xref: /openbmc/linux/drivers/usb/storage/transport.c (revision 8bd1369b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for USB Mass Storage compliant devices
4  *
5  * Current development and maintenance by:
6  *   (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
7  *
8  * Developed with the assistance of:
9  *   (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
10  *   (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
11  *   (c) 2002 Alan Stern <stern@rowland.org>
12  *
13  * Initial work by:
14  *   (c) 1999 Michael Gee (michael@linuxspecific.com)
15  *
16  * This driver is based on the 'USB Mass Storage Class' document. This
17  * describes in detail the protocol used to communicate with such
18  * devices.  Clearly, the designers had SCSI and ATAPI commands in
19  * mind when they created this document.  The commands are all very
20  * similar to commands in the SCSI-II and ATAPI specifications.
21  *
22  * It is important to note that in a number of cases this class
23  * exhibits class-specific exemptions from the USB specification.
24  * Notably the usage of NAK, STALL and ACK differs from the norm, in
25  * that they are used to communicate wait, failed and OK on commands.
26  *
27  * Also, for certain devices, the interrupt endpoint is used to convey
28  * status of a command.
29  */
30 
31 #include <linux/sched.h>
32 #include <linux/gfp.h>
33 #include <linux/errno.h>
34 #include <linux/export.h>
35 
36 #include <linux/usb/quirks.h>
37 
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_eh.h>
40 #include <scsi/scsi_device.h>
41 
42 #include "usb.h"
43 #include "transport.h"
44 #include "protocol.h"
45 #include "scsiglue.h"
46 #include "debug.h"
47 
48 #include <linux/blkdev.h>
49 #include "../../scsi/sd.h"
50 
51 
52 /***********************************************************************
53  * Data transfer routines
54  ***********************************************************************/
55 
56 /*
57  * This is subtle, so pay attention:
58  * ---------------------------------
59  * We're very concerned about races with a command abort.  Hanging this code
60  * is a sure fire way to hang the kernel.  (Note that this discussion applies
61  * only to transactions resulting from a scsi queued-command, since only
62  * these transactions are subject to a scsi abort.  Other transactions, such
63  * as those occurring during device-specific initialization, must be handled
64  * by a separate code path.)
65  *
66  * The abort function (usb_storage_command_abort() in scsiglue.c) first
67  * sets the machine state and the ABORTING bit in us->dflags to prevent
68  * new URBs from being submitted.  It then calls usb_stor_stop_transport()
69  * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags
70  * to see if the current_urb needs to be stopped.  Likewise, the SG_ACTIVE
71  * bit is tested to see if the current_sg scatter-gather request needs to be
72  * stopped.  The timeout callback routine does much the same thing.
73  *
74  * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to
75  * prevent new URBs from being submitted, and usb_stor_stop_transport() is
76  * called to stop any ongoing requests.
77  *
78  * The submit function first verifies that the submitting is allowed
79  * (neither ABORTING nor DISCONNECTING bits are set) and that the submit
80  * completes without errors, and only then sets the URB_ACTIVE bit.  This
81  * prevents the stop_transport() function from trying to cancel the URB
82  * while the submit call is underway.  Next, the submit function must test
83  * the flags to see if an abort or disconnect occurred during the submission
84  * or before the URB_ACTIVE bit was set.  If so, it's essential to cancel
85  * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
86  * is still set).  Either way, the function must then wait for the URB to
87  * finish.  Note that the URB can still be in progress even after a call to
88  * usb_unlink_urb() returns.
89  *
90  * The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
91  * either the stop_transport() function or the submitting function
92  * is guaranteed to call usb_unlink_urb() for an active URB,
93  * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
94  * called more than once or from being called during usb_submit_urb().
95  */
96 
97 /*
98  * This is the completion handler which will wake us up when an URB
99  * completes.
100  */
101 static void usb_stor_blocking_completion(struct urb *urb)
102 {
103 	struct completion *urb_done_ptr = urb->context;
104 
105 	complete(urb_done_ptr);
106 }
107 
108 /*
109  * This is the common part of the URB message submission code
110  *
111  * All URBs from the usb-storage driver involved in handling a queued scsi
112  * command _must_ pass through this function (or something like it) for the
113  * abort mechanisms to work properly.
114  */
115 static int usb_stor_msg_common(struct us_data *us, int timeout)
116 {
117 	struct completion urb_done;
118 	long timeleft;
119 	int status;
120 
121 	/* don't submit URBs during abort processing */
122 	if (test_bit(US_FLIDX_ABORTING, &us->dflags))
123 		return -EIO;
124 
125 	/* set up data structures for the wakeup system */
126 	init_completion(&urb_done);
127 
128 	/* fill the common fields in the URB */
129 	us->current_urb->context = &urb_done;
130 	us->current_urb->transfer_flags = 0;
131 
132 	/*
133 	 * we assume that if transfer_buffer isn't us->iobuf then it
134 	 * hasn't been mapped for DMA.  Yes, this is clunky, but it's
135 	 * easier than always having the caller tell us whether the
136 	 * transfer buffer has already been mapped.
137 	 */
138 	if (us->current_urb->transfer_buffer == us->iobuf)
139 		us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
140 	us->current_urb->transfer_dma = us->iobuf_dma;
141 
142 	/* submit the URB */
143 	status = usb_submit_urb(us->current_urb, GFP_NOIO);
144 	if (status) {
145 		/* something went wrong */
146 		return status;
147 	}
148 
149 	/*
150 	 * since the URB has been submitted successfully, it's now okay
151 	 * to cancel it
152 	 */
153 	set_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
154 
155 	/* did an abort occur during the submission? */
156 	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
157 
158 		/* cancel the URB, if it hasn't been cancelled already */
159 		if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
160 			usb_stor_dbg(us, "-- cancelling URB\n");
161 			usb_unlink_urb(us->current_urb);
162 		}
163 	}
164 
165 	/* wait for the completion of the URB */
166 	timeleft = wait_for_completion_interruptible_timeout(
167 			&urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT);
168 
169 	clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
170 
171 	if (timeleft <= 0) {
172 		usb_stor_dbg(us, "%s -- cancelling URB\n",
173 			     timeleft == 0 ? "Timeout" : "Signal");
174 		usb_kill_urb(us->current_urb);
175 	}
176 
177 	/* return the URB status */
178 	return us->current_urb->status;
179 }
180 
181 /*
182  * Transfer one control message, with timeouts, and allowing early
183  * termination.  Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
184  */
185 int usb_stor_control_msg(struct us_data *us, unsigned int pipe,
186 		 u8 request, u8 requesttype, u16 value, u16 index,
187 		 void *data, u16 size, int timeout)
188 {
189 	int status;
190 
191 	usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
192 		     request, requesttype, value, index, size);
193 
194 	/* fill in the devrequest structure */
195 	us->cr->bRequestType = requesttype;
196 	us->cr->bRequest = request;
197 	us->cr->wValue = cpu_to_le16(value);
198 	us->cr->wIndex = cpu_to_le16(index);
199 	us->cr->wLength = cpu_to_le16(size);
200 
201 	/* fill and submit the URB */
202 	usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
203 			 (unsigned char*) us->cr, data, size,
204 			 usb_stor_blocking_completion, NULL);
205 	status = usb_stor_msg_common(us, timeout);
206 
207 	/* return the actual length of the data transferred if no error */
208 	if (status == 0)
209 		status = us->current_urb->actual_length;
210 	return status;
211 }
212 EXPORT_SYMBOL_GPL(usb_stor_control_msg);
213 
214 /*
215  * This is a version of usb_clear_halt() that allows early termination and
216  * doesn't read the status from the device -- this is because some devices
217  * crash their internal firmware when the status is requested after a halt.
