phase and the data phase. Some devices need a little 1103 * more than that, probably because of clock rate inaccuracies. */ 1104 if (unlikely(us->fflags & US_FL_GO_SLOW)) 1105 udelay(125); 1106 1107 if (transfer_length) { 1108 unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 1109 us->recv_bulk_pipe : us->send_bulk_pipe; 1110 result = usb_stor_bulk_srb(us, pipe, srb); 1111 US_DEBUGP("Bulk data transfer result 0x%x\n", result); 1112 if (result == USB_STOR_XFER_ERROR) 1113 return USB_STOR_TRANSPORT_ERROR; 1114 1115 /* If the device tried to send back more data than the 1116 * amount requested, the spec requires us to transfer 1117 * the CSW anyway. Since there's no point retrying the 1118 * the command, we'll return fake sense data indicating 1119 * Illegal Request, Invalid Field in CDB. 1120 */ 1121 if (result == USB_STOR_XFER_LONG) 1122 fake_sense = 1; 1123 } 1124 1125 /* See flow chart on pg 15 of the Bulk Only Transport spec for 1126 * an explanation of how this code works. 1127 */ 1128 1129 /* get CSW for device status */ 1130 US_DEBUGP("Attempting to get CSW...\n"); 1131 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1132 bcs, US_BULK_CS_WRAP_LEN, &cswlen); 1133 1134 /* Some broken devices add unnecessary zero-length packets to the 1135 * end of their data transfers. Such packets show up as 0-length 1136 * CSWs. If we encounter such a thing, try to read the CSW again. 1137 */ 1138 if (result == USB_STOR_XFER_SHORT && cswlen == 0) { 1139 US_DEBUGP("Received 0-length CSW; retrying...\n"); 1140 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1141 bcs, US_BULK_CS_WRAP_LEN, &cswlen); 1142 } 1143 1144 /* did the attempt to read the CSW fail? */ 1145 if (result == USB_STOR_XFER_STALLED) { 1146 1147 /* get the status again */ 1148 US_DEBUGP("Attempting to get CSW (2nd try)...\n"); 1149 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1150 bcs, US_BULK_CS_WRAP_LEN, NULL); 1151 } 1152 1153 /* if we still have a failure at this point, we're in trouble */ 1154 US_DEBUGP("Bulk status result = %d\n", result); 1155 if (result != USB_STOR_XFER_GOOD) 1156 return USB_STOR_TRANSPORT_ERROR; 1157 1158 /* check bulk status */ 1159 residue = le32_to_cpu(bcs->Residue); 1160 US_DEBUGP("Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n", 1161 le32_to_cpu(bcs->Signature), bcs->Tag, 1162 residue, bcs->Status); 1163 if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) || 1164 bcs->Status > US_BULK_STAT_PHASE) { 1165 US_DEBUGP("Bulk logical error\n"); 1166 return USB_STOR_TRANSPORT_ERROR; 1167 } 1168 1169 /* Some broken devices report odd signatures, so we do not check them 1170 * for validity against the spec. We store the first one we see, 1171 * and check subsequent transfers for validity against this signature. 1172 */ 1173 if (!us->bcs_signature) { 1174 us->bcs_signature = bcs->Signature; 1175 if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN)) 1176 US_DEBUGP("Learnt BCS signature 0x%08X\n", 1177 le32_to_cpu(us->bcs_signature)); 1178 } else if (bcs->Signature != us->bcs_signature) { 1179 US_DEBUGP("Signature mismatch: got %08X, expecting %08X\n", 1180 le32_to_cpu(bcs->Signature), 1181 le32_to_cpu(us->bcs_signature)); 1182 return USB_STOR_TRANSPORT_ERROR; 1183 } 1184 1185 /* try to compute the actual residue, based on how much data 1186 * was really transferred and what the device tells us */ 1187 if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) { 1188 1189 /* Heuristically detect devices that generate bogus residues 1190 * by seeing what happens with INQUIRY and READ CAPACITY 1191 * commands. 1192 */ 1193 if (bcs->Status == US_BULK_STAT_OK && 1194 scsi_get_resid(srb) == 0 && 1195 ((srb->cmnd[0] == INQUIRY && 1196 transfer_length == 36) || 1197 (srb->cmnd[0] == READ_CAPACITY && 1198 transfer_length == 8))) { 1199 us->fflags |= US_FL_IGNORE_RESIDUE; 1200 1201 } else { 1202 residue = min(residue, transfer_length); 1203 scsi_set_resid(srb, max(scsi_get_resid(srb), 1204 (int) residue)); 1205 } 1206 } 1207 1208 /* based on the status code, we report good or bad */ 1209 switch (bcs->Status) { 1210 case US_BULK_STAT_OK: 1211 /* device babbled -- return fake sense data */ 1212 if (fake_sense) { 1213 memcpy(srb->sense_buffer, 1214 usb_stor_sense_invalidCDB, 1215 sizeof(usb_stor_sense_invalidCDB)); 1216 return USB_STOR_TRANSPORT_NO_SENSE; 1217 } 1218 1219 /* command good -- note