218  *
219  * A definitive list of these 'bad' devices is too difficult to maintain or
220  * make complete enough to be useful.  This problem was first observed on the
221  * Hagiwara FlashGate DUAL unit.  However, bus traces reveal that neither
222  * MacOS nor Windows checks the status after clearing a halt.
223  *
224  * Since many vendors in this space limit their testing to interoperability
225  * with these two OSes, specification violations like this one are common.
226  */
227 int usb_stor_clear_halt(struct us_data *us, unsigned int pipe)
228 {
229 	int result;
230 	int endp = usb_pipeendpoint(pipe);
231 
232 	if (usb_pipein (pipe))
233 		endp |= USB_DIR_IN;
234 
235 	result = usb_stor_control_msg(us, us->send_ctrl_pipe,
236 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
237 		USB_ENDPOINT_HALT, endp,
238 		NULL, 0, 3*HZ);
239 
240 	if (result >= 0)
241 		usb_reset_endpoint(us->pusb_dev, endp);
242 
243 	usb_stor_dbg(us, "result = %d\n", result);
244 	return result;
245 }
246 EXPORT_SYMBOL_GPL(usb_stor_clear_halt);
247 
248 
249 /*
250  * Interpret the results of a URB transfer
251  *
252  * This function prints appropriate debugging messages, clears halts on
253  * non-control endpoints, and translates the status to the corresponding
254  * USB_STOR_XFER_xxx return code.
255  */
256 static int interpret_urb_result(struct us_data *us, unsigned int pipe,
257 		unsigned int length, int result, unsigned int partial)
258 {
259 	usb_stor_dbg(us, "Status code %d; transferred %u/%u\n",
260 		     result, partial, length);
261 	switch (result) {
262 
263 	/* no error code; did we send all the data? */
264 	case 0:
265 		if (partial != length) {
266 			usb_stor_dbg(us, "-- short transfer\n");
267 			return USB_STOR_XFER_SHORT;
268 		}
269 
270 		usb_stor_dbg(us, "-- transfer complete\n");
271 		return USB_STOR_XFER_GOOD;
272 
273 	/* stalled */
274 	case -EPIPE:
275 		/*
276 		 * for control endpoints, (used by CB[I]) a stall indicates
277 		 * a failed command
278 		 */
279 		if (usb_pipecontrol(pipe)) {
280 			usb_stor_dbg(us, "-- stall on control pipe\n");
281 			return USB_STOR_XFER_STALLED;
282 		}
283 
284 		/* for other sorts of endpoint, clear the stall */
285 		usb_stor_dbg(us, "clearing endpoint halt for pipe 0x%x\n",
286 			     pipe);
287 		if (usb_stor_clear_halt(us, pipe) < 0)
288 			return USB_STOR_XFER_ERROR;
289 		return USB_STOR_XFER_STALLED;
290 
291 	/* babble - the device tried to send more than we wanted to read */
292 	case -EOVERFLOW:
293 		usb_stor_dbg(us, "-- babble\n");
294 		return USB_STOR_XFER_LONG;
295 
296 	/* the transfer was cancelled by abort, disconnect, or timeout */
297 	case -ECONNRESET:
298 		usb_stor_dbg(us, "-- transfer cancelled\n");
299 		return USB_STOR_XFER_ERROR;
300 
301 	/* short scatter-gather read transfer */
302 	case -EREMOTEIO:
303 		usb_stor_dbg(us, "-- short read transfer\n");
304 		return USB_STOR_XFER_SHORT;
305 
306 	/* abort or disconnect in progress */
307 	case -EIO:
308 		usb_stor_dbg(us, "-- abort or disconnect in progress\n");
309 		return USB_STOR_XFER_ERROR;
310 
311 	/* the catch-all error case */
312 	default:
313 		usb_stor_dbg(us, "-- unknown error\n");
314 		return USB_STOR_XFER_ERROR;
315 	}
316 }
317 
318 /*
319  * Transfer one control message, without timeouts, but allowing early
320  * termination.  Return codes are USB_STOR_XFER_xxx.
321  */
322 int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe,
323 		u8 request, u8 requesttype, u16 value, u16 index,
324 		void *data, u16 size)
325 {
326 	int result;
327 
328 	usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
329 		     request, requesttype, value, index, size);
330 
331 	/* fill in the devrequest structure */
332 	us->cr->bRequestType = requesttype;
333 	us->cr->bRequest = request;
334 	us->cr->wValue = cpu_to_le16(value);
335 	us->cr->wIndex = cpu_to_le16(index);
336 	us->cr->wLength = cpu_to_le16(size);
337 
338 	/* fill and submit the URB */
339 	usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
340 			 (unsigned char*) us->cr, data, size,
341 			 usb_stor_blocking_completion, NULL);
342 	result = usb_stor_msg_common(us, 0);
343 
344 	return interpret_urb_result(us, pipe, size, result,
345 			us->current_urb->actual_length);
346 }
347 EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer);
348 
349 /*
350  * Receive one interrupt buffer, without timeouts, but allowing early
351  * termination.  Return codes are USB_STOR_XFER_xxx.
352  *
353  * This routine always uses us->recv_intr_pipe as the pipe and
354  * us->ep_bInterval as the interrupt interval.
355  */
356 static int usb_stor_intr_transfer(struct us_data *us, void *buf,
357 				  unsigned int length)
358 {
359 	int result;
360 	unsigned int pipe = us->recv_intr_pipe;
361 	unsigned int maxp;
362 
363 	usb_stor_dbg(us, "xfer %u bytes\n", length);
364 
365 	/* calculate the max packet size */
366 	maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe));
367 	if (maxp > length)
368 		maxp = length;
369 
370 	/* fill and submit the URB */
371 	usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf,
372 			maxp, usb_stor_blocking_completion, NULL,
373 			us->ep_bInterval);
374 	result = usb_stor_msg_common(us, 0);
375 
376 	return interpret_urb_result(us, pipe, length, result,
377 			us->current_urb->actual_length);
378 }
379 
380 /*
381  * Transfer one buffer via bulk pipe, without timeouts, but allowing early
382  * termination.  Return codes are USB_STOR_XFER_xxx.  If the bulk pipe
383  * stalls during the transfer, the halt is automatically cleared.
384  */
385 int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe,
386 	void *buf, unsigned int length, unsigned int *act_len)
387 {
388 	int result;
389 
390 	usb_stor_dbg(us, "xfer %u bytes\n", length);
391 
392 	/* fill and submit the URB */
393 	usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length,
394 		      usb_stor_blocking_completion, NULL);
395 	result = usb_stor_msg_common(us, 0);
396 
397 	/* store the actual length of the data transferred */
398 	if (act_len)
399 		*act_len = us->current_urb->actual_length;
400 	return interpret_urb_result(us, pipe, length, result,
401 			us->current_urb->actual_length);
402 }
403 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf);
404 
405 /*
406  * Transfer a scatter-gather list via bulk transfer
407  *
408  * This function does basically the same thing as usb_stor_bulk_transfer_buf()
409  * above, but it uses the usbcore scatter-gather library.
410  */
411 static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe,
412 		struct scatterlist *sg, int num_sg, unsigned int length,
413 		unsigned int *act_len)
414 {
415 	int result;
416 
417 	/* don't submit s-g requests during abort processing */
418 	if (test_bit(US_FLIDX_ABORTING, &us->dflags))
419 		return USB_STOR_XFER_ERROR;
420 
421 	/* initialize the scatter-gather request block */
422 	usb_stor_dbg(us, "xfer %u bytes, %d entries\n", length, num_sg);
423 	result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0,
424 			sg, num_sg, length, GFP_NOIO);
425 	if (result) {
426 		usb_stor_dbg(us, "usb_sg_init returned %d\n", result);
427 		return USB_STOR_XFER_ERROR;
428 	}
429 
430 	/*
431 	 * since the block has been initialized successfully, it's now
432 	 * okay to cancel it
433 	 */
434 	set_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
435 
436 	/* did an abort occur during the submission? */
437 	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
438 
439 		/* cancel the request, if it hasn't been cancelled already */
440 		if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
441 			usb_stor_dbg(us, "-- cancelling sg request\n");
442 			usb_sg_cancel(&us->current_sg);
443 		}
444 	}
445 
446 	/* wait for the completion of the transfer */
447 	usb_sg_wait(&us->current_sg);
448 	clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
449 
450 	result = us->current_sg.status;
451 	if (act_len)
452 		*act_len = us->current_sg.bytes;
453 	return interpret_urb_result(us, pipe, length, result,
454 			us->current_sg.bytes);
455 }
456 
457 /*
458  * Common used function. Transfer a complete command
459  * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
460  */
461 int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe,
462 		      struct scsi_cmnd* srb)
463 {
464 	unsigned int partial;
465 	int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb),
466 				      scsi_sg_count(srb), scsi_bufflen(srb),
467 				      &partial);
468 
469 	scsi_set_resid(srb, scsi_bufflen(srb) - partial);
470 	return result;
471 }
472 EXPORT_SYMBOL_GPL(usb_stor_bulk_srb);
473 
474 /*
475  * Transfer an entire SCSI command's worth of data payload over the bulk
476  * pipe.
477  *
478  * Note that this uses usb_stor_bulk_transfer_buf() and
479  * usb_stor_bulk_transfer_sglist() to achieve its goals --
480  * this function simply determines whether we're going to use
481  * scatter-gather or not, and acts appropriately.
482  */
483 int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe,
484 		void *buf, unsigned int length_left, int use_sg, int *residual)
485 {
486 	int result;
487 	unsigned int partial;
488 
489 	/* are we scatter-gathering? */
490 	if (use_sg) {
491 		/* use the usb core scatter-gather primitives */
492 		result = usb_stor_bulk_transfer_sglist(us, pipe,
493 				(struct scatterlist *) buf, use_sg,
494 				length_left, &partial);
495 		length_left -= partial;
496 	} else {
497 		/* no scatter-gather, just make the request */
498 		result = usb_stor_bulk_transfer_buf(us, pipe, buf,
499 				length_left, &partial);
500 		length_left -= partial;
501 	}
502 
503 	/* store the residual and return the error code */
504 	if (residual)
505 		*residual = length_left;
506 	return result;
507 }
508 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg);
509 
510 /***********************************************************************
511  * Transport routines
512  ***********************************************************************/
513 
514 /*
515  * There are so many devices that report the capacity incorrectly,
516  * this routine was written to counteract some of the resulting
517  * problems.
518  */
519 static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb)
520 {
521 	struct gendisk *disk;
522 	struct scsi_disk *sdkp;
523 	u32 sector;
524 
525 	/* To Report "Medium Error: Record Not Found */
526 	static unsigned char record_not_found[18] = {
527 		[0]	= 0x70,			/* current error */
528 		[2]	= MEDIUM_ERROR,		/* = 0x03 */
529 		[7]	= 0x0a,			/* additional length */
530 		[12]	= 0x14			/* Record Not Found */
531 	};
532 
533 	/*
534 	 * If last-sector problems can't occur, whether because the
535 	 * capacity was already decremented or because the device is
536 	 * known to report the correct capacity, then we don't need
537 	 * to do anything.
538 	 */
539 	if (!us->use_last_sector_hacks)
540 		return;
541 
542 	/* Was this command a READ(10) or a WRITE(10)? */
543 	if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10)
544 		goto done;
545 
546 	/* Did this command access the last sector? */
547 	sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) |
548 			(srb->cmnd[4] << 8) | (srb->cmnd[5]);
549 	disk = srb->request->rq_disk;
550 	if (!disk)
551 		goto done;
552 	sdkp = scsi_disk(disk);
553 	if (!sdkp)
554 		goto done;
555 	if (sector + 1 != sdkp->capacity)
556 		goto done;
557 
558 	if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) {
559 
560 		/*
561 		 * The command succeeded.  We know this device doesn't
562 		 * have the last-sector bug, so stop checking it.
563 		 */
564 		us->use_last_sector_hacks = 0;
565 
566 	} else {
567 		/*
568 		 * The command failed.  Allow up to 3 retries in case this
569 		 * is some normal sort of failure.  After that, assume the
570 		 * capacity is wrong and we're trying to access the sector
571 		 * beyond the end.  Replace the result code and sense data
572 		 * with values that will cause the SCSI core to fail the
573 		 * command immediately, instead of going into an infinite
574 		 * (or even just a very long) retry loop.
575 		 */
576 		if (++us->last_sector_retries < 3)
577 			return;
578 		srb->result = SAM_STAT_CHECK_CONDITION;
579 		memcpy(srb->sense_buffer, record_not_found,
580 				sizeof(record_not_found));
581 	}
582 
583  done:
584 	/*
585 	 * Don't reset the retry counter for TEST UNIT READY commands,
586 	 * because they get issued after device resets which might be
587 	 * caused by a failed last-sector access.