that data could be short */ 1220 return USB_STOR_TRANSPORT_GOOD; 1221 1222 case US_BULK_STAT_FAIL: 1223 /* command failed */ 1224 return USB_STOR_TRANSPORT_FAILED; 1225 1226 case US_BULK_STAT_PHASE: 1227 /* phase error -- note that a transport reset will be 1228 * invoked by the invoke_transport() function 1229 */ 1230 return USB_STOR_TRANSPORT_ERROR; 1231 } 1232 1233 /* we should never get here, but if we do, we're in trouble */ 1234 return USB_STOR_TRANSPORT_ERROR; 1235 } 1236 EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport); 1237 1238 /*********************************************************************** 1239 * Reset routines 1240 ***********************************************************************/ 1241 1242 /* This is the common part of the device reset code. 1243 * 1244 * It's handy that every transport mechanism uses the control endpoint for 1245 * resets. 1246 * 1247 * Basically, we send a reset with a 5-second timeout, so we don't get 1248 * jammed attempting to do the reset. 1249 */ 1250 static int usb_stor_reset_common(struct us_data *us, 1251 u8 request, u8 requesttype, 1252 u16 value, u16 index, void *data, u16 size) 1253 { 1254 int result; 1255 int result2; 1256 1257 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1258 US_DEBUGP("No reset during disconnect\n"); 1259 return -EIO; 1260 } 1261 1262 result = usb_stor_control_msg(us, us->send_ctrl_pipe, 1263 request, requesttype, value, index, data, size, 1264 5*HZ); 1265 if (result < 0) { 1266 US_DEBUGP("Soft reset failed: %d\n", result); 1267 return result; 1268 } 1269 1270 /* Give the device some time to recover from the reset, 1271 * but don't delay disconnect processing. */ 1272 wait_event_interruptible_timeout(us->delay_wait, 1273 test_bit(US_FLIDX_DISCONNECTING, &us->dflags), 1274 HZ*6); 1275 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1276 US_DEBUGP("Reset interrupted by disconnect\n"); 1277 return -EIO; 1278 } 1279 1280 US_DEBUGP("Soft reset: clearing bulk-in endpoint halt\n"); 1281 result = usb_stor_clear_halt(us, us->recv_bulk_pipe); 1282 1283 US_DEBUGP("Soft reset: clearing bulk-out endpoint halt\n"); 1284 result2 = usb_stor_clear_halt(us, us->send_bulk_pipe); 1285 1286 /* return a result code based on the result of the clear-halts */ 1287 if (result >= 0) 1288 result = result2; 1289 if (result < 0) 1290 US_DEBUGP("Soft reset failed\n"); 1291 else 1292 US_DEBUGP("Soft reset done\n"); 1293 return result; 1294 } 1295 1296 /* This issues a CB[I] Reset to the device in question 1297 */ 1298 #define CB_RESET_CMD_SIZE 12 1299 1300 int usb_stor_CB_reset(struct us_data *us) 1301 { 1302 US_DEBUGP("%s called\n", __func__); 1303 1304 memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE); 1305 us->iobuf[0] = SEND_DIAGNOSTIC; 1306 us->iobuf[1] = 4; 1307 return usb_stor_reset_common(us, US_CBI_ADSC, 1308 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 1309 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE); 1310 } 1311 EXPORT_SYMBOL_GPL(usb_stor_CB_reset); 1312 1313 /* This issues a Bulk-only Reset to the device in question, including 1314 * clearing the subsequent endpoint halts that may occur. 1315 */ 1316 int usb_stor_Bulk_reset(struct us_data *us) 1317 { 1318 US_DEBUGP("%s called\n", __func__); 1319 1320 return usb_stor_reset_common(us, US_BULK_RESET_REQUEST, 1321 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 1322 0, us->ifnum, NULL, 0); 1323 } 1324 EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset); 1325 1326 /* Issue a USB port reset to the device. The caller must not hold 1327 * us->dev_mutex. 1328 */ 1329 int usb_stor_port_reset(struct us_data *us) 1330 { 1331 int result; 1332 1333 /*for these devices we must use the class specific method */ 1334 if (us->pusb_dev->quirks & USB_QUIRK_RESET) 1335 return -EPERM; 1336 1337 result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf); 1338 if (result < 0) 1339 US_DEBUGP("unable to lock device for reset: %d\n", result); 1340 else { 1341 /* Were we disconnected while waiting for the lock? */ 1342 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1343 result = -EIO; 1344 US_DEBUGP("No reset during disconnect\n"); 1345 } else { 1346 result = usb_reset_device(us->pusb_dev); 1347 US_DEBUGP("usb_reset_device returns %d\n", 1348 result); 1349 } 1350 usb_unlock_device(us->pusb_dev); 1351 } 1352 return result; 1353 } 1354