588 	 */
589 	if (srb->cmnd[0] != TEST_UNIT_READY)
590 		us->last_sector_retries = 0;
591 }
592 
593 /*
594  * Invoke the transport and basic error-handling/recovery methods
595  *
596  * This is used by the protocol layers to actually send the message to
597  * the device and receive the response.
598  */
599 void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us)
600 {
601 	int need_auto_sense;
602 	int result;
603 
604 	/* send the command to the transport layer */
605 	scsi_set_resid(srb, 0);
606 	result = us->transport(srb, us);
607 
608 	/*
609 	 * if the command gets aborted by the higher layers, we need to
610 	 * short-circuit all other processing
611 	 */
612 	if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
613 		usb_stor_dbg(us, "-- command was aborted\n");
614 		srb->result = DID_ABORT << 16;
615 		goto Handle_Errors;
616 	}
617 
618 	/* if there is a transport error, reset and don't auto-sense */
619 	if (result == USB_STOR_TRANSPORT_ERROR) {
620 		usb_stor_dbg(us, "-- transport indicates error, resetting\n");
621 		srb->result = DID_ERROR << 16;
622 		goto Handle_Errors;
623 	}
624 
625 	/* if the transport provided its own sense data, don't auto-sense */
626 	if (result == USB_STOR_TRANSPORT_NO_SENSE) {
627 		srb->result = SAM_STAT_CHECK_CONDITION;
628 		last_sector_hacks(us, srb);
629 		return;
630 	}
631 
632 	srb->result = SAM_STAT_GOOD;
633 
634 	/*
635 	 * Determine if we need to auto-sense
636 	 *
637 	 * I normally don't use a flag like this, but it's almost impossible
638 	 * to understand what's going on here if I don't.
639 	 */
640 	need_auto_sense = 0;
641 
642 	/*
643 	 * If we're running the CB transport, which is incapable
644 	 * of determining status on its own, we will auto-sense
645 	 * unless the operation involved a data-in transfer.  Devices
646 	 * can signal most data-in errors by stalling the bulk-in pipe.
647 	 */
648 	if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_DPCM_USB) &&
649 			srb->sc_data_direction != DMA_FROM_DEVICE) {
650 		usb_stor_dbg(us, "-- CB transport device requiring auto-sense\n");
651 		need_auto_sense = 1;
652 	}
653 
654 	/*
655 	 * If we have a failure, we're going to do a REQUEST_SENSE
656 	 * automatically.  Note that we differentiate between a command
657 	 * "failure" and an "error" in the transport mechanism.
658 	 */
659 	if (result == USB_STOR_TRANSPORT_FAILED) {
660 		usb_stor_dbg(us, "-- transport indicates command failure\n");
661 		need_auto_sense = 1;
662 	}
663 
664 	/*
665 	 * Determine if this device is SAT by seeing if the
666 	 * command executed successfully.  Otherwise we'll have
667 	 * to wait for at least one CHECK_CONDITION to determine
668 	 * SANE_SENSE support
669 	 */
670 	if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) &&
671 	    result == USB_STOR_TRANSPORT_GOOD &&
672 	    !(us->fflags & US_FL_SANE_SENSE) &&
673 	    !(us->fflags & US_FL_BAD_SENSE) &&
674 	    !(srb->cmnd[2] & 0x20))) {
675 		usb_stor_dbg(us, "-- SAT supported, increasing auto-sense\n");
676 		us->fflags |= US_FL_SANE_SENSE;
677 	}
678 
679 	/*
680 	 * A short transfer on a command where we don't expect it
681 	 * is unusual, but it doesn't mean we need to auto-sense.
682 	 */
683 	if ((scsi_get_resid(srb) > 0) &&
684 	    !((srb->cmnd[0] == REQUEST_SENSE) ||
685 	      (srb->cmnd[0] == INQUIRY) ||
686 	      (srb->cmnd[0] == MODE_SENSE) ||
687 	      (srb->cmnd[0] == LOG_SENSE) ||
688 	      (srb->cmnd[0] == MODE_SENSE_10))) {
689 		usb_stor_dbg(us, "-- unexpectedly short transfer\n");
690 	}
691 
692 	/* Now, if we need to do the auto-sense, let's do it */
693 	if (need_auto_sense) {
694 		int temp_result;
695 		struct scsi_eh_save ses;
696 		int sense_size = US_SENSE_SIZE;
697 		struct scsi_sense_hdr sshdr;
698 		const u8 *scdd;
699 		u8 fm_ili;
700 
701 		/* device supports and needs bigger sense buffer */
702 		if (us->fflags & US_FL_SANE_SENSE)
703 			sense_size = ~0;
704 Retry_Sense:
705 		usb_stor_dbg(us, "Issuing auto-REQUEST_SENSE\n");
706 
707 		scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size);
708 
709 		/* FIXME: we must do the protocol translation here */
710 		if (us->subclass == USB_SC_RBC || us->subclass == USB_SC_SCSI ||
711 				us->subclass == USB_SC_CYP_ATACB)
712 			srb->cmd_len = 6;
713 		else
714 			srb->cmd_len = 12;
715 
716 		/* issue the auto-sense command */
717 		scsi_set_resid(srb, 0);
718 		temp_result = us->transport(us->srb, us);
719 
720 		/* let's clean up right away */
721 		scsi_eh_restore_cmnd(srb, &ses);
722 
723 		if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
724 			usb_stor_dbg(us, "-- auto-sense aborted\n");
725 			srb->result = DID_ABORT << 16;
726 
727 			/* If SANE_SENSE caused this problem, disable it */
728 			if (sense_size != US_SENSE_SIZE) {
729 				us->fflags &= ~US_FL_SANE_SENSE;
730 				us->fflags |= US_FL_BAD_SENSE;
731 			}
732 			goto Handle_Errors;
733 		}
734 
735 		/*
736 		 * Some devices claim to support larger sense but fail when
737 		 * trying to request it. When a transport failure happens
738 		 * using US_FS_SANE_SENSE, we always retry with a standard
739 		 * (small) sense request. This fixes some USB GSM modems
740 		 */
741 		if (temp_result == USB_STOR_TRANSPORT_FAILED &&
742 				sense_size != US_SENSE_SIZE) {
743 			usb_stor_dbg(us, "-- auto-sense failure, retry small sense\n");
744 			sense_size = US_SENSE_SIZE;
745 			us->fflags &= ~US_FL_SANE_SENSE;
746 			us->fflags |= US_FL_BAD_SENSE;
747 			goto Retry_Sense;
748 		}
749 
750 		/* Other failures */
751 		if (temp_result != USB_STOR_TRANSPORT_GOOD) {
752 			usb_stor_dbg(us, "-- auto-sense failure\n");
753 
754 			/*
755 			 * we skip the reset if this happens to be a
756 			 * multi-target device, since failure of an
757 			 * auto-sense is perfectly valid
758 			 */
759 			srb->result = DID_ERROR << 16;
760 			if (!(us->fflags & US_FL_SCM_MULT_TARG))
761 				goto Handle_Errors;
762 			return;
763 		}
764 
765 		/*
766 		 * If the sense data returned is larger than 18-bytes then we
767 		 * assume this device supports requesting more in the future.
768 		 * The response code must be 70h through 73h inclusive.
769 		 */
770 		if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) &&
771 		    !(us->fflags & US_FL_SANE_SENSE) &&
772 		    !(us->fflags & US_FL_BAD_SENSE) &&
773 		    (srb->sense_buffer[0] & 0x7C) == 0x70) {
774 			usb_stor_dbg(us, "-- SANE_SENSE support enabled\n");
775 			us->fflags |= US_FL_SANE_SENSE;
776 
777 			/*
778 			 * Indicate to the user that we truncated their sense
779 			 * because we didn't know it supported larger sense.
780 			 */
781 			usb_stor_dbg(us, "-- Sense data truncated to %i from %i\n",
782 				     US_SENSE_SIZE,
783 				     srb->sense_buffer[7] + 8);
784 			srb->sense_buffer[7] = (US_SENSE_SIZE - 8);
785 		}
786 
787 		scsi_normalize_sense(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE,
788 				     &sshdr);
789 
790 		usb_stor_dbg(us, "-- Result from auto-sense is %d\n",
791 			     temp_result);
792 		usb_stor_dbg(us, "-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
793 			     sshdr.response_code, sshdr.sense_key,
794 			     sshdr.asc, sshdr.ascq);
795 #ifdef CONFIG_USB_STORAGE_DEBUG
796 		usb_stor_show_sense(us, sshdr.sense_key, sshdr.asc, sshdr.ascq);
797 #endif
798 
799 		/* set the result so the higher layers expect this data */
800 		srb->result = SAM_STAT_CHECK_CONDITION;
801 
802 		scdd = scsi_sense_desc_find(srb->sense_buffer,
803 					    SCSI_SENSE_BUFFERSIZE, 4);
804 		fm_ili = (scdd ? scdd[3] : srb->sense_buffer[2]) & 0xA0;
805 
806 		/*
807 		 * We often get empty sense data.  This could indicate that
808 		 * everything worked or that there was an unspecified
809 		 * problem.  We have to decide which.
810 		 */
811 		if (sshdr.sense_key == 0 && sshdr.asc == 0 && sshdr.ascq == 0 &&
812 		    fm_ili == 0) {
813 			/*
814 			 * If things are really okay, then let's show that.
815 			 * Zero out the sense buffer so the higher layers
816 			 * won't realize we did an unsolicited auto-sense.
817 			 */
818 			if (result == USB_STOR_TRANSPORT_GOOD) {
819 				srb->result = SAM_STAT_GOOD;
820 				srb->sense_buffer[0] = 0x0;
821 			}
822 
823 			/*
824 			 * ATA-passthru commands use sense data to report
825 			 * the command completion status, and often devices
826 			 * return Check Condition status when nothing is
827 			 * wrong.
828 			 */
829 			else if (srb->cmnd[0] == ATA_16 ||
830 					srb->cmnd[0] == ATA_12) {
831 				/* leave the data alone */
832 			}
833 
834 			/*
835 			 * If there was a problem, report an unspecified
836 			 * hardware error to prevent the higher layers from
837 			 * entering an infinite retry loop.
838 			 */
839 			else {
840 				srb->result = DID_ERROR << 16;
841 				if ((sshdr.response_code & 0x72) == 0x72)
842 					srb->sense_buffer[1] = HARDWARE_ERROR;
843 				else
844 					srb->sense_buffer[2] = HARDWARE_ERROR;
845 			}
846 		}
847 	}
848 
849 	/*
850 	 * Some devices don't work or return incorrect data the first
851 	 * time they get a READ(10) command, or for the first READ(10)
852 	 * after a media change.  If the INITIAL_READ10 flag is set,
853 	 * keep track of whether READ(10) commands succeed.  If the
854 	 * previous one succeeded and this one failed, set the REDO_READ10
855 	 * flag to force a retry.
856 	 */
857 	if (unlikely((us->fflags & US_FL_INITIAL_READ10) &&
858 			srb->cmnd[0] == READ_10)) {
859 		if (srb->result == SAM_STAT_GOOD) {
860 			set_bit(US_FLIDX_READ10_WORKED, &us->dflags);
861 		} else if (test_bit(US_FLIDX_READ10_WORKED, &us->dflags)) {
862 			clear_bit(US_FLIDX_READ10_WORKED, &us->dflags);
863 			set_bit(US_FLIDX_REDO_READ10, &us->dflags);
864 		}
865 
866 		/*
867 		 * Next, if the REDO_READ10 flag is set, return a result
868 		 * code that will cause the SCSI core to retry the READ(10)
869 		 * command immediately.
870 		 */
871 		if (test_bit(US_FLIDX_REDO_READ10, &us->dflags)) {
872 			clear_bit(US_FLIDX_REDO_READ10, &us->dflags);
873 			srb->result = DID_IMM_RETRY << 16;
874 			srb->sense_buffer[0] = 0;
875 		}
876 	}
877 
878 	/* Did we transfer less than the minimum amount required? */
879 	if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) &&
880 			scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow)
881 		srb->result = DID_ERROR << 16;
882 
883 	last_sector_hacks(us, srb);
884 	return;
885 
886 	/*
887 	 * Error and abort processing: try to resynchronize with the device
888 	 * by issuing a port reset.  If that fails, try a class-specific
889 	 * device reset.
890 	 */
891   Handle_Errors:
892 
893 	/*
894 	 * Set the RESETTING bit, and clear the ABORTING bit so that
895 	 * the reset may proceed.
896 	 */
897 	scsi_lock(us_to_host(us));
898 	set_bit(US_FLIDX_RESETTING, &us->dflags);
899 	clear_bit(US_FLIDX_ABORTING, &us->dflags);
900 	scsi_unlock(us_to_host(us));
901 
902 	/*
903 	 * We must release the device lock because the pre_reset routine
904 	 * will want to acquire it.
905 	 */
906 	mutex_unlock(&us->dev_mutex);
907 	result = usb_stor_port_reset(us);
908 	mutex_lock(&us->dev_mutex);
909 
910 	if (result < 0) {
911 		scsi_lock(us_to_host(us));
912 		usb_stor_report_device_reset(us);
913 		scsi_unlock(us_to_host(us));
914 		us->transport_reset(us);
915 	}
916 	clear_bit(US_FLIDX_RESETTING, &us->dflags);
917 	last_sector_hacks(us, srb);
918 }
919 
920 /* Stop the current URB transfer */
921 void usb_stor_stop_transport(struct us_data *us)
922 {
923 	/*
924 	 * If the state machine is blocked waiting for an URB,
925 	 * let's wake it up.  The test_and_clear_bit() call
926 	 * guarantees that if a URB has just been submitted,
927 	 * it won't be cancelled more than once.
928 	 */
929 	if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
930 		usb_stor_dbg(us, "-- cancelling URB\n");
931 		usb_unlink_urb(us->current_urb);
932 	}
933 
934 	/* If we are waiting for a scatter-gather operation, cancel it. */
935 	if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
936 		usb_stor_dbg(us, "-- cancelling sg request\n");
937 		usb_sg_cancel(&us->current_sg);
938 	}
939 }
940 
941 /*
942  * Control/Bulk and Control/Bulk/Interrupt transport
943  */
944 
945 int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us)
946 {
947 	unsigned int transfer_length = scsi_bufflen(srb);
948 	unsigned int pipe = 0;
949 	int result;
950 
951 	/* COMMAND STAGE */
952 	/* let's send the command via the control pipe */
953 	/*
954 	 * Command is sometime (f.e. after scsi_eh_prep_cmnd) on the stack.
955 	 * Stack may be vmallocated.  So no DMA for us.  Make a copy.
956 	 */
957 	memcpy(us->iobuf, srb->cmnd, srb->cmd_len);
958 	result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
959 				      US_CBI_ADSC,
960 				      USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0,
961 				      us->ifnum, us->iobuf, srb->cmd_len);
962 
963 	/* check the return code for the command */
964 	usb_stor_dbg(us, "Call to usb_stor_ctrl_transfer() returned %d\n",
965 		     result);
966 
967 	/* if we stalled the command, it means command failed */
968 	if (result == USB_STOR_XFER_STALLED) {
969 		return USB_STOR_TRANSPORT_FAILED;
970 	}
971 
972 	/* Uh oh... serious problem here */
973 	if (result != USB_STOR_XFER_GOOD) {
974 		return USB_STOR_TRANSPORT_ERROR;
975 	}
976 
977 	/* DATA STAGE */
978 	/* transfer the data payload for this command, if one exists*/
979 	if (transfer_length) {
980 		pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
981 				us->recv_bulk_pipe : us->send_bulk_pipe;
982 		result = usb_stor_bulk_srb(us, pipe, srb);
983 		usb_stor_dbg(us, "CBI data stage result is 0x%x\n", result);
984 
985 		/* if we stalled the data transfer it means command failed */
986 		if (result == USB_STOR_XFER_STALLED)
987 			return USB_STOR_TRANSPORT_FAILED;
988 		if (result > USB_STOR_XFER_STALLED)
989 			return USB_STOR_TRANSPORT_ERROR;
990 	}
991 
992 	/* STATUS STAGE */
993 
994 	/*
995 	 * NOTE: CB does not have a status stage.  Silly, I know.  So
996 	 * we have to catch this at a higher level.
997 	 */
998 	if (us->protocol != USB_PR_CBI)
999 		return USB_STOR_TRANSPORT_GOOD;
1000 
1001 	result = usb_stor_intr_transfer(us, us->iobuf, 2);
1002 	usb_stor_dbg(us, "Got interrupt data (0x%x, 0x%x)\n",
1003 		     us->iobuf[0], us->iobuf[1]);
1004 	if (result != USB_STOR_XFER_GOOD)
1005 		return USB_STOR_TRANSPORT_ERROR;
1006 
1007 	/*
1008 	 * UFI gives us ASC and ASCQ, like a request sense
1009 	 *
1010 	 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
1011 	 * devices, so we ignore the information for those commands.  Note
1012 	 * that this means we could be ignoring a real error on these
1013 	 * commands, but that can't be helped.
1014 	 */
1015 	if (us->subclass == USB_SC_UFI) {
1016 		if (srb->cmnd[0] == REQUEST_SENSE ||
1017 		    srb->cmnd[0] == INQUIRY)
1018 			return USB_STOR_TRANSPORT_GOOD;
1019 		if (us->iobuf[0])
1020 			goto Failed;
1021 		return USB_STOR_TRANSPORT_GOOD;
1022 	}
1023 
1024 	/*
1025 	 * If not UFI, we interpret the data as a result code
1026 	 * The first byte should always be a 0x0.
1027 	 *
1028 	 * Some bogus devices don't follow that rule.  They stuff the ASC
1029 	 * into the first byte -- so if it's non-zero, call it a failure.
1030 	 */
1031 	if (us->iobuf[0]) {
1032 		usb_stor_dbg(us, "CBI IRQ data showed reserved bType 0x%x\n",
1033 			     us->iobuf[0]);
1034 		goto Failed;
1035 
1036 	}
1037 
1038 	/* The second byte & 0x0F should be 0x0 for good, otherwise error */
1039 	switch (us->iobuf[1] & 0x0F) {
1040 		case 0x00:
1041 			return USB_STOR_TRANSPORT_GOOD;
1042 		case 0x01:
1043 			goto Failed;
1044 	}
1045 	return USB_STOR_TRANSPORT_ERROR;
1046 
1047 	/*
1048 	 * the CBI spec requires that the bulk pipe must be cleared
1049 	 * following any data-in/out command failure (section 2.4.3.1.3)
1050 	 */
1051   Failed:
1052 	if (pipe)
1053 		usb_stor_clear_halt(us, pipe);
1054 	return USB_STOR_TRANSPORT_FAILED;
1055 }
1056 EXPORT_SYMBOL_GPL(usb_stor_CB_transport);
1057 
1058 /*
1059  * Bulk only transport
1060  */
1061 
1062 /* Determine what the maximum LUN supported is */
1063 int usb_stor_Bulk_max_lun(struct us_data *us)
1064 {
1065 	int result;
1066 
1067 	/* issue the command */
1068 	us->iobuf[0] = 0;
1069 	result = usb_stor_control_msg(us, us->recv_ctrl_pipe,
1070 				 US_BULK_GET_MAX_LUN,
1071 				 USB_DIR_IN | USB_TYPE_CLASS |
1072 				 USB_RECIP_INTERFACE,
1073 				 0, us->ifnum, us->iobuf, 1, 10*HZ);
1074 
1075 	usb_stor_dbg(us, "GetMaxLUN command result is %d, data is %d\n",
1076 		     result, us->iobuf[0]);
1077 
1078 	/*
1079 	 * If we have a successful request, return the result if valid. The
1080 	 * CBW LUN field is 4 bits wide, so the value reported by the device
1081 	 * should fit into that.
1082 	 */
1083 	if (result > 0) {
1084 		if (us->iobuf[0] < 16) {
1085 			return us->iobuf[0];
1086 		} else {
1087 			dev_info(&us->pusb_intf->dev,
1088 				 "Max LUN %d is not valid, using 0 instead",
1089 				 us->iobuf[0]);
1090 		}
1091 	}
1092 
1093 	/*
1094 	 * Some devices don't like GetMaxLUN.  They may STALL the control
1095 	 * pipe, they may return a zero-length result, they may do nothing at
1096 	 * all and timeout, or they may fail in even more bizarrely creative
1097 	 * ways.  In these cases the best approach is to use the default
1098 	 * value: only one LUN.
1099 	 */
1100 	return 0;
1101 }
1102 
1103 int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us)
1104 {
1105 	struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf;
1106 	struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf;
1107 	unsigned int transfer_length = scsi_bufflen(srb);
1108 	unsigned int residue;
1109 	int result;
1110 	int fake_sense = 0;
1111 	unsigned int cswlen;
1112 	unsigned int cbwlen = US_BULK_CB_WRAP_LEN;
1113 
1114 	/* Take care of BULK32 devices; set extra byte to 0 */
1115 	if (unlikely(us->fflags & US_FL_BULK32)) {
1116 		cbwlen = 32;
1117 		us->iobuf[31] = 0;
1118 	}
1119 
1120 	/* set up the command wrapper */
1121 	bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
1122 	bcb->DataTransferLength = cpu_to_le32(transfer_length);
1123 	bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ?
1124 		US_BULK_FLAG_IN : 0;
1125 	bcb->Tag = ++us->tag;
1126 	bcb->Lun = srb->device->lun;
1127 	if (us->fflags & US_FL_SCM_MULT_TARG)
1128 		bcb->Lun |= srb->device->id << 4;
1129 	bcb->Length = srb->cmd_len;
1130 
1131 	/* copy the command payload */
1132 	memset(bcb->CDB, 0, sizeof(bcb->CDB));
1133 	memcpy(bcb->CDB, srb->cmnd, bcb->Length);
1134 
1135 	/* send it to out endpoint */
1136 	usb_stor_dbg(us, "Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
1137 		     le32_to_cpu(bcb->Signature), bcb->Tag,
1138 		     le32_to_cpu(bcb->DataTransferLength), bcb->Flags,
1139 		     (bcb->Lun >> 4), (bcb->Lun & 0x0F),
1140 		     bcb->Length);
1141 	result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
1142 				bcb, cbwlen, NULL);
1143 	usb_stor_dbg(us, "Bulk command transfer result=%d\n", result);
1144 	if (result != USB_STOR_XFER_GOOD)
1145 		return USB_STOR_TRANSPORT_ERROR;
1146 
1147 	/* DATA STAGE */
1148 	/* send/receive data payload, if there is any */
1149 
1150 	/*
1151 	 * Some USB-IDE converter chips need a 100us delay between the
1152 	 * command phase and the data phase.  Some devices need a little
1153 	 * more than that, probably because of clock rate inaccuracies.
1154 	 */
1155 	if (unlikely(us->fflags & US_FL_GO_SLOW))
1156 		usleep_range(125, 150);
1157 
1158 	if (transfer_length) {
1159 		unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
1160 				us->recv_bulk_pipe : us->send_bulk_pipe;
1161 		result = usb_stor_bulk_srb(us, pipe, srb);
1162 		usb_stor_dbg(us, "Bulk data transfer result 0x%x\n", result);
1163 		if (result == USB_STOR_XFER_ERROR)
1164 			return USB_STOR_TRANSPORT_ERROR;
1165 
1166 		/*
1167 		 * If the device tried to send back more data than the
1168 		 * amount requested, the spec requires us to transfer
1169 		 * the CSW anyway.  Since there's no point retrying the
1170 		 * the command, we'll return fake sense data indicating
1171 		 * Illegal Request, Invalid Field in CDB.
1172 		 */
1173 		if (result == USB_STOR_XFER_LONG)
1174 			fake_sense = 1;
1175 
1176 		/*
1177 		 * Sometimes a device will mistakenly skip the data phase
1178 		 * and go directly to the status phase without sending a
1179 		 * zero-length packet.  If we get a 13-byte response here,
1180 		 * check whether it really is a CSW.
1181 		 */
1182 		if (result == USB_STOR_XFER_SHORT &&
1183 				srb->sc_data_direction == DMA_FROM_DEVICE &&
1184 				transfer_length - scsi_get_resid(srb) ==
1185 					US_BULK_CS_WRAP_LEN) {
1186 			struct scatterlist *sg = NULL;
1187 			unsigned int offset = 0;
1188 
1189 			if (usb_stor_access_xfer_buf((unsigned char *) bcs,
1190 					US_BULK_CS_WRAP_LEN, srb, &sg,
1191 					&offset, FROM_XFER_BUF) ==
1192 						US_BULK_CS_WRAP_LEN &&
1193 					bcs->Signature ==
1194 						cpu_to_le32(US_BULK_CS_SIGN)) {
1195 				usb_stor_dbg(us, "Device skipped data phase\n");
1196 				scsi_set_resid(srb, transfer_length);
1197 				goto skipped_data_phase;
1198 			}
1199 		}
1200 	}
1201 
1202 	/*
1203 	 * See flow chart on pg 15 of the Bulk Only Transport spec for
1204 	 * an explanation of how this code works.
1205 	 */
1206 
1207 	/* get CSW for device status */
1208 	usb_stor_dbg(us, "Attempting to get CSW...\n");
1209 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1210 				bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1211 
1212 	/*
1213 	 * Some broken devices add unnecessary zero-length packets to the
1214 	 * end of their data transfers.  Such packets show up as 0-length
1215 	 * CSWs.  If we encounter such a thing, try to read the CSW again.
1216 	 */
1217 	if (result == USB_STOR_XFER_SHORT && cswlen == 0) {
1218 		usb_stor_dbg(us, "Received 0-length CSW; retrying...\n");
1219 		result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1220 				bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1221 	}
1222 
1223 	/* did the attempt to read the CSW fail? */
1224 	if (result == USB_STOR_XFER_STALLED) {
1225 
1226 		/* get the status again */
1227 		usb_stor_dbg(us, "Attempting to get CSW (2nd try)...\n");
1228 		result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1229 				bcs, US_BULK_CS_WRAP_LEN, NULL);
1230 	}
1231 
1232 	/* if we still have a failure at this point, we're in trouble */
1233 	usb_stor_dbg(us, "Bulk status result = %d\n", result);
1234 	if (result != USB_STOR_XFER_GOOD)
1235 		return USB_STOR_TRANSPORT_ERROR;
1236 
1237  skipped_data_phase:
1238 	/* check bulk status */
1239 	residue = le32_to_cpu(bcs->Residue);
1240 	usb_stor_dbg(us, "Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
1241 		     le32_to_cpu(bcs->Signature), bcs->Tag,
1242 		     residue, bcs->Status);
1243 	if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) ||
1244 		bcs->Status > US_BULK_STAT_PHASE) {
1245 		usb_stor_dbg(us, "Bulk logical error\n");
1246 		return USB_STOR_TRANSPORT_ERROR;
1247 	}
1248 
1249 	/*
1250 	 * Some broken devices report odd signatures, so we do not check them
1251 	 * for validity against the spec. We store the first one we see,
1252 	 * and check subsequent transfers for validity against this signature.
1253 	 */
1254 	if (!us->bcs_signature) {
1255 		us->bcs_signature = bcs->Signature;
1256 		if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN))
1257 			usb_stor_dbg(us, "Learnt BCS signature 0x%08X\n",
1258 				     le32_to_cpu(us->bcs_signature));
1259 	} else if (bcs->Signature != us->bcs_signature) {
1260 		usb_stor_dbg(us, "Signature mismatch: got %08X, expecting %08X\n",
1261 			     le32_to_cpu(bcs->Signature),
1262 			     le32_to_cpu(us->bcs_signature));
1263 		return USB_STOR_TRANSPORT_ERROR;
1264 	}
1265 
1266 	/*
1267 	 * try to compute the actual residue, based on how much data
1268 	 * was really transferred and what the device tells us
1269 	 */
1270 	if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) {
1271 
1272 		/*
1273 		 * Heuristically detect devices that generate bogus residues
1274 		 * by seeing what happens with INQUIRY and READ CAPACITY
1275 		 * commands.
1276 		 */
1277 		if (bcs->Status == US_BULK_STAT_OK &&
1278 				scsi_get_resid(srb) == 0 &&
1279 					((srb->cmnd[0] == INQUIRY &&
1280 						transfer_length == 36) ||
1281 					(srb->cmnd[0] == READ_CAPACITY &&
1282 						transfer_length == 8))) {
1283 			us->fflags |= US_FL_IGNORE_RESIDUE;
1284 
1285 		} else {
1286 			residue = min(residue, transfer_length);
1287 			scsi_set_resid(srb, max(scsi_get_resid(srb),
1288 			                                       (int) residue));
1289 		}
1290 	}
1291 
1292 	/* based on the status code, we report good or bad */
1293 	switch (bcs->Status) {
1294 		case US_BULK_STAT_OK:
1295 			/* device babbled -- return fake sense data */
1296 			if (fake_sense) {
1297 				memcpy(srb->sense_buffer,
1298 				       usb_stor_sense_invalidCDB,
1299 				       sizeof(usb_stor_sense_invalidCDB));
1300 				return USB_STOR_TRANSPORT_NO_SENSE;
1301 			}
1302 
1303 			/* command good -- note that data could be short */
1304 			return USB_STOR_TRANSPORT_GOOD;
1305 
1306 		case US_BULK_STAT_FAIL:
1307 			/* command failed */
1308 			return USB_STOR_TRANSPORT_FAILED;
1309 
1310 		case US_BULK_STAT_PHASE:
1311 			/*
1312 			 * phase error -- note that a transport reset will be
1313 			 * invoked by the invoke_transport() function
1314 			 */
1315 			return USB_STOR_TRANSPORT_ERROR;
1316 	}
1317 
1318 	/* we should never get here, but if we do, we're in trouble */
1319 	return USB_STOR_TRANSPORT_ERROR;
1320 }
1321 EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport);
1322 
1323 /***********************************************************************
1324  * Reset routines
1325  ***********************************************************************/
1326 
1327 /*
1328  * This is the common part of the device reset code.
1329  *
1330  * It's handy that every transport mechanism uses the control endpoint for
1331  * resets.
1332  *
1333  * Basically, we send a reset with a 5-second timeout, so we don't get
1334  * jammed attempting to do the reset.
1335  */
1336 static int usb_stor_reset_common(struct us_data *us,
1337 		u8 request, u8 requesttype,
1338 		u16 value, u16 index, void *data, u16 size)
1339 {
1340 	int result;
1341 	int result2;
1342 
1343 	if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1344 		usb_stor_dbg(us, "No reset during disconnect\n");
1345 		return -EIO;
1346 	}
1347 
1348 	result = usb_stor_control_msg(us, us->send_ctrl_pipe,
1349 			request, requesttype, value, index, data, size,
1350 			5*HZ);
1351 	if (result < 0) {
1352 		usb_stor_dbg(us, "Soft reset failed: %d\n", result);
1353 		return result;
1354 	}
1355 
1356 	/*
1357 	 * Give the device some time to recover from the reset,
1358 	 * but don't delay disconnect processing.
1359 	 */
1360 	wait_event_interruptible_timeout(us->delay_wait,
1361 			test_bit(US_FLIDX_DISCONNECTING, &us->dflags),
1362 			HZ*6);
1363 	if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1364 		usb_stor_dbg(us, "Reset interrupted by disconnect\n");
1365 		return -EIO;
1366 	}
1367 
1368 	usb_stor_dbg(us, "Soft reset: clearing bulk-in endpoint halt\n");
1369 	result = usb_stor_clear_halt(us, us->recv_bulk_pipe);
1370 
1371 	usb_stor_dbg(us, "Soft reset: clearing bulk-out endpoint halt\n");
1372 	result2 = usb_stor_clear_halt(us, us->send_bulk_pipe);
1373 
1374 	/* return a result code based on the result of the clear-halts */
1375 	if (result >= 0)
1376 		result = result2;
1377 	if (result < 0)
1378 		usb_stor_dbg(us, "Soft reset failed\n");
1379 	else
1380 		usb_stor_dbg(us, "Soft reset done\n");
1381 	return result;
1382 }
1383 
1384 /* This issues a CB[I] Reset to the device in question */
1385 #define CB_RESET_CMD_SIZE	12
1386 
1387 int usb_stor_CB_reset(struct us_data *us)
1388 {
1389 	memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE);
1390 	us->iobuf[0] = SEND_DIAGNOSTIC;
1391 	us->iobuf[1] = 4;
1392 	return usb_stor_reset_common(us, US_CBI_ADSC,
1393 				 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1394 				 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE);
1395 }
1396 EXPORT_SYMBOL_GPL(usb_stor_CB_reset);
1397 
1398 /*
1399  * This issues a Bulk-only Reset to the device in question, including
1400  * clearing the subsequent endpoint halts that may occur.
1401  */
1402 int usb_stor_Bulk_reset(struct us_data *us)
1403 {
1404 	return usb_stor_reset_common(us, US_BULK_RESET_REQUEST,
1405 				 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1406 				 0, us->ifnum, NULL, 0);
1407 }
1408 EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset);
1409 
1410 /*
1411  * Issue a USB port reset to the device.  The caller must not hold
1412  * us->dev_mutex.
1413  */
1414 int usb_stor_port_reset(struct us_data *us)
1415 {
1416 	int result;
1417 
1418 	/*for these devices we must use the class specific method */
1419 	if (us->pusb_dev->quirks & USB_QUIRK_RESET)
1420 		return -EPERM;
1421 
1422 	result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf);
1423 	if (result < 0)
1424 		usb_stor_dbg(us, "unable to lock device for reset: %d\n",
1425 			     result);
1426 	else {
1427 		/* Were we disconnected while waiting for the lock? */
1428 		if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1429 			result = -EIO;
1430 			usb_stor_dbg(us, "No reset during disconnect\n");
1431 		} else {
1432 			result = usb_reset_device(us->pusb_dev);
1433 			usb_stor_dbg(us, "usb_reset_device returns %d\n",
1434 				     result);
1435 		}
1436 		usb_unlock_device(us->pusb_dev);
1437 	}
1438 	return result;
1439 }
1440